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Chapter 1

Introduction

Description Logic systems are a form of knowledge representation and reasoning sys-
tems that allow to represent and to reason about conceptual, i.e., terminological knowl-
edge. The representations as well as the reasoning services are based on well-defined
formal semantics. The main ingredients for representing terminological knowledge are
concept descriptions. For example, such a concept description can characterize the
category of ‘mother’ as a female person who has a person as a child, in the following
way:

Person u Female u ∃has-child.Person.

In this expression Person and Female are concepts and has-child is a role – a binary
relation.

In this thesis we devise methods to infer generalizations of concept descriptions.
More precisely, we discuss methods that extend well investigated methods for comput-
ing least common subsumers of a collection of concept descriptions to more expressive
Description Logics, provide first implementations of the most promising techniques
and discuss techniques to improve these reasoning services. The methods here inves-
tigated can provide assistance for users that are not experts in knowledge representa-
tion to build and extend their knowledge bases. We start this endeavor with a short
overview of Description Logics systems.

1.1 Knowledge representation with Description Logics

Description Logic systems typically consist of three components. First, there is the
representation of basic categories of the domain of interest. These categories consti-
tute the terminological knowledge about the application domain. This information is
represented by concept descriptions, which are built from concept constructors and
concept names, some of which were used in the example above. Names can be assigned
to these concept descriptions in concept definitions, e.g.,

Mother ≡ Person u Female u ∃has-child.Person

GrandMother ≡ Mother u ∃has-child.∃has-child.Person

1
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The concept Mother is used to define other concepts in turn. The set of concept
definitions is stored in the TBox (terminological box) or ontology.

The second component of a description logic system is the ABox (assertional box).
Here, information about concrete entities from the application domain is asserted.
The individuals are described again by concept descriptions and by relations to other
individuals. For example, we can state in an ABox that Nelli and Anne are female
persons, Anne has at least two children Anne has the child Nelli and Nelli has a brother
Sammy in the following way:

Person u Female u (≥ 2 has-child)
(
Anne

)
,

Person u Female
(
Nelli

)
,

(Anne, Nelli) : has-child,

(Nelli, Sammy) : has-brother

The ABox typically refers to concepts defined in the TBox—as in case of the concept
Person in our example. The TBox and the ABox together are also referred to as the
knowledge base.

The third part of description logic systems is the reasoning component. Based on
the explicit information given in TBox and ABox, the reasoning component can infer
implicit facts automatically. One of the typical reasoning services is to test whether
the information captured in TBox and ABox contains a contradiction. This is not
the case in our above example. But, for instance, the DL system can infer from the
information given that Anne is a mother. This is not stated explicitly, but since Anne

is a female person and she has a child, the description of her also fulfills the description
of the concept Mother from the TBox.1

1.1.1 Description Logics

Early knowledge representation systems such as semantic networks [Qui67; Sow91] or
frame systems [Min74] are predecessors of description logics systems. These knowl-
edge representation systems were motivated by cognitive science, more precisely by
linguistic applications. These kinds of systems allow to specify information on notions
from the domain of discourse and offer methods to compute inheritance relation be-
tween the specified notions. Semantic networks are graphical representation of notions
about the domain of discourse. Nodes in these graphs represent concepts or individ-
uals and the labeled edges between them represented the relations between them. In
frame systems, concepts are represented by frames, which are a record-like structure.
A frame has a name for the concept it describes, a set of super-concepts and a set
of slots. Each slot describes a property of the concept by linking to other frames.
Both frame-based systems and semantic networks have operational semantics, i.e.,
the semantics of reasoning is ‘defined’ by the implementation of the reasoning task.
As a consequence the result of the reasoning process depends on the implementation
of the reasoner and thus the result may differ from system to system for the same in-
put [Sow92]. To remedy this, Description Logics (DL) are based on formal semantics

1The notions used in this Section will be introduced formally in Section 2.
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and their reasoning tasks are defined based on these semantics. The information on
the domain of discourse is represented in a declarative and unambiguous way. The
formal semantics of the reasoning tasks ensures predictable and reliable behavior of
DL reasoning systems independent of the implementation.

Early DL research on reasoning methods started from DLs that offered only a
small range of concept constructors. The employed reasoning algorithms were mainly
structural algorithms. These algorithms typically proceed in two phases: first the
concepts are normalized and then the structures of the normalized concepts are com-
pared. It turned out that already for rather small DLs the complexity of reasoning
was not tractable [Neb88; LB87; DLNN91]. From then on research in the fields of
DLs was mainly devoted to finding sound and complete reasoning algorithms for more
expressive DLs that offered a good trade-off between expressiveness and tractability.

Most Description Logics are fragments of first order logic. Many of the most
common concept constructors can be translated into the two-variable fragment of
first order logic [SCM03; LSW01; HSG04]. DLs are closely related to Modal Logics
[BdRV01]. In [Sch91] it was shown that the DL ALC is a notational variant of the
Modal Logic Km. Many theoretical results on reasoning in modal logics carry directly
over to standard inferences in DLs.

1.1.2 Standard inferences in Description Logic systems

From the information that is captured explicitly in the TBox and ABox, more in-
formation can be implied. To be able to infer implicit information automatically is
one of the main assets of DL systems. DL systems implement different methods to
infer knowledge implicitly captured in the knowledge base. We refer to these typical
and well investigated inferences as standard inferences. One of the basic standard
inferences is to test for satisfiability of the TBox, i.e., testing whether the informa-
tion specified there is not contradictory. In case the information is contradictory, any
consequence follows logically from the TBox, which is obviously an undesired effect.
Moreover, since it is unsatisfiable, the specified information does not capture the in-
tended notions from the real-world domain. To test for satisfiability is often a first step
for the knowledge engineer to check whether the knowledge base models something
meaningful.

Another typical standard inference offered in DL systems is to compute whether
one concept in the TBox models a more general category than another one. In that
case the concept subsumes the other concept. Subsumption is the standard inference
to infer super- and sub-concept relationships between concepts. To compute the sub-
sumption relations for all concepts mentioned in the TBox is called classification and
yields the concept hierarchy or taxonomy of the TBox. By computing the subsump-
tion hierarchy the knowledge engineer can compare if the obtained concept hierarchy
matches her knowledge about the domain.

From some information stated in the ABox it might follow implicitly that some
individuals are instances of concepts defined in the TBox, although not explicitly
mentioned. The inference instance checking computes for an individual and a concept
whether this individual is an instance of the given concept w.r.t. the knowledge base.
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This inference helps the knowledge engineer to assess whether the intended relation-
ships between individual descriptions and concepts are captured in the knowledge base
or whether these descriptions need further refinement.

These are only some of the typical reasoning services offered by DL systems, for a
broader overview see [BN03]. We call the reasoning services that refer to concepts and
TBoxes terminological reasoning and those that refer to ABoxes in addition assertional
reasoning. In this thesis we focus on reasoning about concepts and will mainly discuss
terminological reasoning.

All of the above mentioned inferences have been investigated for a great range of
DLs. In particular, tableaux-based decision procedures for these inferences have been
devised and their complexities have been studied extensively [BS01]. For instance, the
complexity of testing for subsumption between two concepts w.r.t. a TBox written in
the already mentioned DL ALC is PSpace-complete [SS91]. The worst case com-
plexity of subsumption in DLs that are nowadays widely used as ontology languages
is—as for example the DL called SHIF—ExpTime-complete or for SHOIQ even
NExpTime-complete [Tob01; HS05]. Already due to early findings reasoning in DLs
was considered to be intractable [Neb90] and thus not feasible for practical applica-
tions. However, it was unclear whether these high worst case complexities would be
encountered in practice.

In the late nineties tableaux reasoning methods for these DLs were implemented
in a highly optimized way. These implementations used some well-known techniques
to speed-up reasoning [DLL62; Bak95], but, more importantly, new techniques tai-
lored to DL reasoning methods were developed [BFH+94; Hor97; HST00; HMT01].
These techniques were first put to practice in the DL reasoner system FaCT [Hor98]

and then in the system Racer [HM01b]. It turned out that these highly opti-
mized implementations of the terminological reasoning methods do perform surpris-
ingly well on TBoxes from practical applications. Classification of big and complex
TBoxes for expressive DLs was possible within minutes. It also turned out that
those cases that lead to the worst case complexities of the reasoning methods are not
often encountered in practical applications [Hor98; HPS99; HST00; HM01a; Hor02;
THPS07]. These findings encouraged research on standard reasoning methods for even
more expressive DLs and on how to implement these methods efficiently. This led to a
collection of implementations of DL reasoners, such as FaCT++ [TH06], RacerPro

[Rac05], Pellet [SP04], Kaon2 [Mot06], Cel [BLS06] and most recently HermiT

[MSH07]. While the first three reasoners are tableaux-based systems, the latter three
investigate alternative reasoning techniques.

Although today’s DL standard reasoners are highly optimized for TBox reasoning,
they are not yet capable of handling ABox reasoning for very large knowledge bases
efficiently. High-performance ABox reasoning is an ongoing research issue [HM04;
HMW05]. For many practical applications DL systems and their standard inferences
in particular are employed successfully.
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1.1.3 Practical applications of Description Logics

Next, we give an overview of some common applications of DL systems and the knowl-
edge bases build for these applications to address the issue of how users can be assisted
in building knowledge bases suiting the needs of their application.

Natural Language Processing

The motivation for early DL systems was their practical application in natural lan-
guage processing. In this application area, methods from knowledge representation
are used to analyze and interpret, but also to generate sentences in natural language.
Knowledge bases are built to model syntactic constituents of sentences—such as noun
phrases or verb phrases—and also contextual knowledge and knowledge about the
specific domain of discourse. When applied in natural language interpretation, these
knowledge bases help to limit the number of possible interpretations of an examined
utterance or sentence, since the semantically implausible interpretations can be ruled
out early in the interpretation process [Fra03].

A good linguistic knowledge base should be usable for both tasks—natural lan-
guage understanding as well as for natural language generation. Furthermore, good
knowledge bases for natural language processing can be divided into an upper ontol-
ogy and a domain ontology [Bat90; BMF95; KL94]. The upper ontology models the
language-dependent, but domain-independent parts, while the domain ontology cap-
tures notions from the domain of discourse. This aspect should be taken into account
when building this kind of knowledge bases.

Chemical Process Engineering

In chemical process engineering, DL systems are used to build knowledge bases that
capture the compositions of complex systems and their building blocks. Process en-
gineering is concerned with methods, tools, and their management for the analysis,
design and control of a process. Here, models are used to represent, analyze, and opti-
mize processes and get a deeper understanding of their nature. In particular, equation-
based mathematical models are desirable, because of their high predictive capabilities
in numerical analysis and simulation. Unfortunately, these models are very complex
even for simple chemical processes. Nevertheless, adequate models can be obtained
step by step, starting with so-called block-oriented models. Each block stands for a
standardized sub-unit of the entire process with certain interfaces and each connec-
tion for a flow of material, energy, or information. Typically, block-oriented modeling
environments have a block repository in which building blocks and their composites
are stored. In case a DL system is used as a block repository, building blocks and
their partonomies are modeled in the TBox and individual system parts are modeled
in the ABox.

The ontologies for process engineering are structured in a layered way according the
generality of the described concepts [BLM01; MYM07]. This design of the ontologies
facilitates the navigation in the ontology for the process engineer when searching for
a particular building block. More importantly, this design aims at the re-usability of
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the ontology in different process engineering applications, since it offers descriptions
of building blocks at the ‘right’ level of detail and granularity. For example, in the
chemical process engineering ontology OntoCAPE2 developed at the RWTH Aachen,
five different abstraction layers are identified: meta layer, upper layer, conceptual
layer, application-oriented layer and application-specific layer [MYM07].

Many requirements that chemical process engineering applications pose to knowl-
edge representation systems, such as descriptions of building blocks at different ab-
straction levels, consistency tests for the modeled block descriptions and automatic
classification of the repository can naturally be fulfilled by DL systems as the in-depth
investigation in [Sat98] showed.

Life Sciences

The most active application area of DL systems are currently the life sciences, which
comprises the wider fields of biology and medicine. Here, the modeling of the domain
in a formal representation language is a benefit in itself, since this formalizes and to
some extent standardizes what the community understands about certain terms in
an unambiguous way. Thus by agreeing upon an ontology and on the definition of
concepts in it, a community can create a shared understanding of their domain of
study as noted in [WLT+06]. The obtained ontologies simply serve as a community
knowledge reference and thereby reduce heterogeneity in the community. This effect
has been demonstrated prominently by the Gene Ontology [Con00], where several
ontologies use the same terminology to describe the major attributes of functionality
of gene products by a controlled vocabulary. This particular ontology was obtained
from a joint effort of different genome projects [BER+98; Con98]. It contains about
18.800 concepts. Furthermore, DL systems are applied to check the consistency of the
modeled information.

In health care knowledge bases are used for decision support and also for seman-
tics oriented natural language processing of medical reports [Rec03]. In the health
care domain ontologies have been developed for many years and a range of medical
ontologies have been developed; we take a closer look at two of them.

The work on early precursors of the Snomed3 ontology has started already in the
seventies [CRP+93]. It models anatomical structures, diseases and medical proce-
dures. Today the current version of Snomed ontology is applied for health reporting,
billing and statistical analysis in USA and throughout Europe. The DL version of the
Snomed Ontology describes more than 397,000 concepts and more than 50 roles, but
it uses only a small number of concept constructors to describe the concepts [BLS07].

The European Galen project started in the early nineties to develop a common
reference model for the integration of medical information systems [RNG93; Rec03].
The resulting Galen ontology uses a very expressive DL and moreover general concept
inclusion axioms (GCIs), which state subsumption not between a concept name and
a complex concept description, but between two concept descriptions. The Galen
ontology contains about 2,700 concept definitions and 1,200 GCIs [BLS07].

2CAPE stands here for Computer-Aided Process Engineering.
3Snomed: ‘Systematized nomenclature of medicine’
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In medicine as well as in biology ontologies can grow extremely large. Obviously,
these ontologies are not developed by a single person, but by a whole team of per-
sons and mostly these ontologies are developed over a long period of time. All of
these circumstances necessitate automated support for constructing and maintaining
knowledge bases from this domain.

Semantic Web

In the last couple of years the application area of the semantic web [BLHL01] brought
more attention to DLs and their powerful reasoning systems. The semantic web is
envisioned as a future version of today’s World Wide Web, where web content will
be annotated with formal representation of its meaning. This formal representation
is then used and interpreted by applications to automatically find and choose useful
web resources for their tasks.

The annotation can state in which context a keyword is used. For a web page
with the title ‘Java guide’ the annotation can clarify that the Indonesian island and
thus not the programming language is referred to. In case this annotation is done
w.r.t. an ontology and if it can be inferred from this ontology that Java is a part of
Indonesia, this page is returned to the general request for information on Indonesian
travel destinations. This kind of result would not be found with the syntax-based
search techniques employed in search engines today. Similar to this, other kinds of
resources can be annotated with ontologies to be used in the semantic web, as for
example web services.

Although mainly a future vision, the semantic web is already a strong motivation
for the development of powerful reasoning algorithms for very expressive DLs on the
one hand and for the implementation of DL systems and DL tools on the other.
An important step towards realizing the semantic web was the standardization of
ontology languages such as DAML+OIL [CvHH+01] and, more importantly, of the
web ontology language OWL [BvHH+04; HPSvH03]. The W3C recommendation for
OWL specifies three dialects. While the most expressive dialect OWL full is beyond
the expressivity of DLs and reasoning in it is undecidable, the other two dialects
correspond to DLs for which sound and complete reasoning procedures exist. OWL
DL can express ontologies written in the DL SHOIN and the less expressive OWL
lite can express ontologies written in the DL SHIF .

The close relation of DLs and these two OWL dialects raised the interest of new
user groups in DL reasoning and DL systems. These users come from various fields
and do not always have a background in knowledge representation or logics. Thus, it
is often hard for these users to understand what has been specified in the knowledge
base, since large and complex concept descriptions are not easy to comprehend. The
more severe problem for inexperienced users is to capture their intuitive notion of a
concept in a formalism like DLs or OWL. To provide automated support for these users
in building and extending their knowledge bases in a meaningful way is a requirement
for ontology tools for the semantic web. Furthermore, ontologies for the semantic
web are likely not to be built from scratch, but to re-use ontologies or parts of them
from other applications. Thus tools for editing ontologies should also facilitate the
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comprehension of the structure of knowledge bases and the meaning of the concepts
therein.

These different application areas of DL systems show that knowledge bases for prac-
tical applications are mostly developed by more than one person and often by non-
logicians. Furthermore, the ontologies from real applications can grow very large and
complex. These issues make it desirable to have automated support for ontology users
for the tasks of design and maintenance of Description Logic knowledge bases.

1.2 Design and maintenance of Description Logic knowl-

edge bases

To identify tasks for design and maintenance for DL knowledge bases, we first sum-
marize basic principles for good ontology design and then derive some demands for
good support for ontology design and maintenance from the practical applications of
DL systems that we just described. Gruber established some basic principles for good
ontology design for formal ontologies in [Gru93].

Clarity. An ontology should state the intended meaning of terms in an objective way.
The meaning captured should be dissociated from the social and computational
context. A complete definition giving the necessary and sufficient conditions is
to be preferred over incomplete ones.

Coherence. The definitions in an ontology should be logically consistent, neither the
definitions of terms nor their individuals should be contradictory.

Extendibility. The structure and the definitions in an ontology should allow to ex-
tend the ontology monotonically. More precisely, the definition of new terms
should preserve the meaning of the terms they refine.

Minimal encoding bias. An ontology should be specified at the knowledge level,
instead of choosing a format to accommodate convenience of notation or imple-
mentation.

Minimal ontological commitment. An ontology should make as few claims as
possible about the modeled domain, i.e., only the terms essential for the in-
tended use of the ontology should be defined. Ontological commitment can
be minimized by specifying the weakest theory and thereby allowing the most
models.

Some of these quality criteria are met by DL systems quite naturally. For instance
the criteria clarity and minimal encoding bias are supported by the formal semantics
of DLs. Coherence of the ontology can be tested by standard reasoning methods
implemented in DL systems. The minimal encoding bias can be diminished in modern
ontology editors and visualization tools that offer an abstract syntax for writing down
the ontology. The user does not deal explicitly with the underlying format of the
ontology such as RDF, but only with human readable formats and thus does not have
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to compensate for the format when modeling. However, some of the above criteria
can be met by employing new reasoning tasks, while others are simply requirements
from the mentioned practical applications for good ontology design which we discuss
next.

Avoid redundancy. Ontologies that contain redundancies are unnecessarily large
and often not well-structured. This makes it harder for the modeler to compre-
hend the ontology and, more importantly, to extend the ontology. Furthermore,
redundancies can lead to unexpected reasoning results. The cause for such a
result is more difficult to locate and to repair in redundant ontologies.4

Re-usable ontologies. Many application domains re-use knowledge bases that model
a sub-domain of their domain of interest. For instance, in the process engineering
domain basic building blocks are re-used in other ontologies, while in the area
of the semantic web upper ontologies are often used to model general domains
that are referred to in the application knowledge base.

Levels of granularity and abstraction. Ontologies that model different levels of
granularity and abstraction are easier to extend. To this end ontologies in the
domain of life sciences and also in the process engineering domain ontologies are
designed in conceptual layers.

Balanced concept hierarchy. By balanced concept hierarchy we mean a concept
hierarchy that does not have a shallow hierarchy and where a node only has a
‘reasonable’ number of children. Balanced hierarchies facilitate the comprehen-
sion of the (structure of) the ontology. The concept hierarchy is the structure
used for browsing the ontology. For instance, if the process engineer looks for a
particular building block, a balanced concept hierarchy enables better navigation
in large ontologies.

In order to propose methods to meet these requirements for good ontology design
one has to bear in mind under which conditions ontologies are developed. Firstly,
many ontologies have been developed over a period of many years. For instance the
medical ontologies Galen and Snomed have been developed over at least a decade.
Secondly, large ontologies are not developed by a single person, but by a whole team
of modelers. Thirdly, most application ontologies are developed by users who are
experts in the domain that they model, but not in the representation formalism they
use.5 It is evident that in this kind of setting support for the design and maintenance
of ontologies is needed. On the one hand a useful ontology system should facilitate
the comprehension of the knowledge base to help a naive user to get an overview of
the ontology and to see how the domain is modeled in order to extend or re-use an
ontology in a competent way. On the other hand an ontology system should offer
support for meeting the design requirements. However, this support must be based on
well-defined methods to guarantee predictable outcome and reliable behavior of the

4This design goal complements the criterion of clarity proposed by Gruber.
5In that sense we speak of ‘naive users’ to refer to this group of DL system users.
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system. For most of the above mentioned requirements inference services have been
proposed that assist naive users in accomplishing the tasks of ontology design and
maintenance.

1.2.1 Reasoning support for design and maintenance of knowledge

bases

The inferences satisfiability or subsumption can be used to test the quality criterion
of coherence of a knowledge base or to test whether the intended super-concept rela-
tions are implied by the ontology. Now, in case the result of these inferences is not as
expected, it is often not easy to see why and, more importantly, which statements in
the ontology cause these results. It is crucial for the modeler to identify these state-
ments and to change the ontology such that the intended subsumption relationships
hold. The identification of such relevant statements can be achieved by the task of
axiom pinpointing. Axiom pinpointing is investigated for expressive DLs in [PSK05;
BP07] and for the small but lightweight DL EL++ [BPS07].

The re-use of ontologies requires that the modeler comprehends the ontology writ-
ten by others that is considered as a candidate for re-use. In order to be able to
extend the ontology in a meaningful way, the user must understand the definitions
stored in the ontology. For very expressive DLs the user might be overwhelmed by
very complex definitions and not be able to assess in what kind of effects changes
would result. To obtain a version of the ontology where fewer concept constructors
are used—that is the closest version w.r.t. subsumption to the original ontology—
concept approximation has been proposed. We formally introduce and examine this
inference in Chapter 4. Concept approximation has been investigated in [BKT02b] for
the first time. The idea is to eliminate unwanted concept constructors by computing
the closest concept description in a DL where this concept constructor is not present.
In particular, disjunction is often confusing for naive users. In so-called frame-based
views of ontologies, disjunction is not supported. Now, one can use concept approxi-
mation to obtain a frame-based view from an ontology written in a more expressive
DL.

When aiming at the re-usability of an ontology, a natural question is whether a
sub-part of the ontology can be identified that contains the necessary information to
retain the subsumption hierarchy of the concepts that appear in this sub-part of the
ontology, if this sub-part is classified alone. Such a sub-part is called an ontology
module and constitutes a part of the ontology that is somewhat independent of the
rest of the ontology and can be exported to other ontologies while preserving its
concept hierarchy. The identification of such ontology modules has been investigated
in [CKHS07; CHKS07], where sufficient syntactic conditions have been devised to
identify ontology modules. These conditions can test whether modules in a SHOIQ-
ontology exist and are currently being implemented to complement the services offered
by the ontology editor Swoop [KPS+06].

In regard of extensibility and re-use of an ontology or parts of it another question
is: Does importing it affect my existing ontology in an unwanted way? For instance, is
the concept hierarchy of the ‘old concept names’ the same after the import? To ensure
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this, conservative extensions have been devised in [GLW06]. This reasoning service
decides whether it is safe to add a set of ontology statements to an existing ontology,
i.e., if it does not change the concept hierarchy of the older part. The methods for
recognizing conservative extensions have been so far investigated for ALC [GLW06]

and ALC extended by qualified number restrictions and inverse roles [LWW07].

The design requirements of modeling different levels of granularity as well as a
balanced concept hierarchy can both be achieved by the introduction of concepts that
are intermediate concepts, i.e., concepts that are located in the taxonomy between a
concept and its children. To this end such a concept has to be more general than the
children concepts and be more specific than the initial parent concept. The inference
that yields generalizations of a collection of concepts is the least common subsumer.
More precisely, this inference yields a concept description that expresses the common-
alities of all input concepts. This concept description can in turn be the starting point
for a new concept definition in the ontology. By applying the computation of the least
common subsumer to similar concepts that have high level of refinement in regard of
the application domain, the modeler can directly obtain a concept description that
describes a more abstract notion of the application domain.

The layered design brings us to the more general issue of how the extension of on-
tologies can be supported in a semi-automatic way. In DL systems standard inferences
are employed when a concept description is already written down—little support is
given to come up with a concept description matching the intuition of the modeler
and capturing certain characteristics of the notion in mind. For instance, the OWL
plug-in [KMR04] of the ontology editor Protégé [GMF+03] offers modeling patterns.
One of these patterns for example guides the user in a step-by-step fashion to spec-
ify a concept as a partition of a set of other concepts. However, still the user has
to bear in mind which aspects of the concept have to be addressed in the definition
and specialized. Some approaches that provide the user with a concept description
as a starting point for editing and that take the structure of the knowledge base into
account are based on non-standard inferences.

1.2.2 Approaches for extending ontologies based on non-standard

inferences

Typically, Description Logic knowledge bases are constructed in top-down fashion:
first, the knowledge engineer formalizes basic categories of the domain as concepts in
the TBox, which are then refined. In a later step concrete entities from the domain
are described by individuals in the ABox. We describe four scenarios for extending
existing ontologies that can be realized by the use of so called non-standard inferences.

Bottom-up extension

The modeler starts from individuals in the ABox to introduce new concepts in the
TBox. In a first step the knowledge engineer selects a set of individuals modeled in
the application ABox that, in her intuition, share common characteristics and are
prototypical for the category the modeler has in mind. From this set of selected
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Figure 1.1: Bottom-up extension of knowledge bases.

individuals the DL system generates automatically a concept description that is the
most specific one of which all of the picked individuals are instances. The concept
description is then offered to the modeler for inspection and editing. If the modeler
is confident with the concept description, she can assign a name to it and add this
concept definition to the TBox.

This way of extending knowledge bases has been practiced ‘by hand’, i.e., with-
out the automated support in the domain of process engineering and was in fact
the motivation for earlier studies on non-standard inferences that realize this ap-
proach [BKM99; Mol00]. Recently, this way of supporting users has been demanded
in [KRM07] for the building of bio-ontologies.

In Figure 1.1 the realization of the bottom-up extension is depicted. On the left
side of the figure the taxonomy of the TBox T and the ABox A are shown. The concept
C in T has a number of instances in the ABox (pointed to by the dotted arrow). Now,
the modeler wants to introduce a sub-concept of C that has the individuals i1, . . . , im as
instances. The bottom-up approach typically involves three non-standard inferences
depicted in the middle of Figure 1.1. First, for each of the individuals selected by
the modeler the most specific concept (msc) is computed. From a description of an
individual and its relations to other individuals specified in the ABox, this inference
computes a concept description that is the most specific concept description of which
all selected individuals are instances of. In the example in Figure 1.1 the concept
description C1 to Cm are the most specific concepts of the selected individuals. Next,
in the bottom-up extension, the obtained concept descriptions are generalized into
a single concept description by computing their least common subsumer (lcs). The
lcs is a concept description that is the closest w.r.t. to subsumption to the concept
descriptions it is applied to. In our case the lcs of the descriptions obtained in step
one yields C1m. As we will see, the concept descriptions obtained by computing the
lcs can grow very large. Thus it is often useful to compute the minimal rewriting of
the concept description obtained by the lcs. This rewriting step returns an equivalent
concept that is more compact than the original one. It proceeds by finding parts
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Figure 1.2: Customization of Background Ontologies.

in the concept description that can be replaced by a concept name from the TBox
while preserving equivalence. This step yields concept description C ′

1m. This concept
description can be assigned a name and added to the TBox. In the right part of
Figure 1.1 we see the concept hierarchy extended by the automatically constructed
concept C ′

1m, which has the initially chosen individuals as instances.

A variation of the bottom-up extension, which we will study in this thesis instead
of the one described above, starts from a selection of concepts from the TBox and
provides a concept description obtained by applying the lcs as a candidate for a new
concept to be introduced in the TBox.

Customization of background ontologies

This method for extending knowledge bases operates with two ontologies written in
different DLs. Suppose the modeler has little expertise in DLs and thus uses an easy
to comprehend, but rather inexpressive DL to build her ontology. Furthermore for
modeling her application domain she needs to make reference to notions formalized
in an ontology written in a more expressive DL. We call this ontology the background
ontology. Perhaps the background ontology is a standardized ontology and its original
definitions must be used or it is obtained from an ontology vendor and the concept
definitions must not be changed. So, the modeler uses concept names from this back-
ground ontology in the user ontology to define new concepts and to adapt the concepts
defined in the background ontology to her application. This approach is displayed in
Figure 1.2 above. Here the concept hierarchy of the background terminology TB and
the user terminology TU is depicted. The concepts from the different ontologies are
depicted by different geometrical shapes, since they are written in different DLs.

Now, in order to customize the background ontology by a well-structured concept
hierarchy, the modeler chooses similar concepts that form a category from the user
ontology for which a super-concept should be obtained—in Figure 1.2 these concepts
are named C1 to Cm. The DL system generalizes these concepts into one concept
description (C1m), compresses it by rewriting (C ′

1m) and returns it for inspection and
manual editing to the modeler. After the concept is assigned a name, the resulting
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concept hierarchy looks as in the right part of Figure 1.2, where the taxonomy of TB

and TU has an additional level.

Customization of knowledge bases is realized by the least common subsumer w.r.t.
the combined ontology. The obtained lcs concept description uses only the concept
constructors present in the user DL, but concept names from the background ontology
might also be used. In some cases where the lcs is difficult to obtain, a relaxed version
of the lcs might be useful for efficiency reasons. To this end we propose to compute
a good common subsumer, which also subsumes all input concept descriptions, but is
not necessarily the least concept description to do so.

This approach for extending knowledge bases by customization was initially pro-
posed in [BST04a]. We will investigate the inferences supporting customization of
background ontologies in Section 5.

Extension by import

Similar to the case of customization of background ontologies, the modeler uses a
rather inexpressive DL to build her ontology and, again, wants to use concepts that
are defined in another ontology written in a more expressive DL. But this time the
user wants to import the concept definitions directly into her own ontology. In order
to avoid increasing the expressivity of the ontology—for instance to keep nice compu-
tational properties of reasoning in this DL—the concept descriptions of the concepts
to be added have to be ‘translated’ into the less expressive DL first.

This translation is realized by the non-standard inference concept approximation,
which was introduced in [BKT02b]. Concept approximation of a concept description
in the expressive source DL computes the closest (w.r.t. subsumption) concept de-
scription in the less expressive destination DL. The name of the inference stems from
the fact that not all of the information captured in the initial concept can be expressed
in the less expressive destination DL and some information might be lost.

Sometimes it might be useful to translate a whole ontology to a less expressive DL.
For instance, if certain reasoning services are only available in this destination DL.
In this case concept approximation can be employed to get the closest version (w.r.t.
subsumption) of the original ontology in the DL supporting the inference.

Extension by modification

Consider the situation where the modeler has to build many similar concepts. Instead
of starting from scratch to write down the concept description, it is a better starting
point to find a concept description in the ontology that is structurally similar to the
intended one and modify it. Now, in order to find such a concept, the knowledge
engineer needs to specify only some parts of the concept description and leave some
parts open—this can be done by concept patterns. Intuitively, concept patterns are
structured as concept descriptions for which in addition concept variables can be
used in the place of concept names.6 Based on concept patterns the search for a
structurally similar concept can be solved by the inference of concept matching. A

6Except for the fact that the primitive negation (¬) may not occur in front of variables.
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matching problem for a DL L, a concept pattern P and a concept description C asks
whether the variables in P can be instantiated with concept descriptions in L s.t.
the obtained concept description is equivalent to C. Intuitively, if a concept can be
matched against a pattern P , then their syntax trees share the ‘upper part’, where
P is fully specified. Deviations may occur at leaves labeled with variables. In our
application it is interesting to obtain those concepts defined in the TBox that match
the pattern.

This way of extending ontologies was described for the application of chemical pro-
cess engineering in [BT01b]. An extensive overview for and recent results on concept
matching are presented in [Bra06].

Extension by completion

Suppose the modeler has written down the TBox and the ABox and wants to ensure
whether the knowledge base contains all the relevant information about the appli-
cation domain and, if information is missing, wants to extend the knowledge base
appropriately. In [BGSS07; Ser07] an interactive method was proposed that aims
at completing the knowledge base—TBox and ABox—by asking the domain expert
questions such as:

• Are all the relationships that hold among the already introduced concepts cap-
tured by the constraints in the TBox? Or are there relationships that hold in
the domain, but do not follow from the TBox?

• Are all kinds of instances from the application domain represented by individuals
in the ABox? Or are there instances in the domain that have not yet been
included in the ontology or even not yet been identified?

In case the answer is negative, the domain expert is asked to supply a counterexample.

The method underlying this approach is Formal Concept Analysis (FCA) [GW99].
Formal concept analysis has been introduced as a method of data analysis based on so-
called formal contexts. A formal context consists of a pair of a set of objects and a set
of attributes. In its simplest form a formal context is a way of specifying which objects
are satisfy which attributes. Usually, formal contexts represent complete knowledge of
the domain. Due to the open world semantics of DL systems, the notion of a context
had to be adapted to partial contexts in [BGSS07].

Now, attribute exploration [GW99] is a knowledge acquisition method of FCA that
is used to acquire knowledge from a domain expert by asking questions successively.
In many applications the formal context is not explicitly given, but it is rather ‘known’
to a domain expert. The system presents hypotheses about the concepts to the expert,
which the expert has to accept or reject by supplying a counterexample. Intuitively,
the methods from FCA and attribute exploration in particular, ensure for the above
mentioned application that the interaction with the expert is kept to a minimum and,
moreover, that the knowledge base is completed in a well-defined sense. In [BGSS07]

a notion of completeness of a knowledge base is introduced w.r.t. a fixed model. The
approach of extension by completion has been implemented as a extension to the
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ontology editor Swoop (see [Ser07]) and is currently being evaluated w.r.t. a bio-
ontology on human protein phosphatases [WBH+05].

We focus on the first two approaches for extensions in this thesis and will study concept
approximation—the central inference for the third approach in Section 4. The fourth
approach is discussed in detail in [Bra06] and the last one in [Ser07].

The computation of common subsumers is the inference service central to the
bottom-up extension and to the customization of background ontologies. In this thesis
we want to extend existing approaches for the computation of least common subsumers
to more expressive DLs for use in ontology extension. A major difficulty of computing
the lcs for ontology extension is the use of disjunction. Computing the lcs of the
concepts C1, . . . , Cn in a DL offering disjunction, results in the disjunction C1t· · ·tCn

as their lcs. This result is correct, but useless for our application. In the above
described extension approaches supporting users in modeling, the concept description
returned by the lcs is shown to the user for inspection and editing. Now, in order to
assess whether the proposed concept description captures a certain characteristic of the
aspired concept, the modeler needs to comprehend which information is captured in
the concept description and which is not. In addition to this, the modeler has to know
where the information is stated in order to edit the concept description competently.
To this end the concept description has to fulfill two requirements:

• It needs to be compact to be easily comprehensible, and

• it should explicitly state the information common to all input concepts.

The latter is surely not fulfilled by just enumerating the input concepts as done in
the plain disjunction for the lcs. Many DLs in use for practical applications as well as
OWL Lite and OWL DL allow for disjunction. In order to offer automated support
for the extension of ontologies written in these ontology languages by the approaches
sketched above, methods to compute ‘meaningful’ common subsumers in the presence
of disjunction are required. In this thesis we propose and investigate two approaches
for this.

1.3 Structure of the thesis

In this section we provide an overview of the results achieved in the course of this
Ph.D. project on non-standard inferences. To some extent these results have already
been published.

In this thesis we present two approaches on how to compute common subsumers for
concept descriptions written in expressive DLs. We devise computation algorithms for
the inferences that realize these two approaches, provide and describe their implemen-
tation and a first qualitative evaluation of it. In particular, the proposed approaches
address the problem how to obtain meaningful concept descriptions for common sub-
sumers in DLs that allow for concept disjunction. In particular, we propose

1. the approximation-based approach to compute common subsumers and
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2. the computation of common subsumers w.r.t. a background ontology.

In preparation for this Section 2 introduces formal preliminaries on DLs and their
basic inferences.

In Section 3 we give an overview on methods for the computation of the lcs.
We discuss in depth the approach for the DL ALE by Baader, Küsters and Molitor
presented in [BKM99], which is the basis for the results in the following sections.
The lcs for more than two concept descriptions obtained by this method can grow
exponentially in the size of the initial concepts. These concept descriptions cannot
be represented in a more compact form even if one allows to introduce new concept
definitions for sub-concept descriptions used in the lcs concept description in the
TBox. This result has been already been published in [BT01a; BT02a]. In Section 3.3
we discuss the method by Küsters and Molitor to compute the lcs for ALEN -concept
descriptions [KM01b].

Besides the results on the compact representation of least common subsumers, we
have also devised a method for computing the lcs for DLs with transitive roles in
[BT03; BTK03a]. These results, however, will not be discussed in this thesis in detail.

• [BT01a]
F. Baader and A.-Y. Turhan. TBoxes do not yield a compact representation of
the least common subsumer. In C. Goble, R. Möller, and P.F. Patel-Schneider,
editors, Proc. of the 2001 Description Logic Workshop (DL 2001), number 49
in CEUR Workshop, 2001.

• [BT02a]
F. Baader and A.-Y. Turhan. On the problem of computing small representa-
tions of least common subsumers. In M. Jarke, J. Köhler, and G. Lakemeyer, ed-
itors, Proc. of the 25th German Annual Conf. on Artificial Intelligence (KI’02),
vol. 2479 of LNAI. Springer, 2002.

• [BT03]
S. Brandt and A.-Y. Turhan. Computing least common subsumers for FLE+.
In D. Calvanese, G. De Giacomo, and E. Franconi, editors, Proc. of the 2003
International Workshop on Description Logics, number 81 in CEUR Workshop,
2003.

• [BTK03]
S. Brandt, A.-Y. Turhan, and R. Küsters. Extensions of non-standard inferences
for Description Logics with transitive roles. In M. Vardi and A. Voronkov,
editors, Proc. of the 10th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR’03), vol. 2850 of LNCS. Springer, 2003.

Then we devise methods for the two above mentioned approaches on how to compute
meaningful common subsumers in the presence of disjunction.



18 CHAPTER 1. INTRODUCTION

Approximation-based approach for the computation of common sub-

sumers

In this approach the input concept descriptions are first translated into a less expres-
sive DL that does not offer concept disjunction; then the lcs of the approximated con-
cept descriptions is computed in that DL. To this end we introduce the non-standard
inferences:

Concept Approximation. This inference service was initially investigated for the
ALE-approximation of ALC-concept descriptions in [BKT02b] (and recently discussed
in [Bra06]). In Section 4 we extend the method for computing approximation presented
there to number restrictions and prove soundness and completeness of the computation
method.

Difference operator. By the translation into a less expressive DL, information
of the original concept is lost. To assess how much, or, more precisely, which parts
of the concept descriptions were lost, we define the syntactic difference operator in
Section 4.3. We devise a heuristic method to compute the syntactic difference of
ALE-concept from an ALC-concept description. By ‘subtracting’ the approximated
concept from the original concept, one can assess which information is not captured
in the approximated concept.

The results on the approximation-based approach for the computation of common
subsumers have been published in:

• [BKT02a]
S. Brandt, R. Küsters, and A.-Y. Turhan. Approximating ALCN -concept de-
scriptions. In I. Horrocks and S. Tessaris, editors, Proc. of the 2002 Description
Logic Workshop (DL 2002), number 53 in CEUR Workshop, 2002.

• [BKT02b]
S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in
Description Logics. In D. Fensel, D. McGuinness, and M.-A. Williams, editors,
Proc. of the 8th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-02), 2002.

• [BT01b]
S. Brandt and A.-Y. Turhan. Using non-standard inferences in Description
Logics — what does it buy me? In G. Görz, V. Haarslev, C. Lutz, and R.
Möller, editors, Proc. of the 2001 Applications of Description Logic Workshop
(ADL 2001), number 44 in CEUR Workshop, 2001.

Computation of Common Subsumers w.r.t. a Background Ontology

In Section 5 we study the new framework for computing least common subsumers,
namely, w.r.t. a background knowledge base, which was introduced in [BST04a]. This
framework proposes to customize a background ontology written in an expressive
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DL by a user ontology written in a less expressive DL not offering disjunction. We
investigate the customization of ALC-background knowledge bases. In Section 5.2 we
show existence of the lcs in the user DL EL and ALE w.r.t. unfoldable TBoxes. For
general or cyclic TBoxes the lcs neither exists for EL nor for ALE , which is shown
in Section 5.3, see also [BST04b]. In some cases it seems to be useful to relax the
notion of the lcs to avoid over-fitting or for efficiency reasons. To this end we describe
practical approaches for computing good common subsumers, which may, however,
not be the least ones. In Section 5.4 three of these approaches are discussed in detail.

Our results on the customization of background ontologies have been been pub-
lished in:

• [BST04a]
F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common sub-
sumer w.r.t. a background terminology. In V. Haarslev and R. Möller, editors,
Proc. of the 2004 Description Logic Workshop (DL 2004), number 104 in CEUR
Workshop, 2004.

• [BST04b]
F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common sub-
sumer w.r.t. a background terminology. In J.J. Alferes and J.A. Leite, editors,
Proc. of the 9th European Conf. on Logics in A.I. (JELIA 2004), volume 3229
of LNCS, 2004

• [BST07]
F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common sub-
sumer w.r.t. a background terminology. Journal of Applied Logics, 2007.

Approaches put to practice

In Section 6 we describe the first implementation of the non-standard inferences in-
troduced in the previous sections. Since the computation algorithms for lcs, concept
approximation and good common subsumer are quite similar, we propose optimiza-
tion techniques in Section 6.2 that are applicable to all of these inferences. Besides
employing classical optimization techniques such as lazy unfolding and caching, we
devise new techniques to reduce computation times. For instance, for the computa-
tion of concept approximation we have introduced a promising method to speed-up
the computation in [BT02b] and extended in [TB07]. The idea is to perform concept
approximation independently on each conjunct of a conjunction and then conjoin the
result. This approach works only on a certain sub-class of ALCN -concept descrip-
tions. In Section 6.2.2 we give syntactic conditions to recognize the kind of concept
descriptions and prove the correctness of these conditions. Results on earlier versions
of these implementations have been published in [TM01; BT02a; BKT02b; BST07;
TB07].

We complement our implementation of the approximation-based approach by im-
plementations of a heuristic for minimal rewriting and the difference operator. These
implementations were presented in [BKT02b; Tur05] and are discussed in Section 6.4
of this work.
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Last in this section we describe our non-standard inference system Sonic [TK04a;
TK04b; Tur05], which offers most of the non-standard inferences discussed here as
a plug-in for the widely used ontology editor Protégé. Sonic implements more
inference services than discussed in detail in this work, which are shortly mentioned
in Section 6.5. Besides this we report on efforts to provide an interface for other
system developers to use non-standard inferences in their systems [TBK+06].

The publications on the implementation of non-standard inferences investigated
in this thesis and on Sonic are:

• [BT02b]
S. Brandt and A.-Y. Turhan. An approach for optimized approximation. In G.
Görz, V. Haarslev, C. Lutz, and R. Möller, editors, Proc. of the 2002 Applica-
tions of Description Logic Workshop (ADL 2002), nr. 63 in CEUR Workshop,
2002.

• [TB07]
A.-Y. Turhan and Y. Bong. Speeding up approximation with nicer concepts.
In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, S. Tessaris,
and A.-Y. Turhan, editors, Proc. of the 2007 Description Logic Workshop (DL
2007), 2007.

• [TBK+06]
A.-Y. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther, R. Möller,
O. Noppens, P. Patel-Schneider, B. Suntisrivaraporn, and T. Weithöner. DIG
2.0 – Towards a flexible interface for Description Logic reasoners. In B. Cuenca
Grau, P. Hitzler, C. Shankey, and E. Wallace, editors, In Proc. of the second
international workshop OWL: Experiences and Directions, 2006.

• [TK04a]
A.-Y. Turhan and C. Kissig. Sonic — Non-standard inferences go OilEd. In D.
Basin and M. Rusinowitch, editors, Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR-04), vol. 3097 of LNCS, 2004.

• [TK04b]
A.-Y. Turhan and C. Kissig. Sonic—System description. In V. Haarslev and
R. Möller, editors, Proc. of the 2004 Description Logic Workshop (DL 2004),
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common subsumers. In C. Goble, R. Möller, and P.F. Patel-Schneider, editors,
Proc. of the 2001 Description Logic Workshop (DL 2001), nr. 49 in CEUR
Workshop, 2001.

• [Tur05]
A.-Y. Turhan. Pushing the SONIC border — SONIC 1.0. In R. Letz, ed-
itor, Proc. of Fifth International Workshop on First-Order Theorem Proving



1.3. STRUCTURE OF THE THESIS 21

(FTP 2005). Technical Report University of Koblenz, 2005. http://www.uni-
koblenz.de/fb4/publikationen/gelbereihe/RR-13-2005.pdf.

A qualitative evaluation of the proposed approaches and their implementations
of the introduced inferences and w.r.t. quality of the obtained result is given in Sec-
tion 7. This evaluation is based on knowledge bases from practical applications. We
summarize and discuss the theoretical as well as the practical outcome of this work
and point out aspects for future work in Section 8.
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Chapter 2

Preliminaries

In this chapter we introduce the basic notions of DL systems in general and of the
specific DLs used in this thesis and inferences formally, that so far have been only
used in an intuitive way. We start by introducing the representation formalism and
then define inferences typical for DL systems.

2.1 Concept constructors of Description Logics

DLs are based on the following sets of names: NC is the set of concept names, and
NR is the set of role names. Complex concept descriptions are inductively defined
starting from the set of concept names and using concept constructors. The concept
constructors provided in DLs used in this thesis are shown in Table 2.1.

The semantics of concept descriptions are given in a set-theoretic way. It is defined
in terms of an interpretation I = (∆, ·I). The domain ∆ of I is a non-empty set of
individuals and the interpretation function ·I maps each concept name A ∈ NC to a
set AI ⊆ ∆. Each role name r ∈ NR is mapped to a binary relation rI ⊆ ∆×∆. Of a
pair of individuals related via a role, we call the first one the role predecessor and the
second one the role successor. Starting from an interpretation of primitive concepts
(C ∈ NC), the extension of ·I to arbitrary concept descriptions is defined inductively,
as shown in the second column of Table 2.1.

The top-concept > denotes the domain and thus is the most general concept. The
bottom-concept ⊥ denotes a contradictory concept. The conjunction and disjunction
concept constructors are defined in the same way as in propositional logics. Negation
for DLs is available in two forms as a concept constructor. The restricted form is
called primitive negation, it allows negation only in front of concept names. The
general form is called full negation, which can be used for arbitrary, complex concept
descriptions. Existential restrictions (∃r.C) enforce a role successor for the role r that
belongs to concept C. Value restrictions (∀r.D) enforce that, if a role successor for
the role r exists, then this role successor must belong to concept D. An interval for
the number or role successors w.r.t. a role can be specified by number restrictions. An
upper bound can be introduced by an at-most restriction and a lower bound can be
expressed by an at-least restriction. We illustrate the use of these concept constructors

23
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Constructor name Syntax Semantics

top-concept > ∆I

bottom-concept ⊥ ∅

concept name, A ∈ NC A AI ⊆ ∆I

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

primitive negation, A ∈ NC ¬A ∆I \ AI

full negation ¬C ∆I \ CI

existential restrictions ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

value restrictions ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI}

number restrictions, n ∈ IN

at-least restrictions (≥ n r) {x ∈ ∆I | #{y : (x, y) ∈ rI} ≥ n}

at-most restrictions (≤ n r) {x ∈ ∆I | #{y : (x, y) ∈ rI} ≤ n}

Table 2.1: Syntax and semantics of concept descriptions.

by a toy example from the domain of air-planes.

Example 1 (Concept constructors). We can characterize a plane by specifying its
number of seats and passenger classes in different configurations as follows:

Plane u (≥ 2 has-config) u
∀ has-config.(Passenger-Config u (≥ 261 has-seats)) u(
∃has-config.((≤ 419 has-seats) u (≤ 2 has-classes)) t
∃has-config.((≤ 380 has-seats) u (≤ 3 has-classes))

)
.

This concept description specifies planes that have only passenger configurations with
at least 261 seats and that have a configuration with at most 419 seats in at least 2
passenger classes or it has a configuration with at most 380 seats in at least 3 passenger
classes.

Besides concept constructors most expressive DLs provide means to declare prop-
erties of roles directly. One can declare a role to be

• a transitive role, which is interpreted as a transitive relation.

• the inverse role of another role inverse(R1, R2), which are interpreted as RI
2 =

{(a, b) | (b, a) ∈ RI
1}.

• a super-role of another one. Role inclusion axioms R v S enforce that every
pair (a, b) ∈ RI is also (a, b) ∈ SI . The set of these kind of statements form the
role hierarchy .

• a feature, i.e., a functional role. The relations of this kind are interpreted as
functions between elements of the domain ∆.
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Constructor name EL FLE ALE ALN ALEN ALC ALCN

top-concept 7 7 7 7 7 7 7

bottom-concept 7 7 7 7 7

concept name 7 7 7 7 7 7 7

conjunction 7 7 7 7 7 7 7

disjunction 7 7

negation prim. prim. prim. full full

existential restrictions 7 7 7 7 7 7

value restrictions 7 7 7 7 7 7

at-least restrictions 7 7 7

at-most restrictions 7 7 7

Table 2.2: Concept constructors for ALCN and sub-languages.

Each DL is characterized by the set of concept and possibly role constructors that
the DL offers for building concept descriptions or characterizing roles. In this thesis we
will use the DLs shown in Table 2.2, which do not allow to specify information on roles.
For a wider overview on concept and role constructors for DLs please refer to [BN03;
CG03]. If a concept description uses only concept constructors from a DL L it is
called a L-concept description, e.g., the concept description from Example 1 is an
ALCN -concept description.

2.2 TBox and ABox formalisms

As already mentioned in Section 1, DL knowledge bases are divided into two parts:
TBox and ABox. The former represents the terminological knowledge, i.e., it formal-
izes the basic categories of the application domain. The latter represents the asser-
tional knowledge, i.e., formalizes the notions of individual entities from this domain.
We define these two notions now formally.

2.2.1 TBoxes

The TBox captures the terminological knowledge of the application domain. The
form of TBoxes early DL systems were able to handle is rather simple in contrast to
statements supported by current DL systems. The order in which we define TBox
statements in this subsection reflects this historical development. In the early DL
systems, TBoxes basically introduced a concept name as an abbreviation for a concept
description by a concept definition.

Definition 2 ((Primitive) concept definition). Let A and B be concept names
and C and D be concept descriptions, then

• the expression A v C is a primitive concept definition and C is called a primi-
tively defined concept .
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• the expression B ≡ D is a concept definition and D is called a defined concept .

The semantics of (primitive) concept definitions are given by the interpretation func-
tion: AI ⊆ CI and BI = DI . 3

A primitive concept definition specifies only the necessary conditions for an instance
of that concept, while a concept definition gives necessary and sufficient conditions
for an instance of that concept. Please note that for DLs with primitive negation as
concept constructors, only the concepts without a (primitive) definition may be used
in their negated form in the TBox.7

To avoid confusion, please note that by primitive concepts we understand concepts
that do not have a definition and by primitively defined concepts we understand con-
cepts with a primitive definition in the terminology. If in a concept definition C ≡ D

the concept description D refers directly or indirectly to the concept name C, we call
such a concept C a cyclic concept and C ≡ D a cyclic concept definition. Based on
this, we define the notion of a TBox.

Definition 3 (TBox). Let A, B be concept names and let C, D be concept descrip-
tions. A finite set of possibly primitive concept definitions T is called a TBox, if

• all definitions are acyclic and

• for each concept name A there is at most one concept definition in T with A on
the left-hand side.

An interpretation is a model of a TBox, if for all A v C ∈ T and B ≡ D ∈ T it holds
that AI ⊆ CI and BI = DI . 3

A set of concept descriptions that contains one or more cyclic concepts is called a cyclic
TBox , while a TBox that contains no such concept is an acyclic TBox . A TBox that
is written in a DL L is called a L-TBox. In TBoxes written in a DL that offers only
primitive negation, negation may only appear in front of primitive concepts.

Example 4 (TBox). We return to our domain of planes and state that passenger
configurations are not cargo configurations. We assign the concept description from
Example1 a concept name.

TAirbus = {Cargo-Config ≡ ¬Passenger-Config,

Airbus-340 ≡ Plane u (≥ 2 has-config) u
∀ has-config.(Passenger-Config u (≥ 261 has-seats)) u(
∃has-config.((≤ 419 has-seats) u (≤ 2 has-classes)) t
∃has-config.((≤ 380 has-seats) u (≤ 3 has-classes))

)
}

In this TBox the concepts Cargo-Config and Passenger-Config are disjoint concepts.
The concept Airbus-340 is defined in terms of the concept Passenger-Config. The con-
cept definition of Airbus-340 states that all configurations are Passenger-Config with

7Otherwise the negation is no longer primitive, but refers to arbitrary concepts.
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261 seats or more. Furthermore the definition describes two configurations w.r.t. the
maximal number of passenger classes and seats that these configurations offer.

Although in this TBox negation appears only in front of primitive concept names,
this TBox is an ALCN -TBox, since disjunction is used.

The TBoxes according to Definition 3 are sometimes called unfoldable TBoxes.
Intuitively, unfoldable TBoxes are TBoxes in which each occurrence of a defined con-
cept can be replaced by the left-hand side of its concept definition, without losing
information or without termination problems due to cycles.

Early DL systems were able to handle only unfoldable terminologies. It turned
out that for some applications this form of TBoxes is too restrictive and a more ex-
pressive form of TBox statements was introduced. This kind of statements allows to
establish sub-concept super-concept relationships between arbitrary concept descrip-
tions, i.e., without having to introduce concept names for these concept descriptions.
For instance, it might be convenient to state in our planes TBox directly, that planes
with more than 10 seats are required to have at least two emergency exits in the
following way: Plane u (≥ 10 has-seats) v (≥ 2 has-Emergency-Exits). These kind of
statements are called general concept inclusion axioms.

Definition 5 (GCI, general TBox). Let C1, C2, D1 and D2 be concept descriptions,
then

C1 v C2

is a general concept inclusion axiom (GCI). The semantics of GCIs is given by the
interpretation function. A GCI C1 v C2 is satisfied for a TBox T , iff CI

1 ⊆ CI
2 for all

models I of T .

A TBox T is a general TBox if it contains GCIs. An interpretation is a model of
a general TBox, if for all C1 v C2 ∈ T and D1 ≡ D2 ∈ T , it holds that CI

1 ⊆ CI
2 and

DI
1 = DI

2 . 3

It is easy to see that GCIs are a more general form of primitive concept definitions
and defined concepts as introduced in Definition 2 can be simulated by a pair of GCIs
in the following way:

C1 v C2 and C2 v C1.

All recent DL systems support inference services for general TBoxes. In this
thesis we consider mainly unfoldable TBoxes in which the concept constructors from
Table 2.1 are used. Next, ABoxes are introduced formally, they have so far only been
used in an intuitive way.

2.2.2 ABoxes

The knowledge about individual entities from the application domain can be expressed
by so-called ABox assertions. There are two kinds of ABox assertions used for DL
systems—one kind expresses that an individual belongs to a concept and the other
one specifies that two individuals are related via a role. The set NI is the set of all
individual names.



28 CHAPTER 2. PRELIMINARIES

Definition 6 (ABox, ABox assertion). Let C be an arbitrary concept description,
r ∈ NR be a role name and i, j ({i, j} ⊆ NI) be two individual names, then

• C(i) is called an concept assertion and

• r(i, j) is called a role assertion.

An ABox A is a set of concept assertions and role assertions. 3

The term ABox assertions comprises both, concept assertions and role assertions. If
all concepts in an ABox A are from a Description Logic L, then we call A a L-ABox.

In order to capture ABoxes the interpretation function is now extended to indi-
vidual names, which are mapped to elements of the domain ∆. In DL-systems it
is typically assumed that distinct names denote distinct objects. This assumption
is called unique name assumption (UNA). The mapping of individual names has to
respect this assumption, thus if a 6= b then aI 6= bI .

Definition 7 (Semantics of ABoxes, semantics of assertions). Let C be an
arbitrary concept, r be a role name and i, j be two individuals, then an interpretation
I satisfies

• the concept assertion C(i) iff iI ∈ CI and

• the role assertion r(i, j) iff (iI , jI) ∈ rI .

An interpretation I satisfies an ABox A iff I satisfies every assertion in A. In this
case I is a model of A . 3

Based on these formal semantics of ABox and TBox statements, a variety of infer-
ences have been defined. This thesis is dedicated to non-standard inferences, which
are a relatively new group of inferences. These inferences are often defined based on
the older, well-established ‘standard inferences’ such as satisfiability or subsumption,
which we introduce in the next section.

2.3 Inferences of Description Logic systems

DL systems offer different kinds of inferences to make knowledge that is implicitly
captured in the knowledge base explicit. A collection of inferences that was investi-
gated already in the early years of DL research and is nowadays implemented in most
DL reasoning systems are the standard inferences.

2.3.1 Standard inferences of Description Logic systems

When writing a concept definition to add it to a DL knowledge base, it is crucial to
know whether the specified concept description contains a contradiction (w.r.t. the
knowledge base) or whether it could be fulfilled by any individual. This leads to the
formal notion of consistency.
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Definition 8 (Concept consistency, TBox consistency). Let C be a concept
description and T be a TBox. The concept description C is consistent iff it has a
model, i.e., iff there exists an interpretation I where CI 6= ∅. In this case I is a model
of C. A TBox T is consistent iff every concept in T is consistent. 3

If a concept or TBox is not consistent, it is called inconsistent. The actual inference
service that determines whether a concept (/TBox) is satisfiable is called concept
(/TBox) consistency. Alternatively, we say that a concept (/TBox) is satisfiable.

Another terminological inference task is to determine whether one concept descrip-
tion is more general than another, i.e., whether one concept description C is implied
by another concept description D. This is the case, if every individual that is an
instance of C also is an instance of D. The following definition formalizes this notion
of subsumption.

Definition 9 (Concept subsumption, equivalence of concepts). Let C, D be
two concept descriptions and T be a (possibly empty) TBox. The concept description
C is subsumed w.r.t. T by the concept description D (C vT D), iff CI ⊆ DI holds in
every model I of T . Two concept descriptions C, D are equivalent w.r.t. T (C ≡T D),
iff CI = DI holds for every model I of T . 3

A test for the equivalence of concept descriptions can be reduced to two subsumption
tests, since the following holds: (C ≡T D), iff C vT D and D vT C.

One of the most important traditional inference services provided by DL systems
based on subsumption is the computation of the subsumption hierarchy of all named
concepts in the TBox or the taxonomy of the TBox. This inference service is called
classification.

Besides reasoning services for concept descriptions or TBoxes, there are also well-
investigated inferences that reason over the information captured in the ABox. For
an overview of all ABox inference services see [BN03]. For our discussion in this thesis
we need to extend the notion of consistency to ABoxes.

Definition 10 (Instance of, ABox consistency). Let C be an arbitrary concept
description and i (i ∈ NI) be an individual name and A an ABox. The individual i

is an instance of C w.r.t. an ABox A, iff aI ∈A CI for every interpretation I of A.
The test whether an individual is an instance of a concept (w.r.t. an ABox) is called
instance checking. An ABox A is consistent, iff every individual i in A is consistent
w.r.t. A. 3

We saw earlier that the equivalence of concepts can be reduced to subsumption.
Similarly, one can reduce the other reasoning services to subsumption provided that
full negation is present in the underlying DL. For TBoxes written in DLs with full
negation in their set of concept operators, subsumption can be reduced to consistency,
see [Smo88]. One can reduce

• subsumption to (in-)consistency
C vT D iff the concept C u ¬D is consistent w.r.t. T .
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• instance checking to (in-)consistency
An individual i is an instance of a concept C w.r.t. a TBox T and an ABox A,
iff A′ := A ∪ {¬C(i)} is inconsistent.

Due to these reductions it suffices for DLs that offer full negation in principle to
investigate and implement a method for only one of these inferences to obtain methods
for the other ones. A natural questions is what the complexity of computing an
inference is.

2.3.2 Complexity of terminological reasoning

The methods for the computation of non-standard inferences (NSIs) in general and
of common subsumers in particular rely on the methods for satisfiability and sub-
sumption. We recall complexity results on satisfiability and subsumption for the DLs
introduced in Table 2.2. For a broader overview on the complexity of terminological
reasoning in more expressive DLs the reader is referred to [Don03].

The worst case complexities for reasoning in DLs are given w.r.t. the size of the
input concept descriptions, TBox or ABox, which we define next for the DL ALCN
(and its sub-languages).

Definition 11 (ALCN -concept size, TBox size, ABox size). Let C and D be
ALCN -concept descriptions. Then the size of a concept description C (denoted |C|)
is defined as:

> := 0 ⊥ := 0
A ∈ NC , |A| := 1 |¬C| := |C|

|C u D| := |C| + |D| |C t D| := |C| + |D|
|∀r.C| := |C| + 1 |∃r.C| := |C| + 1

|(≤ n r)| := 0 |(≥ n r)| := 0.

The size of a (primitive) concept definition or GCI is the sum of the concept descrip-
tions from the left- and right-hand side. The size of a TBox T (|T |) is defined as the
sum of the sizes of all TBox statements in T ,

The size of an ABox assertion is 1 for role assertions and for concept assertions
a : C the size is |C|. The size of an ABox A (|A|) is then the sum of all ABox
assertions in A. 3

DLs that do not offer all propositional operators to describe concepts are called
sub-Boolean DLs. Besides ALC and ALCN all DLs characterized in Table 2.2 are
sub-Boolean. For this kind of DLs, subsumption cannot be reduced to satisfiability as
described above. Thus different methods for satisfiability and subsumption have been
devised.

In DLs that cannot express contradictions, such as EL or FLE , satisfiability of
concept descriptions is trivial. In ALN , where inconsistencies can be expressed, satis-
fiability of concept descriptions can be computed in polynomial time [DLNN97].8 In

8We assume basic familiarity with basic notions of complexity classes as, for instance, introduced
in [Pap94].



2.4. BASIC NON-STANDARD INFERENCES 31

Satisfiability Subsumption

EL trivial P [BKM99]

ALN P [DLNN97] P [DLNN97]

FLE trivial NP-complete [DLN+92]

ALE NP-complete [DLN+92] NP-complete [DLN+92]

ALEN PSpace [DLNN97] PSpace-complete [Hem01]

Table 2.3: Complexity of concept satisfiability and subsumption in sub-Boolean DLs.

the presence of existential and value restrictions, satisfiability for ALE-concept descrip-
tions is NP-complete [DLN+92], while for ALEN satisfiability is in PSpace [DLNN97].
These results are summed up in Table 2.3 together with the complexity results for
checking subsumption and the resp. reference to the literature where the result was
proven. The complexity of testing subsumption between concept descriptions is not
much harder in terms of complexity classes. However, things change in case subsump-
tion is computed w.r.t. TBoxes. Even for a DL that just offers conjunction and value
restrictions, checking subsumption w.r.t. a TBox is co-NP-complete [Neb90] due to
unfolding of the concepts w.r.t. the TBox.

For the DLs that are closed under negation, the complexity results for subsumption
and satisfiability coincide. Subsumption of ALC- and ALCN -concept descriptions is
PSpace-complete [SS88]. Besides the set of concept constructors provided by a DL,
also the kind of concept statements allowed in the TBox contribute to the complexity
of reasoning—it is often significantly higher when GCIs are allowed in the TBox. So,
for ALC subsumption w.r.t. an unfoldable TBox is still PSpace-complete [Lut99],
while subsumption w.r.t. general TBoxes is in ExpTime [DM00].

However, SHIN and SHIF—the DLs that are underlying OWL DL and OWL
Lite—do not offer more concept constructors than ALCN , but allow to specify infor-
mation on roles. In particular SHIN and SHIF offer all role operators introduced
earlier on page 24. Usually, reasoning for these very expressive DLs is only investi-
gated w.r.t. general TBoxes. In case of SHIN and SHIF testing subsumption w.r.t.
general TBoxes is ExpTime-complete [Tob01].

2.4 Basic non-standard inferences

The collection of non-standard inferences for DLs has been extended in the last decade;
for an overview on these inferences see [BK05]. Section 1.2.2 introduced basic non-
standard inferences in an intuitive way, now we formally define those NSIs that are
used in the bottom-up extension of knowledge bases.

2.4.1 Least common subsumer

Given a collection of concept descriptions in a DL L, the least common subsumer (lcs)
returns the concept description in L that subsumes all elements from the collection
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and is the least concept description w.r.t. subsumption with this property.

Definition 12 (Least common subsumer). Let T be a TBox and D, C0, . . . , Cn

concepts in L, then D is the least common subsumer (lcs) of C0, . . . , Cn w.r.t. T
(written lcsL(C0, . . . , Cn)) iff

1. Ci vT D for all 0 ≤ i ≤ n, and

2. for all L-concepts C ′, Ci vT C ′ for all 0 ≤ i ≤ n implies D vT C ′.

3

If the DL L we refer to is evident from the context, we write lcs instead of lcsL
throughout the thesis.

In general (i.e., for an arbitrary DL L), a given collection of n concept descriptions
need not have a least common subsumer. For example in a DL L that does not offer
conjunction, there may be several concept descriptions in L that are incomparable
(w.r.t. subsumption) and that subsume the input concept descriptions. Thus Condi-
tion 2 of the definition above is not fulfilled for some input concept descriptions of the
DL L.

Please note that Definition 12 implies that the lcs of an empty set of concept
descriptions is ⊥, if ⊥ is provided by the DL. It follows directly from the definition
of conjunction and lcs that the lcs of a set of concept descriptions in a DL L offering
conjunction is unique up to equivalence. Thus it is justified to speak about the lcs
in these cases. Furthermore the lcs is an associative operation, consequently we can
obtain the lcs of C1, . . . , Cn by computing: lcs(C1, lcs(C2, . . . lcs(Cn−1, Cn) . . . ) and it
suffices to devise a binary operation for the lcs.

The lcs inference is the basis for our investigation of methods for computing ‘mean-
ingful’ common subsumers for concept descriptions written in DLs offering disjunction.
We discuss existing approaches for computing least common subsumers in Chapter 3
and continue here with the other NSIs employed in the bottom-up extension of knowl-
edge bases.

2.4.2 Most specific concept

Before the lcs is applied during bottom-up extension, the individuals from the ABox
have to be generalized into concept descriptions. This is achieved by computing the
most specific concept of each selected individual.

Definition 13 (Most specific concept). Let A be a L-ABox, i an individual in A
and C a L-concept, then C is the most specific concept (msc) of i w.r.t. A (written
mscA (i)) iff

1. i ∈A C, and

2. for all L-concepts D, i ∈A D implies C v D.

3
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The msc need not always exist. For the DLs L that we consider here, cyclic relations
between individuals in the ABox cannot be expressed in L-concept descriptions. For
example, the cyclic ABox A = {i:C, (i, i):r} cannot be captured in an ALE-concept
description that is the most specific concept. For each concept description that cap-
tures n loops as in, say C1u∃R.(C2u . . .∃R.Cn), there exists a more specific one that
captures more loops and thus is more specific.

This has been remedied to a certain extent for the case of computing the msc in
ALE by proposing k-approximations in [KM01a]. A k-approximation of an individual is
the most specific concept with the maximal nesting depth of the quantifiers limited by
a fixed constant k. In [KM01a; KM02] a method to compute these k-approximations
is investigated.

A different approach was taken in [BK98] where the msc is captured by cyclic
TBoxes with greatest fixed-point semantics. For this kind of TBox, the computation
methods for the msc w.r.t. cyclic ABoxes have been devised for ALN in [BK98]. The
msc for ALN can grow exponentially in the size of the ABox and can be computed in
double-exponential time.

2.4.3 Minimal rewriting

The concept descriptions obtained by the msc or by the lcs can grow too large to be
comprehensible by a human reader. If such a concept description is computed w.r.t. an
unfoldable TBox, the concept description can often be ‘compressed’ by replacing sub-
concept descriptions by concept names from the TBox.9 To this end minimal rewriting
for DLs has been proposed in [BK00] as an instance of a more general framework for
rewriting for Description Logics, which is defined as follows.

Definition 14 (Rewriting). Let NR be a set of role names and NP a set of primitive
names, and let Ls, Ld, and Lt be three DLs (the source-, destination-, and TBox-DL,
respectively). A rewriting problem is given by

• an Lt-TBox T containing only role names from NR and primitive names from
NP ; the set of defined names occurring in T is denoted by ND;

• an Ls-concept description C using only the names from NR and NP ;

• a binary relation ρ ⊆ Ls × Ld between Ls- and Ld-concept descriptions.

An Ld-rewriting of C using T is an Ld-concept description E built using names from
NR and NP ∪ ND such that CρE.

Given an appropriate ordering ¹ on Ld-concepts, a rewriting E is called ¹-minimal
iff there does not exist a rewriting E ′ such that E′ ≺ E. 3

The minimal rewriting problem is an instance of this rewriting framework, where
Ls = Ld = Lt, the binary relation ρ corresponds to ≡T and the ordering ¹ is w.r.t.
concept size.

9This is an inverse process to unfolding.
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Definition 15 (Minimal rewriting). Let T be a L-TBox, C, C ′, D be L-concept
descriptions. C ′ is a minimal rewriting of C w.r.t. T , iff

1. C ′ uses only concept and role names appearing in T ,

2. C ≡T C ′, and

3. for all D where D uses only concept and role names appearing in T and C ≡T D,
|C ′| ≤ |D| holds.

3

Regarding minimal rewriting the decision problem asks whether given a concept de-
scription and a TBox, a minimal rewriting of size κ exists. The decision problem has
been investigated for the DLs ALN , ALE and ALC. For the first two DLs deciding
whether a minimal rewriting exists is NP-hard, whereas for ALC it is PSpace-hard
[BKM00].

For our task to represent the concept descriptions obtained by other NSIs in a
compact way, the computation problem is the more interesting. More precisely, we
need a method to obtain one minimal rewriting—instead of all possible minimal
rewritings. In [BKM00] such a method has been devised for ALE . It turned out that
the algorithm presented in [BKM00] for computing a minimal rewriting in ALE is in
PSpace. The authors proposed a heuristic algorithm that computes small, but not
always minimal rewritings. These rewritings can be computed in polynomial time
(given an oracle for subsumption).

2.4.4 Concept matching

The inference service of concept matching was proposed in [McG96] to prune concept
descriptions that are to be displayed to users of DL systems. Intuitively, concept
matching can be used to search for structurally similar concepts in the TBox. So, in
this application of pruning, concept matching was used to identify parts of the concept
descriptions that were of interest to the user and thus should not be omitted when
the concept is displayed.

In order to define a matching problem, we have to recall concept patterns first,
which extend concept descriptions by variables. Let NX be a finite set of concept
variables disjoint to NC∪NR. L-concept patterns are L-concepts for which in addition
concept variables can be used in the place of concept names—except for the fact that
the primitive negation (¬) may not occur in front of variables. A substitution σ is
a mapping from NX into the set of L-concepts. It is extended to concept patterns
P by replacing every occurrence of X ∈ NX in P by σ(X). Thus, σ(P ) again is an
L-concept. With these preliminaries we can define matching problems as follows:

Definition 16 (Matching problem, matcher). An L-matching problem is of the
form C ≡? P , where C is an L-concept and P an L-concept pattern. A substitution σ

is a matcher for C ≡? P iff C ≡ σ(P ), i.e., σ replaces the variables in P by concepts
in such a way that equivalence holds. 3
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The matching problem modulo subsumption can be reduced to matching modulo
equivalence, since C v σ(D) iff C uσ(D) ≡ C. The decision problem whether a given
matching problem has a matcher has been investigated in [BK00] for EL and ALE . It
turned out that deciding the solvability of a matching problem modulo subsumption
(equivalence) is in P (NP-complete) for EL, while for ALE both kinds of solvability
problems are NP-complete.

In our application we are more interested in obtaining the actual matchers. A
solvable matching problem may have infinitely many solutions. In the case of matching
modulo subsumption one would like to obtain ‘interesting’ matchers, i.e. matchers
that are close to C. This can be ensured to some extend by searching for minimal
matchers, which are substitutions σ for which no other substitution δ exists with
C v δ(D) < σ(D). Methods for computing matchers in ALE and ALN (and their
sub-languages) have been investigated in [BK00; Küs01].

The set of computed matchers can be restricted further by side conditions, which
allow to specify a subsumer for each variable in the concept pattern. Matching un-
der side conditions has been investigated for ALN [BRKM99; BBK01]. It has been
shown in [BRKM99] that deciding the solvability of matching problems under strict
subsumption conditions is NP-hard in ALN and its sub-languages. Moreover, concept
matching in ALN under subsumption conditions is in P, even if the relevant system
of subsumption conditions are cyclic [BBK01].

A novel approach was taken in [Bra06] where concept matching is computed w.r.t.
hybrid TBoxes. This kind of TBoxes are split in a general and a (possibly) cyclic
part. While the general part is interpreted w.r.t. greatest fixed-point semantics, the
cyclic part is interpreted w.r.t. descriptive semantics, i.e. the ‘usual DL semantics’ as
introduced in Definition 3.

In [Küs01; Bra06] the authors describe applications of concept matching for the
design and maintenance of DL knowledge bases beyond the approach ‘extension by
modification’ mentioned in the Introduction. However, the above mentioned computa-
tion algorithms for concept matching use the lcs as a sub-procedure. In order to obtain
efficient implementations for concept matching, one needs efficient implementations
for the lcs first.
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Chapter 3

Least common subsumer

Our main motivation for investigating and implementing the lcs is the population of
ontologies. In [BKM99] the Bottom-up construction of knowledge bases was intro-
duced. This bottom-up extension provides means to generate concept descriptions in
an example-driven way. In order to introduce a new concept, the knowledge engineer
selects individuals from the ABox that are somewhat similar and which capture the
characteristics of the category the knowledge engineer has in mind. The DL system
automatically proposes a concept description for the intended concept generated from
the selected ABox individuals. Such a concept description can be generated by employ-
ing two non-standard inferences: First, each of the selected individuals is generalized
into a concept description by computing its msc. Second, these concept descriptions
are then generalized into one single concept description by the lcs operation. The ob-
tained concept description—possibly after computing its minimal rewriting—is then
displayed to the knowledge engineer for inspection and for editing.

As mentioned in Chapter 1, a modified version of this bottom-up approach is to
extend concept hierarchies that are not well balanced, because they are often unprac-
tical for browsing and finding concepts in the terminology for re-use. In addition,
such a shape of the taxonomy makes it more difficult for a modeler to comprehend the
structure of a terminology. Thus it is desirable to introduce new concepts that yield
new intermediate concepts in the taxonomy of the TBox. Ideally one would apply
the lcs to sibling concepts from the concept hierarchy to extend the taxonomy with a
concept generalizing a subset of the sibling concepts.

In this chapter we examine related work on applications and theoretical results
for the lcs. We examine the computation methods for the lcs in the DLs ALE and
ALEN in detail. These methods from [BKM99; KM01b] are based on the structural
characterizations of subsumption, which are in turn the basis for our extension of the
computation of ‘meaningful’ common subsumers to disjunction. We also present our
result on the compact representation of common subsumers in ALE , which carry over
to the case of ALEN . The chapter ends with a discussion of the drawbacks of the
proposed methods with respect to the support of ontology extension.

37
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3.1 Related work on the lcs

The inference least common subsumer was first introduced by Cohen, Hirsh and
Borgida [CBH92] for DLs to provide learning of concept descriptions for the early
DL system Classic [PMB+91; MH03]. Since then this inference service was investi-
gated for a small range of DLs and employed in a number of applications.

3.1.1 Applications of the lcs

The applications for the lcs can be roughly grouped into three categories: the support
for building ontologies, the similarity-based indexing or retrieval of information and
the lcs is employed to support other reasoning tasks.

Building Ontologies. To learn concept descriptions either from sets of individuals
or from sets of concepts was in fact the initial motivation to define and investigate the
lcs inference. In the domain of automated learning, the task ‘learning from examples’
is to find the most specific concept that generalizes all examples by finding a descrip-
tion of the target concept. For supervised learning, the examples are labeled as positive
or negative instances of the target concept by an oracle. The learnability of concepts
written in (sub-)languages of the DL supported in the system Classic, which is an
extension of ALN , was investigated in [CH94a]. In particular, the PAC-learnability of
these concepts was studied. PAC stands for probably approximately correct learning
proposed by Vailant in [Vai84]. In this setting the training samples were either indi-
viduals [CH94b] or concepts [CH94a]. In the proposed learning algorithm the lcs was
employed as a sub-procedure.

The method to generalize concepts from individuals was later re-discovered for the
bottom-up approach to extend ontologies, which is our main application of the lcs.

Similarity-based retrieval of information. The lcs inference is used for similarity-
based information retrieval. In [MHN98; MM98] methods to retrieve information
based on user specified examples are proposed. Here, the query as well as the knowl-
edge of the system is stored in the ABox. The user selects some individuals to query
for similar items. The selected examples are turned into a concept and then gener-
alized by means of the lcs, and the application ABox can be queried for instances of
the obtained concept, which are the result of the retrieval query. Similar methods are
employed in other application domains to facilitate retrieval. In [AH02] large data
bases of text annotated images are provided with a hierarchy of image description to
facilitate browsing in the data base by users.

In [HLRT02b; HLRT02a] the dynamic discovery of web services is considered. Here
the task addressed is to find, for given client query and a set of available e-services
described in an ontology, a subset of these services that cover the query best. To this
end the authors propose the reasoning service of computing best covers. The intuitive
notion of best covers is the following: given a concept description E a best cover
is a conjunction of concept descriptions Q such that E and Q share commonalities
while the concept descriptions for the parts that are not shared between E and Q
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are minimal w.r.t. the lexicographic order. These commonalities between Q and E

are obtained by the lcs. By means of best cover the parts that are common to the
query and the service description and the parts that are different can be identified.
The latter can then be used to ask the user to refine or change the query. In fact,
computing best covers is another instance of the rewriting framework for DLs discussed
in Section 2.4.3.

Support for other inferences. In the Classic system the lcs inference was em-
ployed as a ‘weak form of disjunction’. The idea is to replace a disjunction by the
lcs of its disjuncts a method called knowledge base vivification in [CBH92]. The main
motivation for this was to avoid disjunction as source of complexity for reasoning and
to arrive at a tractable DL. With modern DL reasoning systems at hand this is no
longer the main motivation for the lcs. However, in [HM01a] it is argued that ‘degen-
erated’ concept hierarchies, i.e., containing concepts with very many sibling concepts,
cause longer run-times for classification. Now, one could in principle employ the lcs
to generate auxiliary concepts that do not introduce additional disjunction in the
TBox to complement the concept hierarchy. These lcs concepts would only need to
be generated once and be kept for following classifications.

Besides for standard inferences, the lcs inference is used in many other NSIs as
a sub-task. In concept matching the lcs is employed to obtain the valid substitution
for each variable in the concept pattern [Küs01; Bra06]. Furthermore, the lcs is used
as a sub-procedure in methods for computing concept approximations (an inference
that we investigate thoroughly in Chapter 4), in the computation of the semantic
concept difference [Tee94] and in the above mentioned computation of best covers
[HLRT02a]. The use of the lcs as a sub-procedure of other reasoning tasks makes it
desirable to extend the computation methods of this inference to more expressive DLs
and, moreover, to have efficient implementations of the lcs.

3.1.2 Methods for computing the lcs

The lcs inference is investigated for a small range of DLs. For those DLs where it is
known that the lcs always exists, computation methods have been devised. All algo-
rithms for computing the lcs are structural algorithms, i.e. they proceed by traversing
the inductive structure of the input concept descriptions and comparing their parts.
The normalization of each concept description is the crucial step to have all the im-
plicit information captured in the concept description (or possibly the TBox) made
explicit for the structural comparison. The computation methods for the lcs rely on
structural characterizations of subsumption. A sound and complete characterization
of subsumption ensures that the normal form contains all implied facts. These char-
acterizations as well as the computation algorithms for the lcs fall into two categories
according the underlying representation they use: the automata-based approach and
the graph-based approach. The former is typically employed for DLs that do not
provide existential restrictions, while the latter can handle also the combination of
existential and value restrictions.
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Automata-theoretic approach

For the DL ALN w.r.t. cyclic TBoxes, an automata-based algorithm for computing
the lcs was devised in [Küs98]. Initially the automata-based approach was introduced
in [Baa96] to characterize the semantics of cyclic terminologies for the DL FL0. The
approach was then extended to ALN w.r.t. cyclic TBoxes in [Küs98].

Intuitively, the idea of this approach is to use finite automata that represent the
concept descriptions and the underlying TBox. The concept descriptions from the
TBox are first normalized by applying the rule

∀R.(C u D) → ∀R.C u ∀R.D

exhaustively. This form allows to sort all (possibly nested) value restrictions w.r.t.
the concept name or number restriction they end with into so-called value-restriction
sets, which are finite regular sets of words over the alphabet of role names: VC(P ) :=
{W ∈ N∗

R | C v ∀W.P}. A value-restriction set of C for P is a set of role paths
to a concept name P or a number restriction P that is subsumed by C. Thus the
value restriction set contains not only those role paths that appear in C syntactically.
Subsumption is characterized by inclusion between these languages and the lcs is
obtained by intersection of value restriction sets of the input concept descriptions.
The ALN -lcs w.r.t. cyclic TBoxes can be computed in exponential time [Küs98].

The automata-based approach has been employed for unfoldable TBoxes by us
in [BTK03b], where a lcs computation algorithm for the DL FL+

0 was devised. FL+
0

allows conjunction and value restriction for (possibly) transitive roles. For FL+
0 , the

representation of concept descriptions by formal languages could be extended by means
of an operator for the transitive closure of formal languages. Computing the lcs of
FL+

0 -concept descriptions can be done in polynomial time.

Graph-based approach

The graph-based approach is applied to a wider range of DLs. Here, concept descrip-
tions are represented as description graphs, in which nodes are labeled with concept
names and edges with role names and, in case existential and value restrictions are
present in the DL, with the respective quantor. The characterization of subsumption
is then given by homomorphisms between description graphs. Now, the method for
computing the lcs for the different DLs works in the following basic steps:

1. Extract implicit information in each of the input concept descriptions and make
it explicit by adding it to the concept description.

2. Represent each of the obtained concept descriptions in a description graph.

3. Compute the graph product of the description graphs of the input concepts and
read the concept description from the obtained graph.

In case the lcs is computed for concept descriptions or unfoldable TBoxes, the concept
descriptions can be represented by acyclic graphs.
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The first lcs computation algorithm described in the literature was in fact a graph-
based algorithm [CBH92]. This computation algorithm was tailored to the DL ALNS
which the system Classic offered, which extends ALN by attributes and attribute
chain agreements. Attribute chain agreements allow to enforce that individuals reach-
able via two different attribute paths coincide. The algorithm proposed for this in
[CBH92] turned out to be incomplete. In [Küs01] a complete algorithm for ALNS
was devised. However, it was shown in [KB01] that depending on whether attributes
are interpreted as total or partial functions the lcs may or may not exist. In case
attributes are interpreted as partial function, the lcs for ALNS always exists and can
be computed for two concept descriptions in polynomial time, while the lcs of n > 2
concept descriptions can grow exponentially in the size of the input concepts.

The graph-based lcs computation algorithm for ALE-concept descriptions (and rel-
evant sub-languages: FLE and EL) is given in [BKM99]. Here, the concept descriptions
are represented as concept trees and the characterization of subsumption is given by
homomorphism between ALE-description trees. The lcs can be directly obtained by
the cross-product of ALE-description trees. In the following sections of this chapter
we discuss the results for ALE presented in [BKM99] extensively as well as the results
for the computation of the lcs in ALEN , i.e., in the presence of number restrictions in
the language, see [KM01b]. The formal preliminaries introduced in these papers and
the characterization of subsumption in particular, are the basis for our investigations
on concept approximation and difference in Chapter 4. While the lcs in ALE can
grow exponentially in size of the input concept descriptions, the lcs in ALEN can grow
double exponential. Strictly speaking, the approach for ALEN from [KM01b] is not
a graph-based approach, since it operates on ALEN -concept descriptions directly. We
list it here for the sake of completeness.10

A notable case of the graph-based approach is the computation algorithm for
FLE+-concept descriptions. This DL augments FLE with transitive roles. Our results
presented in [BTK03a; BT03] include lcs computation algorithms for FLE+, EL+ and
ELH+ (EL with transitive roles and role hierarchies respectively). To accommodate
the graph-based approach for transitive roles, directed acyclic graphs (DAGs) have to
be used to handle role edges following from transitivity of roles. Furthermore, for the
generation of DAGs for FLE+ concept descriptions, blocking conditions are required to
ensure termination. Before generating a new node in the DAG, the blocking conditions
test whether a node with the required label already exists among the predecessors of
the current node, and if so, reuses this node instead of generating a new one.

Moreover, in case of FLE+, the product graph of FLE+-description graphs can
become cyclic. In contrast to most other cases where the graph-based approach is
used, this necessitates a non-trivial procedure for ‘reading out’ FLE+-concept descrip-
tions from the FLE+-product graph. To sum up, the extension of the graph-based
approach to transitive roles is rather involved from a conceptual point of view. A
detailed discussion of this lcs computation algorithm is beyond the scope of this the-

10We are aware of the work presented in [Man01], where a similar algorithm for ALEQ (ALE ex-
tended by qualified number restrictions) is investigated. However, the proposed algorithm is already
incorrect for the sub-language ALEN due to incorrect treatment of the interactions of at-most and
value restrictions, as the discussion in [KM01b] reveals.
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binary lcs n-ary lcs

EL P [BKM99] ExpTime [BKM99]

ALE ExpTime [BKM99] ExpTime [BKM99]

ALEN 2-ExpTime [KM01b] 2-ExpTime [KM01b]

ALNS P [Küs01] ExpTime [Küs01]

Table 3.1: Complexity of computing the lcs of concept descriptions.

sis. For FLE+, EL+ and ELH+ the devised algorithms in [BTK03a; BT03] can yield
concept descriptions for the lcs that are exponential in the size of the input concept
descriptions.

An overview of complexity results of the lcs computation algorithms for concept
descriptions mentioned in this section are displayed in Table 3.1. The table lists the
complexities depending on whether the lcs is applied to two concept descriptions or
to a sequence of n concept descriptions with n > 2.

The graph-based approach is also employed for computing the lcs of EL-concept
descriptions w.r.t. cyclic TBoxes in [Baa03b; Baa03a]. Cyclic TBoxes can be inter-
preted w.r.t. different kinds of semantics. For the descriptive semantics—the standard
semantics for DL systems—it has been shown in the above cited paper that the lcs
does not need to exist. However, for greatest fixed-point semantics, it has been shown
that the lcs always exists. For this kind of semantics the binary lcs can be computed
in polynomial time and an optimal computation algorithm based on product graphs
has been presented. The algorithm uses simulations as a means to characterize sub-
sumption between description graphs instead of homomorphisms. It has been shown
in [Baa03c] that subsumption w.r.t. cyclic EL-TBoxes no longer corresponds to the ex-
istence of homomorphisms, but to the existence of simulations between EL-description
graphs. Furthermore, the existence of a simulation between graphs can be tested in
polynomial time [HHK95], while testing the existence of a homomorphism between
graphs is a NP-complete problem [GJ79].

The lcs algorithm for cyclic EL-TBoxes is used in [Bra06] as a basis for a compu-
tation algorithm for EL w.r.t. to hybrid TBoxes. Intuitively a hybrid TBox consists of
two parts: a general TBox F (‘foundation’) and a possibly cyclic TBox T (‘terminol-
ogy’) defined over the same set of atomic concepts and roles. The different parts of the
hybrid TBox are interpreted w.r.t. different semantics: the foundation F is interpreted
by descriptive semantics while the terminology T is interpreted by greatest fixed-point
semantics. It has been shown in the above cited thesis that the lcs for hybrid TBoxes
can be reduced to lcs w.r.t. greatest fixed-point semantics in polynomial time. In this
way the lcs can be computed in polynomial time in the size of the hybrid TBox. The
n-ary lcs w.r.t. hybrid EL-TBoxes can be computed in exponential time in the size of
the input and is of exponential size in the size of the input in the worst-case, which
has also been shown in [Bra06].

In this thesis we focus on unfoldable TBoxes instead of cyclic or general TBoxes. For
our application of supporting naive users in extending their ontologies the choice of
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unfoldable TBoxes is more faithful, since they are easier to comprehend. Further-
more, in the light of the negative result regarding the computation of the lcs in EL
w.r.t. general TBoxes with descriptive semantics, general TBoxes do not seem to be a
good starting point for investigating the computation of common subsumers in more
expressive DLs. We employ mainly the description-based variant for the structural
characterization of subsumption and for devising computation methods for the NSIs
considered.

In the remainder of the chapter, we recall and discuss the above mentioned results
on structural characterization of subsumption and on the computation of the lcs in
detail—first in the DL ALE and then in ALEN . These results form the basis for our
investigations on concept approximation and the computation of common subsumers
w.r.t. a background terminology.

3.2 The lcs in ALE

The method for computing the lcs for ALE-concept descriptions was proposed and
proven correct in [BKM99]. For this DL the lcs always exists and it can be computed
effectively using the graph-based approach. As a typical instance of this approach the
algorithm proceeds in the three basic steps:

1. extraction of implicit information and adding it explicitly to the concept de-
scriptions,

2. representation of the concepts as description trees, and

3. computation of the cross-product of the description trees, and reading the con-
cept description from the cross-product tree.

Since the lcs operator is associative, the n-ary lcs operation can be realized by the suc-
cessive application of the binary one. Thus it suffices to describe the binary operation,
which we do in the following.

3.2.1 Normalization ALE-concept descriptions

The extraction of implicit information is composed of several steps. If the input con-
cept descriptions contain concept names that are defined in the TBox, the information
from the TBox must be made explicit. To this end the concept descriptions are un-
folded w.r.t. the TBox. The unfolding process replaces the concept names of defined
concepts by their definition from the TBox in a ‘macro-expand’ fashion.

Definition 17 (Unfolded concept description). Let C be a concept description
and T be an unfoldable TBox. C ′ is the unfolded concept description of C if C ′ is
obtained by exhaustively replacing every concept name that is a defined concept w.r.t.
T by its definition from T . 3

An unfolded concept description contains only concept names of primitive concepts.
Obviously, this procedure would not necessarily terminate for cyclic TBoxes. In his
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seminal paper [Neb88] Nebel examined the complexity of the unfolding procedure.
The unfolding of concept descriptions for DLs that contain existential as well as value
restrictions can grow exponentially in the size of the initial concept description. Thus
this step is a source of complexity for the lcs procedure, if the lcs is computed w.r.t.
a TBox.

The step of unfolding the concept descriptions w.r.t. a TBox means to write the
information from the terminology directly into the concept descriptions and to be able
to ignore the concept definitions from TBox for the rest of the computation.11

ALE-Normalization

Next, each concept description is transformed into a normal form. The idea is to
arrive at a representation of the concept description that makes all the consequences
of interactions between the concept constructors explicit. In case the respective DL
allows to express inconsistencies12 the normal form also propagates inconsistencies.
Next, we introduce the normal form for ALE-concept descriptions and to that end we
need the notion of role depth and role level.

Definition 18 (Role depth, role level). For a concept description C the role depth
rd(C) is inductively defined as follows:

rd(N) := 0 , where N ∈ NC ∪ {⊥,>}

rd(¬C) := rd(C)

rd(δ n r) := 0 , where δ ∈ {≤,≥}

rd(C1 ρ C2) := max{rd(C1), rd(C2)} , where ρ ∈ {u,t}

rd(Qr.C) := 1 + rd(C) , where Q ∈ {∃, ∀}

A role level of a concept C is the set of all concept descriptions occurring on the same
role depth in C. The top most role level of a concept description is also called its
top-level. 3

We assume that NR = {r}, in order to keep the following definitions simple. Now,
the ALE-normal form is computed by removing concept descriptions equivalent to
>, replacing inconsistent concept descriptions by ⊥, joining value restrictions for the
same role, and propagating value restrictions into existential restrictions on all role
levels.

Definition 19 (ALE-normal form). Let E, F be ALE-concept descriptions. An ALE-
concept description C is in ALE-normal form iff all of the following rules have been

11Besides for some subsumption tests in the course of the lcs computation as we will see.
12For instance, the DLs EL and FLE cannot express inconsistencies.
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Figure 3.1: The ALE-description tree of the normal form of C3 from Example 20.

applied exhaustively (modulo associativity and commutativity of conjunction):

∀r.> −→ >, (3.1)

E u > −→ E, (3.2)

A u ¬A −→ ⊥ for each A ∈ NC , (3.3)

∃r.⊥ −→ ⊥, (3.4)

E u ⊥ −→ ⊥, (3.5)

∀r.E u ∀r.F −→ ∀r.(E u F ), (3.6)

∀r.E u ∃r.F −→ ∀r.E u ∃r.(E u F ). (3.7)

3

The first two rules and rule 3.6 reduce redundancy in the concept description. The
rules 3.3 to 3.5 propagate inconsistencies. Rule 3.7 propagates value restrictions onto
existential restrictions. The last rule is a source of an exponential blow-up of the
concept description [BKM99; BT01a]. The following example is a well-known example
taken from [BKM99] that demonstrates this effect.

Example 20. We define the following sequence C1, C2, C3, . . . of ALE-concept descrip-
tions:

Cn :=

{
∃r.P u ∃r.Q, n = 1
∃r.P u ∃r.Q u ∀r.Cn−1, n > 1.

Obviously, the size of Cn is linear in n. However, applying the ALE-normalization
rule 3.7 to Cn yields a description of size exponential in n. If one ignores the value
restrictions (and everything occurring below a value restriction), then the description
tree corresponding to the normal form of Cn is a full binary tree of depth n, where the
nodes reached by going to the left are labeled with P and the ones reached by going to
the right are labeled with Q. Figure 3.1 shows the ALE-description tree of the normal
form of C3.
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We introduce some accessors for parts of concept descriptions, which will help to
formulate the reasoning algorithms. Let C be a concept description:

prim(C) denotes the set of all (possibly negated) concept names and the bottom-
concept occurring on the top role level of C;

valr(C) := C1 u · · · uCn, if there exist value restrictions of the form ∀r.C1, . . . , ∀r.Cn

on the top role level of C; otherwise, valr(C) := >;

exr(C) := {C ′ | there exists ∃r.C ′ on the top role level of C};

Equipped with these accessors we can represent every ALE-concept description as:

C =
l

D∈prim(C)

D u
l

r∈NR

( l

D∈exr(C)

∃r.D u ∀r.valr(C)
)
.

3.2.2 Characterization of subsumption in ALE

The lcs computation algorithm for ALE and its proof for correctness build on structural
characterization of subsumption. Both, the characterization and the lcs algorithm, are
formulated based on the notion of ALE-description trees. ALE-description trees are a
graph representation for ALE-concept descriptions that were introduced in [BKM99]

and are defined as follows.

Definition 21 (ALE-description tree). An ALE-description tree is a tree of the
form G = (V, E, v0, `) with root v0 where

• the edges in E are labeled with role names r from NR or with ∀r for some
r ∈ NR, and

• the nodes v ∈ V are labeled with sets `(v) = {P1, . . . , Pn} where each Pi,
1 ≤ i ≤ n, is of one of the following forms: Pi ∈ NC , Pi = ¬P for some P ∈ NC ,
or Pi = ⊥.

The empty label corresponds to the top-concept. 3

It has been shown in the above cited paper how to convert ALE-concept descriptions
into ALE-description trees and vice versa. Subsumption between two ALE-concept
descriptions can now be characterized by finding a homomorphism between the ALE-
description trees of normalized ALE-concept descriptions.

Definition 22 (Homomorphisms between ALE-description trees). A homo-
morphism from an ALE-description tree H = (VH , EH , w0, `H) to an ALE-description
tree G = (VG, EG, v0, `G) is a mapping ϕ : VH −→ VG such that

1. ϕ(w0) = v0,

2. for all v ∈ VH we have `H(v) ⊆ `G(ϕ(v)) or `G(ϕ(v)) = {⊥},

3. for all vrw ∈ EH , either ϕ(v)rϕ(w) ∈ EG, or ϕ(v) = ϕ(w) and `G(ϕ(v)) = {⊥},
and
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4. for all v∀rw ∈ EH , either ϕ(v)∀rϕ(w) ∈ EG, or ϕ(v) = ϕ(w) and `G(ϕ(v)) =
{⊥}.

3

The homomorphism ensures that for each node v of the ALE-description tree H there
is a node w in G with a label set that is a super-set of the node label of vi. Furthermore
the homomorphism ensures that for each node v in H there is a node w in G, such that,
all successor nodes vi of v have a corresponding node wj in G such that (v, vi) and
(w, wj) are connected via an edge with the same label and (vi, wj) ∈ ϕ. The idea for
the characterization of subsumption is to embed the description tree of the subsumer
concept in the description tree of the subsumee concept. This idea was formalized for
ALE in the following theorem.

Theorem 23 ([BKM99]). Let C, D be ALE-concept descriptions in ALE-normal form
and GC ,GD the corresponding ALE-description trees. Then C v D iff there exists a
homomorphism from GD to GC .

The proof of correctness of this theorem was also given in [BKM99]. In [Küs01] in
addition a description-based characterization of subsumption in ALE is given, which
can easily be derived from Theorem 23.

Theorem 24 ([Küs01]). Let C, D be ALE-concept descriptions in ALE-normal form.
Then C v D iff C ≡ ⊥ or

1. prim(D) ⊆ prim(C);

2. for every D′ ∈ exr(D), there exists an existential restriction in C ′ ∈ exr(C) s.t.
C ′ u valr(C) v D′, and

3. for every r ∈ NR, valr(C) v valr(D).

These characterizations are not meant to be proposals for efficient subsumption
algorithms to be implemented, they merely serve as tools for proofs. However, bearing
in mind that the normalization can cause an exponential blow-up of the concept size,
it is not surprising that subsumption in ALE is in fact NP-complete [DLN+92].

We will mainly refer to the description-based characterization of subsumption in
this thesis. We will use ALE-description trees only as a graphic representation for
illustration.

3.2.3 LCS algorithm for ALE

In [BKM99] it was shown that the computation of the lcs in ALE can be done by
computing the cross-product of the description trees of the normalized ALE-concept
descriptions and reading the concept description from it. Since the resulting graph
is again an ALE-description tree, the lcs concept description can be obtained directly
from this tree. In addition to the cross-product computation a constructive algorithm
on concept descriptions has been formulated. This algorithm is displayed in Figure 3.2
for NR = {r} for sake of simplicity. First the algorithm tests for trivial cases and, in
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Let C, D be two normalized ALE-concept descriptions.

If C v D, then lcsALE(C, D) := D,
if D v C, then lcsALE(C, D) := C,

otherwise

lcsALE(C, D) =
l

A∈prim(C)∩prim(D)

A u

l

C′∈exr(C),D′∈exr(D)

∃r.lcsALE(C ′, D′) u

∀r.lcsALE(valr(C), valr(D)).

Figure 3.2: The lcs computation algorithm for ALE-concept descriptions.

case the lcs is not trivial, it constructs the lcs concept description recursively. In this
construction, the empty conjunction stands for the top-concept >. The recursive calls
of lcsALE() are well-founded since the role depth of the concept descriptions decreases
with each call.

The concept size of a normalized ALE-concept description cannot be bounded by a
polynomial function as we saw in Example 20. This is already the case for normalized
FLE-concept descriptions. Another source of complexity is the number of recursive
calls for existential restrictions (or, if you like, the computation of the r-edge successors
in the graph-based setting). In EL the size of the lcs of 2 input concepts is polynomial,
while the concept size of the lcs of n > 2 EL-concepts can grow exponentially in the
size of the input. In [BKM98] an example of a sequence of n EL-concept descriptions
with size linear in n is given, for which the lcs is a full binary tree with depth n

and which illustrates the exponential blow-up by product computation.13 To sum-
up, the complexity of computing the lcs in EL is polynomial for 2 input concepts
and exponential for more than 2. For FLE and ALE the computation of the lcs can
yield concept descriptions exponentially larger than the input concept descriptions
(see Table 3.1 on page 42). Given this, a natural question is whether the lcs concept
descriptions can be represented in a more compact form. We address this question in
Section 3.4.

3.3 The lcs in ALEN

The DL ALEN augments ALE with number restrictions. For ALEN -concept descrip-
tions the lcs always exists and can be computed effectively. This result has been shown
in [KM01b]. We discuss this algorithm for computing the lcs of ALEN -concept descrip-
tions here in detail in preparation for our investigations of concept approximation in

13We discuss this example later in detail in this chapter.
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the presence of number restrictions presented in Section 4.2. The structural characteri-
zation of subsumption and the lcs algorithm for ALEN is given in the description-based
way in [KM01b].

The application of structural algorithms requires that implicit information in the
concept descriptions is made explicit. This kind of information is mainly implied
by interaction of the different concept constructors present in the DL. In case of
ALEN these interactions are far more complex than in the case of ALE , since number
restrictions can interact with existential and value restrictions as we shall see.

However, the computation of all information implied in ALEN -concept descriptions
already requires the application of the lcs. So, in order to decouple the proofs of
soundness and correctness of the characterization of subsumption and of the lcs, the
characterization of subsumption is given based on a weak normal form, that does not
yet make all facts explicit. Nevertheless, we examine next how to extract induced
information from ALEN -concept descriptions to gain better understanding for the
interactions of the concept constructors in ALEN . The notions introduced next are
used in the lcs computation algorithm.

3.3.1 Implicit information in ALEN -concept descriptions

As usual, if we want to compute the lcs of concept descriptions that contain names
of concepts defined w.r.t. a TBox, these concept descriptions must be unfolded first.
Then the induced information can be computed. In case of ALEN the number restric-
tion can imply consequences for the existential and value restrictions and vice versa.
For instance, an existential restriction on role r obviously implies (≥ 1 r), while an
at-most restriction to, say n role-successors, can force that n+m explicitly mentioned
existential restrictions have to be grouped to n existential restrictions. To gain better
understanding of the possible interactions between the concept constructors in ALEN ,
we consider the following example:

Example 25. Consider the ALEN -concept description Cex ≡ Cex1 tCex2 over the set
of concept names NC := {A1, A2, P, Q} with

Cex1 := ∃r.(P uA1) u ∃r.(P uA2) u ∃r.(¬P uA1) u ∃r.Q u (≤ 2 r)

Cex2 := ∀r.(A1 u A2) u (≥ 1 r).

We want to compute the induced concept descriptions of Cex1 and Cex2.

Induced number restrictions. As explicit number restrictions, we find (≤ 2 r) in
Cex1 and (≥ 1 r) in Cex2. Since Cex1 has existential restrictions with P and another
one with ¬P , we know that at least two distinct r-successors must exist. Thus, Cex1

induces (≥ 2 r).

Induced existential restrictions. Cex1 has 4 existential restrictions while the
number of r-successors is limited to 2 by the at-most restriction. Hence, the 4 ex-
istential restrictions must be merged into 2 such that consistency is preserved. This
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can be done in two ways, yielding the possibilities

∃r.(P u A1 u A2 u Q) u ∃r.(¬P u A1) or

∃r.(P u A1 u A2) u ∃r.(¬P u A1 u Q).

Although Cex2 has no explicit existential restrictions, the at-least restriction (≥ 1 r)
implies one r-successor for which the value restriction holds. So ∃r.(A1 u A2) is an
induced ALEN -concept description of Cex2.

Induced value restrictions. The concept Cex1 has no explicit value restrictions.
Nevertheless, as seen above, Cex1 has exactly 2 r-successors and every consistent merg-
ing has A1 in every existential restriction. Hence, ∀r.A1 is induced as a value restric-
tion for Cex1.

Overall, we obtain the following induced concept descriptions:

Cex1 ≡ ∃r.(P uA1) u ∃r.(P uA2) u ∃r.(¬P uA1) u ∃r.Q

u ∀r.A1 u (≤ 2 r) u (≥ 2 r)

Cex2 ≡ ∃r.(A1 u A2) u ∀r.(A1 u A2) u (≥ 1 r).

This example already shows that the computation of the induced information is con-
ceptually much more complex in ALEN than in ALE . Next we introduce the methods
defined in [KM01b] to compute the induced information of ALEN -concept descriptions.

Induced number restrictions in ALEN

Number restrictions can be induced by existential restrictions and value restrictions.
The induced number restrictions are not determined syntactically, but by using sub-
sumption. The induced at-least restriction is defined as: (≥ minr(C) r), where

minr(C) := max{k | C v (≥ k r)}.

Note that minr(C) is always finite. Similarly, the induced at-most restriction is defined
as: (≤ maxr(C) r), with

maxr(C) := min{k | C v (≤ k r)};

if there exists no k with C v (≤ k r), then maxr(C) := ∞.
The computation of induced number restrictions requires subsumption tests, which

is a PSpace-complete problem for ALEN [Hem01]. The number of these tests can be
bounded polynomially in the size of C.

Induced existential restrictions in ALEN

We need to formalize the notion of merging existential restrictions, which we already
encountered for Cex1. This is done by so-called existential mappings α. Intuitively,
each α is one combination to group all explicit existential restrictions to exactly as
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many r-successors as allowed by the induced at-most restriction for r in maxr(C), in
a consistent way. Formally, α is defined as

α : {1, . . . , n} −→ 2{1,...,m},

where n := min{maxr(C), |exr(C)|} and m := |exr(C)|. Moreover, for every α we want
to enforce that no trivial r-successors (∃r.>) are produced and that every mapping
α partitions the set exr(C) into n non-empty sets. Furthermore, merging existential
restrictions must not lead to inconsistencies. This leads to the following conditions on
existential mappings α:

1. α(i) 6= ∅ for all 1 ≤ i ≤ n;

2.
⋃

1≤i≤n α(i) = {1, . . . , m} and α(i) ∩ α(j) = ∅ for all 1 ≤ i < j ≤ n;

3.
d

j∈α(i) C ′
j u valr(C) 6≡ ⊥ for all 1 ≤ i ≤ n with exr(C) = {C ′

1, . . . , C
′
m}.

As we saw in Example 25, there may be several of these mappings for one ALEN -
concept description. The set of all existential mappings on a concept description
C satisfying the above Conditions (1) to (3)—modulo permutations—is denoted by
Γr(C), where Γr(C) := ∅, if exr(C) = ∅.

Given an existential mapping α, the corresponding set of merged concept descrip-
tions is denoted by

exr(C)α := {
l

j∈α(i)

C ′
j | 1 ≤ i ≤ n}.

Now, let Γr(C) denote the set of all existential mappings satisfying the above condi-
tions. For a given set of k mapping functions Γr(C) = {α1, . . . , αk} the set of induced
existential restrictions ind-exr(C) of C is defined as follows:

• if exr(C) 6= ∅, then
ind-exr(C) :=

{
lcsALEN

(
{Cl u valr(C) | 1 ≤ l ≤ k}

)
| Cj ∈ exr(C)αj , 1 ≤ j ≤ k

}
;

• if exr(C) = ∅ and minr(C) ≥ 1, then ind-exr(C) := {valr(C)};

• otherwise, ind-exr(C) := ∅.

The idea behind the use of the lcs for the computation of ind-exr (C) is the following:
If the existential restrictions have to be merged and every valid existential mapping
αi yields a concept description, say Ci (Ci ∈ exr(C)αi), which implies D, then ∃r.D

is induced by C in all existential mappings, i.e., it is independent of the grouping of
the concept descriptions in the set of merged concept descriptions. In order to find
the concepts commonly implied by all sets of merged concept descriptions, the lcs is
applied to all information implied by the existential restrictions, the commonalities of
the concepts obtained by the different existential mappings must be considered.

However, since the lcs is only applied to (conjunctions of) sub-concept descriptions
of C, the number of lcs applications is bounded by the number of existential restrictions
on each role level and by the role depth of C. Nevertheless, the use of the lcs for the
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computation of induced information makes the proof of existence of the lcs in [KM01b]

much more involved.

In Example 25, for Cex1 the first case of the definition of ind-exr() applies. We have
two existential mappings, say α1 and α2, with exr(Cex1)

α1 = {PuA1uA2uQ,¬PuA1}
and exr(Cex1)

α2 = {P uA1 uA2,¬P uA1 uQ}. Now, the induced existential mapping
is what is implied by all valid mappings. Extracting the commonalities of all valid
existential mappings yields:

ind-exr(Cex1) =
{
lcsALEN

(
{P u A1 u A2 u Q, P u A1 u A2}

)
,

lcsALEN
(
{P u A1 u A2 u Q, ¬P u A1 u Q}

)
,

lcsALEN
(
{¬P u A1, P u A1 u A2}

)
,

lcsALEN
(
{¬P u A1, ¬P u A1 u Q}

})

= {P u A1 u A2, A1 u Q, A1, ¬P u A1}.

For Cex2, the second case of the definition of ind-exr() applies: ind-exr(Cex2) = {(A1 u
A2)}.

Induced value restrictions in ALEN

New value restrictions can only be induced for two reasons. First, if maxr(C) = 0, then
C v ∀r.⊥ holds. Second, the merging of existential restrictions in combination with
at-most restrictions may induce value restrictions—as for Cex1 in Example 25. This is
the case, if the number in the induced at-most restriction maxr (C) and the minimal
number n for which an existential mapping can be found coincide. Intuitively, in this
case all role-successors are ‘known’. The minimal number of r-successors induced
by incompatible existential restrictions, which is the number of role-successors in the
strongest merging obeying the conditions for a valid existential mapping, is defined
as:

κr(C) :=

{
minr(∀r.valr(C) u

d
C′∈exr(C) ∃r.C ′) if exr(C) 6= ∅,

0 otherwise.

To obtain κr(C), the value restrictions from C need to be propagated onto the exis-
tential restrictions. Now, only if κr(C) = maxr(C), value restrictions can be induced,
since only then we ‘know’ all r-successors of instances of C. In Example 25, we
encounter this case for Cex2, since κr(Cex2) = maxr(Cex2) = 2.

With all merged existential restrictions obtained from all existential mappings
α ∈ Γr(C) collected in the set

exr(C)∗ :=
⋃

α∈Γr(C)

exr(C)α

the induced value restriction ind-valr(C) of C is defined as follows:

• if maxr(C) = 0, then ind-valr(C) := ⊥;

• if 0 < κr(C) < maxr(C), then ind-valr(C) := valr(C);
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• if 0 < κr(C) = maxr(C), then
ind-valr(C) := lcsALEN ({valr(C) u C ′ | C ′ ∈ exr(C)∗})

Again we have to employ the lcs to compute induced information to find out the
commonalities of each existential restriction (with the explicitly mentioned value re-
striction propagated onto it) obtained from all valid existential mappings. In this
application the number of lcs calls during the computation of ind-valr(C) is bounded
by the role depth of C.

For ALEN only a weak normal form is defined in [KM00], which replaces number
restrictions by the induced number restrictions and conjoins value restrictions in each
conjunction of an ALEN -concept description. In fact, no ‘strong normal form’, where
all induced information is explicitly expressed as an ALEN -concept description exists,
since the alternative ways of merging existential restrictions would have to be captured.

3.3.2 Structural characterization of subsumption in ALEN

In [KM01b] an algorithm for structural subsumption of ALEN -concept descriptions
was given and proven to be sound and complete in [KM00]. Subsumption between
ALEN -concept descriptions can be tested by the conditions stated in the following
theorem.14

Theorem 26 ([KM01b]). Let C, D be two ALEN -concept descriptions with exr(C) =
{C1, . . . , Cm}. Then C v D iff C ≡ >, D ≡ ⊥ or all of the following holds:

1. prim(D) ⊆ prim(C);

2. maxr(C) ≤ maxr(D);

3. minr(C) ≥ minr(D);

4. for all D′ ∈ exr(D) it holds that

(a) exr(C) = ∅, minr(C) ≥ 1, and valr(C) v D′; or

(b) exr(C) 6= ∅ and for each α ∈ Γr(C), there exists C ′ ∈ exr(C)α such that
C ′ u valr(C) v D′ and

5. if valr(D) 6≡ >, then

(a) maxr(C) = 0; or

(b) κr(C) < maxr(C) and valr(C) v valr(D); or

(c) 0 < κr(C) = maxr(C) and for all C ′ ∈ exr(C)∗ : valr(C) u C ′ v valr(D).

The first three conditions of the structural subsumption algorithm are straightfor-
ward, but the conditions for existential and value restrictions are less obvious. By
Condition 4 it is guaranteed that each existential restriction of the subsumer D is
more general than either the existential restriction implied by an at-least restriction

14Recall that we assumed NR = {r}.
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Let C, D be two ALEN -concept descriptions.

If C v D, then lcsALEN (C, D) := D,
if D v C, then lcsALEN (C, D) := C,

otherwise

lcsALEN (C, D) :=
l

Q∈prim(C)∩prim(D)

Q u

(≤ max{maxr(C), maxr(D)} r) u

(≥ min{minr(C), minr(D)} r) u

l

C′∈ind-exr(C),D′∈ind-exr(D)

∃r.lcsALEN (C ′, D′) u

∀r.lcsALEN (ind-valr(C), ind-valr(D)),

Where

• (≤ max{maxr(C), maxr(D)} r) is omitted,
if maxr(C) = ∞ or maxr(D) = ∞, and

•
d

C′∈ind-exr(C),D′∈ind-exr(D) ∃r.lcsALEN (C ′, D′) := >,

if ind-exr(C) = ∅ or ind-exr(D) = ∅.

Figure 3.3: The lcs computation algorithm for ALEN -concept descriptions.

in combination with a value restriction in the subsumee C (Condition 4a) or than one
existential restriction from each existential mapping of the C (Condition 4b). Condi-
tion 5 treats value restrictions for which three cases have to be distinguished: either
the subsumee C has no r-successor and thus ∀r.⊥ as a value restriction (Condition 5a)
or there are no induced value restrictions in C and thus there has to be a subsump-
tion relation between the explicit value restrictions (Condition 5b) or, in case that the
minimal number of r-successors for instances of C (κr(C)) coincides with the number
from the at-most restriction in C there is an implicit value restriction for C.

The rather involved proof for completeness and correctness of the structural char-
acterization of subsumption for ALEN -concept descriptions is given in [KM01b]. We
require this characterization as a formal basis for algorithms to be introduced in the
following chapters.

3.3.3 LCS algorithm for ALEN

The algorithm for computing the lcs of two ALEN -concept descriptions as defined in
[KM01b] is shown in Figure 3.3. We use a slightly more handy notation here than
in the original paper based on the notions introduced in Section 3.3.1. Similar to the
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algorithm for computing the lcs for ALE concept descriptions, the algorithm for ALEN
constructs the lcs concept description recursively by treating the concept constructors
in ALEN separately.

For the algorithm depicted in Figure 3.3 it has been shown in [KM00] that the lcs
of a set of ALEN -concept descriptions can be computed in double-exponential time in
the size of the input concept descriptions. A corresponding lower bound is not known.
However, it is clear from the results for the lcs in ALE that the lcs in ALEN needs at
least exponential time in the worst case.

3.4 On the compact representation of least common sub-

sumers

The concept description returned by the lcs for ALE can grow exponentially in the
size of the unfolded input concepts in the worst case. Although these cases are not
necessarily encountered in practice, it is clear that the lcs concept descriptions can
grow too large to be comprehensible for a human reader.

In [BK00] minimal rewritings have been proposed to remedy this. Minimal rewrit-
ings replace sub-concept descriptions of a concept with equivalent concept names from
the TBox (see Definition 15 on page 34). With computing the minimal rewriting of
the lcs concept description as a ‘post-processing’ step, one can obtain smaller, but
equivalent lcs concept descriptions.

Another approach to arrive at a more compact representation of lcs concept de-
scriptions is to extend the TBox by new definitions and use these auxiliary con-
cepts for structure sharing in the lcs concept, which was explored by us in [BT01a;
BT02a]. More formally, the addressed problem can be stated as: Let L be a DL for
which the lcs operation is exponential. Given input descriptions C1, . . . , Cn with lcs
D, does there always exist a TBox T whose size is polynomial in the size of C1, . . . , Cn

and a defined concept name A in T such that A ≡T D, i.e., the TBox defines A such
that it is equivalent to the lcs D of C1, . . . , Cn?

We first examine the worst case examples for the lcs in EL and in ALE . Encour-
agingly, these examples can be represented by introducing auxiliary concepts in the
TBox. However, this technique cannot be used to compress lcs concept descriptions
in general as we will see later.

3.4.1 Worst case examples

The following example was given in [BKM99] and demonstrates that the lcs of n

EL-concept descriptions of size linear in n may be exponential in n.

Example 27. We define for each n ≥ 1 a sequence {Cn
1 , . . . , Cn

n} of EL-concept
descriptions. For n ≥ 0 let

Dn :=

{
>, n = 0

∃r.(P u Q u Dn−1), n > 0
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Figure 3.4: Description trees of C3
1 , C3

2 , C3
3 and their product.

and for n ≥ 1 and 1 ≤ i ≤ n we define

Cn
i :=

{
∃r.(P u Dn−1) u ∃r.(Q u Dn−1), i = 1

∃r.(P u Q u Cn−1
i−1 ), 1 < i ≤ n.

It is easy to see that each Cn
i is linear in the size of n. The product of the corresponding

description trees is a full binary tree of depth n, where the nodes reached by going to
the left are labeled with P and the ones reached by going to the right are labeled with
Q. Obviously, the size of this tree is exponential in n. What is less obvious, but can
also be shown (see [BKM99]), is that there is no smaller description tree representing
the same concept (modulo equivalence).

The lower half of Figure 3.4 depicts the tree obtained as the product of the de-
scription trees corresponding to the descriptions C3

1 , C3
2 , C3

3 . This tree is a full binary
tree of depth 3, where the nodes reached by going to the left are labeled with P and
the ones reached by going to the right are labeled with Q.

Let us consider again Example 20 from page 45. As we can see in Figure 3.1, the
exponentially large normal form constructed in this example has as its description
tree the full binary tree of depth n, where the nodes reached by going to the left were
labeled with P and the ones reached by going to the right were labeled with Q. This
concept can be defined in a TBox of size linear in n.
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Example 28. For n ≥ 1, we consider the concept descriptions Cn introduced in
Example 20 and the concept descriptions Dn defined in Example 27. By building the
product of the description trees corresponding to the normal forms of Cn and Dn, one
basically removes the value restrictions from the normal form of Cn. Thus, one ends
up with a lcs En that agrees with the binary tree we obtained in Example 27. Again, it
can be shown that there is no smaller ALE-concept description equivalent to this lcs.

3.4.2 Using TBoxes to compress the lcs

The exponentially large lcs En constructed in Examples 27 and 28 has as its description
tree the full binary tree of depth n, where the nodes reached by going to the left were
labeled with P and the ones reached by going to the right were labeled with Q. This
concept can be defined in a TBox of size linear in n.

Example 29. Consider the following TBox Tn:

{A1
.
= ∃r.P u ∃r.Q} ∪

{Ai
.
= ∃r.(P u Ai−1) u ∃r.(Q u Ai−1) | 1 < i ≤ n}.

It is easy to see that the size of Tn is linear in n and that An ≡Tn En, i.e., the TBox
Tn provides us with a compact representation of En.

In general, however, such a compact representation by structure sharing is not
possible. We will first give a counterexample for the n-ary lcs in EL, and then for
the binary lcs in ALE . The main idea underlying both counterexamples is to generate
description trees having exponentially many leaves that are all labeled by sets of
concept names that are incomparable w.r.t. set inclusion. To this purpose, we consider
the set of concept names Nn := {A0

j , A
1
j | 1 ≤ j ≤ n}, and define Ai := Ai1

1 u . . .uAin
n

for each n-tuple i = (i1, . . . , in) ∈ {0, 1}n.

Counterexample for EL. For all n ≥ 1 we define a sequence C1, . . . , Cn of n EL-
concept descriptions whose size is linear in n:

Cj := ∃r.
l

B∈Nn\{A0

j}

B u ∃r.
l

B∈Nn\{A1

j}

B.

Since each of the concepts Cj contains two existential restrictions, the lcs of C1, . . . , Cn

contains 2n existential restrictions. The concept descriptions occurring under these
restrictions are obtained by intersecting the corresponding concept descriptions under
the existential restrictions of the concept descriptions Cj . It is easy to see that these
are exactly the 2n concept descriptions Ai for i ∈ {0, 1}n introduced above. Since the
descriptions Ai are pairwise incomparable w.r.t. subsumption, it is clear that there is
no smaller EL-concept description equivalent to this lcs. We show now that a TBox
cannot be used to obtain a smaller representation of this concept description.

Obviously, to get a more compact representation of the lcs using a TBox, one needs
duplication of concept names on the right-hand sides of the TBox. During unfolding
of the TBox, this would, however, lead to duplication of sub-concepts. Since the
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Figure 3.5: The ALE-description tree corresponding to C3.

(description tree of the) lcs we have constructed here has 2n different leaves, such
duplication does not help, since it can only duplicate leaves with the same label, but
not generate leaves with different labels. Thus, in general, we cannot represent the lcs
in a more compact way by introducing new definitions in an EL TBox.

Counterexample for ALE. For n ≥ 1 we define concept descriptions Cn of size
quadratic in n. For n ≥ 1, let F i

j := ∀r. · · · ∀r.Ai
j+1 be the concept description con-

sisting of j nested value restrictions followed by the concept name Ai
j+1. We define

C1 := ∃r.A0
1 u ∃r.A1

1,

Cn := ∃r.F 0
n−1 u ∃r.F 1

n−1 u ∀r.Cn−1 for n > 1.

Figure 3.5 shows the description tree corresponding to C3.
Applying the normalization rule ∀r.E u ∃r.F −→ ∀r.E u ∃r.(E u F ) to Cn yields

a normalized concept description whose size is exponential in n. If one ignores the
value restrictions (and everything occurring below them), then the description tree
corresponding to this normal form of Cn is a full binary tree of depth n whose 2n

different leaves are labeled by the 2n concept descriptions Ai for i ∈ {0, 1}n.
Let Dn := ∃r. · · · ∃r.

d
B∈Nn

B be the concept description consisting of n nested
existential restrictions followed by the conjunction of all concept names in Nn. Again,
by building the product of the description trees corresponding to the normal forms of
Cn and Dn, one basically removes the value restrictions from the normal form of Cn.
Thus, the lcs corresponds to the full binary tree of depth n whose leaves are labeled
by the concept descriptions Ai for i ∈ {0, 1}n.

By an argument similar to the one for EL one can show that there is no smaller
ALE-concept description equivalent to this lcs, and that a TBox cannot be used to
obtain a smaller representation.

This finding for the ALE-example carries directly over to the case of representing the
lcs in ALEN more compactly by extending the TBox. The examples given above
show that the exponential size of the lcs concept description cannot be avoided by
employing structure sharing, i.e., replacing common substructures by a name of a
defined concept.
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3.5 Extending the lcs to more expressive DLs

In this chapter we have supplied an overview of applications of the lcs and of meth-
ods for the computation of the lcs in different DLs and TBox formalisms. We have
examined the methods to compute the lcs in the DLs ALE and ALEN in detail.

The computation of the lcs is central to implement the ontology extension ap-
proaches described in Section 1.2.2. In particular, the bottom-up extension and the
customization of background ontologies are built on the inference service of computing
common subsumers.

For many applications more expressive DLs are used to model the application
domain. In particular, most of these DLs are propositionally closed and thus can
also express disjunction. For these DLs the simple application of the lcs does not
yield a useful result for the extension of ontologies by the approaches described in
the introduction. Computing the lcs of the concepts C1, . . . , Cn in a DL offering
disjunction results in the disjunction C1 t · · · t Cn as their lcs. This result is correct,
but not a good starting point for a naive user to understand and edit the concept
description since it does not make the commonalities of the input concepts explicit.

Now, in order to assess whether the lcs concept description proposed to the modeler
captures a certain characteristic of the intended concept, she needs to comprehend
which information is captured in the concept description and which is not. Therefore
the displayed concept description should be succinct to be easily comprehensible.

In addition to this, the modeler has to locate the part in the concept description (or
in the ontology) where the relevant information is stated in order to edit the concept
description competently, which is obviously not fulfilled by just enumerating the input
concepts as done in the plain disjunction of a naive lcs.

Since many DLs in use for practical applications allow for disjunction—most no-
tably the DLs underlying the standards of OWL Lite and OWL DL—new methods to
handle disjunction in a ‘meaningful way’ in the computation of common subsumers
are required. These methods must be based on well-defined reasoning services with
sound and complete computation methods to ensure reliable and predictable behav-
ior when implemented and put to practice. In this thesis we propose and investigate
two approaches for this and supply methods for the computation of the underlying
reasoning services for it.

The approximation-based approach

In the approximation-based approach disjunction is eliminated, before applying the
lcs. More precisely, the input concept descriptions for the lcs are first translated into
a DL that does not offer disjunction and then their commonalities are extracted.

To this end we introduce concept approximation, which in general computes for
a concept description in a DL L1 the closest concept description w.r.t. subsumption
in a DL L2.

15 Now, since not all concept constructors of L1 are present in L2, some
information of the initial concept cannot be captured in the concept approximation.

15Typically, L1 would be more expressive than L2.
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But since the concept description obtained from concept approximation is the closest
w.r.t. subsumption, the loss of information is minimized.

For our application, where we use concept approximation as a preprocessing step
for computing the lcs, the interesting cases are those where L1 offers disjunction
and L2 does not. In the preprocessing step each of the selected concept descriptions
are approximated in a DL without disjunction and then the lcs of these concept
descriptions is computed. In the next chapter we investigate two such pairs of DLs
for concept approximation.

Common subsumers w.r.t. a background terminology

In this approach two kinds of terminologies are used in combination: the background
terminology written in an expressive DL and the user terminology written in a less
expressive DL. While the background DL provides disjunction, the user DL does
not. The concept descriptions written in the user DL, however, use concept names
defined in the background ontology. Thus the user DL can capture disjunction, if the
background terminology provides a concept name for it. The methods proposed for
this setting are tailored to the ‘customization of background ontologies’ approach for
extending ontologies described in Section 1.2.2.

In this novel setting it is not clear whether the lcs exists or not and if it does, how
it is computed. We investigate this inference for ALC as the background DL first for
EL and then for ALE as the user DL.

In some cases it seems to be useful to relax the notion of the lcs to avoid over-fitting
or for efficiency reasons. To address this issue, we describe practical approaches for
computing good common subsumers to extend background terminologies, which may,
however, not be the least ones.



Chapter 4

Concept approximation

In this chapter we investigate the inference ‘concept approximation’, which can be
thought of as a service that translates concept descriptions from one DL to concept
descriptions in another, typically less expressive DL. This inference is an instance of
the general rewriting framework for DLs according to Definition 14 (on page 33) as
introduced in [BKM00]. Concept approximation instantiates this framework in the
following way: the source DL Ls and the TBox DL Lt are the same and the target DL
Ld is a DL offering fewer concept constructors than Ls. The binary relation ρ between
concept descriptions from source and target DL, as well as the ordering relation ¹
between concept description from Ld, is subsumption.

In the case we are interested in, the target DL does not offer concept disjunction,
such that the obtained concept descriptions yield a meaningful generalization when
computing their lcs (in the target DL). In principle one can compute an upper approx-
imation by generalizing the input concept description or a lower approximation by
specializing it. For our application we are only interested in upper approximation for
two reasons. First, we approximate the concept description in order to obtain their
generalization in a subsequent step, thus specializing them first is unintuitive. Sec-
ond, and more importantly, there exist possibly many (minimal) specializations of one
concept description, thus the choice of one specialization seems arbitrary. Moreover,
it is not guaranteed to obtain a common subsumer at all, if the lcs is applied to lower
approximations of the input concept descriptions. Thus we are only considering upper
approximation and refer to it by the term approximation in the following.

The service of eliminating disjunctions from TBoxes and concept descriptions was
already mentioned in [EBBK89; CBH92]. The motivation to consider this kind of
service, was the already mentioned knowledge base vivification. Knowledge base vivi-
fication removes disjunctions form the TBox mainly to achieve better performance for
reasoning tasks, but also for better understandability of the TBox for users with little
expertise in logic.

In a similar way concept approximation can be employed to support user interfaces
of DL systems. In the interaction with DL systems, users with little KR expertise
may have difficulties to understand and make use of the full expressive power of the
underlying DLs. To overcome this problem two approaches have been proposed in
the literature. In [McG96] concept pruning is applied to achieve better readability of

61
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the concept for naive users by removing too complex sub-concept descriptions. Now,
instead of just eliminating sub-concept descriptions from the concept by removing
them, computing their approximation would preserve as much information of the
original concept description as possible and offer a way to display a simpler form of
the original concept description.

The second approach for displaying concept descriptions in a more user-friendly
way is to equip knowledge representation systems with a simplified frame-based user
interface built on top of a more powerful DL system. Examples for such a systems are
the TAMBIS system [BGB+99] and the ontology editors OilEd [BHGS01] or Protégé

[GMF+03]. On many occasions, these systems have to present concept descriptions
to the user for editing, inspection, or as a solution of inference problems. Such con-
cept descriptions, however, need not always fit into the restricted representation of
the frame-based user interface or might be hard to comprehend for an inexperienced
user. In such cases, approximation may be helpful as a means to represent concept
descriptions in a simplified fashion suited to the user interface and the user’s level of
expertise.

Besides for computing simplified views on concept descriptions, concept approx-
imation can be employed as a preprocessing step for other inferences. For example,
new inferences such as concept matching, have been introduced to support the con-
struction and maintenance of DL knowledge bases (see [Küs01; BT01b]). However,
up to now they are mostly restricted to quite inexpressive DLs, for example to those
that do not allow for concept disjunction. As in our case of the lcs, approximation can
be used to overcome this problem to some extent by first approximating the concept
descriptions and then applying the non-standard inferences to their approximations.

As we shall see, the computation algorithms for concept approximation are sim-
ilar to the description-based algorithms for the lcs as discussed in the last chapter.
These algorithms also require normalization of concept descriptions and structural
characterization of subsumption as a basis. Unlike the case of the lcs, here these
characterizations are given for the subsumption of a concept description in the source
DL by a concept description in the target DL of concept approximation. Formally,
the translation from source DL to target DL by concept approximation is defined as
follows.

Definition 30 (Approximation). Let C be an L1-concept description. A L2-
concept description D is an L2-approximation of C iff

1. C v D; and

2. D v E for every L2-concept description E with C v E.

3

For the approximation-based approach to obtain meaningful least common subsumers,
we are interested in the cases where L1 does offer disjunction, while L2 does not.
Here, computing L2-approximations means to eliminate disjunctions from L1-concept
descriptions while retaining as much information captured in the concept description
as possible. In the simple case of a disjunction C1 t C2 of two L2-concepts, the most
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specific L2-concept description subsuming C1tC2 is just the lcs of C1 and C2. Hence,
the disjunction is approximated by the lcs of the disjuncts. This observation holds
in a more general setting and captures the close relationship between the lcs and the
approximation inference.

Corollary 31. Let L2 be a DL that does not allow to express disjunctions of arbi-
trary L2-concept descriptions, let L1 be the DL that extends L2 by disjunction and let
C1, . . . , Cn be L2-concept descriptions, then

approxL2
(
⊔

1≤i≤n

Ci) ≡ lcsL2
(C1, . . . , Cn).

Note that
⊔

1≤i≤n Ci is a L1-concept description. The above equivalence follows
directly from the definition of approximation and lcs. However, this equivalence is
central for computation algorithms for approximations that eliminate disjunctions,
since it allows to give computation algorithms more suitable for implementation as we
will see.

In the remainder of this chapter we introduce the ‘classic’ computation algorithm for
computing ALE-approximations of ALC-concept descriptions as presented in [BKT01]

or [Bra06]. Based on Corollary 31 we give a more efficient version of the algorithm and
prove its correctness. Then we extend this computation algorithm by number restric-
tions to ALEN -approximations of ALCN -concept descriptions and prove its correctness.
To this end we give a structural characterization of subsumption of ALCN -concept de-
scriptions by ALEN -concept descriptions beforehand.

To be able to assess the information loss of a concept description by computing
its approximation, we present the difference operator in Section 4.3. This operator
computes a syntactic difference of two concept descriptions. We present a heuristic
algorithm to compute the syntactic difference of an ALC-concept description by an
ALE-concept description in this chapter in Section 4.3. This algorithm can be em-
ployed to assess the syntactic difference between an ALC-concept description and its
approximation.

4.1 Approximation of ALC- by ALE-concept descriptions

The first computation algorithm for the non-standard inference approximation was
devised by Brandt, Küsters and Turhan in [BKT02b; BKT01]. This work proposed
a computation algorithm for approximations of ALC-concept descriptions by ALE-
concept descriptions. We introduce this algorithm as a preparation for the method
for concept approximation of ALCN -concept descriptions by ALEN -concept descrip-
tions. For the proofs of soundness and completeness of the computation of ALE-
approximations of ALC-concept descriptions please refer to [BKT01] or [Bra06].

The method for computing ALE-approximations of ALC-concept descriptions is
again a structural method. A first idea to come up with a computation algorithm
might be to replace each disjunction by the commonalities of its disjuncts. Proceed-
ing in this way, an approximation algorithm traverses the syntax tree of the input
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concept in a bottom-up fashion and substitutes a disjunction by the lcs of its dis-
juncts whenever one is found. This idea is formalized in the following definition of our
first straightforward attempt to an approximation algorithm:

Definition 32 (Approximation by substitution of disjunctions by their lcs).
The pseudo-approximation c-approxtriv

ALE(C) of an ALC concept description C by an
ALE concept description is defined by:

c-approxtriv
ALE(C) := C , if C ≡ ⊥ or C ≡ > or C ∈ prim(C)

c-approxtriv
ALE(C1 u · · · u Cn) := c-approxtriv

ALE(C1) u · · · u c-approxtriv
ALE(Cn)

c-approxtriv
ALE(C1 t · · · t Cn) := lcsALE

(
{c-approxtriv

ALE(C1), . . . , c-approxtriv
ALE(Cn)}

)

c-approxtriv
ALE(∃r.C ′) := ∃r.c-approxtriv

ALE(C ′)

c-approxtriv
ALE(∀r.C ′) := ∀r.c-approxtriv

ALE(C ′)

3

Unfortunately, this naive approach does not always compute the most specific ALE-
concept description subsuming C. Let us consider the following example.

Example 33 (Naive approximation). For atomic concepts A and B, consider the
ALC-concept description Cex := (∀r.B t (∃r.B u ∀r.A)) u ∃r.A.

c-approxtriv
ALE(Cex) ≡ lcsALE(∀r.B, ∃r.B u ∀r.A) u ∃r.A

≡ ∀r.> u ∃r.A

≡ ∃r.A

It is easy to verify that C v ∃r.(A u B) < c-approxtriv
ALE(Cex). Thus, the algorithm

c-approxtriv
ALE did not find an optimal solution.

The crucial point is to normalize full negation and nested con- and disjunctions
before the propagation of value restrictions. If the approximation is to be computed
w.r.t. a TBox and the concept descriptions contain names of defined concepts, the
concept description has to be unfolded w.r.t. the TBox (according Definition 17)
before normalization.

4.1.1 Normalization of ALC-concept descriptions

In case of the DL ALC the normal form has to take care of all interactions of the ALE-
concept constructors in combination with full negation and disjunction. Negation
is treated by transformation of the concept description into negation normal form
(NNF), which turns full negation into primitive negation by pushing all negations
into the concept description until they occur only in front of concept names, using de
Morgan’ rules as well as the following rules.

Definition 34 (ALC-negation normal form). An ALC-concept description is in
ALC-negation normal form if the following rules have been applied exhaustively:



4.1. APPROXIMATION OF ALC- BY ALE-CONCEPT DESCRIPTIONS 65

¬¬C → C ¬(C u D) → (¬C t ¬D)
¬> → ⊥ ¬(C t D) → (¬C u ¬D)
¬⊥ → > ¬(∃r.C) → (∀r.¬C)

¬(∀r.C) → (∃r.¬C).
3

Transforming an ALC-concept description into NNF yields an equivalent concept de-
scription of the same size. To handle disjunctions correctly in our computation algo-
rithm for approximation, we need to simplify (possibly) interleaved con- and disjunc-
tions. We call a concept description top-level t-free, if it is in ALC-negation normal
form and does not contain any disjunction on the top role level. However, inside
of existential or value restrictions of a top-level t-free concept descriptions disjunc-
tions may appear. The following normal form transforms ALC-concept descriptions
into a disjunction of top-level t-free concept descriptions, i.e. the obtained concept
description consists of (at most) one disjunction containing flattened conjunctions of
(possibly negated) concept names, value and existential restrictions containing concept
descriptions in ALC-normal form.

Definition 35 (ALC-normal form). Let C be an ALC-concept description. C is in
ALC-normal form, iff C = ⊥, C = >, or C is of the form

C = C1 t · · · t Cn and for all i

Ci =
l

A∈prim(Ci)

A u
l

C′∈exr(Ci)

∃r.C ′ u ∀r.valr(Ci),

where (1) Ci 6≡ ⊥ for all i and (2) valr(Ci) and every concept in exr(Ci) again are in
ALC-normal form. 3

Normalized ALC-concept descriptions are in a similar form as disjunctive normal form
on each role level. Obviously, ALE-concept descriptions are always in ALC-normal
form. Note that every concept description in ALC-normal form is also in NNF.

Transforming a concept description in ALC-normal form can yield a concept de-
scription exponentially larger than the original in the worst case. For instance, com-
puting the disjunctive normal form of (A1 tB1)u · · · u (An tBn) produces a concept
description of exponential size in n.

4.1.2 Computing ALE-approximations of ALC-concept descriptions

A detailed discussion on the characterization of subsumption of an ALC-concept de-
scription by an ALE-concept description and proof of its correctness is given in [BKT01]

and [Bra06]. We simply state the conditions for subsumption here, since we refer to
them later.

Theorem 36. Let C = C1 t · · · tCn be an ALC-concept description in ALC-normal
form and D an ALE-concept description in ALE-normal form. Then, C v D iff

1. C ≡ ⊥ or D ≡ >, or
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Input: ALC-concept description C.
Output: ALE-approximation D of C.

1. If C ≡ ⊥, then c-approxALE(C) := ⊥

2. If C ≡ >, then c-approxALE(C) := >

3. Otherwise, transform C into ALC-normal form and return

c-approxALE(C) :=

l

A∈
T

i prim(Ci)

A

u
l

(C′

1
,...,C′

n)∈exr(C1)×···×exr(Cn)

∃r.lcsALE
(
{c-approxALE(C ′

i u valr(Ci)) | 1 ≤ i ≤ n}
)

u ∀r.lcsALE
(
{c-approxALE(valr(Ci)) | 1 ≤ i ≤ n}

)
.

Figure 4.1: The algorithm c-approxALE .

2. for every Ci with i ∈ {1, . . . , n} it holds that

• prim(D) ⊆ prim(Ci), and

• ∀D′ ∈ exr(D) ∃C ′ ∈ exr(Ci) : C ′ u valr(Ci) v D′, and

• valr(Ci) v valr(D).

Intuitively, the conditions for subsumption are very similar to the conditions of the
description-based characterization of subsumption between ALE-concept descriptions
from Theorem 24, besides the following two facts: here each disjunct from C is tested
whether it fulfills the conditions and propagation of value restrictions onto existential
restrictions is done ’on the fly’.

An algorithm to actually compute the ALE-approximation of a given ALC-concept
description is displayed in Figure 4.1. Recall that we assume NR = {r}. Obviously, the
algorithm ensures that the input is transformed into ALC-normal form. By computing
c-approxALE(C ′

i u valr(Ci)) instead of c-approxALE(C ′
i) for every existential restriction

in the resulting concept description it is also ensured that value restrictions are prop-
agated to existential restrictions. It should be noted that the argument C ′

i u valr(Ci)
to c-approxALE is not necessarily in ALC-normal form—even if C was transformed into
ALC-normal form before. To see how the above algorithm works, let us return to
Example 33.

Example 37. Again, consider the concept description Cex = (∀r.Bt (∃r.Bu∀r.A))u
∃r.A. Applying c-approxALE to Cex would firstly transform the input into ALC-normal
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form, yielding (∀r.B u ∃r.A) t (∃r.B u ∀r.A u ∃r.A). According to the definition of
c-approxALE , we therefore have:

c-approxALE(Cex) = c-approxALE((∀r.B u ∃r.A) t (∃r.B u ∀r.A u ∃r.A))

≡ ∃r.lcsALE(A u B, B u A) u

∃r.lcsALE(A u B, A u A) u

∀r.lcsALE(B, A)

≡ ∃r.(B u A) u ∃r.A u ∀r.>

≡ ∃r.(B u A).

This example shows that c-approxALE correctly approximates the example concept.
The following theorem states that the algorithm c-approxALE always finds the correct
approximation. The proof can be found in [BKT01; Bra06].

Theorem 38. Let C be an ALC-concept description in ALC-normal form. Then the
concept description c-approxALE(C) is the ALE-approximation of C, i.e.,

1. C v c-approxALE(C), and

2. c-approxALE(C) v D for every ALE-concept description D with C v D.

As each ALC-concept description can be transformed into an equivalent ALC-
concept description in ALC-normal form we may extend the above result in the fol-
lowing way:

Corollary 39. 1. The above result also holds for ALC-concept descriptions which
are not in ALC-normal form.

2. The size of c-approxALE(C) can be exponential in the size of C, where C is in
ALC-normal form.

Proof. 1. Easy to see since (1) the algorithm c-approxALE starts by computing the
ALC-normal form of its input and (2) > and ⊥ are represented uniquely in ALC-
normal form.

2. Consider two ALE-concept descriptions C1 and C2 in ALE-normal form. Ac-
cording to the definition, c-approxALE(C1 t C2) = lcsALE(C1, C2). It has been shown
in [BKM99] that there exist pairs of ALE-concept descriptions whose lcs is exponen-
tially large in the size of the input. o

A natural question regards the computational complexity of the approximation
algorithm c-approxALE . Since the algorithm uses the computation algorithm for the lcs
in ALE as a sub-procedure, we know that computation of ALE-approximations of ALC-
concept descriptions is necessarily worst case exponential. The following Proposition
gives an upper bound. It is shown in [BKT01; Bra06] that c-approxALE can be realized
as a double-exponential time algorithm.

Proposition 40. The algorithm c-approxALE is a 2-ExpTime algorithm, i.e., for a
given ALC-concept description the computation of c-approxALE(C) takes at most double
exponential time in the size of C.
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We give an intuition for this result. The main sources of complexity are the compu-
tation of the ALC-normal form and the number of recursive calls for the computation
of existential restrictions. The computation of the ALC-normal form yields for a con-
cept C with |C| = n a concept description with exponentially many (2p(n) for some
polynomial p) disjuncts on the top-level each of which is limited in size by n. The nor-
malized concept description has exponentially many disjuncts Ci with a linear number
of existential restrictions C ′

i. The number of existential restrictions to be computed
in

l

(C′

1
,...,C′

n)∈exr(C1)×···×exr(Cn)

∃r.lcsALE
(
{c-approxALE

(
C ′

i u valr(Ci)
)
| 1 ≤ i ≤ n}

)

is double exponential in n. For every such existential restriction a lcs of a set of
exponential cardinality must be computed. Thus, the computation tree of c-approxALE ,
is of double exponential size in the size of C. To sum up, computing approximations
of ALC- by ALE-concept descriptions is worst case exponential and in 2-ExpTime.
Whether or not there also exists an exponential time approximation algorithm is an
open problem.16

The algorithm for computing ALE approximations of ALC-concept descriptions can
also be used to approximate concept descriptions in less expressive DLs than ALE . To
this end, one removes the sub-concept descriptions in the ALE-approximation that use
concept constructors which are not supported by the smaller target DL. For example,
we can obtain an EL approximation of an ALC-concept description, if we remove the
value restrictions from the concept description from the approximation obtained by
the algorithm c-approxALE .

4.2 Approximation of ALCN - by ALEN -concept descrip-

tions

To be able to obtain meaningful least common subsumers also in the presence of num-
ber restrictions, we extend the method for computing approximations introduced in
the last section. The method described in the following was published in [BKT02a].
However, the proof of its correctness was omitted there and is now supplied in this
Section. We have to start by computing the induced information captured in ALCN -
concept descriptions. This requires a combination of ALC-normal form and the meth-
ods for extracting induced information from ALEN -concept descriptions presented in
Section 3.3.1.

4.2.1 Induced information in ALCN -concept descriptions

In order to compute ALEN -approximations of ALCN -concept descriptions, one needs to
pre-process the ALCN -concept descriptions, i.e., push negation inward, turn concepts

16In [DT02] an attempt has been made to propose a deterministic exponential time algorithm to
compute ALE-approximations of ALC-concept descriptions. However, in [DT03] the same authors
claim that even w.r.t. a certain more compact representation of concept descriptions, no deterministic
exponential time algorithm computing ALE-approximations exists.
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into a kind of disjunctive normal form and make implicit facts explicit, i.e., compute
induced concepts. To treat full negation, we have to transform concept descriptions
into ALCN -negation normal form.

Definition 41 (ALCN -negation normal form). An ALCN -concept description is in
ALCN -negation normal form if the rules for ALC-negation normal form (Definition. 34
on page 64) and the following rules have been applied exhaustively:

¬(≤ n r) → (≥ (n + 1) r) (4.1)

¬(≥ n r) →

{
(≤ 0 r), if n = 0
(≤ (n − 1) r), otherwise

(4.2)

3

This normal form obviously preserves equivalence of ALCN -concept descriptions and
does not increase the concept size. Next, we define the normal form that transforms
ALCN -concept descriptions into a disjunction of top-level t-free concept descriptions
(on each role level). This normal form uses the notions of induced number restrictions
minr and maxr as defined in Section 3.3.1.

Definition 42 (ALCN -normal form). Let C be an ALCN -concept description. C

is in ALCN -normal form iff C = ⊥, C = >, or C is of the form C = C1 t . . . t Cn

with Ci :=
l

A∈prim(Ci)

A u
l

C′∈exr(Ci)

∃r.C ′ u ∀r.valr(Ci) u (≥ minr(Ci) r) u (≤ maxr(Ci) r),

where (1) Ci 6≡ ⊥ for all i and (2) valr(Ci) and every concept in exr(Ci) again are in
ALCN -normal form. 3

It is easy to see that each ALCN -concept description has an equivalent concept de-
scription in ALCN -normal form. As in case of ALC-concept descriptions, the resulting
normal form may be of size exponential in the size of the given concept description,
due to the distribution of conjuncts over disjuncts.

For ALC, the computation of induced information is easy from a conceptual point
of view, since it suffices to make inconsistencies explicit and propagate value restric-
tions to existential restrictions in each disjunct. In case of ALCN number restrictions
can induce new value and existential restrictions. To extract the information implic-
itly captured in ALCN -concept descriptions in ALCN -normal form, one has to apply to
each disjunct the same methods to compute induced information as for ALEN -concept
descriptions as discussed in Section 3.3. Please note that a disjunct of a concept de-
scription in ALCN -normal form is top-level t-free and thus only uses ALEN -concept
constructors on the top most role level. We can therefore use the notions for existen-
tial mappings (α()), the set of merged concept descriptions (exr()

α) and the set of all
mappings (Γr()) directly for disjuncts of a normalized ALCN -concept description as
they were introduced in Section 3.3.1.

Some of the methods for computing induced information of ALEN -concept de-
scriptions use the lcs in ALEN to express the commonalities of the different existential
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mappings in ALEN . Since in ALCN concept disjunction is available, one can easily
express the commonalities of the existential mappings simply by taking the disjunc-
tion of the respective concept descriptions.17 In what follows, let C = C1 t · · · t Cn

be in ALCN -normal form. The induced number restrictions of C are (≥ minr(C) r),
(≤ maxr(C) r) and the set of all merged existential restrictions is exr()

∗ as defined in
Section 3.3.1.

Induced existential restrictions. We use the notions for concept mappings as
introduced in Section 3.3.1. The set of induced existential restrictions ind-exr(Ci) of
a top-level t-free Ci is then defined by means of a given set of ki concept mapping
functions Γir(Ci) = {αi1, . . . , αiki

} and ind-exr(Ci) as follows:

Definition 43 (Induced existential restrictions in ALCN ). Let C = C1t· · ·tCn

be an ALCN -concept description in ALCN -normal form and for each C1 (1 ≤ i ≤ n) let
Γir(Ci) = {αi1, . . . , αiki

} the set of all existential mappings for C1. Then ind-exr(Ci)
is defined as:

1. if exr(Ci) 6= ∅, then

ind-exr(Ci) :=
{

lcsALCN
(
{(Cil u valr(Ci)) | 1 ≤ l ≤ ki}

)

| Cij ∈ exr(Ci)
αij , 1 ≤ j ≤ ki

}
;

≡
{ ⊔

1≤l≤ki
(Cil u valr(Ci)) | Cij ∈ exr(Ci)

αij , 1 ≤ j ≤ ki

}
;

2. if exr(Ci) = ∅ and minr(Ci) ≥ 1, then ind-exr(Ci) := {valr(Ci)};

3. otherwise, ind-exr(Ci) := ∅.
3

The value restrictions have already been propagated onto the respective existential
restrictions in ind-exr(Ci). Note that the concept descriptions obtained in the first
case are not necessarily in ALCN -normal form (even if the disjunction is flattened).

Induced value restrictions. Recall that new value restrictions can only be induced
for two reasons: by maxr(C) = 0 or by the merging of existential restrictions in
combination with at-most restrictions. In the case of ALCN -concept descriptions we
have to check this for each disjunct Ci of C. With all merged existential restrictions
collected in exr(Ci)

∗ =
⋃

αi∈Γir(Ci)
exr(Ci)

αi , the induced value restriction ind-valr(Ci)
of Ci is defined as follows:

Definition 44 (Induced value restrictions in ALCN ). Let C = C1 t · · · t Cn be
an ALCN -concept description in ALCN -normal form, then ind-valr(Ci) is defined as:

17In [BKT02a] was a slightly different approach pursued, by first computing the ALEN -
approximation of each of the concepts obtained from existential mappings and then computing their
lcs in ALEN . Our approach here is easier in conceptual and practical respects, while it yields the
same result. Conceptually, it is easier since it simply uses the language features available in ALCN
and practically, since it avoids unnecessary computation of the ALEN -lcs and -approximation as a
preprocessing step to ALEN -approximation.
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1. if maxr(Ci) = 0, then ind-valr(Ci) := ⊥;

2. if 0 < κr(Ci) < maxr(Ci), then ind-valr(Ci) := valr(Ci);

3. if 0 < κr(Ci) = maxr(Ci), then
ind-valr(Ci) := lcsALCN ({(valr(Ci) u C ′) | C ′ ∈ exr(Ci)

∗})
≡

⊔
C′∈exr(Ci)∗

(valr(Ci) u C ′)

3

Again, the concept description obtained by the lcs does not have to be in ALCN -normal
form. Equipped with a method for extracting implicit information from ALCN -concept
descriptions, we now give a characterization of subsumption.

4.2.2 Structural characterization of subsumption

We provide a structural characterization of subsumption of ALCN -concept descriptions
subsumed by ALEN -concept descriptions. This characterization is later employed to
prove correctness of our approximation algorithm. Assume C is an ALCN -concept
description in ALCN -normal form. It is easy to see that C is subsumed by an ALEN -
concept description D if and only if every disjunct Ci in C is subsumed by D. The
following theorem extends the characterization of subsumption of two ALEN -concept
descriptions by treatment of disjunction to a method for ALCN -concept descriptions.
The characterization of subsumption for ALEN -concept descriptions stated in Theo-
rem 26 (on page 53) was published and proven correct in [KM01b].

Theorem 45. Let C be an ALCN -concept description in ALCN -normal form with n

disjuncts C1, . . . , Cn and let D be an ALEN -concept description in ALEN -normal form.
Then, C v D iff C ≡ ⊥, D ≡ >, or for every i ∈ {1, . . . , n} it holds that

1. prim(D) ⊆ prim(Ci), and

2. maxr(Ci) ≤ maxr(D), and

3. minr(Ci) ≥ minr(D), and

4. for every D′ ∈ exr(D), there exists an existential restriction in C ′ ∈ ind-exr(Ci)
s.t. C ′ u valr(Ci) v D′, and

5. if valr(D) 6≡ >, then ind-valr(Ci) v valr(D).

Proof. (⇒) If C ≡ ⊥ or D ≡ > nothing has to be shown. Assume ⊥ < C v D < >.
By definition of ALCN -normal form, Ci is consistent. We have to show that the
Conditions 1–5 hold for all Ci.

1. Assume prim(D) 6⊆ prim(Ci) for one i. Then there exists an A ∈ prim(D) \
prim(Ci). By definition of the ALCN -normal form, Ci is consistent. We may therefore
consider a canonical interpretation I of Ci. By definition, the individual d ∈ ∆I for
Ci does not occur in AI , since A 6∈ prim(Ci). Thus, d 6∈ DI and therefore C 6v D, in
contradiction to our assumption.
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2. Assume maxr(Ci) > maxr(D) for one i. By the definition of maxr(Ci) there exists
a model I and d ∈ ∆ with d ∈ CI

i s.t. d has maxr(D) + 1 r-successors; otherwise we
would have maxr(Ci) ≤ maxr(D). Obviously, d 6∈ DI . Thus, maxr(Ci) ≤ maxr(D).

3. Assume minr(Ci) < minr(D) for one i. Since Ci is satisfiable, there exists a tree
model I with root d of Ci s.t. d ∈ CI

i and d has exactly minr(Ci) different r-successors
in I. Obviously, d 6∈ DI . Thus, minr(Ci) ≥ minr(D).

4. Let D′ ∈ exr(D). We have to distinguish two cases for ind-exr(Ci).

• Assume exr(Ci) = ∅. If minr(Ci) = 0, then there exists a tree model I = (∆I , ·I)
with root x0 of C with d ∈ CI

i and d has 0 r-successors in I. Consequently,
d 6∈ DI in contradiction to C v D and Ci v D. Hence, minr(Ci) ≥ 1.

Assume valr(Ci) 6v D′, i.e., there exists a tree model I ′ = (∆I′ , ·I) with root y0

s.t. y0 ∈ (valr(Ci) u
d

A∈prim(Ci)
A)I

′

and y0 6∈ D′I′

. Let Ij , 1 ≤ j ≤ minr(Ci),

be pairwise disjoint copies of I ′ with roots yi, which are pairwise disjoint with
I. Define J ′ = (∆J ′ , ·J ) as :

– ∆J := ∆I ∪
⋃

1≤j≤minr(Ci)
∆Ij

;

– PJ := P I ∪
⋃

1≤j≤minr(Ci)
P Ij for all P ∈ NC ;

– rJ :=
⋃

1≤j≤minr(Ci)
rIj ∪

{
(x0, yj) | 1 ≤ j ≤ minr(Ci)

}
.

It is easy to see that J is a model of C with x0 ∈ CI , but since there does
not exist an r-successor y of x0 with y ∈ D′J , it is x0 6∈ DI in contradiction to
C v D. Thus valr(C) v D′.

• Now assume exr(Ci) 6= ∅. We have to show that there exists a concept C ′ ∈{ ⊔
1≤l≤ki

(Cil u valr(Ci)) | Cij ∈ exr(Ci)
αij , 1 ≤ j ≤ ki

}
with C ′ v D′. To show

this, we must prove that for each αij ∈ Γir(Ci) there exists C ′′ ∈ exr(Ci)
αij with

C ′′uvalr(Ci) v D′. Assume that there exists an α′ ∈ Γir(Ci) s.t. C ′′uvalr(Ci) 6v
D′ for all C ′′ ∈ exr(Ci)

α′

. Let Cα′ be the concept description obtained from Ci

by removing all existential restrictions from the top-level of Ci and conjoining all
existential restrictions from {∃r.C ′′ | C ′′ ∈ exr(Ci)

α′

}. We define a tree model I
with root x0 s.t. x0 ∈ CI

α′ ⊆ CI
i and x0 6∈ DI as follows:

– Define I0 := ({x0}, ·
I0) with

∗ P I0 :=

{
{x0}, P ∈ prim(Ci);
∅, P 6∈ prim(Ci)

for all P ∈ NC ;

∗ rI0 := ∅.

– For each C ′′ ∈ exr(Ci)
α′

, let IC′′ := (∆IC′′
, ·IC′′ ) be a tree model with root

yC′′ s.t. yC′′ ∈ (C ′′ u valr(Ci))
IC′′ and yC′′ 6∈ D′IC′′

– If minr(Ci) > |exr(Ci)|, then let I1, . . . , Il with l := minr(Ci) − |exr(Ci)|,
be copies of IC′′ , as defined above, for some C ′′ with root yj , 1 ≤ j ≤ l.

W.l.o.g. let all these interpretations be pairwise disjoint. Now, define I =
(∆I , ·I) by:
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– ∆I := {x0} ∪
⋃

1≤i≤l ∆Ii
∪
⋃

C′′∈exr(Ci)α′ ∆IC′′
;

– P I := P I0 ∪
⋃

1≤i≤l P
Ii ∪

⋃
C′′∈exr(Ci)α′ P IC′′ for all P ∈ NC ;

– rI := {(x0, yC′′) | C ′′ ∈ exr(C)α′

} ∪ {(x0, yi) | 1 ≤ i ≤ l} ∪⋃
1≤i≤l r

Ii ∪
⋃

C′′∈exr(Ci)α′ rIC′′ .

By construction, I is a model of Cα′ and hence of Ci with x0 ∈ CI . But since
there is no r-successor y of x0 with y ∈ D

′I , x0 6∈ DI follows in contradiction to
Ci v D and thus C v D. Thus for each αi ∈ Γir(Ci) there exists C ′′ ∈ exr(Ci)

αi

with C ′ u valr(Ci). Thus there exists a concept C ′ ∈
{ ⊔

1≤l≤ki
(Cil u valr(Ci)) |

Cij ∈ exr(Ci)
αij , 1 ≤ j ≤ ki

}
with C ′ v D′.

5. Assume ind-valr(Ci) 6v valr(D) for one i. Assume valr(D) 6≡ > and maxr(Ci) 6≡ ∞.
Otherwise nothing has to be shown. We have to distinguish two cases:

1. Case: κr(Ci) < maxr(Ci). Since in this case ind-valr(Ci) = valr(Ci), we have to
show valr(Ci) v valr(D). Proof by contraposition: assume valr(Ci) 6v valr(D).
We define a tree model I with root x0 of Ci s.t. x0 ∈ CI

i and x0 6∈ DI . In order
to define I, we have to distinguish two cases:

(a) there exists (≤ m r) on top-level of Ci with m > κr(Ci), and

(b) there exists no such number restriction.

Case (a): The ALCN -concept description C ′
i is obtained from Ci by removing

(≤ m r) from the top-level of Ci. Obviously, is κr(C
′
i) = κr(Ci). Let I ′ be

a tree model of C ′
i with root x0 s.t. x0 ∈ C

′I′

i and x0 has exactly κr(C
′
i) r-

successors in I ′. By assumption there exists a model I ′′ of valr(Ci) with root
y0 s.t. y0 ∈ valr(Ci)

I′′

and y0 6∈ valr(D)I
′′

. Let l = m − κr(Ci) and let Ii, with
1 ≤ i ≤ l, be disjoint copies of I ′′ with roots yi, which are also pairwise disjoint
with I ′. Define I := (∆I , ·I) with

• ∆I := ∆′
I ∪

⋃
1≤i≤l ∆Ii

;

• P I := P I′

∪
⋃

1≤i≤l P
Ii for all P ∈ NC ;

• rI := rI
′

∪
⋃

1≤i≤l r
Ii ∪ {(x0, yi) | 1 ≤ i ≤ l)}.

Obviously, I is a model of Ci with x0 ∈ CI
i , but since x0 has at least the

r-successor y1 with y1 6∈ valr(D)I , we get a contradiction to Ci v D. Thus,
valr(Ci) v valr(D).

Case (b): Let I ′ be a tree model of C ′
i with root x0 s.t. x0 ∈ CI

i and x0

has exactly κr(Ci) r-successors in I ′. By assumption, there exists a model I ′′ of
valr(Ci) with root y0 s.t. y0 ∈ valr(Ci)

I′′

and y0 6∈ valr(D)I
′′

. Define I := (∆I , ·I)
with

• ∆I := ∆I′ ∪ ∆I′′ ;

• P I := P I′

∪ P I′′

for all P ∈ NC ;
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• rI := rI
′

∪ rI
′′

∪ {(x0, y0)}.

Due to κr(Ci) < maxr(Ci), I is a model of Ci with x0 ∈ CI
i , but since x0 has at

least the r-successor y0 with y0 6∈ valr(D)I , we get x0 6∈ DI in contradiction to
Ci v D. Thus valr(Ci) v valr(D).

2. Case: κr(Ci) = maxr(Ci). Thus ind-valr(Ci) =
⊔

C′∈exr(Ci)∗
(valr(Ci) u C ′). As-

sume there exists C ′′ ∈ exr(Ci)
∗ with valr(Ci) u C ′′ 6v valr(D). Then there

exists α′
i ∈ Γir(Ci) s.t. C ′′ ∈ exr(Ci)

α′

i . Let Cα′ be the ALCN -concept de-
scription obtained from Ci by exchanging all existential restrictions by the ones
from exr(Ci)

α′

i , thus Cα′

i
v Ci. Since the existential mappings have to be

consistent, Cα′

i
6≡ ⊥, there exists a tree model I of Cα′

i
with root x0 ∈ CI

α′

i
.

Since maxr(Ci) = κr(Ci), for every Ĉ ∈ exr(Ci)
α′

i , there exists exactly one r-
successor y of x0 in I with y ∈ ĈI , x0 has no other r-successors than y with
y ∈ (valr(Ci) u C ′′)I . By assumption there exists a tree model I ′ = (∆I′ , ·I

′

)
with root y0 s.t. y0 ∈ (valr(C) u C ′′)I

′

. Define a new model J = (∆J , ·J ) with

• ∆J := ∆I ∪ ∆I′ ;

• PJ := P I ∪ P I′

for all P ∈ NC ;

• rJ := rI
′

\ {(x0, y)} ∪ rI
′

∪ {(x0, y0)}.

Then J is a model of Ci with x0 ∈ CJ
i . But since the r-successor y0 of x0 in J

is not an instance of valr(D)J , x0 6∈ DJ follows in contradiction to Ci v D and
C v D. Thus, valr(Ci) u C ′′ v valr(D) for all C ′′ ∈ exr(Ci)

∗.

(⇐): If C ≡ ⊥ or D ≡ >, then C v D. Assume C 6≡ ⊥ and D 6≡ >, and Conditions 1
to 5 are satisfied for C. It suffices to show Ci v D. We show that for any model I of
Ci with x ∈ CI

i also x ∈ DI holds. It is sufficient to show x ∈ D′I for each conjunct
D′ occurring on the top-level of D since D is in ALEN -normal form.

• Let D′ ∈ prim(D): Since prim(D) ⊆ prim(Ci) holds and x ∈ CI
i , we obtain

x ∈ D′I .

• Let D′ = (≤ n r): By Condition 2, it holds that maxr(Ci) ≤ maxr(D) ≤ n.
Since x ∈ CI

i , it follows that x ∈ (≤ maxr(Ci) r)I ⊆ (≤ n r)I .

• Let D′ = (≥ n r): By Condition 3, it holds that minr(Ci) ≥ minr(D) ≥ n. Since
x ∈ CI

i , it follows that x ∈ (≥ minr(Ci) r)I ⊆ (≥ n r)I .

• Let D′ = ∃r.D′′: we have to show there exists an existential restriction in C ′
i ∈

ind-exr(Ci) s.t. (C ′
i u valr(Ci))

I ⊆ D′′I . Since D′ = ∃r.D′′ implies minr(D
′) ≥ 1

and Condition 3 holds, we have minr(Ci) ≥ 1. We distinguish between the two
remaining cases from the definition of ind-exr():

– exr(Ci) = ∅. Thus ind-exr(Ci) = valr(Ci), consequently by assumption
valr(Ci) v D′′. Hence, with minr(Ci) ≥ 1 there exists an r-successor y of
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x in I with y ∈ valr(Ci)
I ⊆ D′′I . Thus, x ∈ (∃r.D′′)I . exr(Ci) 6= ∅. The

induced existential restrictions for Ci are ind-exr(Ci) =
{ ⊔

1≤l≤ki
(Cil u

valr(Ci)) | Cij ∈ exr(Ci)
αij , 1 ≤ j ≤ ki

}
. Since Ci is consistent, we can

consider a canonical tree model I = (∆I , ·I) of Ci. Let x ∈ CI
i . Hence,

x has n = min{maxr(Ci), |exr(Ci)|} r-successors y1, . . . , yn. Each yj ∈ EI
j

s.t. Ej =
d

B∈exr(Ci)
B, where for all Ej holds (1) Ej 6≡ ⊥, (2) Ej 6= ∅ and

(3) {Ej | 1 ≤ j ≤ n} = exr(Ci). In other words, {Ej | 1 ≤ j ≤ n} is
a set of merged concept descriptions. Hence, there exists α′ ∈ Γr(Ci) s.t.
exr(Ci)

α′

= {Ej | 1 ≤ j ≤ n}.

By Condition 4, there exists C ′ ∈ ind-exr(Ci) s.t. C ′ u valr(Ci) v D′′ and
since ind-exr(Ci) =

{⊔
1≤l≤ki

(Cil u valr(Ci)) | Cij ∈ exr(Ci)
αij , 1 ≤ j ≤ ki

}
,

there exists for each αi ∈ {α1, . . . , αk} a C ′′ ∈ exr(Ci)
αi s.t. C ′′ v C ′. For

α′ let Ek be the concept from exr(Ci)
α′

with Ek ≡ C ′′, thus yk ∈ EI
k ≡

C ′′I ⊆ C ′I ⊆ D′′I . We obtain x ∈ ∃r.D′′I .

• Let D′ = ∀r.D′′: If maxr(Ci) = 0, then ind-valr(Ci) = ⊥ and there exists no
r-successor of x in I, and x ∈ (∀r.D′′)I .

Assume κr(Ci) ≤ maxr(Ci). Thus the induced value restriction ind-valr(Ci) =
valr(Ci). Let y be an arbitrary r-successor of x ∈ I, then x ∈ CI implies
y ∈ valr(C)I and because of Condition 5, valr(Ci) v valr(D

′), we obtain y ∈
valr(D

′)I . Thus x ∈ (∀r.D′′)I .

Finally, assume 0 ≤ κr(Ci) = maxr(Ci). Thus the induced value restriction
ind-valr(Ci) =

⊔
C′∈exr(Ci)∗

(valr(Ci) u C ′). Since 0 ≤ κr(Ci) = maxr(Ci) we
know there exist exactly κr(Ci) distinct r-successors of x in I. Since Ci is
consistent, we can consider a canonical tree model I = (∆I , ·I) of Ci. Let
x ∈ CI

i . Hence, x has exactly n = maxr(Ci) = κr(Ci) distinct r-successors
y1, . . . , yκr(Ci). Each yj ∈ EI

j s.t. Ej =
d

B∈exr(Ci)
B, where for all Ej holds

(1) Ej 6≡ ⊥, (2) Ej 6= ∅ and (3) {Ej | 1 ≤ j ≤ n} = exr(Ci). In other words,
{Ej | 1 ≤ j ≤ n} is a set of merged concept descriptions. Hence, there exists
α′ ∈ Γr(Ci) s.t. exr(Ci)

α′

= {Ej | 1 ≤ j ≤ κr(Ci}. Since Ej ∈ exr(Ci)
α′

, we
know Ej ∈

⋃
α∈Γr(Ci)

exr(Ci)
α and thus Ej ∈ exr(Ci)

∗.

Since I is a model, yj ∈ valr(Ci)
I . Thus yj ∈ (valr(Ci) u Ej)

I . Consequently,
yi ∈ (

⊔
Ej∈exr(Ci)∗

valr(Ci) u Ej)
I = ind-valr(Ci)

I for all 1 ≤ j ≤ κr(Ci). Thus

x ∈ (∀r.ind-valr(Ci))
I . By Condition 5 we have x ∈ (∀r.ind-valr(D

′))I .

We have shown that Ci v D′ for arbitrary Ci and each top-level conjunct D′ of D

and, consequently,
⊔

1≤i≤n Ci v D holds. o

By the conditions from Theorem 45 we have shown that the information captured in
prim, maxr, minr, ind-exr and ind-valr of a concept description in ALCN -normal form
is all the information implied by this concept. Based on these formal constructs for
implied information, we can devise an algorithm to compute ALEN -approximations of
ALCN -concept descriptions.



76 CHAPTER 4. CONCEPT APPROXIMATION

Input: ALCN -concept description C. Output: ALEN -approximation of C.

1. If C ≡ ⊥ then c-approxALEN (C) := ⊥ or
if C ≡ > then c-approxALEN (C) := >.

2. Otherwise, transform C into ALCN -normal form C1 t · · · t Cn and return

c-approxALEN (C) :=
uA∈

T

i prim(Ci)A

u (≥ min{minr(Ci) | 1 ≤ i ≤ n} r)

u (≤ max{maxr(Ci) | 1 ≤ i ≤ n} r)

u
d

(C′

1
,...,C′

n)∈
ind-exr(C1)×···×ind-exr(Cn)

∃r.lcsALEN ({c-approxALEN (C ′
i u valr(Ci)) | 1 ≤ i ≤ n})

u ∀r.lcsALEN ({c-approxALEN (ind-valr(Ci)) | 1 ≤ i ≤ n})

Figure 4.2: The algorithm c-approxALEN .

4.2.3 Computing ALEN -approximations of ALCN -concept descriptions

The algorithm for computing ALEN -approximations from ALCN -concept descriptions
is an extension of the algorithm c-approxALE . For this kind of extension we have to use
the ALCN -normal form, take into account the implied information computed according
the notions defined in Section 4.2.1 and then also extract the number restrictions
common to all disjuncts in the concept description that is to be approximated. The
resulting algorithm c-approxALEN is depicted in Figure 4.2.

The following theorem states that c-approxALEN finds in fact the approximation
according to Definition 30, where L1 is ALCN and L2 is ALEN .

Theorem 46. Let C be an ALCN -concept description in ALCN -normal form. Then
c-approxALEN (C) is the ALEN -approximation of C, i.e.,

1. C v c-approxALEN (C); and

2. c-approxALEN (C) v E for every ALEN -concept description E with C v E.

In particular, ALEN -approximations of ALCN -concept descriptions always exist and
can be computed effectively.

Next we have to show the correctness of the algorithm c-approxALEN . More pre-
cisely, we have to show that the concept description returned by c-approxALEN , if ap-
plied to a concept C, subsumes C and is the most specific ALEN -concept description
with this property. One can prove C v c-approxALEN (C) by structural induction on C

using Theorem 45, where c-approxALEN (C) takes the place of D. In order to prove min-
imality of c-approxALEN (C) (w.r.t. subsumption), one assumes another ALEN -concept
E subsuming C. Again, using Theorem 45, one can show that c-approxALEN (C) v E.
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Proof. (Theorem 46) 1. We first show that C v c-approxALEN (C) by proof by
induction over the structure of C. If C ∈ {⊥,>} then c-approxALEN (C) = C, triv-
ially implying subsumption. Otherwise, the induction hypothesis guarantees that the
claim holds for the subterms of C occurring in existential and value restrictions. It is
sufficient to prove that the conditions presented in Theorem 45 hold.

• By definition of c-approxALEN it holds that
prim(c-approxALEN (C)) =

⋂n
i=1 prim(Ci) ⊆ prim(C).

• By definition of c-approxALEN it holds that
maxr(c-approxALEN (C)) = max{maxr(Ci) | 1 ≤ i ≤ n}, where obviously
max{maxr(Ci) | 1 ≤ i ≤ n} ≥ maxr(Ci) for all 1 ≤ i ≤ n.

• By definition of c-approxALEN it holds that
minr(c-approxALEN (C)) = min{minr(Ci) | 1 ≤ i ≤ n}, where obviously
min{minr(Ci) | 1 ≤ i ≤ n} ≤ minr(Ci) for all 1 ≤ i ≤ n.

• For every existential restriction ∃r.lcsALEN
(
{c-approxALEN (C ′

iuvalr(Ci)) | 1 ≤ i ≤
n}
)

in c-approxALEN (C), C ′
i ∈ ind-exr(Ci) for every i. By induction hypothesis,

C ′
i u valr(Ci) v c-approxALEN (C ′

i u valr(Ci)). Thus, by definition of the lcs,
C ′

i u valr(Ci) v lcsALEN
(
{c-approxALEN (C ′

i u valr(Ci)) | 1 ≤ i ≤ n}
)
.

• Show: valr(C) v valr(c-approxALEN (C)). By induction hypothesis we already
know that valr(Ci) v c-approxALEN (valr(Ci)) for every i. Consequently, for the
lcs we find valr(Ci) v lcsALEN

(
{c-approxALEN (valr(Ci)) | 1 ≤ i ≤ n}

)
.

2. Without loss of generality, let E be in ALEN -normal form. We give a proof
by induction over the structure of C. If C ∈ {⊥,>}, then c-approxALEN (C) = C

which is the least concept subsuming C. Otherwise, we may assume that the claim
holds for the subterms of C occurring in existential and value restrictions. If E = >,
then trivially c-approxALEN (C) v E. Otherwise, the subsumption C v E induces the
following facts:

• prim(E) ⊆ prim(Ci) for every i. Since prim(c-approxALEN (C)) is the intersection
of every prim(Ci), this implies prim(E) ⊆ prim(c-approxALEN (C)).

• maxr(Ci) ≤ maxr(E) for every i. Since maxr(c-approxALEN (C)) = max{maxr(Ci) |
1 ≤ i ≤ n} this implies (≥ maxr(c-approxALEN (C)) r) v (≥ maxr(E) r).

• minr(E) ≤ minr(Ci) for every i. Since minr(c-approxALEN (C)) = min{minr(Ci) |
1 ≤ i ≤ n} this implies (≤ minr(c-approxALEN (C)) r) v (≤ minr(E) r).

• For all E′ ∈ exr(E) and for all i there is one C ′ ∈ exr(Ci) with C ′uvalr(Ci) v E′.
The induction hypothesis now guarantees that C ′uvalr(Ci) v c-approxALEN (C ′u
valr(Ci)) v E′ for every i. Hence, for the lcs it holds that

lcsALEN
(
{c-approxALEN (C ′ u valr(Ci)) | 1 ≤ i ≤ n}

)
v E′.
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• For all i we have valr(Ci) v valr(E). By induction hypothesis, we have valr(Ci) v
c-approxALEN (valr(Ci)) v valr(E). Thus, we find lcsALEN

(
{c-approxALEN (valr(Ci)) |

1 ≤ i ≤ n}
)
v valr(E).

These facts imply c-approxALEN (C) v E. o

By omitting some of the sub-concepts computed by c-approxALEN , we obtain ap-
proximations in sublanguages of ALEN . For example, if we discard the number re-
strictions computed by c-approxALEN , we obtain an ALE-approximation of the given
ALCN -concept description.

Concerning the computational complexity of c-approxALEN it should be noted that
the complexity of computing the lcs of ALEN -concept descriptions yields a lower bound
since the ALEN -approximation of C1tC2 for two ALEN -concept descriptions C1 and C2

is exactly the lcs of C1 and C2 in ALEN . The computation of the lcs of ALEN -concept
descriptions takes double-exponential time in the worst-case [KM01b]. To compute
the resulting existential restrictions, c-approxALEN (C) furthermore must consider a
possibly exponential number of tuples (C ′

1, . . . , C
′
n) and a possibly exponential number

of existential mergings. Therefore, c-approxALEN is at least a double-exponential time
algorithm. However, it is not known whether the bound for the lcs is tight, and
whether tight complexity bounds for the lcs would carry over to the approximation
problem.

4.3 Difference operator for ALC-ALE

We have seen how to compute the ALE-approximation of a given ALC-concept descrip-
tion. For such a pair C, D of approximated and approximating concepts, a natural
question regards the loss of information, i.e., what aspects of C are not captured by
D. An answer to such questions requires a notion of the ‘difference’ between concept
descriptions. For instance, a comparison between the example concept Cex from Ex-
ample 33 on page 64 and its approximation ∃r.(Au¬B)u ∃r.(B u¬A) should reveal
that the value restriction ∀r.(¬A t ¬B) is not captured by its approximation.

A first approach for a difference-operator has been proposed by Teege in [Tee94].
Here, the difference C −D of two given L-concept descriptions with C v D has been
defined as

max{E ∈ L | E u D ≡ C}

where the maximum is defined w.r.t. subsumption. Since ALC provides full nega-
tion, the most general concept description E with E u D ≡ C is always C t ¬D.
Consequently, the difference operator proposed by Teege would return

(∃r.A u ∃r.B u ∀r.(¬A t ¬B)) t ¬(∃r.(A u ¬B) u ∃r.(B u ¬A))

as the difference between Cex and its approximation, which does not help a user to
ascertain the information lost by the approximation. The example illustrates that it
might be promising to look for a syntactic minimum instead of a semantic maximum
in order to find a compact representation of the difference of two concepts.
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In [Küs01], a so-called sub-description ordering has been proposed to deal with
syntactical redundancies. The first step to extend to this approach to our case is to
introduce such an ordering on ALC-concept descriptions. The idea is to obtain a sub-
description of some ALC-concept description C by means of two kinds of modifications.
Firstly, by making inconsistencies explicit; and secondly, by removing disjuncts and
conjuncts, and by replacing some existential or value restrictions by their respective
sub-descriptions. Formally, this leads to the following definition.

Definition 47 (Sub-description ordering (¹d)). Let C, D be ALC-concept de-
scriptions in ALC-normal form. Let C = C1 t · · · tCn. Then, D ¹d C iff D ∈ {⊥,>}
or D is obtained from C by performing some of the following steps.

1. Remove some disjuncts Ci for 1 ≤ i ≤ n,

2. for every remaining Ci:

(a) remove some conjuncts A ∈ prim(Ci),

(b) remove some conjuncts ∃r.C ′
i with C ′

i ∈ exr(Ci),

(c) remove the conjunct ∀r.valr(Ci),

(d) for every remaining C ′
i ∈ exr(Ci) ∪ {valr(Ci)}:

replace C ′
i by C ′′

i with C ′′
i ¹d C ′

i.

3

As an example, consider the concept descriptions C := ∃r.A u ∀r.¬B and D :=
(∃r.(A t B) u ∀r.¬B) t (∃r.¬A u ∀r.A). By removing the last disjunct from D and
removing the last disjunct in the remaining existential restriction we find that C ¹d D.
Note that C ≡ D. Based on the sub-description ordering, we can provide the definition
of the syntactic difference operator.

Definition 48 (Difference operator). Let C be an ALC-concept description in
ALC-normal form and D be an ALE-concept description in ALE-normal form. Then,
the ALC-concept description E is called the difference of C and D, (C −D for short),
iff

1. E u D ≡ C u D, and

2. for every ALE-concept description E ′ with E′ u D ≡ C u D it holds that either
E ¹d E′ or E and E′ are incomparable with respect to ¹d.

3

Intuitively, the idea is to remove all sub-descriptions from C which are either redun-
dant in C or already present in D. It should be noted that in case of C v D, and thus,
C u D ≡ C, the only difference to Teege’s difference operator is that the minimum
w.r.t. ¹d is used instead of the maximum w.r.t. v. In general, the difference C − D

is not maximal with respect to subsumption, as a simple example illustrates. For
C = A t B and D = B, we obtain C − D = A, although C u (A t B) ≡ C u D, i.e.,
A t B is a more general solution w.r.t. subsumption.
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Input: ALC-concept description C = C1 t · · · t Cn in ALC-normal form,
ALE-concept description D

Output: c-diff(C, D)

1. If C u D ≡ ⊥, then c-diff(C, D) := ⊥;

2. If n > 1, then let c-diff(C, D) :=
⊔n

i=1 c-diff(Ci, D) and iteratively remove
c-diff(Cj , D) from the disjunction in case c-diff(Cj , D) v

⊔
i6=j c-diff(Ci, D);

3. If n = 1, then c-diff(C, D) :=

l

A∈prim(C)\prim(D)

A u ∀r.c-diff(valr(C), valr(D)) u
l

E∈E ′

r

∃r.E

where

• value restriction is omitted in case c-diff(valr(C), valr(D)) ≡ >

• E ′
r is computed as follows:

Let Er = {C ′
1, . . . , C

′
n} := exr(C).

For i = 1 to n do begin
If (i) there exists C ′ ∈ Er \ {C

′
i} with valr(D) u valr(C) u C ′ v C ′

i, or
(ii) there exists D′ ∈ exr(D) with valr(D) u valr(C) u D′ v C ′

i

then Er := Er \ {C
′
i}

end

E ′
r := {E∗ | E ∈ Er}, where

E∗ :=





c-diff(E, valr(C) u valr(D)), if valr(C) is an
ALE-concept description,

c-diff(E, valr(D)) otherwise.

Figure 4.3: The algorithm c-diff(C, D).

Finally, it should be noted that a priori the difference between C and D is not
uniquely determined. By abuse of language and notation, we will still refer to the
difference C −D. Coming back to the example from the beginning of this subsection,
the difference (according to Definition 48) between Cex and its approximation is in
fact the desired value restriction ∀r.(¬A t ¬B).

Having defined our difference operator, we need to devise an algorithm to actually
compute the difference C−D. In [Küs01], an algorithm has been proposed to compute
the difference C −D of ALE-concept descriptions C and D. Extending this algorithm
to the case of ALC-concept descriptions C yields our definition of the algorithm c-diff

as depicted in Figure 4.3.

If C is a disjunction of sub-concepts Ci then the difference between C and D is
computed by first computing the differences between the disjuncts and D and then
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eliminating the semantically redundant resulting disjuncts. If n = 1, C is a con-
junction of ALC-concept descriptions (with possibly just one conjunct). In this case,
redundant concept names and existential restrictions on the top-level conjunction of C

are removed. Furthermore, redundancies in existential restrictions and value restric-
tions are removed recursively. The set E ′

r can be computed by iteratively removing
existential restrictions of C that do not satisfy Conditions 3(i) or 3(ii). Given an
oracle for subsumption, this can be carried out in polynomial time.

The following proposition proves that c-diff(C, D) respects the first condition of
the difference operator (Definition 48), i.e., it does not remove too much from the
original concept description C.

Proposition 49. Let C be an ALC-concept description in ALC-normal form and D

an ALE-concept description in ALE-normal form. Then, c-diff(C, D) u D ≡ C u D.

Proof. We give a proof by induction over the structure of C.

1. C ∈ prim(C)
As prim(c-diff(C, D)) = prim(C) \ prim(D), it follows that c-diff(C, D) u D

is equivalent to D u
d

A∈prim(c-diff(C,D)) A. We can safely add to this another
conjunct more general than D yielding

D u
l

A∈prim(c-diff(C,D))

A u
l

A∈prim(C)∩prim(D)

A.

The expression thus obtained is equivalent to C u D.

2. C = C1 t C2

Without loss of generality, assume exactly two disjuncts on the top-level of C. By
definition, even after removing redundant disjuncts, c-diff((C1tC2), D) is equiv-
alent to c-diff(C1, D)t c-diff(C2, D). Hence, the conjunction c-diff((C1tC2), D)
with D can be simplified to c-diff(C1, D) u D t c-diff(C2, D) u D. According to
the induction hypothesis, this yields (C1 u D) t (C2 u D), which simplifies to
(C1 t C2) u D.

3. No disjunction on the top-level of C

Show c-diff(C, D)uD ≡ CuD. According to the characterization of subsumption
(Theorem 36), three conditions must hold for equivalence:

• The set prim(c-diff(C, D) u D) equals prim(c-diff(C, D)) ∪ prim(D) which
by definition is (prim(C)\prim(D))∪prim(D). This is equal to prim(C)∪
prim(D), the set of primitive concepts in C u D.

• By induction hypothesis, c-diff(valr(C), valr(D)) u valr(D) is equivalent to
valr(C)uvalr(D). By definition valr(CuD) is equivalent to valr(C)uvalr(D)
which concludes this case.

• Show (v). Let F ′ ∈ exr(C uD). We have to find an E ′ ∈ exr(c-diff(C, D)u
D) with E′ u valr(c-diff(C, D)uD) v F ′. From the previous case we know
that valr(c-diff(C, D)uD) is equivalent to valr(C uD). Since exr(C uD) is
equal to the union exr(c-diff(C, D))∪ exr(D) we may distinguish two cases.
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If F ′ ∈ exr(D) then we can select E ′ := F ′, because it also occurs in the set
exr(c-diff(C, D)uD) which is the conjunction of the concept descriptions in
exr(c-diff(C, D)) ∪ exr(D). We thus obviously find E ′ u valr(c-diff(C, D) u
D) v F ′.

If F ′ ∈ exr(C)\exr(D), then Conditions 3(i) and 3(ii) in the definition of the
algorithm c-diff(C, D) guarantee that there exists an existential restriction
Ẽ′ ∈ exr(c-diff(C, D)) with the following properties. If valr(C) is an ALE-
concept description then Ẽ′ is of the form c-diff(E ′, (valr(D) u valr(C)))
with E′ u valr(D) u valr(C) v F ′. According to the induction hypothe-
sis, c-diff(E′, (valr(D) u valr(C))) u valr(D) u valr(C) is equivalent to E ′ u
valr(D) u valr(C). Consequently, we find that Ẽ′ u valr(C) u valr(D) v F ′.
It is easy to see that valr(C) u valr(D) is equivalent to valr(C u D) which
again is equivalent to valr(c-diff(C, D)uD) as we know from above. Hence,
we have found an Ẽ′ with Ẽ′ u valr(c-diff(C, D) u D) v F ′. If D is no
ALE-concept description then Ẽ′ is of the form E ′ u valr(D). This case is
analogous to the previous one.

Show (w). In analogy to the case (v), consider some E ′ ∈ exr(c-diff(C, D)u
D). We have to find an F ′ ∈ exr(C u D) such that F ′ u valr(C u D) v E′.
Again, we have two cases to distinguish.

If E′ ∈ exr(D), then we can again select F ′ := E′ which also occurs in
exr(C u D).

If E′ ∈ exr(c-diff(C, D)) \ exr(D), then Condition 3(ii) guarantees that an
F ′ ∈ exr(D) ⊆ exr(C uD) exists such that F ′ u valr(C)u valr(D) v E′. As
shown above, valr(C)uvalr(D) is equivalent to valr(CuD) which concludes
the argument.

o

It remains to examine the computational complexity of the algorithm c-diff. In
the following corollary it is shown that c-diff is a polynomial time algorithm.

Corollary 50. Given an oracle for subsumption, the algorithm c-diff is a polynomial
time algorithm, i.e., for a given ALC-concept description C in ALC-normal form
and an ALE-concept description D, the computation of c-diff(C, D) takes at most
polynomial time in the size of C and D.

Proof. It is not difficult to see that the size of the output c-diff(C, D) never exceeds
the size of C: if n > 1 then the difference is simply distributed to the disjuncts, and
if n = 1 then, (1) some primitive concepts are removed, thus reducing the size of the
resulting concept description, (2) the value restriction is handled recursively and (3)
some existential restrictions are removed while the remaining ones are also handled
recursively. Consequently, during the recursive computation of c-diff(C, D) the algo-
rithm is never applied to an argument exceeding the size of the input. Neither does
the algorithm introduce new existential or value restrictions during the computation
of c-diff(C, D).

Thus, it is sufficient for our claim to show that (1) the computation of the subset
E ′

r takes only polynomial time in the size of the input and (2) there are at most poly-
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nomially many (in the size of C and D) calls to c-diff during the recursive computation
of c-diff(C, D).

1. As the condition in Step 3 states, an appropriate subset E ′
r can be found by

iteratively removing elements from the original set exr(C) and verifying Condi-
tions 3(i) and 3(ii) in every iteration. Thus, the number of subsets to inspect is
bounded by the size of C. For every subset, a polynomial number of subsump-
tion test must be made. Given an oracle for subsumption, this task requires
only polynomial time.

2. Recursive calls to the algorithm c-diff are necessary for the computation of
c-diff(valr(C), valr(D)) as well as for the computation of every E∗

j . Nevertheless,
there is only one value restriction valr(C) in C the size of which is bounded by
the size of C. As no new value restrictions are introduced, we have at most
polynomially many expressions of the form c-diff(valr(C), valr(D)) to evaluate
during the execution of c-diff(C, D).

As c-diff does not introduce new existential restrictions and as the size of its
output never exceeds the size of its input, it is easy to see that the number of
existential restrictions E ′

j and their size is bounded by the input. Consequently,
the number of calls to c-diff is bounded by the syntax tree of the input concept
C which again is bounded by the size of C, since C was assumed in ALC-normal
form.

o

It should be recalled though that transforming an arbitrary ALC-concept descrip-
tion into ALC-normal form can produce an exponentially larger concept description.
To summarize the existing results, the following properties can be shown for every
computation of the algorithm c-diff(C, D).

Theorem 51. Let C be an ALC-concept description in ALC-normal form and D be
an ALE-concept description. Then, c-diff(C, D) satisfies all of the following properties:

1. c-diff(C, D) u D ≡ C u D,

2. If C is an ALE-concept description, then C−D is uniquely determined modulo as-
sociativity and commutativity of concept conjunction, and C−D and c-diff(C, D)
coincide modulo associativity and commutativity, and

3. Given an oracle for subsumption, the computation of c-diff(C, D) takes polyno-
mial time in the size of C and D.

The first property where only ALE is considered was already shown in [Küs01]. The
others have been shown in the above proposition and corollary.

The algorithm c-diff is only a heuristic for the difference operator, since it does
not fulfill the second property of Definition 48. The main reason is the recursive call
of c-diff to obtain E∗ := c-diff(E, valr(C) u valr(D)). In general, C and thus also
valr(C) is an ALC-concept description to which the difference operator ALC-ALE is
not applicable. This can be remedied by an improved heuristic for c-diff to a certain
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extent by using approximation for the recursive call on ALC-concept descriptions in
valr(C). The last line of the c-diff algorithm in Figure 4.3 would thus be changed to:
c-diff(E, c-approxALE(valr(C) u valr(D)) for the improved heuristic. Due to the use of
approximation, c-diff would no longer be a polynomial time algorithm (with an oracle
for subsumption).

Besides for the application for assessing the information loss between a concept
description and its approximation, the difference operator can also be utilized to
obtain a compact representation of a concept description. If applying c-diff(C,>)
to an ALC-concept description C, the computed concept description is equivalent to
C with redundancies removed.

In this chapter we have proposed an approach to obtain a meaningful lcs by using
concept approximation as a pre-processing step. This pre-processing step translates
the input concept descriptions from a DL with disjunction to a DL that does not
offer disjunction and where the lcs exists. Methods to realize this approach have been
devised and proven correct for two such pairs of DLs. In particular, it has been shown
that the ALE-approximation of ALC-concept descriptions always exists and can be
computed effectively. An algorithm for computing approximation has been devised
that runs in 2-ExpTime. This method has been extended by number restrictions.
For ALEN -approximations of ALCN -concept descriptions it has been shown that the
approximation always exists and a computation algorithm has been devised that is
worst case double-exponential. Equipped with these methods, a common subsumer
can now be obtained that captures the commonalities of concept descriptions that use
disjunction in an explicit way.

The methods proposed here can be applied to obtain meaningful common sub-
sumers in even less expressive DLs. For instance, the commonalities of ALU-concept
descriptions18 could be computed by:

1. compute the ALE-approximation of the concept descriptions

2. compute their lcs and,

3. replace qualified existential restrictions by the unqualified one.

Similar to the case of computing least common subsumers the method proposed
in this section to compute concept approximations can be employed to obtain ‘ap-
proximative’ results of other reasoning methods for which computation methods so
far only exists for the target DLs of approximation. Furthermore, with the compu-
tation methods for approximation simplified views of DL knowledge bases that are
written in an expressive DL can be computed and then displayed to the user for easier
comprehension.

Computing the approximation of a concept description results in information loss
in general. The loss of information can be assessed by the syntactic difference op-
erator. We have investigated a method to compute the syntactic difference between

18ALU-concept descriptions can be build from conjunction, disjunction, unqualified existential re-
striction (∃r.>) and value restrictions.
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ALC-concept descriptions and ALE-concept descriptions. However, this method does
not find an optimal solution, but computes only a heuristic. Thus it reveals only some
of the information lost; information on value restriction that was lost during approx-
imation might remain undiscovered by applying c-diff. Nevertheless, by this method
we can compute the difference of a concept description and its approximation to see
what information was lost during approximation. Regarding the lcs, one can employ
the difference operator to find out which parts of the input concepts are not captured
in the commonalities expressed by the lcs (of the approximated concept).

This sums up our theoretical results on the approximation-based approach. Next,
we consider the computation of common subsumers w.r.t. a background ontology to
obtain non-trivial common subsumers in the presence of disjunction.
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Chapter 5

Common subsumers w.r.t. a

background terminology

In this chapter we discuss the second approach to generalize concept descriptions in a
meaningful way for expressive DLs that offer disjunction. This approach is employed
in applications where a TBox in an expressive DL is customized, i.e., extended by
another TBox written in a less expressive DL. For such an application, the lcs operator
is applied to concept descriptions using the concept operators from the ‘smaller’ DL
referring to concept names defined in the TBox written in the expressive DL.

The underlying framework and first results on the lcs w.r.t. background termi-
nologies have been published by Baader, Sertkaya and Turhan in [BST04b] and these
results were later extended in [BST04a; BST07]. Next we introduce the framework
for customizing a background ontology.

5.1 Framework for customizing background ontologies

In this framework we assume that there is a fixed background terminology defined in
an expressive DL, e.g., a large ontology written by experts, which the user has bought
from some ontology provider. The user then wants to extend this terminology in order
to adapt it to the needs of a particular application domain. However, since the user is
not a DL expert, she employs a less expressive ‘user DL’ and needs support through
the bottom-up approach when building this user-specific extension of the background
terminology. There are several reasons to employ a restricted DL in this setting: such
a restricted DL may be easier to comprehend and to use for a non-expert; it may allow
for a more intuitive graphical or frame-like user interface; and to use the bottom-up
approach, the lcs must exist and make sense, and it must be possible to compute
it with reasonable effort. Thus we assume that the user DL does not offer concept
disjunction. Recall from Section 1.2.2 that the lcs obtained for the selected concepts
is then (edited by the user and) added to the user terminology, see Figure 1.2 on
page 13.

To make this more precise, consider a background terminology (a TBox) T de-
fined in an expressive DL L2. When defining new concepts, the user employs only

87
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a sublanguage L1 of L2 for which computing the lcs makes sense and does not sim-
ply build a disjunction of the input concept descriptions. However, in addition to
primitive concepts and roles, the concept descriptions written in the DL L1 may also
contain names of concepts defined in T . Let us call such concept descriptions L1(T )-
concept descriptions. Depending on the DLs L1 and L2, least common subsumers of
L1(T )-concept descriptions w.r.t. an L2-TBox T may or may not exist.

We consider the cases where the user DL L1 is either the DL EL or where the user
DL L1 is the DL ALE and the DL for the background terminology L2 is always the
DL ALC. In this chapter we show the following results:

• If T is an acyclic ALC-TBox, then the lcs w.r.t. T of ALE(T )-concept descrip-
tions always exists.

• If T is a general ALC-TBox allowing for general concept inclusion axioms
(GCIs), then the lcs w.r.t. T of ALE(T )-concept descriptions need not exist.

• We devise constructive computation algorithms to obtain good common sub-
sumers of ALE(T )-concept descriptions.

5.2 Existence of the lcs w.r.t. acyclic TBoxes

We first have to define the generalization of the usual lcs to the lcs w.r.t. (a)cyclic or
general background TBoxes. Let L1,L2 be DLs such that L1 is a sub-DL of L2, i.e., L1

allows for fewer concept constructors. For a given L2-TBox T , we call L1(T )-concept
descriptions those L1-concept descriptions that may contain concepts defined in T .

Definition 52 (lcs w.r.t. a background TBox T ). Given an L2-TBox T and the
L1(T )-concept descriptions C1, . . . , Cn, a L1(T )-concept description D is the lcs of
C1, . . . , Cn w.r.t. T , iff

1. Ci vT D for all 1 ≤ i ≤ n, and

2. if E is an L1(T )-concept description satisfying Ci vT E for i = 1, . . . , n, then
D vT E.

3

The obtained concept description only uses concept constructors from L1, but it uses
concept names defined in the L2-TBox. The existence of the lcs w.r.t. background
terminologies has been first shown for the user DLs EL [BST04b] and then for ALE
[BST04a; BST07], both, with respect to acyclic ALC background terminologies.

At first sight, one might assume that the existence of the lcs can be shown us-
ing results on approximation of DLs as introduced in Chapter 4. In fact, given an
acyclic ALC-TBox T and EL(T )-concept descriptions C1, . . . , Cn, one can first unfold
C1, . . . , Cn into ALC-concept descriptions C ′

1, . . . , C
′
n, then build the ALC-concept de-

scription C := C ′
1 t . . .tC ′

n, and finally approximate C from above by an EL-concept
description E. However, E then does not contain concept names defined in T , and
thus it is not necessarily the least EL(T )-concept description subsuming C1, . . . , Cn.
Let us illustrate this by a small example.
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Example 53. Assume that L1 is the DL EL and L2 is ALC. Consider the ALC-TBox

T := {A ≡ P t Q},

and assume that we want to compute the lcs of the EL(T )-concept descriptions P and
Q. Obviously, A is the lcs of P and Q w.r.t. T . If we were not allowed to use the
name A defined in T , then the only common subsumer of P and Q in EL would be the
top-concept >.

One might now assume that this effect can be overcome by computing a minimal
rewriting of the concept descriptions w.r.t. the terminology [BKM00]. Recall from
Section 2.4.3 that, roughly speaking, a minimal rewriting is obtained ‘re-introducing’
names from the terminology for equivalent sub-concept descriptions. However, in
Example 53, the concept description E obtained using the approach based on approx-
imation sketched above is >, and this concept cannot be rewritten using the TBox
T := {A ≡ P t Q}.

Thus, to obtain any kind of common subsumer is rather simple from a conceptual
point of view for EL(T )- or ALE(T )-concept descriptions, but the existence of the least
common subsumer is not obvious for each of the two user DLs. In the following we
give a proof for the existence for both of them.

5.2.1 Existence of the EL(T )-lcs

We assume that L1 is EL and L2 is ALC. In addition, we assume that the sets of
concept and role names available for building concept descriptions are finite. We
consider the case of acyclic TBoxes.

Theorem 54. Let T be an acyclic ALC-TBox. The lcsEL(T ) of EL(T )-concept de-
scriptions w.r.t. T always exists and can effectively be computed.

This theorem is an easy consequence of the following facts:

1. If D is an EL(T )-concept description of role depth k, then there are (not neces-
sarily distinct) roles r1, . . . , rk such that D v ∃r1.∃r2.. . .∃rk.>.

2. Let C be an EL(T )-concept description, and assume that the ALC-concept de-
scription C ′ obtained by unfolding C w.r.t. T is satisfiable and has the role
depth ` < k. Then C ′ 6v ∃r1.∃r2.. . .∃rk.>, and thus C 6vT ∃r1.∃r2.. . .∃rk.>. In
fact, the standard tableau-based algorithm for ALC applied to C ′ constructs a
tree-shaped interpretation of depth at most ` whose root individual belongs to
C ′, but not to ∃r1.∃r2.. . .∃rk.>.

3. For a given bound k on the role depth, there is only a finite number of inequiv-
alent EL-concept descriptions of role depth at most k. This is a consequence of
the fact that we have assumed that the sets of concept and role names are finite,
and it can be shown by induction on k.
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To show that these facts imply Theorem 54, consider the EL(T )-concept descriptions
C1, . . . , Cn. If all of them are unsatisfiable w.r.t. T , then one of them (e.g., C1) can
be taken as their lcs w.r.t. T . Otherwise, assume that Ci is satisfiable w.r.t. T . Let
C ′

i be the ALC-concept description obtained by unfolding Ci w.r.t. T , and assume
that its role depth is `. Now, take an arbitrary EL(T )-concept description E that is
a common subsumer of C1, . . . , Cn w.r.t. T . Then, the role depth of E is at most `.
Otherwise, Ci vT E would be in contradiction to the facts 1. and 2. above. Thus, fact
3. implies that, up to equivalence, there are only finitely many common subsumers of
C1, . . . , Cn in EL(T ). The least common subsumer is simply the conjunction of these
finitely many EL(T )-concept descriptions.

It is not hard to see that the above proof is effective in the sense that one can effec-
tively compute (representatives of the equivalence classes of) all common subsumers
of C1, . . . , Cn, and then build their conjunction. However, this brute-force algorithm
is probably not useful in practice and a constructive method to obtain the lcs remains
to be devised.

5.2.2 Existence of the ALE(T )-lcs

Now we extend the user DL by the concept constructors atomic negation and value
restrictions and prove the following theorem.

Theorem 55. Let T be an acyclic ALC-TBox. The lcs of ALE(T )-concept descrip-
tions w.r.t. T always exists and can effectively be computed.

Since the n-ary lcs can be obtained by iterating the application of the binary lcs,
it is sufficient to show the theorem for the case where we want to build the lcs of
two ALE(T )-concept descriptions. To show the theorem in this case, we first need to
show two propositions. Recall that we assume that the sets of concept and role names
available for building concept descriptions are finite.

Proposition 56. For a given bound k on the role depth, there is only a finite number
of inequivalent ALE-concept descriptions of role depth at most k.

This is a consequence of the fact that we have assumed that the sets of concept and
role names are finite, and can easily be shown by induction on k.19

Given this lemma, a first attempt to show Theorem 55 could be to proceed as in the
case of EL(T ): Let C1, C2 be ALE(T )-concept descriptions, and assume that the role
depths of the ALC-concept description C ′

1, C
′
2 obtained by unfolding the descriptions

Ci w.r.t. T are bounded by k. If we could show that this implies that the role depth
of any common subsumer of C1, C2 w.r.t. T is also bounded by k, then we could
again obtain the lcs by simply building the (up to equivalence) finite conjunction of
all common subsumers of C1, C2 in ALE(T ).

However, due to the fact that in ALC and ALE we can define unsatisfiable concepts,
this simple, role depth-based EL(T ) approach does not work. In fact, ⊥ has role depth

19In fact, this is a well-known result, which holds even for full first-order predicate logic formulae
of bounded quantifier depth over a finite vocabulary.
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0, but it is subsumed by any concept description. Preventing this problem by testing
for unsatisfiable input concept descriptions is not enough due to the presence of value
restrictions. For example, ∀r.⊥ is subsumed by ∀r.F for arbitrary ALE(T )-concept
descriptions F , and thus the role depth of common subsumers cannot be bounded.
However, we can show that common subsumers having a large role depth are too
general anyway.

Before giving a more formal statement of this result in Proposition 61, we show
some basic model-theoretic facts about ALE and ALC, which will be employed in the
proof of this proposition. An interpretation I is tree-shaped if the role relationships
in I form a tree, i.e., if the directed graph GI = (VI , EI) with VI = ∆I and

EI = {(d, d′) | (d, d′) ∈ rI for some role r ∈ NR}

is a tree. An interpretation I is a tree-shaped counterexample to the subsumption
question C v?

T D iff I is a tree-shaped model of T with root d0 ∈ CI \ DI .

Lemma 57. Let T be an acyclic ALC-TBox and C, D be ALC-concept descriptions.
If C 6vT D, then the subsumption question C v?

T D has a tree-shaped counterexample.

Proof. Assume that C 6vT D, and let C ′, D′ be the ALC-concept descriptions ob-
tained by unfolding C, D w.r.t. T . Then C ′ u¬D′ is satisfiable. It is well-known that
the tableau-based satisfiability procedure for ALC [SS91] then produces a tree-shaped
interpretation I whose root d0 satisfies d0 ∈ C ′I \ D′I . Since C ′, D′ do not contain
concept names defined in T , and since T is acyclic, we can assume w.l.o.g. that I is
a model of T . In fact, otherwise we can modify I by setting AI := C ′I

A for all defined
concepts A, where A ≡ CA is the definition of A in T , and C ′

A is the unfolded concept
description of CA w.r.t. T . o

In case D = ⊥, the statement C 6vT D is equivalent to saying that C is satisfiable
w.r.t. T , and thus the lemma also implies that any ALC-concept description that is
satisfiable w.r.t. T has a tree-shaped model, i.e., a tree-shaped model of T with root
d0 ∈ CI . Of course, this and the above lemma also hold when the TBox is empty, i.e.,
for satisfiability and subsumption of concept descriptions.

Let I be a tree-shaped model of the acyclic ALC-TBox T , and C0 be an ALC-
concept description. An element d of I is at level k if the unique path from the root
d0 of I to d has length k. A subdescription F of C0 is at level k if it occurs within k

nestings of value and existential restrictions.
When evaluating C0 in I, i.e., when checking whether the root d0 of I belongs

to CI
0 , we can directly use the inductive definition of the semantics of ALC-concept

descriptions. During this evaluation process, one recursively checks whether certain
elements d of I belong to F I for subdescriptions F of C0. It is easy to see that, in
such a recursive test, the level of F in C0 always coincides with the level of d in I.
In particular, this means that elements of I that are at a level higher than the role
depth of C0 are irrelevant when evaluating C0. The following lemma is an immediate
consequence of this observation.

Lemma 58. Let C0 be an ALC-concept description of role depth `, and let I, I ′ be
tree-shaped interpretations that differ from each other only on elements at levels larger
than `. Then d0 ∈ CI

0 iff d0 ∈ CI′

0 , where d0 is the (common) root of I and I ′.
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In the proof of Proposition 61 we will need a specific result regarding the eval-
uation of ALC-concept descriptions that are obtained by unfolding ALE(T )-concept
descriptions, where T is an acyclic ALC-TBox. Before we can formulate this result in
Lemma 59, we must introduce some more notation.

Let C0 be an ALC-concept description. We define under which conditions a sub-
description F of C0 occurs conjunctively in C0 by induction on the role level ` of F in
C0:

20

• if ` = 0, then C0 must be of the form F0 u F ;

• if ` > 0, then C0 must be of the form F0 u ∃r.C ′ or F0 u ∀r.C ′, where F occurs
conjunctively in C ′ on role level ` − 1.

The following lemma, which can easily be proved by induction on `, links this notion
to ALE(T )-concept descriptions. Given an acyclic ALC-TBox T and an ALE(T )-
concept description C0, the subdescription F of C0 is called positive if it is not a
concept name that occurs within an atomic negation. For example, in the concept
description C0 = ¬A u ∃r.¬B, the subdescriptions A and B are not positive, but all
other subdescriptions (e.g., ¬A or ∃r.¬B) are positive.

Lemma 59. Let T be an acyclic ALC-TBox, and C0 an ALE(T )-concept description
that contains the positive subdescription F at some level `. In addition, let C ′

0, F
′ be

the ALC-concept descriptions obtained by unfolding C0, F w.r.t. T . Then F ′ occurs
conjunctively in C ′

0 on level `.

This lemma will be used to show that the next lemma is applicable in the proof of
Proposition 61.

Let C0 be an ALC-concept description that contains the subdescription F at some
level ` ≥ 0 conjunctively, and let I be a tree-shaped interpretation with root d0 such
that d0 ∈ CI

0 . We modify C0 into a new ALC-concept description C⊥ by replacing
the subdescription F by ⊥. Now, assume that

• this replacement changes the evaluation of the concept description in I, i.e.,
d0 6∈ CI

⊥.

• ¬F is satisfiable, and thus there is a tree-shaped interpretation J with root e0

such that e0 6∈ FJ .

Without loss of generality we may assume that the domains of I and J are disjoint.

Lemma 60. Let C0 and I satisfy the properties stated above. Then there is a tree-
shaped interpretation I ′ with root d0 that differs from I only on elements at levels ≥ `

such that d0 6∈ CI′

0 .

Proof. We prove the lemma by induction on `.
Base case: ` = 0. In this case, C0 is of the form F0 u F . Let I ′ be a renamed copy

20The representation of C0 is meant modulo associativity and commutativity of conjunction, and
the fact that > is a unit for conjunction.
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of J , whose root has the name d0 instead of e0. Obviously, e0 6∈ FJ then implies
d0 6∈ F I′

, and thus d0 6∈ CI′

0 .

Induction step: ` > 0. In this case, C0 is of the form F0 u ∃r.C ′ or F0 u ∀r.C ′, where
F is a conjunctive subdescription of C ′ at level `− 1. Consequently, C⊥ is of the form
F0u∃r.C ′

⊥ or F0u∀r.C ′
⊥, where C ′

⊥ is obtained from C ′ by replacing the subdescription
F at level ` − 1 by ⊥.

First, consider the case where C0 = F0 u ∃r.C ′ and C⊥ = F0 u ∃r.C ′
⊥. Obviously,

d0 ∈ CI
0 and d0 6∈ CI

⊥ imply that d0 ∈ (∃r.C ′)I and d0 6∈ (∃r.C ′
⊥)I . Let d1, . . . , dm

be all the elements of I that satisfy (d0, di) ∈ rI and di ∈ C ′I . Now, d0 6∈ (∃r.C ′
⊥)I

implies, for i = 1, . . . , m, that di 6∈ C ′I
⊥ . Let I1, . . . , Im be the tree-shaped interpre-

tations obtained by taking the respective subtrees of I with roots d1, . . . , dm. For
i = 1, . . . , m, we then have di ∈ C ′Ii and di 6∈ C ′Ii

⊥ . Since F occurs conjunctively at
level ` − 1 in C ′, the induction hypothesis yields a tree-shaped interpretation I ′

i with
root di that differs from Ii only on elements at levels ≥ `−1, and such that di 6∈ C ′I′

i .

The interpretation I ′ is obtained from I by replacing, for i = 1, . . . , m, the subtree
Ii with root di by I ′

i. Obviously, I is tree-shaped and it differs from I ′ only on elements
at levels ≥ `. We claim that d0 6∈ (∃r.C ′)I

′

, and thus d0 6∈ CI′

0 . In fact, let d be such
that (d0, d) ∈ rI

′

. By the definition of I ′, this implies that (d0, d) ∈ rI . If d = di

for some i, 1 ≤ i ≤ m, then d = di 6∈ C ′I′

i , and thus d = di 6∈ C ′I′

since the subtree
with root di of I ′ coincides with I ′

i. Otherwise, d 6∈ C ′I , and thus d 6∈ C ′I′

since I
coincides with I ′ on the respective subtrees with root d.

Second, consider the case where C0 = F0u∀r.C ′ and C⊥ = F0u∀r.C ′
⊥. Obviously,

d0 ∈ CI
0 and d0 6∈ CI

⊥ imply that d0 ∈ (∀r.C ′)I and d0 6∈ (∀r.C ′
⊥)I . Let d1, . . . , dm be

all the elements of I that satisfy (d0, di) ∈ rI . Now, d0 ∈ (∀r.C ′)I implies di ∈ C ′I for
all i, 1 ≤ i ≤ m. In addition, d0 6∈ (∀r.C ′

⊥)I implies that there exists a j, 1 ≤ j ≤ m,
such that dj 6∈ C ′I

⊥ . Let Ij be the tree-shaped interpretation obtained by taking

the subtree of I with root dj . Then, we have dj ∈ C ′Ij and dj 6∈ C
′Ij

⊥ . Since F

occurs conjunctively at level `−1 in C ′, the induction hypothesis yields a tree-shaped
interpretation I ′

j with root dj that differs from Ij only on elements at levels ≥ ` − 1,

and such that dj 6∈ C ′I′

j .

The interpretation I ′ is obtained from I be replacing the subtree Ij with root dj

by I ′
j . Obviously, I is tree-shaped and it differs from I ′ only on elements at levels ≥ `.

We claim that d0 6∈ (∀r.C ′)I
′

, and thus d0 6∈ CI′

0 . This is an immediate consequence

of the following two facts: (i) (d0, dj) ∈ rI
′

, and (ii) dj 6∈ C ′I′

j , and thus dj 6∈ C ′I′

since the subtree with root dj of I ′ coincides with I ′
j . o

We are now ready to prove the key proposition, which gives a bound of the role
depth of common subsumers in relation to the maximal role depth of the input concept
descriptions.

Proposition 61. Let C1, C2 be ALE(T )-concept descriptions that are both satisfiable
w.r.t. T , and assume that the role depths of the ALC-concept descriptions C ′

1, C
′
2

obtained by unfolding the descriptions C1, C2 w.r.t. T are bounded by k. If the ALE(T )-
concept description D is a common subsumer of C1, C2 w.r.t. T , then there is an
ALE(T )-concept description D0 vT D of role depth at most k + 1 that is also a
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common subsumer of C1, C2 w.r.t. T .

Proof. Let D be an ALE(T )-concept description that is a common subsumer of C1, C2

w.r.t. T . If the role depth of D is bounded by k + 1, then we are done since we can
take D0 = D. Otherwise, D contains at least one subdescription on level k + 1 that
is an existential or a value restriction. Choose such a subdescription F . Obviously, F

is positive. We modify D into a concept description D̂ as follows. We replace F by
either > or ⊥:

• if F is equivalent to > w.r.t. T , then it is replaced by >;

• otherwise, F is replaced by ⊥.

Since F is a positive subdescription of E and all the concept constructors other than
atomic negation available in ALE are monotonic, it is clear that D̂ vT D. It remains
to be shown that D̂ is a common subsumer of C1, C2 w.r.t. T . In fact, once we have
shown this, we can obtain D0 by applying this construction until all subdescriptions
at level k + 1 that are existential or a value restrictions are replaced by either > or
⊥. Obviously, the resulting description D0 has role depth at most k + 1 and satisfies
D0 vT D.

If F was replaced by >, then F ≡T >, and thus D̂ ≡T D is a common subsumer
of C1, C2 w.r.t. T . Thus, assume that F was replaced by ⊥. To show that also in
this case D̂ is a common subsumer of C1, C2 w.r.t. T , we assume to the contrary that
Ci 6vT D̂ for i = 1 or i = 2. We show that this assumption leads to a contradiction.

Let D′, D̂′, F ′ be the ALC-concept descriptions obtained by respectively unfolding
D, D̂, F . By Lemma 59, F ′ is a subdescription of D′ that occurs conjunctively in D′

at level k + 1. In addition, since F was replaced by ⊥, F is not equivalent to > w.r.t.
T , and thus ¬F ′ is satisfiable. Since Ci 6vT D̂, we know that C ′

i 6v D̂′, and thus there
is a tree-shaped interpretation I such that the root d0 of this tree belongs to C ′I

i , but

not to D̂′I . Since Ci vT D, we also know that C ′
i v D′, and thus d0 ∈ D′I .

Now, d0 6∈ D̂′I and d0 ∈ D′I together with the satisfiability of ¬F ′ and the way
D̂ was constructed from D imply that Lemma 60 is applicable. Thus, there is a tree-
shaped interpretation I ′ with root d0 that differs from I only on elements at levels
≥ k + 1, and such that d0 6∈ D′I′

.
Since a change of the interpretation at a level larger than k does not influence

the evaluation of a concept description of depth at most k (see Lemma 58), d0 ∈ C ′I
i

implies d0 ∈ C ′I′

i . However, since Ci vT D yields C ′
i v D′, this implies d0 ∈ D′I′

,
which yields the desired contradiction. o

Theorem 54 is now an immediate consequence of Proposition 56 and Proposi-
tion 61. In fact, to compute the lcs of C1, C2 w.r.t. T , it is enough to compute the
(up to equivalence) finite set of all ALE(T )-concept descriptions of role depth at most
k + 1, check which of them are common subsumers of C1, C2 w.r.t. T , and then build
the conjunction E of these common subsumers. Proposition 56 ensures that the con-
junction is finite. By definition, E is a common subsumer of C1, C2 w.r.t. T , and
Proposition 61 ensures that for any common subsumer D of C1, C2 w.r.t. T , there is
a conjunct D0 in E such that D0 vT D, and thus E vT D.
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This generate and test-based brute-force method to obtain the ALE(T )-lcs is not
very useful in practice. Next, we examine the existence of the lcs in the case where
the background TBox is not restricted to be unfoldable.

5.3 Non-existence of the lcs w.r.t. general TBoxes

In this section we show that the lcs for general TBoxes does neither exist for EL(T )-
nor for ALE(T )-TBoxes. We start with EL(T ) and consider the case of general TBoxes.

Theorem 62. Let T := {A v ∃r.A, B v ∃r.B}. Then, the lcs of the EL(T )-concept
descriptions A, B w.r.t. T does not exist.

Proof. Let En denote the EL-concept description ∃r.∃r· · · ∃r.> of role depth n. For
all n ≥ 0, En is a common subsumer of A and B w.r.t. T . Assume that D is a lcs
of A and B, and let ` be the role depth of D. If D contains neither A nor B, then
D 6vT En for all n > `, which is a contradiction. However, if D contains A, then it is
easy to see that D cannot be a subsumer of B, and if D contains B, then it cannot
be a subsumer of A. Consequently, such a lcs D cannot exist. o

Note that this example is very similar to the one showing non-existence of the
lcs in EL with cyclic terminologies interpreted with descriptive semantics [Baa03a].
However, the proof of the result in [Baa03a] is more involved since there one is allowed
to extend the terminology in order to build the lcs. However, the same example can
be used to prove that the lcs for ALE(T )-concept description does not need to exist.

Theorem 63. Let T := {A v ∃r.A, B v ∃r.B}, where A, B are distinct concept
names. Then, the lcs of the ALE(T )-concept descriptions A, B w.r.t. T does not exist.

Proof. Consider a common subsumer E of A, B w.r.t. T . Without loss of generality
we can assume that the ALE(T )-concept description E is a conjunction of (negated)
concept names, value restrictions, and existential restrictions. We claim that this
conjunction can actually only contain existential restrictions for the role r.

Assume that the concept name P is contained in this conjunction. We restrict
our attention to the case where P 6= C ∈ {A, B}. Consider the interpretation I that
consists of one element c, which belongs to C and to no other concept name, and
which is related to itself via the role r. Then I is a model of T , and c ∈ CI . However,
c 6∈ P I , which is a contradiction since P occurs in the top-level conjunction of E, and
we have assumed that C vT E. Similarly, we can show that no negated concept name
can occur in this conjunction.

For similar reasons, the conjunction cannot contain a value restriction ∀s.F where
F 6≡T >. In fact, if F 6≡T >, then there is a model I¬F of T that contains an element
d0 with d0 6∈ F I¬F . We extend I¬F to an interpretation I by adding a new element
a, which belongs to A and to no other concept name, and which is related to itself via
the role r, and to d0 via the role s. Then I is a model of T , and a ∈ AI . However,
a 6∈ (∀s.F )I , which is a contradiction since A vT E.

Thus, we may assume w.l.o.g. that both the conjunction of (negated) concept
names and the conjunction of value restrictions is empty. Now, consider an existential
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restriction ∃s.F . By using a construction similar to the ones above, we can show that s

must be equal to r, i.e., we have an existential restriction of the form ∃r.F . Otherwise,
we assume w.l.o.g. that A 6vT F , i.e., there is a model I0 of T that contains an element
d0 s.t. d0 ∈ AI0 \ F I0 . This is a contradiction to A vT E vT ∃r.F since using I0 we
can easily construct a model I of T that contains an element a that belongs to A, but
not to ∃r.F . In fact, I is obtained from I0 by adding a new element a, which belongs
to A and to no other concept name, and which is related to d0 via the role r.

We can now apply induction over the role depth of the common subsumer E of
A, B to show that E is equivalent w.r.t. T to an ALE-concept description from the
following set of descriptions: S is the smallest set of ALE-concept descriptions such
that (i) > belongs to S, (ii) S is closed under conjunction and (iii) if F belongs to S,
then ∃r.F also belongs to S. Conversely, it is easy to show (by induction on the size
of elements of S) that any element of S is a common subsumer of A, B w.r.t. T .

Thus, a least common subsumer of A, B w.r.t. T must be a least element of S.
Since the elements of S do not contain A, B, here least has to be understood w.r.t.
subsumption of concept descriptions (i.e., without a TBox). However, S does not have
a least element w.r.t. subsumption. On the one hand, S obviously contains elements
of arbitrary role depth. On the other hand, an element D of role depth ` cannot be
subsumed by an element E of role depth k > `: if d ∈ EI for some interpretation I
and element d of I, then there is a path of length k starting from d in the graph GI ;
in contrast, there is an interpretation I0 and an element d0 of I0 such that d0 ∈ DI0 ,
but all paths in GI0

starting with d0 have length ≤ ` < k. o

It is easy to see that the same proof also works for the cyclic TBox T := {A ≡
∃r.A, B ≡ ∃r.B}.

Corollary 64. Let T := {A ≡ ∃r.A, B ≡ ∃r.B}, where A, B are distinct concept
names. Then, the lcs of the ALE(T )-concept descriptions A, B w.r.t. T does not exist.

The results from this and the previous subsection tell us for which background
TBox formalisms we can hope for to be able to devise lcs computation algorithms.
While this is possible for unfoldable TBoxes as a background ontology, is it not for
cyclic or general ones. The brute force algorithm for obtaining the lcs for ALE(T ) is
hardly useful in practice.

5.4 Approximative approaches: good common subsumers

The brute-force algorithm for computing the lcs in ALE(T ) w.r.t. an acyclic back-
ground ALC-TBox by generating all subsumers up to a certain role depth and then
conjoining them is not useful in practice since the number of concept descriptions that
must be considered is very large (super-exponential in the role depth of the input con-
cept descriptions). In addition, w.r.t. cyclic or general TBoxes the lcs need not exist.
In the bottom-up construction of DL knowledge bases, it is not really necessary to take
the least common subsumer, since using it may even result in over-fitting. A common
subsumer that is not too general can also be used for our purpose. In this section, we
introduce several approaches for computing such ‘good’ common subsumers w.r.t. a
background TBox.
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5.4.1 A good common subsumer in ALE w.r.t. a background TBox

Let T be a background TBox in some DL L2 extending ALE such that subsumption in
L2 w.r.t. this kind of TBoxes is decidable.21 Let C, D be normalized ALE(T )-concept
descriptions and we are interested in their lcs. If we ignore the TBox, then we can
simply apply the computation algorithm for the lcs of ALE-concept descriptions (as
displayed in Figure 3.2 on page 48) without background terminology to compute a
common subsumer. However, in this context, taking

l

A∈prim(C)∩prim(D)

A

is not the best we can do. In fact, some of these concept names may be constrained
by the TBox, and thus there may be relationships between them that we ignore
by simply using the intersection. By names(C) we denote all concept names and
by names(C) we denote all negated names appearing on the top-level of C. Our
proposal for modifying the ALE-lcs algorithm is to replace the above conjunction by
the smallest (w.r.t. subsumption w.r.t. T ) conjunction of concept names and negated
concept names that subsumes (w.r.t. T ) both

l

A∈names(C)

A u
l

¬B∈names(C)

¬B and
l

A′∈names(D)

A′ u
l

¬B′∈names(D)

¬B′.

We modify the lcs algorithm for ALE in this way, not only on the top-level of the input
concepts, but also in the recursive steps. It is easy to show that the ALE(T )-concept
description computed by this modified algorithm still is a common subsumer of A, B

w.r.t. T .

Proposition 65. The ALE(T )-concept description E obtained by applying the mod-
ified lcs algorithm to ALE(T )-concept descriptions C, D is a common subsumer of C

and D w.r.t. T , i.e., C vT E and D vT E.

In general, this common subsumer will be more specific than the one obtained by
ignoring T , though it need not be the least common subsumer. In the following, we
will call the common subsumer computed this way good common subsumer (gcs), and
the algorithm that computes it the gcs algorithm.

Example 66. As a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female,

NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female t (Doctor u Rich)),
DaughterHappyDoctor ≡ ∀has-child.(¬Female t (Doctor u Happy)),

ChildrenDoctor ≡ ∀has-child.Doctor,

and the ALE-concept descriptions

C := ∃has-child.(NoSon u DaughterHappyDoctor),
D := ∃has-child.(NoDaughter u SonRichDoctor).

21Note that the TBox T used as background terminology may now be a general TBox.
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By ignoring the TBox, we obtain the ALE(T )-concept description ∃has-child.> as a
common subsumer of C, D. However, if we take into account that both concept descrip-
tions NoSon u DaughterHappyDoctor and NoDaughter u SonRichDoctor are subsumed
by the concept ChildrenDoctor, then we obtain the more specific common subsumer
∃has-child.ChildrenDoctor. The gcs of C, D is even more specific. In fact, the least
conjunction of (negated) concept names subsuming both NoSonuDaughterHappyDoctor

and NoDaughter u SonRichDoctor is

ChildrenDoctor u DaughterHappyDoctor u SonRichDoctor,

and thus the gcs of C, D is

∃has-child.(ChildrenDoctor u DaughterHappyDoctor u SonRichDoctor).

The conjunct ChildrenDoctor is actually redundant since it is implied by the remainder
of the conjunction.

In order to implement the gcs algorithm, we must be able to compute the smallest
conjunction of (negated) concept names that subsumes two such conjunctions C1 and
C2 w.r.t. T in an efficient way. In principle, one can compute this smallest conjunction
by testing, for every (negated) concept name whether it subsumes both C1 and C2

w.r.t. T , and then take the conjunction of those (negated) concept names for which the
test was positive. However, this results in a large number of (possibly quite expensive)
calls to the subsumption algorithm for L2 w.r.t. (general or (a)cyclic) TBoxes. Instead,
we propose to use attribute exploration, a method from formal concept analysis (see
[GW99]), for this purpose.

In order to apply attribute exploration to the task of computing the subsumption
lattice22 of conjunctions of (negated) concept names (some of which may be defined
concepts in an L2-TBox T ), a formal context whose concept lattice is isomorphic to the
subsumption lattice we are interested in was defined in [BST07]. A detailed discussion
on how to employ attribute exploration in this context is beyond the scope of this thesis
and is provided in the thesis by Sertkaya, see [Ser07]. However by attribute exploration
we can compute the concept lattice of the conjunctions of (negated) concept names
fast and, since in our application scenario the TBox T is assumed to be fixed, it is only
necessary to compute it once in advance and reuse it later. Thus equipped with the
concept lattice, we can obtain the supremum of the conjunction of (negated) concept
names appearing in the input concepts and use it in the above described fashion to
obtain a gcs of the input concept descriptions.

5.4.2 Using ALE-unfolding when computing the gcs

If the background terminology is an acyclic TBox T , then one can employ an appro-
priate partial unfolding of T in order to uncover ALE-parts hidden within the defined

22In general, the subsumption relation induces a partial order, and not a lattice structure on con-
cepts. However, in the case of conjunctions of (negated) concept names, all infima exist, and thus
also all suprema.
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concepts. The idea is that the gcs algorithm will possibly yield a more specific common
subsumer if it can make use of these ‘hidden’ ALE-concepts.

For instance, in Example 66, the concepts defining NoSon and NoDaughter are
actually ALE(T )-concept descriptions, and thus C, D can be unfolded to

C ′ := ∃has-child.(∀has-child.Female u DaughterHappyDoctor),
D′ := ∃has-child.(∀has-child.¬Female u SonRichDoctor),

before computing their gcs. The two concepts defining DaughterHappyDoctor and
SonRichDoctor are not ALE(T )-concept descriptions, and thus these two names cannot
be unfolded. However, in this example, the common subsumer computed by applying
the gcs algorithm to the unfolded concepts C ′, D′ is ∃has-child.>, which is actually
less specific than the result of applying the gcs algorithm to the not unfolded concepts
C, D. To overcome this problem, we do the partial unfolding, but also keep the defined
concepts that we have unfolded. In the example, this yields the unfolded concepts

C ′′ := ∃has-child.(∀has-child.Female u NoSon u DaughterHappyDoctor),
D′′ := ∃has-child.(∀has-child.¬Female u NoDaughter u SonRichDoctor).

If we apply the gcs algorithm to C ′′, D′′, then we obtain (up to equivalence w.r.t. T )
the same common subsumer as obtained from C, D, i.e., in this case the unfolding
does not yield a more specific result.

However, it is easy to construct examples where this kind of unfolding leads to
better results. For instance, if we apply the gcs algorithm to ∀has-child.(Female u
Doctor) and NoSon u ∀has-child.Happy, then the result is >. In contrast, if we ap-
ply it to the unfolded concept descriptions ∀has-child.(Female u Doctor) and NoSon u
∀has-child.Femaleu∀has-child.Happy, then the result is the more specific common sub-
sumer ∀has-child.Female.

Before checking whether a defined concept should be unfolded, it is useful to
transform it into NNF by applying the rules from Definition 34. For example, the
concept description ¬∀has-child.Female is not an ALE-concept description, but its NNF
∃has-child.¬Female is. More formally, we define the ALE-unfolding of (negated) con-
cept names defined in T and of ALE(T )-concept descriptions as follows.

Definition 67 (ALE-unfolding). Let T be an acyclic TBox, let A be a concept name
defined in T , and let A ≡ C be its definition. We first build the NNF C ′ of C. If C ′

is not an ALE(T )-concept description, then the ALE-unfolding of A is A. Otherwise,
it is AuC ′′, where C ′′ is obtained from C ′ by replacing all (negated) defined concept
names in C ′ by their ALE-unfolding. To obtain the ALE-unfolding of ¬A, we just apply
the same approach to ¬C. The ALE-unfolding of an ALE(T )-concept description is
obtained by replacing all (negated) defined concept names by their ALE-unfoldings.

3

Note that this recursive definition of an ALE-unfolding is well-founded since the TBox
is assumed to be acyclic. As an example, consider the TBox T consisting of

A ≡ ¬∀r.(B1 t B2), B1 ≡ P t Q, B2 ≡ P u Q.
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Then we obtain A u ∃r.(¬B1 u ¬P u ¬Q u ¬B2) as the ALE-unfolding of A.
It is easy to see that ALE-unfolding may lead to more specific common subsumers,

but never to less specific ones.

Proposition 68. Let T be an acyclic L2-TBox, C, D ALE(T )-concept descriptions
with ALE-unfolding C ′, D′, and let E (E ′) be the result of applying the gcs algorithm
to C, D (C ′, D′). Then E′ is a common subsumer of C, D that is at least as good as
E, i.e., C vT E′, D vT E′, and E′ vT E.

ALE-unfolding can also be applied to cyclic L2-TBoxes, provided that the cycles
involve only non-ALE parts of the TBox or termination of the unfolding is ensured
otherwise. This is, for example, the case in the TBox T := {A ≡ ∃r.B, B ≡ P t A}.

5.4.3 Alternative approaches for computing common subsumers

In Section 5.2 we have already sketched an approach based on approximation, which
works if the TBox T is acyclic, L2 allows for disjunction, and one can compute the
approximation of L2-concept descriptions by ALE-concept descriptions. For example,
if we take ALC as L2, then all these conditions are satisfied.

Definition 69 (Common subsumer by approximation (acs)). Assume that
L2 allows for disjunction, and that the approximation of L2-concept descriptions by
ALE-concept descriptions can be computed. Let T be an acyclic L2-TBox. Given
ALE(T )-concept descriptions C, D, let C ′, D′ be the concept descriptions obtained by
unfolding C, D w.r.t. T . Let E be the ALE-approximation of C ′ t D′, then E is the
common subsumer by approximation (acs) of C, D w.r.t. T . 3

In Section 5.2, we have shown by Example 53 that the acs can be less specific than
the lcs. In this example (Example 53), the gcs coincides with the lcs, and thus is also
more specific than the acs: in fact, w.r.t. the TBox T = {A ≡ P t Q}, the smallest
conjunction of concept names above both P and Q is A, and thus the gcs of P and Q

is A.
There are, however, also examples where the gcs is less specific than the acs. For

instance, consider the TBox

T = {A ≡ ∃r.A1 t ∃r.A2, B ≡ ∃r.B1 t ∃r.B2}.

With respect to this TBox, the gcs of A, B is >, whereas the acs is the more specific
common subsumer ∃r.>.

The gcs algorithm makes use of the subsumption relationships between conjunc-
tions of (negated) concept names. Usually, these relationships are not known for a
given TBox, and thus we must either precompute them, for instance by attribute
exploration, or compute them on the fly. Both may be quite expensive. What is
usually known for a given TBox T are all subsumption relationships between the
concept names occurring in T . This information can be used as follows. Given two
conjunctions

l

A∈names(C)

A u
l

¬B∈names(C)

¬B and
l

A′∈names(D)

A′ u
l

¬B′∈names(D)

¬B′,
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the gcs algorithm takes the smallest (w.r.t. subsumption w.r.t. T ) conjunction of con-
cept names and negated concept names that subsumes (w.r.t. T ) both conjunctions.
In contrast, the algorithm that just ignores the TBox would take

l

A∈names(C)∩names(D)

A u
l

¬B∈names(C)∩names(D)

¬B.

Using the subsumption relationships between concept names, we can come up with a
new approach that lies between these two approaches.

Definition 70 (Subsumption closure). Let T be a TBox, and S (S) a set of
(negated) concept names. The subsumption closure of S (S) w.r.t. T is a set of
(negated) concept names, which is defined as follows:

SC(S) := {A | ∃B ∈ S. B vT A},
SC(S) := {¬A | ∃¬B ∈ S. A vT B}.

3

We can obtain a notion of common subsumer that yields more specific results than
the acs based on the subsumption closure.

Definition 71 (Common subsumer by subsumption closure (scs)). We call
the algorithm for computing common subsumers obtained by first building the sub-
sumption closures, and then intersecting the closures, i.e., using

l

A∈SC(names(C))∩SC(names(D))

A u
l

¬B∈SC(names(C))∩SC(names(D))

¬B.

instead of the intersection prim(C)∩ prim(D) in the ALE-lcs algorithm, the scs algo-
rithm, and the result of applying it to ALE(T )-concept descriptions C, D the scs of
C, D w.r.t. T . 3

Proposition 72. Let T be an L2-TBox, C, D ALE(T )-concept descriptions, and let
E (E′) be the result of applying the gcs (scs) algorithm to C, D. Then E ′ is a common
subsumer of C, D that is at most as good as the gcs E, i.e., C vT E′, D vT E′, and
E vT E′.

The claim is obvious, since the gcs constructs a conjunction that subsumes the
conjunction of (negated) names appearing in the input concept descriptions, while
the scs merely collects concept names from the TBox that subsume one (negated)
concept name that appears in the input concepts.

The computation methods here proposed applicable for common subsumers are,
of course, also useful for applications, where only one DL and one TBox is used. In
this case the methods will yield concept descriptions at most as specific as the lcs in
the general case.
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Extending computation of gcs, acs and scs to number restrictions. Ob-
serve that the acs algorithm, as well as the two other methods to compute common
subsumers proposed in this section, either use computation methods for NSIs in the
user DL ALE or employ variants of them that only modify the way concept names are
treated. In case of the acs, one can obviously also obtain a common subsumer in the
presence of number restrictions in the background DL and, more importantly, in the
user DL by using the computation of the ALEN -approximations of the disjunction of
the input concepts.

In case of the gcs and the scs, the ALEN -lcs computation algorithm can be modified
in the same fashion as we described it for the lcs computation algorithm for ALE . These
modifications yield computation methods for common subsumers of ALEN (T )-concept
descriptions w.r.t. ALCN background TBoxes.

In this chapter we have investigated the computation of common subsumers for the
customization of background TBoxes. In this setting the common subsumers are
expressed in a user DL not offering disjunction, while using concept names from the
background TBox, which is written in a more expressive DL offering disjunction.
We investigated the existence of least common subsumers in this setting. While for
unfoldable TBoxes the lcs of ALE(T )-concept descriptions exists, this is not the case
if the background TBox is a general or cyclic one. Unfortunately, no constructive
method to obtain the lcs for ALE(T ) w.r.t. unfoldable ALC-background TBoxes could
be devised. Instead we proposed three methods to obtain good common subsumers,
which are not necessarily the least ones (w.r.t. subsumption). These methods can be
extended to handle number restrictions in a straightforward way.

Together with the approximation based computation methods for obtaining non-
trivial common subsumers discussed in the last chapter, we have supplied the the-
oretical groundwork to support the bottom-up extension and the customization of
knowledge bases in the presence of disjunction. To put these approaches to practice
and to assess their usefulness and performance and to compare them, we need to
implement them in a non-naive way. This implementation is described in the next
chapter.



Chapter 6

Implementations of non-standard

inferences

The methods for the computation of common subsumers developed in the last chap-
ters are designed to be employed in practice. To this end it is of course necessary
to implement and evaluate them. Many of the inferences proposed in this work are
investigated and implemented for the first time. They need to be evaluated with re-
spect to their usefulness for the intended application. Moreover, in order to be useful
in the application of extending DL knowledge bases, where direct user interaction is
required, the implementation of the methods proposed here should be efficient. In
this chapter we describe our implementation of the non-standard inferences employed
for the computation of non-trivial common subsumers in the presence of disjunction.
Our implementation aims at demonstrating the feasibility of the approaches proposed
here. It is also an efficient implementation in terms of the algorithms used. It is not fo-
cussed on ‘low-level’ optimizations, such as particular data-structures or sophisticated
encodings of concept descriptions.

We divide the inferences into two groups based on the similarity of their compu-
tation algorithms:

Generalization inferences , which comprise the lcs, approximation, acs and scs.23

The computation algorithms for these inferences are all cross-product based and
mainly differ in the way they treat concept names and in the way they prepare
concept description for recursive calls.

Syntactic inferences , which comprise the (heuristics for the) difference operator
and minimal rewriting.

We concentrate in this chapter on the generalization algorithms, since they are crucial
for the computation of common subsumers. We first investigate optimization tech-
niques for this group of algorithms in Section 6.2 and then describe their (possible)
implementation in Section 6.3. We also describe the implementation of the syntactic

23The implementation of the gcs as defined in Section 5.4.1 is discussed in the forthcoming thesis
of Sertkaya [Ser07] and is omitted in this thesis.
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inferences briefly. All of the described implementations are part of the non-standard
inference system Sonic. This system enables the use of non-standard inferences dis-
cussed in this thesis via an ontology editor plug-in and implements a prototype version
for a user interface of the knowledge base extension approaches bottom-up construc-
tion, customization of background knowledge bases as well as extension by modifica-
tion.

6.1 Implementations of DL systems

The implementation of the first DL reasoning systems were based on structural meth-
ods for computing inferences as satisfiability or subsumption w.r.t. unfoldable TBoxes.
From the mid-nineties on, most DL systems were implemented as tableaux-based sys-
tems. Here, in order to disprove a subsumption relationship C v D the reasoner
tries to construct a counter-model that serves as a witness for the satisfiability of
C u ¬D. During the construction of the counter-model, the reasoner has to explore
a search space determined by the alternatives in the concept description induced
by, for example, disjunction. The tableaux-based reasoning method has been imple-
mented in highly optimized ways in most of recent DL systems such as FaCT++

[TH06], RacerPro [Rac05] or Pellet [SP04] for very expressive DLs. These sys-
tems employ a number of optimization techniques that are either well-known from
automated reasoning—such as dependency directed backtracking [Bak95] or semantic
branching [DLL62; Fre95]—or techniques tailored to DL systems such as absorption
of general TBox statements [HT00], lazy unfolding [BHN+92], model merging [Hor97;
HMT01] or specific caching techniques [THPS07]. Semantic branching and depen-
dency directed backtracking are techniques that avoid that parts of the search space
which are known not to contain the solution, are explored repeatedly. When lazy
unfolding is employed, the concept is not unfolded w.r.t. the TBox completely at
the beginning of the computation, but is only unfolded for the top most role level,
if examination of the definition of the concept is necessary. On the one hand this
method saves memory, since complete unfolding of concepts can be avoided in many
cases. On the other hand, inconsistencies can be detected faster if a concept name
and its negation appear in a concept description directly. GCI absorption transforms
a certain sub-class of general concept inclusion statements from the TBox into a form
that can be treated as concept definitions during reasoning. For reasoning with GCIs
in general it is necessary to introduce more disjunctions, which in turn increase the
search space to be explored by the tableau method drastically. So, by GCI absorption
this blow-up of the search space can be limited. Model merging and caching re-use
obtained results in a smart way. Caching reuses the results obtained from previous
satisfiability tests directly. Model merging is a structural method that is employed
to test satisfiability by means of a model generated in previous tableaux tests. This
method is sound, but not complete since only one model is considered among many
possible ones. In case the model merging cannot prove that Cu¬D holds, the tableau
method is employed.

Todays DL systems are implemented in the programming languages Common Lisp,
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Java or C++. All of these implementations use special data structures to encode con-
cepts and concept descriptions in a compact way such that large knowledge bases
can be stored and accessed efficiently. In particular, by the use of these data struc-
tures known subsumption relationships can be retrieved fast when checking for new
subsumption relationships or when classifying the whole TBox.

The implementations of standard reasoning tasks based on the aforementioned
optimization techniques have shown a drastic gain in performance despite the compu-
tational complexity of the reasoning methods [HPS99; HM01a; THPS07]. However,
for non-standard inferences it is less probable to achieve such a gain for two reasons.
First, non-standard inferences are computation problems, while (most) standard in-
ferences are decision problems. Simply by the fact that many of the methods for
computing common subsumers can generate output concept descriptions exponential
in the size of the input, it is clear that optimization cannot avoid exponential run-
times in principle.24 The second reason why achieving a drastic gain in performance
comparable to the one achieved for standard reasoning is rather not probable is that
most methods for computing NSIs are purely constructive and do not have to consider
a search space opened up by alternatives to explore and thus optimizations like Back-
jumping or Semantic Branching cannot be employed. Nevertheless, the computation
algorithms devised in the last three chapters of this thesis for the computation of
non-trivial common subsumers definitely leave room for optimizations.

6.2 Optimization techniques for generalization inferences

In this section we devise optimization techniques for the computation algorithms for
the generalization algorithms introduced in the last chapters. The group of general-
ization algorithms comprises the lcs, approximation, acs and scs. The optimization
techniques we propose are mainly motivated by our application scenario, where these
inferences are used in an interactive way. Thus our optimizations aim at shorter
run-times. We do not focus on a better use of storage space.

6.2.1 Lazy unfolding and lazy normalization

If a generalization inference is applied to concept descriptions containing concept
names defined with respect to an unfoldable TBox, the concept description is un-
folded, i.e., names of defined concepts are replaced by their definition from the TBox.
Furthermore, concept descriptions are transformed into normal form in a preprocessing
step. These two preprocessing steps are costly, since each of them can result in concept
descriptions exponential in the size of the initial concept description. However, these
two steps are not always necessary for all sub-concept descriptions an input concept
description contains, since these sub-concept descriptions might not contribute to the
overall result.

24Nevertheless, most of the examples for the worst case complexities for the computation of common
subsumers exhibit a very regular structure (e.g. see Example 20 on page 45 or Example 27 on page 55).
It seems very unlikely that these cases are encountered when applying the computation of common
subsumers to concepts from knowledge bases written by human users.
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For standard reasoning tasks [BFH+94; Hor97] and also for the computation of
the lcs [BT02a] the first source of complexity can often be alleviated by lazy unfolding.
The idea is to replace a defined concept in a concept description only if examination
of that part of the description is necessary during computation. Lazy unfolding un-
folds all defined concepts appearing on the top-level of the concept description under
consideration while defined concepts on deeper role levels remain unchanged as long
as possible. We refer to the complete unfolding procedure as eager unfolding.

When computing the lcs, the main benefit of lazy unfolding is that in some cases
defined concepts can be used directly in the lcs concept description. If, for example,
a defined concept name C appears in all input concept descriptions on the same role-
level, the concept definition of C does not need to be processed, but the name C

can be inserted into the lcs directly, see [BT02a] for details. The experiments carried
out in [BT02a] indicate that the computation of the lcs takes one third of the time
when lazy unfolding is employed in comparison to eager unfolding. The lazy unfolding
procedure can be used as well for ALE-unfolding during the computation of the scs.

In the case of concept approximation, however, this use of defined names cannot be
utilized even if a defined concept is obviously common to all disjuncts. For example,
in (A u C) t (C u ¬B) the concept name C cannot be used directly as a name in the
concept approximation, because the ALC-concept description that C stands for must
be approximated first. Thus eager unfolding can only be avoided for approximation
if one of the disjuncts has a deeper maximal role level than the other disjuncts. In
this case the concept names on these role levels need not be taken into account when
computing the approximation; thus they need not be unfolded.

Similarly to unfolding, normalization can be performed ‘on demand’, which obvi-
ously saves computation time if a sub-concept description does not need to be consid-
ered during further computation. In particular for the computation of approximation
and for the acs it is desirable to perform lazy normalization, since the normal forms for
ALC and ALCN can result in concept descriptions exponential in the size of the initial
one. Like for the normalization of DLs offering number restrictions, lazy normalization
promises a substantial gain in computation time, since the normalization here requires
lcs calls to obtain the induced existential restrictions and the induced value restric-
tions. In particular this is makes a difference for ALEN , since here the lcs cannot be
obtained by simply using disjunction, but by employing the ALEN -lcs computation—a
method that might return concept descriptions of size double exponential in the size
of the input.

The implementation of lazy unfolding and normalization for the computation of
computing generalization inferences simply requires that at the beginning of the com-
putation (and consequently at the beginning of each recursive call) the concept de-
scription is unfolded on the top most role level and normalized for this role level. Thus
the preprocessing steps of the original procedure are executed at the beginning of each
(recursive) call.

By implementing lazy unfolding and lazy normalization we cannot only save com-
putation time of unnecessary preprocessing, but, in addition, the concept descriptions
that need to be used and stored during computation are considerably smaller, which
saves storage space. In contrast to other optimization techniques, lazy unfolding does
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not generate any overhead. Thus by the use of lazy unfolding and lazy normalization
the generalization inferences can be implemented in a way that is more efficient at no
extra costs.

6.2.2 Conjunct-wise computation for nice concepts

The double-exponential time complexity of the approximation algorithm suggests the
following approach to optimization: in comparison to approximating an input concept
description C as a whole, a significant amount of time could be saved by splitting C

into its conjuncts and approximating them separately. If, for instance, C consists of
two conjuncts of size n then the approximation of C takes some ab2n

steps while the
conjunct-wise approach would just take 2abn

. Unfortunately, splitting an arbitrary
input concept at conjunctions leads to incorrect approximations. For example, the
approximation c-approxALE(∃r.> u (∀r.A t ∃r.A)) yields ∃r.A while the conjunct-wise
version c-approxALE(∃r.>) u c-approxALE(∀r.A t ∃r.A) only produces ∃r.>. In general,
the computation of an approximation cannot be split at the conjunction because
of possible interactions—in case of ALC-ALE-approximation between existential and
value restrictions on the one hand and inconsistencies induced by negation on the
other. In [BT02b] those concept descriptions were called nice for which this splitting
strategy still produces the correct result.

Definition 73 (Nice concepts). Let C := C1u· · ·uCn be a L1-concept description.
C is nice if approxL2

(C) ≡ approxL2
(C1) u · · · u approxL2

(Cn). 3

For these concept descriptions interactions between conjuncts are excluded. Since the
use of nice concept descriptions is to speed-up approximation, it is important that the
conditions for distinguishing these concept descriptions can be tested easily. There-
fore the test for nice concept descriptions should be based on simple discrimination
conditions.

In the following we extend an approach introduced by us in [BT02b], where sound,
but not complete conditions were given to detect concept descriptions from the class of
nice ALC-concept descriptions. For this class of concepts the conjunct-wise approach
to approximation and, in a similar form, to the lcs produces the correct result. In this
section we first discuss the syntactic conditions for nice ALC-concepts from [BT02b]

and, second, relax and extend these conditions to ALCN -concepts.

Conditions for nice ALC-concept descriptions

Nice ALC-concept descriptions can be detected by the following sufficient conditions
for ALC-concept descriptions:

1. the existential or value restrictions are limited to one type per role-depth: on
every role depth of a nice concept either no ∀-restrictions or no ∃-restrictions
occur.

2. a concept name and its negation may not occur on the same role-depth of a nice
concept.
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Condition 1. Condition 2.

C D C D

∀

∃
¬A → A×

Figure 6.1: Strict conditions for nice concepts

Consider Figure 6.1 for an illustration of these rules. In [BT02b] these conditions
are formally defined and it is shown that for ALC-concept descriptions fulfilling these
conditions, conjunct-wise approximation is correct. The above conditions are intuitive
and easy to test, but very strict. Consider the concept description (∃r.∃s.A t B) u
(∃t.∀s.¬AtC), which violates both conditions. However, we obtain the correct result if
the conjuncts are approximated independently, since the relevant concept descriptions
are nested in existential restrictions for different roles. In general, a concept description
can still be approximated conjunct-wise, if the ‘interacting’ concept descriptions are
reachable via different role paths. Too strict conditions to distinguish nice concept
descriptions would rule out too many concept descriptions that could actually be
approximated in a conjunct-wise way. In these cases the ‘expensive’ approximation
must be applied. Next, in order to be able to detect more concept descriptions as
nice, we devise relaxed conditions for nice concept descriptions that also can handle
number restrictions.

Relaxed conditions for nice ALCN -concept descriptions

The conditions for nice ALCN -concept descriptions have to take into account the
information induced by number restrictions in combination with other concept con-
structors. As we saw in Section 3.3, we can obtain induced existential restrictions by
at-least restrictions. Induced value restrictions can be obtained by at-most restric-
tions (in combination with existential restrictions). Furthermore, at-most restrictions
and at-least restrictions can imply contradictions, which in turn can lead to disjuncts
equivalent to ⊥ and thus deterministic disjunctions. To get a better understanding of
the possible interactions consider the following example.

Example 74. Let C = C1 uC2 be an ALCN -concept description, where the conjuncts
are defined as:

C1 = (∀r.⊥) u (∃s.A) u (∃s.¬A) t ⊥,

C2 = (≥ 1 r) t (≤ 1 s) t B.

Now, if we approximate the concept C conjunct-wise we obtain c-approxALEN (C1) =
(∀r.⊥) u (∃s.A) u (∃s.¬A) and c-approxALEN (C2) = >, yielding (∀r.⊥) u (∃s.A) u
(∃s.¬A) u > as the combined result. Due to the incompatibilities between C1 and C2
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for the information on the roles r and s, the disjunction in C2 collapses to B. The
approximation yields c-approxALEN (C) = (∀r.⊥)u (∃s.A)u (∃s.¬A)uB, which is more
specific.

The example shows that the conditions for nice ALC-concept descriptions do not
suffice to detect nice ALCN -concept descriptions. We need to take into account the
number restrictions appearing on the top-level of C. We introduce a notation to access
the numbers within number restrictions. For an ALCN -concept description C and a
role r let

at-leastr(C) denote the maximal number appearing in all at-least restrictions on the
top-level of C or 0, if no at-least restriction appears on the top-level of C and

at-mostr(C) denote the minimal number appearing in all at-most restrictions on the
top-level of C or ∞, if no at-most restriction appears on the top-level of C .

Next, we specify the notion of sub-concept descriptions accessible by a role path, which
will be used in the conditions for nice concept descriptions.

Definition 75. Let a Qr-path (denoted ρ) be defined as ρ = [Q r]∗ for Q ∈ {∃, ∀}
and r ∈ NR and let λ denote the empty Qr-path.

Let C be an ALC-concept description and ρ be a Qr-path, then we define the set
of ρ-reachable sub-concepts of C as:

sub(C, ρ) :=





prim(C) if ρ = λ,

sub(valr(C), ρ′) if ρ = ∀ r · ρ′,⋃
C′∈exr(C) sub(C ′, ρ′) if ρ = ∃ r · ρ′,

∅ otherwise.

3

Formally, we can detect nice ALCN -concept descriptions by the conditions given in
the following definition:

Definition 76 (Sufficient conditions for nice ALCN -concept descriptions).
Let C be an ALCN -concept description in NNF. Then C is nice, if for every Qr-path
ρ with C1, C2 ∈ sub(C, ρ) and C ′

1, C
′
2 denoting C1, C2 in ALCN -normal form and all

r ∈ NR it holds that

1. |{∃ | at-leastr(C) 6= 0} ∪ {∃ | exr(C1) ∪ exr(C2) 6= ∅}| +
|{∀ | at-mostr(C) 6= ∞} ∪ {∀ |

d
i∈{1,2} valr(Ci) 6≡ >}| ≤ 1 and

2. prim(C1) ∪ prim(C2) does not contain a concept name and its negation.
3

Intuitively, Condition 1 guarantees for all sub-concept descriptions reachable via the
same Qr-path that either only restrictions are used that require role successors, i.e.,
at least or existential restrictions, or that only restrictions are used that constrain all
role successors of the same role, i.e., at-most or value restrictions. A visualization of



110 CHAPTER 6. IMPLEMENTATIONS OF NON-STANDARD INFERENCES

Condition 1. Condition 2.

C D C D

ρ ρρ ρρ

∃,≥

ρ ρ ρ ρ

ρ′ρ′ ρ′ ρ′ ρ′ ρ′

∀,≤

¬A → A×

Figure 6.2: Conditions for nice ALCN -concept descriptions.

the conditions from Definition 76 is depicted in Figure 6.2. It remains to be shown
that nice concepts as defined above in fact have the desired property. In preparation
for this we firstly present a simple set-theoretic result which later on will allow us to
reduce the number of existential restrictions computed in an approximation of nice
concepts.

The distribution of a conjunction over a disjunction in the ALCN -normalization
produces conjunctions of a very regular structure. As an example, consider the con-
cept E := (C1tC2)u (D1tD2) with Ci := ∃r.C ′

i and Dj := ∃r.D′
j . Assuming that all

existential restrictions are ALEN -concepts, the normalization returns
⊔

i,j(Ci u Dj).
The approximation algorithm then computes the lcs over every combination of exis-
tential restrictions from the four disjuncts. Nevertheless, every existential restriction
in the result c-approxALE(E) either subsumes ∃r.lcs(C ′

1, C
′
2) or ∃r.lcs(D′

1, D
′
2) because

it corresponds to the lcs of a superset of one of the above sets. The following lemma
shows that this subset-superset property can be generalized, the proof was given in
[BT02c].

Lemma 77. Let m, n ∈
�

. For every i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, let Ai and
Bj be arbitrary finite sets, let Uij := Ai ∪ Bj, and let uij ∈ Uij. Denote by U the set
of all uij, i.e., U := {uij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Then one of the following claims
holds: either, for every i there exist elements ai ∈ Ai with {ai | 1 ≤ i ≤ m} ⊆ U ; or,
for every j there exist bj ∈ Bj with {bj | 1 ≤ j ≤ n} ⊆ U .

The choice of sets in the unions Uij in the above lemma corresponds to tuples in the
product {A1, . . . , Am}×{B1, . . . , Bn}. The claim can be generalized to n-ary products
where every union corresponds to a tuple from {S11, . . . , S1k1

}×· · ·×{Sn1, . . . , Snkn
}.

The following lemma provides the more general result.

Lemma 78. For every 1 ≤ i ≤ n and 1 ≤ ji ≤ ki, let Siji
be an arbitrary set. For

every tuple t̄ in the set T := {1, . . . , k1} × · · · × {1, . . . , kn}, denote by Ut̄ the union⋃n
i=1 Sit̄(i) (with t̄(i) denoting the ith component of t̄). For every t̄ ∈ T , let ut̄ ∈ Ut̄.

Let U := {ut̄ | t̄ ∈ T}. Then there exists an index i ∈ {1, . . . , n} and elements sij ∈ Sij

for 1 ≤ j ≤ ki such that the set {sij | 1 ≤ j ≤ ki} is a subset of U.

Again, the proof can be found in [BT02c]. By means of the above lemma we can
show that the lcs of sets of ALEN -concepts obeying the conditions from Definition 76
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of a certain form can be simplified. The following example motivates the relevant
case. The ALCN -normal form of a nice concept of the form (C1 t · · · t Cm) u (D1 t
· · · t Dn) with no further disjunction on the top-level of all Ci and Dj results in a
disjunction of the form

⊔
i,j Ci u Dj . Assume that all sub-concepts Ci, Dj have only

existential restrictions on top-level. For the approximation of this concept, computing
the resulting existential restrictions requires to compute the lcs of (the approximation
of) every combination of existential restrictions from the relevant disjuncts. Thus, for
every pair (i, j), every existential restriction Eij ∈ exr(Ci uDj) is approximated, then
the lcs over all {c-approxALE(Eij) | i, j} is computed. Since exr(Ci u Dj) equals the
union exr(Ci) ∪ exr(Dj), the previous lemma can be employed to restrict the lcs to a
much smaller set. The following lemma provides the exact proof.

Lemma 79. For 1 ≤ i ≤ 2, let Ci and Di be ALEN -concept descriptions such that
C1uC2uD1uD2 is a nice concept description. Then it holds that lcs({CiuDj | i, j ∈
{1, 2}}) ≡ lcs({C1, C2}) u lcs({D1, D2}).

Proof. We assume w.l.o.g. that NR = {r}. We proceed with a proof by induction
over the maximum role-depth d of all Ci, Dj .

Base case d = 0: We have either Ek =
d

A∈prim(Ek) A u
d

r∈NR
(≤ at-mostr(Ek) r) or

we have Ek =
d

A ∈ prim(Ek) A u
d

r∈NR
(≥ at-leastr(Ek) r) for Ek ∈ {C1, C2, D1, D2}.

W.l.o.g. we assume the first case, the second is analogous. The definition of nice
guarantees that no inconsistencies can be introduced by a combination of an atomic
concept and its negation. Hence, the lcs({CiuDj | i, j ∈ {1, 2}}) then yields

d
A∈S Au

(≤ m r), where

m = max{maxr(Ci u Dj) | i, j ∈ {1, 2}} =
max{min{at-mostr(Ci), at-mostr(Dj)} | i, j ∈ {1, 2}}

and where S is the intersection of all sets of primitive concepts of the form prim(Ci u
Dj). Hence, S equals

⋂
{prim(Ci) ∪ prim(Dj) | i, j ∈ {1, 2}}. By distributing the

intersection over the union, S can be expressed as the union (prim(C1)∩ prim(C2))∪
(prim(D1) ∩ prim(D2)). The conjunction

d
A∈S A is therefore equivalent to the con-

junction
d

A∈prim(C1)∩prim(C2)
Au

d
A∈prim(D1)∩prim(D2) A. Due to the distributivity of

the maximum operation over the minimum operation, we obtain for the number in
the at-most restrictions:

max
{

min{at-mostr(Ci), at-mostr(Dj)} | i, j ∈ {1, 2}
}

=

min
{

max{at-mostr(C1), at-mostr(C2)}, max{at-mostr(D1), at-mostr(D2)}
}
.

Thus, we obtain for the whole conjunction of (negated) concept names and at-most
restrictions:

l

A∈prim(C1)∩prim(C2)

A u (≥ max{at-mostr(C1), at-mostr(C2)} r)

l

A∈prim(D1)∩prim(D2)

A u (≥ max{at-mostr(D1), at-mostr(D2)} r)
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By definition of the lcs, this conjunction is equivalent to the conjunction of lcs({Ci |
1 ≤ i ≤ 2}) and lcs({Dj | 1 ≤ j ≤ 2}).

Induction step d > 0: Since C1u· · ·uD2 is nice, two cases are distinguished, depending
on the restrictions on roles and number of role successors appearing on the outermost
role level. In the first case, all Ci and Di are of the form

d
A∈prim(Ci)

A u ∀r.C ′
i u (≤

at-mostr(Ci) r) and
d

A∈prim(Dj)
A u ∀r.D′

j u (≤ at-mostr(Dj) r), respectively. Then,

lcs({Ci u Dj | i, j ∈ {1, 2}}) is defined as

l

A∈S

A u ∀r.lcs({C ′
i u D′

j | i, j ∈ {1, 2}}) u (≤ m r),

where S again equals
⋂
{prim(Ci) ∪ prim(Dj) | i, j ∈ {1, 2}}. Analogously to the

case of d = 0, the set S can be expressed as the union of prim(C1) ∩ prim(C2) and
prim(D1)∩ prim(D2). For the at-most restriction we have m = max{maxr(Ci uDj) |
i, j ∈ {1, 2}} = max{min{at-mostr(Ci), at-mostr(Dj)} | i, j ∈ {1, 2}} we obtain for the
numbers in the at-most restrictions:

max
{

min{at-mostr(Ci), at-mostr(Dj)} | i, j ∈ {1, 2}
}

=

min
{

max{at-mostr(C1), at-mostr(C2)}, max{at-mostr(D1), at-mostr(D2)}
}
.

Since C1 u C2 u D1 u D2 is a nice concept description containing value restrictions,
we have no existential or at-least restrictions in the top-level of C1 u C2 u D1 u D2.
Thus ind-valr(Ei) = valr(Ei), if at-mostr(Ei) = 0 for Ei ∈ {C1, C2, D1, D2}. Due to
the induction hypothesis, the lcs in the value restriction is equivalent to lcs({Ci | 1 ≤
i ≤ 2}) u lcs({Dj | 1 ≤ j ≤ 2}). Since a conjunction in a value restriction may be
split into a conjunction of value restrictions, we obtain for the entire conjunction:

l

A∈prim(C1)∩prim(C2)

A u
l

A∈prim(D1)∩prim(D2)

A u

∀r.lcs({C ′
i | 1 ≤ i ≤ 2}) u ∀r.lcs({D′

j | 1 ≤ j ≤ 2}) u

(≤ max{at-mostr(C1), at-mostr(C2)} r) u

(≤ max{at-mostr(D1), at-mostr(D2)} r).

According to the definition of the lcs, this expression can be written as

lcs({Ci | 1 ≤ i ≤ 2}) u lcs({Dj | 1 ≤ j ≤ 2}).

In the second case, all ALCN -concept descriptions Ci and Dj are concept descriptions
of the form

d
A∈prim(Ci)

Au
d

C′

i∈exr(Ci)
∃r.C ′

i u (≥ at-leastr(Ci) r) and
d

A∈prim(Dj)
Aud

D′

j∈exr(Dj)
∃r.D′

j u (≥ at-leastr(Dj) r), respectively. Since C is nice and contains

existential or at-least restrictions, it does not contain at-most restrictions, thus the
only existential mapping induced is the identity mapping. Thus ind-exr(Ei) = exr(Ei)
for all Ei ∈ {C1, C2, D1, D2}. The least common subsumer lcs({CiuDj | i, j ∈ {1, 2}})
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then yields

l

A∈S

A u
l

E1 ∈ exr(C1) ∪ exr(D1),
E2 ∈ exr(C1) ∪ exr(D2),
E3 ∈ exr(C2) ∪ exr(D1),
E4 ∈ exr(C2) ∪ exr(D2)

lcs({Ei | 1 ≤ i ≤ 4}) u (≥ m r) (6.1)

with S as before. The number m is obtained in the dual way to the previous case
m = min{minr(CiuDj) | i, j ∈ {1, 2}} = min{max{at-leastr(Ci), at-leastr(Dj)} | i, j ∈
{1, 2}}. Due to distributivity, we obtain:

min
{

max{at-leastr(Ci), at-leastr(Dj)} | i, j ∈ {1, 2}
}

=

max
{

min{at-leastr(C1), at-leastr(C2)}, min{at-leastr(D1), at-leastr(D2)}
}
.

It is shown in Lemma 78 that every set {Ei | 1 ≤ i ≤ 4} in the conjunction (6.1)
is a superset of a set either of the form {C ′

1, C
′
2} with all C ′

i ∈ exr(Ci) or of the
form {D′

1, D
′
2} with all D′

j ∈ exr(Dj). Due to the monotonicity of the lcs (w.r.t.
subsumption) every expression lcs({Ei | 1 ≤ i ≤ 4}) is therefore more general than
either lcs({C ′

1, C
′
2}) or lcs({D′

1, D
′
2}) for appropriate existential restrictions C ′

1, C
′
2

or D′
1, D

′
2. Conversely, every set of the form {C ′

1, C
′
2} and {D′

1, D
′
2} occurs in the

above conjunction as one choice of Ei, with 1 ≤ i ≤ 4. Hence, the above existential
restrictions can be simplified, yielding

l

E1 ∈ exr(C1),
E2 ∈ exr(C2)

lcs(E1, E2) u
l

E3 ∈ exr(D1),
E4 ∈ exr(D2)

lcs(E3, E4).

Analogously to the previous case, the set S of atomic concepts can be written as a
union, yielding the following conjunction

l

A∈prim(C1)∩prim(C2)

A u
l

A∈prim(D1)∩prim(D2)

A u

l

E1 ∈ exr(C1),
E2 ∈ exr(C2)

lcs(E1, E2) u
l

E3 ∈ exr(D1),
E4 ∈ exr(D2)

lcs(E3, E4) u

(≥ min{at-leastr(C1), at-leastr(C2)} r) u

(≥ min{at-leastr(D1), at-leastr(D2)} r).

By definition of the lcs, this is equivalent to

lcs({Ci | 1 ≤ i ≤ 2}) u lcs({Dj | 1 ≤ j ≤ 2}).

o
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The above claim can again be generalized to larger conjunctions. Observe that by
Lemma 79 we in fact have a proof that the lcs can also be computed correctly in a
conjunct-wise fashion for nice concept descriptions. Thus the method of conjunct-wise
computation can also be employed to speed up the computation of the lcs.

We are now ready to show that approximating nice concept descriptions, as defined
in Definition 76, can be simplified to a conjunction of approximations. For the sake
of simplicity we restrict our attention to binary conjunctions.

Theorem 80. Let C u D be a nice ALCN -concept description.
Then c-approxALEN (C u D) ≡ c-approxALEN (C) u c-approxALEN (D).

The claim is proved by induction over the sum of the nesting depths of u and
t on every role level in C and D. For the induction step, a case distinction is
made depending on whether C or D are conjunctions or disjunctions. If at least
one concept description is a disjunction the approximation is defined as the lcs of all
ALCN -normalized and approximated disjuncts (if one of the concepts is a conjunc-
tion, it firstly has to be distributed over the disjunction). The main idea then is to
use Lemma 79 to transform single lcs calls of a certain form into a conjunction of lcs
calls which eventually leads to the conjunction of the approximations of C and D.

Proof. We give a proof by induction over the sum n of the nesting depths of u and
t on every role level in C and D.

Base case: n = 0. No conjunction or disjunction occurs at any position in C or D, im-
plying that C and D are nice ALEN -concept descriptions. Hence, c-approxALEN (C) ≡ C

and c-approxALEN (D) ≡ D. Since C uD is also an ALEN -concept description, we also
know that c-approxALEN (C u D) ≡ C u D. Consequently, c-approxALEN (C u D) ≡
c-approxALEN (C) u c-approxALEN (D).

Induction step: n > 0. Due to the definition of nice, three cases have to be distin-
guished.

1. C =
dk

i=1 Ci and D =
dl

j=1 Dj

The approximation to be considered is c-approxALEN ((
dk

i=1 Ci) u (
dl

j=1 Dj))
which can be flattened. The nesting depth of the argument concept thus has
decreased by 1 and we still have a nice concept. According to the induction
hypothesis, the result is therefore equivalent to

kl

i=1

c-approxALEN (Ci) u
ll

j=1

c-approxALEN (Dj)

which in turn is equivalent to

c-approxALEN (
kl

i=1

Ci) u c-approxALEN (
ll

j=1

Dj).

2. C =
⊔k

i=1 Ci and D =
⊔l

j=1 Dj

To compute c-approxALEN (C u D), the approximation algorithm at first trans-
forms the input concept into ALCN -normal form. The ALCN -normal form of C
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is of the form
⊔k′

i′=1 C ′
i′ with no disjunction on the top most role level of every

C ′
i′ . Similarly, the ALCN -normal form of D yields an expression of the form⊔l′

j′=1 D′
j′ . Hence, the ALCN -normal form of C u D is of the form

⊔

1≤i′≤k′; 1≤j′≤l′

(C ′
i′ u D′

j′)

The approximation c-approxALEN (C u D) then by definition equals

lcsALEN ({c-approxALEN (C ′
i′ u D′

j′) | 1 ≤ i′ ≤ k′, 1 ≤ j′ ≤ l′}).

As the maximum nesting depth in all of the occurring approximation expressions
has decreased, we may exploit the induction hypothesis and obtain

lcsALEN ({c-approxALEN (C ′
i′) u c-approxALEN (D′

j′) | 1 ≤ i′ ≤ k′, 1 ≤ j′ ≤ l′}).

According to Lemma 79, the lcs can be split into two lcs-expressions of the form

lcsALEN ({c-approxALEN (C ′
i′) | 1 ≤ i′ ≤ k′}) u

lcsALEN ({c-approxALEN (D′
j′) | 1 ≤ j′ ≤ l′})

which by definition of the approximation are equivalent to the conjunction of
two approximations, namely

c-approxALEN (
k′⊔

i′=1

C ′
i′) u c-approxALEN (

l′⊔

j′=1

D′
j′),

which is equivalent to c-approxALEN (C)u c-approxALEN (D), i.e., the separate ap-
proximation of the input concept descriptions.

3. C =
⊔k

i=1 Ci and D =
dl

j=1 Dj

Similar to the previous case. The ALCN -normal form of the input concept
yields an expression of the form

⊔k′

i′=1(Ci u
dl′

j′=1 C ′
j′). The approximation

c-approxALEN (C u D) therefore equals lcsALEN ({c-approxALEN (C ′
i′ u

dl′

j′=1 D′
j′)) |

1 ≤ i′ ≤ k′}). According to the induction hypothesis the approximation can be

split into lcsALEN ({c-approxALEN (C ′
i′) u c-approxALEN (

dl′

j′=1 D′
j′) | 1 ≤ i′ ≤ k′}).

Lemma 79 states that this lcs is equivalent to

lcsALEN ({c-approxALEN (C ′
i′) | 1 ≤ i′ ≤ k′}) u

lcsALEN ({c-approxALEN (
l′l

j′=1

D′
j′) | 1 ≤ i′ ≤ k′}).

The first lcs-expression is equivalent to the approximation of a disjunction while
the second one contains k′ equal concepts. We thus obtain

c-approxALEN (
k′⊔

i′=1

C ′
i′) u c-approxALEN (

l′l

j′=1

D′
j′).
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Hence, we end up with the conjunction of the separate approximations of the
form c-approxALEN (C) u c-approxALEN (D).

o

Due to Theorem 80 it is now possible to split the computation of approximations
into independent parts. Although this does of course not change the complexity class
of the approximation algorithm it is to be expected to be a significant benefit for actual
implementations. The improved approximation algorithm is displayed in Figure 6.3.
The algorithm requires the unfolded input concept to be in NNF. In the first step the
c-approxALEN function checks whether the approximation is trivial. If it is not, the next
step is to check whether the concept is nice. For nice concepts the c-nice-approxALEN
function is invoked. For all other concepts the ALCN -normal form is computed lazily,
i.e., the conjunctions are distributed over the disjunctions only for the current top-
level. Then the c-approxALEN algorithm proceeds as before for concepts that are not
nice. The c-nice-approxALEN function for nice concepts works similar. Having treated
the trivial cases, the second step is to test if the concept is a conjunction. In that
case the approximation is obtained by splitting the concept conjunct-wise and making
a recursive call for each conjunct. For all other nice concepts the approximation is
computed as in c-approxALEN , besides the recursive calls refer to c-nice-approxALEN and
thus all embedded conjunctions are approximated in the conjunct-wise fashion.

Observe that the test conditions for nice concepts can be checked in linear time
once the concept description is unfolded and in NNF. Unfolding and transforming the
concept description into NNF always have to be performed to apply c-approxALEN ,
i.e., testing whether a concept is nice is not much extra effort when approximating a
concept.

If an ALCN -TBox is to be translated into an ALEN -TBox, the concept description
on the right-hand side of each concept definition has to be replaced by its approxima-
tion. For practical applications with large TBoxes it is not feasible to perform such
a translation in a naive way. The idea for optimizing this procedure is to re-use the
approximation of a defined concept when approximating concept descriptions that in
turn make use of this defined concept. More precisely, if we have already obtained
the approximation of C and want to compute the approximation of, e.g., (D u ∃r.C),
we would like to be able to insert the concept description c-approxALEN (C) directly
into the right place in the concept description of c-approxALEN (D u ∃r.C). Unfortu-
nately, this approach does not work for arbitrary ALC-concept descriptions due to
possible interactions between different parts of the concept description. Nice con-
cepts, however, are defined in such way that rules out this kind of interaction. Hence,
besides speeding up the computation of a single approximation, the property of being
a nice concept also is a prerequisite for caching and more efficiently re-using already
computed approximations. For example, if the defined concepts C1, C2, C3 from the
following TBox (with A, B and D as primitive concepts)

T = { C1 = (∃r.¬A) t (∃r.B),

C2 = ∃r.(∀r.D t ¬E) u C1 u ¬B,

C3 = ¬ (∀r.∃r.(¬D u A) t ¬C1 t ¬C2) }
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Input: unfolded ALCN -concept description C already in NNF
Output: upper ALEN -approximation of C

c-approxALEN

1. If C ≡ ⊥, then c-approxALEN (C) := ⊥;
if C ≡ >, then c-approxALEN (C) := >

2. If nice-concept-p(C) then return c-approxALEN (C) := c-nice-approxALEN (C)

3. Otherwise, transform the top-level of C into ALCN -normal form C1 t · · · t Cn

and return

c-approxALEN (C) :=
l

A∈
Tn

i=1
prim(Ci)

A u

(≥ min{minr(Ci) | 1 ≤ i ≤ n} r) u (≤ max{maxr(Ci) | 1 ≤ i ≤ n} r) u
l

(C′

1, . . . , C
′

n) ∈
ind-exr(C1) × · · · × ind-exr(Cn)

∃r.lcsALEN ({c-approxALEN (C ′
i u valr(Ci)) | 1 ≤ i ≤ n}) u

∀r.lcsALEN ({c-approxALEN (ind-valr(Ci)) | 1 ≤ i ≤ n}).

c-nice-approxALEN

1. If C ≡ ⊥, then c-nice-approxALEN (C) := ⊥;
if C ≡ >, then c-nice-approxALEN (C) := >

2. If C = C1 u · · · u Cn, then return
c-nice-approxALEN (C) :=

dn
i=1 c-nice-approxALEN (Ci)

3. Otherwise, return

c-nice-approxALEN (C) :=
l

A∈
Tn

i=1
prim(Ci)

A u

(≥ min{minr(Ci) | 1 ≤ i ≤ n} r) u (≤ max{maxr(Ci) | 1 ≤ i ≤ n} r) u
l

(C′

1, . . . , C
′

n) ∈
ind-exr(C1) × · · · × ind-exr(Cn)

∃r.lcsALEN ({c-nice-approxALEN (C ′
i u valr(Ci)) | 1 ≤ i ≤ n}) u

∀r.lcsALEN ({c-nice-approxALEN (ind-valr(Ci)) | 1 ≤ i ≤ n})

Figure 6.3: The improved algorithms c-approxALEN and c-nice-approxALEN .
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are to be approximated and C1 is approximated first, then this concept description
can be re-used in subsequent approximations. If unfolded and transformed into NNF
the concepts C2 and C3 are nice concepts. Hence, the approximation of C2 is the con-
junction of c-approxALEN (∃r.(∀r.Dt¬E)) and c-approxALEN (C1) and c-approxALEN (B),
where the already computed approximation of C1 can be inserted directly. For C3 we
can re-use both approximations of C1 and C2 directly and only have to compute the
approximation of ∃r.∀r.(D t ¬A). Thus, the cost for approximating the entire TBox
is reduced heavily.

Implementation of nice test

The implementation of approximation for nice ALCN -concept descriptions requires few
changes in the implementation of the approximation algorithm. The major part to
implement is the function that tests for nice concept descriptions nice-concept-p. Since
this test has to be performed at the beginning of every approximation computation,
the implementation must be very efficient.

The procedure nice-concept-p in our implementation realizes the necessary condi-
tions for nice ALCN -concept descriptions from Definition 76. Our implementation
of the nice test employs a couple of optimizations. Firstly, some steps are only
taken on demand, such as unfolding and the transformation into NNF. Furthermore,
nice-concept-p stores information of a certain named concept, say C, in a so-called
info-table, where the key of this info-table is a path ρ and the value is the sub(C,ρ).
This enhances the checking of the conditions from Definition 76 ‘on-the-fly’. Suppose
that while unfolding and transforming concept C, we encounter the concept name A

inspecting Qr-path ρ. Then, we update the info-table of C by adding the concept
name A to the value of the key ρ. Before we add A, we first check whether adding
A violates Condition 2 in Definition 76. A similar procedure is carried out, if we
encounter number, value and existential restrictions during the unfolding and trans-
formation. Furthermore, our implementation does not only use dynamic programming
to re-use results obtained during the current computation on whether a concept is al-
ready known to be nice or not, but caches these results. Based on this cache the
already obtained information on whether a named concept is nice or not is re-used in
subsequent runs of nice-concept-p.

6.2.3 Reduction of redundant recursive calls

All computation algorithms for generalization inferences invoke recursive calls for tu-
ples from the cross product of the sets of (induced) existential restrictions of each input
concept (or in each disjunct respectively). For instance, for the ALE-approximation of
ALC-concept descriptions applied to the normalized concept description C = C1t. . .t
Cn this set of recursive calls is determined by (C ′

1, . . . , C
′
n) ∈ exr(C1)× · · · × exr(Cn).

In many cases it is likely that we obtain a set of redundant existential restrictions, if
we compute the approximation for all elements of this set (after the propagation of
value restrictions). This is especially likely when computing approximations, as the
following example illustrates.
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Example 81 (Redundant recursive calls). Let C = ∃r.Bu∃r.Du (A1 tA2 tA3),
then we obtain after the transformation into ALC-normal form the concept description
C ′ = (A1u∃r.Bu∃r.D)t (A2u∃r.Bu∃r.D)t (A3u∃r.Bu∃r.D). During the compu-
tation of the approximation of C ′ a naive realization of the approximation algorithm
would invoke calls for:

lcs (c-approxALE(B), c-approxALE(B), c-approxALE(B)) (6.2)

lcs (c-approxALE(B), c-approxALE(B), c-approxALE(D)) (6.3)

lcs (c-approxALE(B), c-approxALE(D), c-approxALE(B)) (6.4)

lcs (c-approxALE(B), c-approxALE(D), c-approxALE(D)) (6.5)

lcs (c-approxALE(D), c-approxALE(B), c-approxALE(B)) (6.6)

lcs (c-approxALE(D), c-approxALE(B), c-approxALE(D)) (6.7)

lcs (c-approxALE(D), c-approxALE(D), c-approxALE(B)) (6.8)

lcs (c-approxALE(D), c-approxALE(D), c-approxALE(D)) (6.9)

Obviously, the calls 6.3 to 6.8 yield the same result—namely the commonalities of (the
approximations of) B and D, since applied to the same set of arguments. The first and
last lcs calls are in way unnecessary, too, since they extract the commonalities of copies
of the same concept. It is easy to see that for complex concept descriptions B and D

a naive realization would take substantially longer to compute the approximation of
the existential restrictions than a version that reduces redundant calls in advance on
every role level.

Due to the close connection between approximation and lcs as expressed in Corol-
lary 31 it is clear that similar examples as the one above can be constructed for the lcs
as well. Example 81 does not capture redundant calls due to subsumption relation-
ships between the elements of different tuples. Pairs of subsumer and subsumee in the
same set exr(C) or in different sets exr(C1), exr(C2) result in tuples that yield redun-
dant concept descriptions and for which the computation can be omitted. However,
to avoid these cases it would be necessary to, first, minimize each set exr(Ci) w.r.t.
subsumption and, second, minimize the set of tuples obtained from the cross product
w.r.t. to subsumption. This results in exponentially many subsumption tests. Since
testing subsumption in ALE is NP-complete [DLN+92] (and is PSpace-complete for
ALEN [DLN+92], ALC [SS88] and ALCN [Hem01]), it is not advisable to reduce the
redundant calls by this method. Instead we address the cases illustrated by Exam-
ple 81, where redundant calls can be detected by simple syntactic comparisons. We
propose the following procedure to reduce redundant calls: let D be the set of tuples
obtained from exr(C1) × · · · × exr(Cn), then

1. remove duplicates in each (C ′
1, . . . , C

′
n) ∈ D.

2. remove for each remaining tuple (C ′
1, . . . , C

′
n) ∈ D those tuples (C ′′

1 , . . . , C ′′
n)

from D for which {C ′
1, . . . , C

′
n} ⊆ {C ′′

1 , . . . , C ′′
n}.

With this procedure applied, the calls generated for concept C from Example 81
are: lcs(c-approxALE(B)), lcs(c-approxALE(B), c-approxALE(D)) and lcs(c-approxALE(D)),
where the application of the lcs is trivial for the first and last call.
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In principle this kind of reduction can be performed in linear time using the results
on set inclusion from [Kat04]. However, we use an unoptimized implementation of the
reduction based on the built-in Common Lisp functions for sets.

Besides saving run-time by the reduction of redundant recursive calls, results also
in more compact concept descriptions returned by the computation, since fewer re-
dundant existential restrictions are generated.

6.2.4 Caching

An obvious idea to speed up computation is, of course, to keep and reuse results
obtained from earlier runs. In our application of the common subsumers, i.e., the
extension of DL knowledge bases, the knowledge engineer working on a specific sub-
domain of the ontology might invoke the computation of the common subsumer on the
same or similar concepts in the same session. For instance, if concepts from the sub-
domain under consideration share similar existential restrictions, then it is likely that
the same recursive calls are invoked for the computation of common subsumers for dif-
ferent sets of concepts. To speed up subsequent computations of common subsumers,
it is desirable to keep these concept descriptions and reuse them in the construction
of other common subsumers.

Even if the computation of the generalization inference is only invoked once, there
might still be cases where previous results can be employed in a dynamic programming
fashion. Consider Example 81 again, here obviously the results for c-approxALE(B) and
c-approxALE(D) should not be recomputed for each tuple, but should be computed only
once, cached and used again.

In order to use caching for generalization inferences, the main problem to be ad-
dressed is the generation of keys by which a cached value can be retrieved. The
straightforward idea is to use the input concept description to index the results, for
instance, on approximation. However, concept descriptions are not optimal keys for
this, since, even if in normal form, they are not represented in a unique way. Thus
cache misses can occur even if a result has been cached for an equivalent concept
description. To remedy this effect, one would need to implement a stronger version
of normal form that yields a unique representation of the concept description. To
obtain such a representation would result in eliminating all redundant parts from the
concept description and sort all con- and disjuncts. This is obviously not a method to
generate keys for a cache in a fast way, because it generates too much overhead when
storing and retrieving from the cache.

In case of the lcs (or scs) the solution for generating good keys for caching is even
more complicated, since here the natural idea is to index the results by the sets of
concept descriptions. We pursue this idea by removing duplicates from a collection
of input concepts and sorting them to obtain a unique representation of the set as an
input to the key generating function.

For our implementation we take a very simple approach to generating keys. We
simply use the concept description as an input to the built-in Common Lisp function
sxhash, that generates a compact key for the input. The return value of this function
is the same, if the two inputs are the same. Thus we do not obtain the same keys
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for equivalent (sets of equivalent) concepts. Nevertheless, for cases as encountered in
Example 81, the obtained key is the same and thus caching based on these keys should
result in a performance gain.

Our caching strategy is to cache all obtained results for the lcs, scs, acs and
approximation in separate hash tables. This simple method is surely not feasible for
very large knowledge bases and would need to be adapted for applications with this
kind of knowledge bases.

Obviously there are many different caching and key generation strategies to be
explored in order to optimize performance of generalization inferences. However, this
kind of investigation is beyond the scope of this thesis and remains future work.

The advanced use of caching for nice concepts was mentioned in Section 6.2.2.
This method reuses a cached result for a concept if another concept description that
is nice is to be approximated (or when the lcs of conjunctions of nice concepts is to be
computed), then the cached result can be used as a conjunct in the resulting concept
description directly.

6.2.5 Combinations of the optimization techniques

The four optimization techniques proposed to speed up the computation of general-
ization inferences cannot be combined arbitrarily to gain performance. In contrast
to this, some combinations enhance the efficiency of the optimizations employed. We
now take a look at those combinations, where interactions can occur.

Lazy unfolding and conjunct-wise computation. The test whether concepts
are nice requires that the concept descriptions are unfolded completely. Furthermore,
the test for nice concepts cannot be carried out ‘on demand’ role level-wise, since the
nice criterion has to hold for the whole (sub-)concept description and not just for the
current role level to apply conjunct-wise computation. Thus lazy unfolding cannot be
employed in combination with conjunct-wise computation to speed up generalization
inferences. The normalization process, however, does not interfere with the criterion
for nice concepts, thus normalization can be performed on demand, if conjunct-wise
computation is employed.

Lazy unfolding and caching. In the case of the lcs, where using lazy unfolding
can result in the use of names of defined concepts in the lcs concept description, the
values to be cached can be smaller, if lazy unfolding is used. Thus this combination of
optimizations can result in a better use of storage. Furthermore, equivalent concepts
are easier to recognize syntactically, if concept names are not unfolded.

Conjunct-wise computation and reduction of redundant recursive calls.
The use of conjunct-wise computation results in smaller concept descriptions handled
by the approximation procedure. In turn, this can diminish the overhead for reducing
redundant calls.
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Conjunct-wise computation and caching. As pointed out earlier, the conjunct-
wise computation allows to reuse cached results as conjuncts of the result concept
description if the input concept is nice. Thus the number of cases where a cached
result speeds up the computation of a generalization inference is increased by the use
of conjunct-wise computation and detection of nice sub-concepts.

Reduction of redundant recursive calls and caching. The reduction of redun-
dant recursive calls produces concept descriptions with less redundancy. On the one
hand this results in smaller values to be cached and on the other hand the generation
of keys is easier, if these two techniques are combined.

We implement the optimization techniques for those combinations that promise
to speed up the computation of generalization inferences overall. The conjunct-wise
computation is not combined with lazy unfolding in our implementation.

6.3 Implementation of the generalization inferences

In our implementation the representation of concept descriptions is done in a simple
way. They are represented as lists in prefix notation for the concept constructors
similar to the KRSS syntax [PS93]. The generalization inferences we consider in this
thesis require that the input concept description(s) are unfolded and normalized. Our
implementation of these steps can be used in lazy and eager mode. Unfolding for
primitively defined concepts, i.e., concepts for which only necessary conditions are
stated in the TBox, are unfolded by conjoining their definition to the concept name
instead of replacing it.

6.3.1 Implementation of the LCS

Recall from Chapter 3 that the lcs is often a subprocedure for other non-standard
inferences—as in our case for approximation. Thus an optimized implementation of
the lcs is the groundwork for the optimized implementation of other non-standard
inferences. The implementation described here is the successor of the lcs implemen-
tations for ALE described in [TM01; BT02a] and ALEN described in and [TK04b;
TK04a].

We implemented the lcs computation algorithm for ALEN discussed in Section 3.3.
This computation function is parameterized with the DL to be used. In case ALE
is the DL to be used, the function computes the ALE-normal form and omits the
computation of induced information specific to ALEN .

In contrast to the algorithm presented in Section 3.3, we implemented the lcs
algorithm as an n-ary function. Taking a set of concept descriptions instead of just
a pair, requires only one traversal of the concept descriptions in parallel, instead of
n−1 ones as in the binary case. Moreover, the computation of the binary lcs, applied
successively, might invoke computations of commonalities of concepts on deep role
levels that do not appear in the final result. The n-ary lcs stops to examine deeper
role levels as soon as one of the input concepts ends on the current role level.
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For the computation of the lcs in ALEN , the computation of induced information
is much more involved than for ALE . In particular, the computation of the induced
number restriction minr should be realized in a non-naive way. The definition of minr

(minr(C) := max{k | C v (≥ k r)}) suggests that this number can be obtained by
successive subsumption tests for increasing k. For minr the interval to test is between
the highest number mentioned in an at-least restriction and |exr(C)|. We implemented
the search for minr by nested intervals to keep the number of subsumption tests low.25

The computation of the induced existential and value restrictions is realized in a
straightforward way. Our implementation described in [TK04a] eliminates redundant
existential restrictions of the lcs after they are computed, which is of course less
efficient than avoiding redundant recursive calls in advance, which we do in the present
implementation.

6.3.2 Implementation of concept approximation

Our implementation of approximation at hand is an extension of the implementation
of approximation implementations described in [BKT02b] for ALC-ALE-approximation
and in [TK04a; TK04b] for ALCN -ALEN approximation.

The optimization techniques mentioned in the last section aside, our implemen-
tation is again a straightforward one. If a less expressive DL than ALEN (or ALE) is
chosen as a target DL, then, instead of removing sub-concept descriptions using the
undesired constructors afterwards, the target DL is taken into account directly. This
results in computation of induced information for all constructors of the source DL,
but no recursive call for concept constructors not supported in the target DL.

The approximation implementation uses the lcs implementation just described for
the recursive calls and computation of induced information, for instance to obtain
ind-valr. Thus, approximation should also benefit from the optimizations for the lcs.
In case caching is employed for approximation, we also use caching for the lcs.

An improved computation algorithm

Strictly speaking, the replacement of lcs calls by disjunction for the computation of
induced information of ALCN -concept descriptions already is an optimization, com-
pared to the approach pursued in [BKT02a]. One can carry this replacement further
by the use of Corollary 31 and use the equivalence

approxL2
(
⊔

1≤i≤n

Ci) ≡ lcsL2
(C1, . . . , Cn)

to avoid the lcs calls during the computation of approximation by simply making use
of disjunction. More precisely, the calls lcsL2

(
{approxL2

(Ei) | 1 ≤ i ≤ n}
)

can be
replaced by approxL2

(
⊔

1≤i≤n Ei). Applying Corollary 31 to the expressions for the

25This might seem to gain only little runtime, since most knowledge bases we encountered only use
relatively small numbers in number restrictions. However, if for example, number of seats in airbusses
are modeled, this procedure might pay.
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Input: ALCN -concept description C.
Output: ALEN -approximation D of C.

1. If C ≡ ⊥, then d-approxALEN (C) := ⊥

2. If C ≡ >, then d-approxALEN (C) := >

3. Otherwise, transform C into ALCN -normal form and return

d-approxALEN (C) :=
uA∈

T

i prim(Ci)A

u (≥ min{minr(Ci) | 1 ≤ i ≤ n} r)

u (≤ max{maxr(Ci) | 1 ≤ i ≤ n} r)

u
d

(C′

1
,...,C′

n)∈
ind-exr(C1)×···×ind-exr(Cn)

d-approxALEN
(⊔

1≤i≤n C ′
i u valr(Ci)

)

u ∀r.d-approxALEN
(⊔

1≤i≤n ind-valr(Ci)
)

Figure 6.4: The disjunction-based algorithm d-approxALEN .

recursive call of the ALEN -approximation algorithm yields:

lcsALEN
(
{approxALEN (Ei) | 1 ≤ i ≤ n}

)
≡ approxALEN

( ⊔

1≤i≤n

approxALEN (Ei)
)
.

Since by definition of approximation Ei v approxALEN (Ei) holds, and disjunction and
approximation are both generalization operations, we obtain:

approxALEN
( ⊔

1≤i≤n

Ei

)
v approxALEN

( ⊔

1≤i≤n

approxALEN (Ei)
)
.

Thus the replacement of the expression lcsALEN
(
{approxALEN (Ei) | 1 ≤ i ≤ n}

)
by

approxALEN (
⊔n

1≤i≤n Ei) does not yield a more general concept description. Clearly,⊔
1≤i≤n Ei v approxALEN

(⊔
1≤i≤n Ei

)
. Thus we obtain an alternative way to compute

ALE-approximations. To make this procedure more precise, we display d-approxALEN ,
the algorithm for ALEN -approximation of ALCN -concept descriptions obtained by this
replacement in Figure 6.4. It is clear that by the same kind of replacement one can
obtain a version of the computation algorithm for ALE-approximation of ALC-concept
descriptions that does use disjunction instead of computing the lcs.

The algorithm d-approxALEN does not yield a better method in terms of computa-
tional complexity, since it trades exponentially many lcs computations (of approxima-
tions of concepts bounded by the size of C) for a single approximation computation
of exponentially many disjuncts bounded by the size of C. However, in practice,
we would expect that d-approxALEN shows better performance, since it only considers
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existential and value restrictions common to all disjuncts, while c-approxALEN might
compute the approximation of some existential or value restriction of some Ci on some
role level l that is not considered later in the computation of the lcs since some other
approximations of Cj end on role level n ≤ l. Thus the possibly costly computation
of the approximation of the last l − n role levels is wasted in c-approxALEN (Ci). We
have not yet implemented this version of the approximation algorithm.

6.3.3 Implementation of the good common subsumers acs and scs

In case of common subsumers we typically extend a background terminology by a
user terminology. Thus, in principle, two TBoxes come into play. In our current
implementation we do not distinguish between the two TBoxes, but use the union of
their definitions as the underlying TBox. This requires that unfolding checks if the
definition of a concept uses concept constructors that are not supported by the user
DL and if so, unfolding leaves the concept name in the concept description instead
of replacing it by its definition. In case that ALE-unfolding is used (according Defini-
tion 67 on page 99), it is checked if the concept definition containing DL constructors
not from the user DL can be converted into a user DL concept descriptions by pushing
negation inwards. By this procedure more unfolding steps can be performed, which
in turn make more information form the background TBox explicit. The experiments
in [BST07] showed that ALE-unfolding results in more specific common subsumers in
a significant percentage of of cases.26

We have introduced three kinds of computation methods for obtaining good com-
mon subsumers in Section 5.4. We focus here on the implementation of the scs and
the acs. The implementation of the third method can be found discussed in detail in
the thesis of Sertkaya [Ser07].

In case of the approximation-based good common subsumer (acs) the implemen-
tation is very simple. First, ALE-unfolding has to be performed on each of the input
descriptions. Next, we build their disjunction as the input to the approximation func-
tion. We use the approximation function which translates to the DL offering the same
set of concept constructors as the user DL.

In case of the common subsumer based on subsumption closure (scs) our imple-
mentation also starts by performing ALE-unfolding for the input concept descriptions.
The actual scs function is in fact obtained from the lcs function by changing the way
(negated) concept names are treated. Instead of the intersection of (negated) concept
names, the intersection of the subsumption closures of the (negated) names is used.
For the computation of the subsumption closure of the concept names, we use the
function concept-ancestors and concept-descendants offered by most DL reasoners.
The function concept-ancestors (concept-descendants) retrieves the named concepts
that subsume (are subsumed by) a given input concept from the concept hierarchy.

As the lcs, the scs is also implemented as an n-ary operator. Furthermore the
same optimizations as for the lcs are implemented for this inference.

26The experiments in [BST07] resulted on the average in more specific common subsumers in about
12 % of the cases when ALE-unfolding was used.
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6.4 Implementation of heuristics for syntactic algorithms

We now turn to the second group of non-standard inferences devised or discussed in
this thesis: the difference operator for computing the difference between ALC- and
ALE-concept description and the computation algorithm for minimal rewritings in
ALE . Compared to the implementation of the generalization inferences, these imple-
mentations do not employ particular optimization techniques.

6.4.1 Implementation of the difference operator

We implemented the improved heuristic of the algorithm c-diff for computing the
difference of ALC- by ALE-concept descriptions as displayed in Figure 4.3 on page 80.
The improved heuristic uses c-diff(E, c-approxALE(valr(C)uvalr(D)) instead of the call
c-diff(E, valr(C) u valr(D)) in the last line of the c-diff algorithm.

We need the difference operator mainly to assess the information loss caused by
approximating a concept description. In this application of the difference operator the
original and the approximated concept description are already unfolded. Of course
in the general case, lazy unfolding and normalization are employed for this algorithm
also, since it proceeds role level-wise, too.

Implementation- and performance-wise the interesting part of the c-diff is the
reduction of the disjunction (Step 2 in c-diff) and the reduction of each disjunct of the
ALC-concept description in ALC-normal form (Step 3 in c-diff). In order to implement
the reduction of the disjunction is realized exactly as described in c-diff; generating a
quadratic number of subsumption tests in the number in disjuncts. The reduction of
the set exr is realized such that the most selective testing condition is applied first.
In the case of assessing the difference of a concept C and its approximation D it is
more likely that there are more concept descriptions in exr(C) that are redundant to
the concept descriptions from exr(D) than redundant concept descriptions in exr(C).
Thus we test Condition (ii) from c-diff before we test Condition (i) to reduce exr(C).

6.4.2 Implementation of minimal rewriting

We only introduced the non-standard inference minimal rewriting briefly in Sec-
tion 2.4.3. In a nutshell, the idea of the computation of a minimal rewriting w.r.t.
a TBox is to re-introduce names of defined concepts from the TBox in exchange for
complex sub-concept descriptions. Thus the effect of computing a minimal rewriting
is somewhat inverse to unfolding a concept description.

An algorithm to compute minimal rewritings of ALE-concept descriptions w.r.t. un-
foldable ALE-TBoxes has been devised in [BKM00]. The complexity of the proposed
algorithm is in NP with an oracle for subsumption. To obtain better performance in
practice the authors proposed a heuristic in [BKM00] that can compute (not neces-
sarily minimal) rewritings in polynomial time, again with an oracle for subsumption.

The algorithm to compute minimal rewritings for ALE-concept descriptions as well
as the heuristic for it proceed in two phases:
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1. Extension phase: (negated) concept names that subsume sub-concept descrip-
tions of the input ALE-concept description are conjoined to those sub-concept
descriptions.

2. Reduction phase: redundant complex concept descriptions are removed from the
concept description recursively.

The heuristic algorithm performs these phases interlaced and proceeds by a greedy
heuristic. In the reduction phase the conjunction of names of defined concepts obtained
from the extension phase are copied, unfolded and stored as the so-called context. The
reduction phase removes sub-concept descriptions that are redundant to this context.
This phase basically performs steps that are very similar to the difference operator.
In order to obtain a polynomial procedure, it is important to use lazy unfolding for
the context by this rewriting procedure.

Interestingly, this procedure can be employed for obtaining smaller rewritings for
ALE(T )-concept descriptions as well, since the first phase only conjoins concept names
or their negation (which possibly stand for ALC-concepts, if defined in the background
terminology) and the second phase only removes parts of the concept description. Thus
no concept constructors used in the background TBox that are not covered by the user
DL, are added to the concept description.

In our application of extending DL knowledge bases the rewriting implementa-
tion would be employed to compute small representations of ALE-concept descriptions
obtained by the lcs, approximation, acs or scs.

6.5 The non-standard inference system Sonic

The non-standard inference system Sonic 27 implements a collection of non-standard
inferences and offers these inferences to users by plug-ins for ontology editors. More
precisely, Sonic consists of the Sonic server and the Sonic front-end, both of which
we describe in more detail in the following.

6.5.1 The Sonic server

The server implements the inferences discussed in this thesis and the programming
interfaces for their use. In particular, Sonic comprises the implementations of in-
ferences described in this chapter and concept matching for ALE (for a description
of the concept matching algorithm for ALE see [BK00]). The implementation of this
inference was done by Brandt and is described in [Bra03; Bra06]. By means of this
implementation Sonic is also capable of supporting ‘extension by modification’ for
DL knowledge bases, that we described in Section 1.2.2, to some extent.

Furthermore, the Sonic server implements an approach to obtain the hierarchy
of least common subsumers without computing the actual lcs concept descriptions.
This approach was initially described in [BM00]. The idea is that the modeler picks a
collection of concepts C1, . . . , Cn that promise to yield a lcs that extends the concept

27
Sonic is an acronym for simple ontology non-standard inference component.
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hierarchy in a desired way. Then, by attribute exploration from concept analysis, the
subsumption lattice of the lcs concepts of all subsets of {C1, . . . , Cn} is computed. This
is an interactive method that has to ask some subsumption relations of the elements
from the (prospective) lattice during computation. In our case these questions are
of the form: ‘Does the lcs of Ci1 , . . . , Cim subsume the lcs of Cj1 , . . . , Cjk

?’, where
the arguments are from the set of concepts selected by the user. To answer this kind
of questions the lcs computation function is invoked. However, attribute exploration
asks a minimal number of these questions. Moreover, some of these questions can
be answered by exploiting subsumption or subset relations between the arguments
from the least common subsumers in question—as for example in ‘Does the lcs of
C1, C2, C3, C4 subsume the lcs of C1, C2?’, where the answer obviously is ‘yes’. Once
the subsumption lattice is obtained and displayed to the modeler, she can see whether
the set of picked concepts contains a concept that causes the lcs to be >. Based on
this lattice the choice of a good subset of lcs arguments can be made without having
to compute all (or many) of them by individual lcs calls.

The Sonic server needs to be connected to a standard DL reasoner in order to
compute inferences. Moreover, if Sonic is used via the Sonic ontology editor plug-
in, then it is advantageous to connect to the same instance of the reasoner that the
ontology editor uses also in a three-tier fashion. In such a setting the ontology only
needs to be stored and classified in one reasoner. To this end Sonic is equipped with
several interfaces. Sonic supports the DIG 1.0 interface [BMC03] and a TCP-based
interface (LRacer [Rac05]) to RacerPro. If the Sonic server is to be used without
the plug-in, then this three-tier architecture is unnecessary and then, since also being
a common lisp system, RacerPro can be used directly via in-process lisp calls. This
last setting shows much better performance because of the many queries Sonic has
to make to the standard reasoner.28

In the next version Sonic will support the DIG 2.0 interface [TBK+06]. On
the one hand this interface can be used for connecting to to DIG 2.0 compliant DL
reasoners. On the other hand, and more importantly, Sonic will support the non-
standard inference extension of the DIG 2.0 interface [TBK+06]. By means of this
extension other applications will be able to use the Sonic reasoning services.

6.5.2 The Sonic front end

This part of Sonic supplies a GUI for employing non-standard inferences from within
an ontology editor. The Sonic front end of the first release of Sonic [TK04a;
TK04b] was tailored to the ontology editor OilEd [BHGS01]. Later the ontology
editor Protégé [GMF+03] became more popular and the de-facto standard ontology
editor of today. This editor can be extended with different plug-ins. From the DL
perspective the OWL plug-in [KMR04] is the most notable one, since it supports the
editing of and reasoning with OWL ontologies by connecting to a DIG compliant DL
reasoner. The more recent versions of Sonic [Tur05] provide a plug-in for Protégé

only.

28Tests have shown that Sonic, if the DIG or the TCP interface is used, spends about 80 % of its
computation time for communicating with the DL reasoner.



6.5. THE NON-STANDARD INFERENCE SYSTEM SONIC 129

Figure 6.5: Sonic’s commonalities panel.

The Sonic front end is written in Java and implements the GUI of the plug-in
and the interface to the Sonic server. It provides four panels that can be activated
individually:

The approximation panel supplies access to the concept approximation imple-
mentation. This panel allows the user to select a concept name from the ontology
and invoke approximation for this concept. The resulting concept description is then
displayed as a syntax tree to the user. This syntax tree can be edited by removing
sub-concept descriptions from the tree. Furthermore, the concept description can be
assigned a name and be added to the ontology as a new concept definition.

The commonalities panel supplies computation of commonalities by the lcs or
the scs. The panel is displayed in Figure 6.5. The user can set the option which of the
two inferences should be employed. Furthermore, it can be chosen under preferences,
whether the result of the inference should be compressed by rewriting. To compute
commonalities the user can select a set of concept names from the list of all concepts
present in the ontology to invoke the computation. Similar to the approximation
panel, the resulting concept description is displayed as a syntax tree as can be seen in
Figure 6.5. The user can remove unwanted sub-concept descriptions from this concept
description, can assign a name to the obtained concept description and add it to the
ontology.

Furthermore the commonalities panel supports the choice of interesting concept
sets to be generalized by the lcs. Here the user can select a set of concept names for
which the lcs is of interest. Sonic displays the subsumption lattice of all subsets of
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the set of selected concepts as a graph by the use of the Grappa Java Graph Package
[Res]. Then the modeler can invoke the computation of the lcs concept description
for interesting subsets of the selected concepts.

The matching panel of the Sonic front end allows to access the service to compute
matchers based on the ALE-matching algorithm implementation described in [Bra03;
Bra06]. Here, the user can enter a concept pattern for which the matchers present
in the ontology are computed by the Sonic server. To rule out an overlap of the
sets of concept names and variable names, the Sonic matching panel offers a preset
set of five variables to formulate a concept pattern. The matching concepts from the
ontology for the specified concept pattern are displayed in a list to the user.

In its current form the Sonic front end provides support for the following methods
to extend DL knowledge bases:

• the bottom-up extension by offering the lcs, approximation and rewriting,

• the customization of background knowledge bases by the scs, and

• the extension by modification by finding matchers.

In case disjunction is used in the knowledge base, the modeler first invokes the compu-
tation of concept approximation of the concepts for which a non-trivial lcs is desired
and then invokes the computation of the lcs to obtain a meaningful lcs, that can be
edited.

The GUI of the Sonic front end is clearly a prototype. It is not tailored to the
process of any of the extension approaches. To this end an ‘extension wizard’ that
guides the user through the process of coming up with a suitable concept description
for a new definition and uses the inferences depending on the DL(s) employed com-
petently might be more helpful for naive users than the plain panels. However, the
usefulness of the inferences for the proposed tasks can be demonstrated by the Sonic

front end in its current form.
With the described implementations at hand the implementation of the generaliza-

tion inferences in the Sonic server are no longer just a prototype implementation, but
can count for optimized implementations despite the fact that they are using a simple
representation of concept descriptions. Furthermore, our implementation provides a
good test-bed for experiments to optimize these inferences further. Before focussing
on the performance of the inferences, one should examine the quality of the proposed
approaches, which we do in the next chapter.



Chapter 7

Evaluation of the common

subsumer approaches

In this chapter we present a comparative evaluation of the approaches to obtain non-
trivial common subsumers developed in this thesis. The underlying inferences to sup-
port the computation of common subsumers as well as the inferences to complement
the approaches are implemented and are evaluated in regard of their usefulness with
respect to their application: the extension of DL knowledge bases. This implies for
our evaluation that the test data should be from practical applications than randomly
generated. Next, we describe the test data employed in our tests and then we discuss
the experiments and their outcome.

7.1 The test data

We test our implementation of the inferences on concept definitions stemming from
two knowledge bases used in practical applications. In contrast to automatically gen-
erated test data this input knowledge bases is more similar to the concept descriptions
used in our application scenario for the inferences that we want to test. Randomly
generated input data tends to highlight effects not necessarily appearing in practice.
Furthermore, the structure of the knowledge base and its concept definitions influences
strongly the outcome of the generalization inferences. For instance, if the TBox con-
tains a lot of redundancy in the concept definitions, the resulting concept descriptions
will do so, too. The usefulness of conjunct-wise approximation, for example, cannot
be assessed by randomly generated data, since we would need to know whether and
if, how often nice concept descriptions appear in practical knowledge bases.

For our test of the computation of common subsumers w.r.t. a background termi-
nology, we assume an empty user TBox and thus can use the same underlying TBoxes
as for the tests for the approximation-based approach. In the following we introduce
the two knowledge bases used in our experiments.
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The DICEDICEDICE knowledge base

The DICE 29 TBox, is a medical knowledge base from the intensive care domain mod-
eling reasons for admission in intensive care, see [CAH03; CAH04]. The DICE knowl-
edge base has been developed at the department of Medical Informatics at the Aca-
demic Medical Center in Amsterdam since the late 1990s.

This knowledge base models 1456 reasons for admission that comprise both diseases
and procedures that require intensive care and monitoring of patients. It contains 34
roles and about 3500 concepts, of which 3249 have a (in most cases primitive) defi-
nition. These definitions yield an unfoldable TBox—acyclic with (primitive) concept
definitions only. Originally, this TBox uses the DL ALCQ and disjointness statements.
We use a variant of the DICE TBox for our testing.

DICEALC is the TBox obtained from the DICE TBox by removing the disjointness
statements from the TBox and and by deleting the sub-concept descriptions that
are (qualified) number restrictions.

We want to employ the syntactic operators for our evaluation and since they are only
available for ALE , we do not use number restrictions in our tests.

The OntoCAPEOntoCAPEOntoCAPE knowledge base

The OntoCAPE 30 knowledge base is developed at the Chair for Process Systems Engi-
neering at RWTH Aachen University. It models concepts from the process engineering
domain, such as chemical reactions, parts of chemical plants and also mathematical
models to describe the behavior of the systems. The OntoCAPE knowledge base is
designed in the layered fashion that we mentioned in Section 1.1.3, see also [MYM07].
It contains 575 (in most cases primitive) concept definitions.

Originally, this TBox uses the DL SHIQ(D), i.e., concept constructors from ALCQ
in combination with data types, role declarations for inverse roles and transitivity and
domain and range restrictions for roles and attributes. Moreover, it contains GCIs
and cyclic definitions. Again, we use a variant of the OntoCAPE TBox that use only
concept constructors the generalization inferences and the syntactic operators can
handle:

OntoCAPEALC is the TBox obtained from the OntoCAPE TBox by removing the
GCIs, role declarations, data-type statements and deleting sub-concept descrip-
tions that are number restrictions. Furthermore, we changed two concept def-
initions by removing sub-concept descriptions, such that an acyclic TBox was
obtained.

The test concept sets for the computation of common subsumers

To evaluate the approaches for the computation of common subsumers in presence
of disjunction and the inferences that realize them, we need sets of concepts that

29DICE is an acronym for: Diagnoses for Intensive Care Evaluations.
30The name OntoCAPE stems from ONTOlogy-based Computer Aided Process Engineering.
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nr. of concepts nr. of definitions nr. of test tuples

DICEALC 3500 3249 75

OntoCAPEALC 588 575 60

Table 7.1: Test data overview.

we can use as input for the common subsumer inferences in our tests. We selected
these input sets by first classifying the test ontology and then identifying concepts
with many concept children, i.e., direct subsumees. From this set of direct subsumees
we picked subsets randomly, which are the input test data for our evaluation of the
common subsumer inferences.

The idea behind this way of selecting the input is to simulate the application of
the bottom-up approach, where unbalanced concept hierarchies are augmented with
new concepts to obtain a more tree-like concept hierarchy by introducing a new parent
concept for sibling concepts. So, by identifying concepts with many concept children,
we focus on a part of the concept hierarchy that a knowledge engineer might select for
an extension by an intermediate concept. Moreover, by this way of selecting the input
sets, we guarantee that no trivial common subsumers are obtained, that collapse to >.
We would always obtain at least the common parent concept—thus the computation
of common subsumers of our test sets is not completely trivial.

We randomly picked 75 such concept sets in the above described fashion from
DICEALC and 60 such sets from OntoCAPEALC . Each of the sets contains 2 to 7
concept names.

Test environment

We ran our tests on a standard PC with 500MB of memory under Linux. The Lisp
source code for the inferences was compiled and ran under Allegro Common Lisp 8.0.
As the underlying standard reasoner we used RacerPro (Version 1.9.1) also compiled
under Allegro Common Lisp 8.0, where the calls to the reasoner were performed as in
process calls.

7.2 Evaluation of the precision of common subsumers

To evaluate the usefulness of the concept descriptions obtained by the inferences for
computing common subsumers, we concentrate on the precision of the obtained re-
sult. Here, precision is to be understood in terms of information loss between the dis-
junction of the input concepts—the trivial least common subsumer—and the concept
description obtained by applying one of the techniques for the ‘meaningful common
subsumer’. We proceed by evaluating the precision of the two approaches individually.

To assess the precision of the concept descriptions obtained by the common sub-
sumer we proceed by testing whether the trivial lcs, i.e., the disjunction of the input
concepts, is equivalent to the common subsumer obtained by the approximation-based
approach, the scs or the acs. If not, we can estimate which information was lost for
the approximation-based approach in a second step by computing the difference for
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the unfolded trivial lcs and the approximation-based lcs, i.e., the concept descrip-
tion obtained by first approximating each input concept description in ALE and then
computing their lcs. Since the difference operator as introduced in Section 4.3 was
devised for the syntactic difference of ALC- by ALE-concept descriptions, we use the
ALC-ontologies DICEALC and OntoCAPEALC and the concept sets of defined concepts
obtained from these two TBoxes for this kind of tests.

In our setting the acs yields equivalent concept descriptions to the ones obtained
by the approximation-based approach. The acs is obtained by unfolding the ALE(T )-
input concepts completely, yielding ALC-concept descriptions and then applying the
ALE-approximation to the disjunction of the unfolded input concept descriptions. The
equivalence

approxALE
( ⊔

1≤i≤n

Ci

)
≡ lcsALE

(
{approxALE(Ci) | 1 ≤ i ≤ n}

)

is the one we used to devise d-approxALE . Although the concept descriptions ob-
tained by the two methods need not be the same syntactically, the evaluation of the
approximation-based approach based on the difference operator carries over to the acs
to some extent.

For the subsumption closure-based common subsumer (scs) computed w.r.t. a
background terminology we cannot use the difference operator to assess the infor-
mation loss, in case the common subsumer obtained by these methods is more gen-
eral than the trivial lcs. To see the reason for this, consider the following exam-
ple where the TBox is T = {A = B t C} and we are interested in the lcs of
C1 = B u ∃r.D and C2 = C u ∃r.E. Then the lcsALC(C1, C2) = C1 t C2, while
the scsALE(T )(C1, C2) = A u ∃r.D u ∃r.E. Both concept descriptions are equivalent,
but the difference operator would return the syntactic difference between them. In
this case the syntactic difference is misleading to assess the information loss. Applying
the difference operator to the unfolded concept description obtained by the scs is not
possible either, since it is an ALC-concept descriptions for which we would need a
difference operator that can compute the syntactic difference between ALC-concept
descriptions.

7.2.1 Precision of the approximation-based approach

To evaluate the precision of the approximation-based approach, we computed for each
concept set S = {C1, . . . , Cn} in the test data the following concept descriptions:

1. the trivial lcs: the disjunction of the concepts in the concept set unfolded w.r.t.
the underlying TBox: lcsALC(C1, . . . , Cn) = unfold(

⊔
1≤i≤n Ci).

2. the approximation-based lcs: the ALE-lcs of the set of ALE-approximations of
each ALC-concept from the concept set:
lcsapprox(C1, . . . , Cn) = lcsALE

(
{c-approxALE(Ci) | 1 ≤ i ≤ n}

)
.

3. the syntactic difference of the trivial lcs and the approximation-based lcs:
Dapprox = diff(lcsALC(C1, . . . , Cn), lcsapprox(C1, . . . , Cn)).
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lcsALC < lcsapprox

DICEALC 36 (48,0%)

OntoCAPEALC 8 (12,3%)

Table 7.2: Comparison of lcsALC and lcsapprox .

|lcsALC | |lcsapprox | |diff(lcsALC , lcsapprox)| diff(. . . ) ≡ >

DICEALC 68,1 7,4 14,7 39 (52,0%)

OntoCAPEALC 32,2 2,2 15,4 50 (83,3%)

Table 7.3: Applying the difference operator to lcsALC and lcsapprox .

We ran these tests for the DICEALC and the OntoCAPEALC test data. Table 7.2 shows
in the first column the number of cases where the trivial lcs is strictly more specific
than the concept description obtained by the approximation-based approach. In these
cases information captured in the trivial lcs, common to all input concept descriptions
was lost when computing the lcs of the ALE-aproximations of the concept descriptions.
It shows that information is lost in 48% of the cases tested for the DICEALC TBox and
12,3% for the OntoCAPEALC TBox.

The Table 7.3 shows the average concept size of the trivial lcs, of the approximation-
based lcs, and of their difference obtained by the heuristic for computing the difference.
It shows for both test TBoxes that the difference between the lcsALC and the lcsapprox

results in concept descriptions a couple of times larger that the lcsapprox itself. This
might seem a daunting result at first, but recall that the heuristic for computing the
difference applied to concept description with redundancy yields a syntactic difference
with redundancies. In fact, we obtained a difference equivalent to > in the majority of
the cases for both TBoxes (see last column). Thus the concept sizes for the difference
give a biased picture of the quality of lcsapprox .

In 75 of the test cases for the DICEALC TBox we obtained a concept name as
the result of applying the approximation-based approach, which indicates that the
common parent concept of the concepts from the tuple was obtained as their common
subsumer. For the OntoCAPE knowledge base 11 such cases were found. In regard of
our application scenario these are the cases where no new node is introduced in the
concept hierarchy and the modeler would have to revise her choice of input concepts.

7.2.2 Precision of the common subsumers for background ontologies

For the evaluation of the precision of the common subsumers computed for the cus-
tomization of background terminologies we examine the same quality criteria as above
for the computation of the scs and the acs, for an evaluation for the gcs as introduced
in Section 5.4.1, see [Ser07].31 To assess the precision in this setting, we can only refer

31The somewhat discouraging results in [BST07] regarding the sizes of TBoxes that can be handled
by the FCA based method are superseded by the results in [Ser07]. In the forthcoming thesis of
Sertkaya an improvement by two orders of magnitude is achieved for the number of expert calls the
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lcsALC < scs lcsALC < acs scs < acs

DICEALC - 36 (48,0%) 36 (48,0%)

OntoCAPEALC 2 ( 3,1%) 8 (12,3%) 52 (80,0%)

Table 7.4: Subsumption relationships between lcsALC , acs and scs.

to the subsumption relationships between the obtained concept descriptions, since the
difference operator does not yield meaningful results in this setting for the reasons
explained earlier. We computed for each concept set S = {C1, . . . , Cn} in the test
data:

1. the trivial lcs: the disjunction of the concepts in the concept set unfolded w.r.t.
the underlying TBox: lcsALC(C1, . . . , Cn) = unfold(

⊔
1≤i≤n Ci).

2. the approximation-based gcs: the acs of the disjunction of ALE(T )-concepts from
the concept set:
acs(C1, . . . , Cn) = c-approxALE(

⊔
1≤i≤n Ci)

3. the subsumption closure-based gcs: the scs of the concept set:
scs(C1, . . . , Cn)

We computed these concept descriptions for the tuples from the DICEALC and the
OntoCAPEALC test data. We checked for the subsumption relations between the ob-
tained concept descriptions. The results are displayed in Table 7.4. The first two
columns show the number of cases, where scs (acs) is more general than the trivial
lcs. It shows, that the scs is only in two cases more general than the lcs and thus does
result in hardly any information loss for our test data.

For the acs, we obtain the same information loss, as for the approximation-based
approach. Interestingly, the scs results always in a more specific concept description
than the acs, if the two are not equivalent. This is somewhat different from the results
in [BST07], where also cases appeared in which the acs was more specific than the
scs.

In this setting we obtained only 8 trivial acs concept descriptions, i.e., concepts
that collapsed to the common parent concept. For the scs this number of collapsed
concepts is 2. Regarding the precision of common subsumers, the scs showed the best
performance on our test data.

7.3 A look at the performance

In Table 7.5 we see the average run-times measured for the different ways to obtain
common subsumers. These run-times were obtained by using an implementation that
realizes lazy unfolding. It shows that with this optimization technique applied alone
the run-times for our examples from practical applications are in most cases below 1,5
seconds. This is already an acceptable run-time for interactive use—where run-time

FCA based method needs, which reduced the overall run-time drastically.
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lcsALC lcsapprox acs scs

DICEALC 1,34 6,52 1,39 0,23

OntoCAPEALC 0,15 0,29 0,15 0,03

Table 7.5: Average run-times of lcsALC , lcsapprox , acs and scs (in s).

measured for lcsapprox might be seen as an exception. However, it is, again the scs

that shows the best performance, when comparing the three approaches to obtain
non-trivial common subsumers. It only uses a fraction of the run-times of the other
common subsumers. Surprisingly, the computation of the scs is even faster than the
trivial lcs. This effect is due to ALE-unfolding, where the input concept description
is not necessarily unfolded completely (if concept definitions are encountered that
cannot be transformed into an ALE-concept by De Morgan’ rules), while the trivial
lcs is obtained by unfolding the disjunctions of the input concepts completely.

The results also indicate that concept approximation is the inference that would
benefit most from an optimized implementation. A through evaluation of the perfor-
mance gain of the individual techniques discussed in Section 6.2 and their possible,
meaningful combinations is out of scope of this thesis. Nevertheless, we would like to
pick up a question raised in Section 6.2.2 here. In order to be able to apply conjunct-
wise computation for approximation, we have to test whether a concept description is
nice. Although the conditions for this test have been relaxed in Section 6.2.2, the ques-
tion still is: do the concept definitions from application knowledge bases contain nice
concepts? An investigation of the DICE and the OntoCAPE knowledge base showed
that nice concepts do appear in knowledge bases from applications [TB07]. In case of
the DICE knowledge base, 13,2% of the concepts are nice. The OntoCAPE knowledge
base contains even about 35% of nice concepts. Thus conjunct-wise approximation
might help to obtain better run-times for approximation computed w.r.t. knowledge
bases obtained from practical applications.

Our evaluation of the common subsumer approaches showed that the common sub-
sumers obtained by applying the lcs to the concepts obtained by approximation per-
forms well. In more than half of the cases the approximation-based approach captures
the full information of the trivial lcs. Similarly, the here proposed approaches for the
computation of common subsumers w.r.t. a background knowledge base performed
well w.r.t. precision of the result. While the acs yielded concept descriptions that
capture the information common to all input concepts completely in at least more
than the half of the cases, the scs turned out to miss hardly any information on
our test cases. Moreover, comparing the two approaches for obtaining good common
subsumers w.r.t. a background knowledge base, it showed that the scs yields a more
specific concept description than the acs in up to 80% of the cases. Since the scs

showed also the best performance for computation times of the three common sub-
sumers. To sum up, the scs seems to be an excellent alternative for the ALE(T )-lcs
for which we could not devise a constructive computation method in this thesis.
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Chapter 8

Conclusions and future work

8.1 Discussion and conclusions

In this thesis we have investigated methods to compute non-trivial common subsumers
in the presence of disjunction. The main motivation for this endeavor is the support
of naive users of DL knowledge representation systems in building and maintaining
their DL knowledge bases. In particular, it has been noted by users from different
application domains that unbalanced concept hierarchies are an obstacle when brows-
ing in and working with ontologies. The computation of least common subsumers is
an inference service to address this problem in the following way: if the user selects
a couple of sibling concepts for which she wishes to introduce a new super-concept
in order to obtain a deeper structure for the concept hierarchy, such a concept can
be obtained by computing the lcs of the selected concepts. The resulting concept
description is then offered to the modeler to inspect, edit and add it to the knowledge
base.

However, in cases where the underlying DL offers disjunction the result of the
computation of the lcs is trivially the disjunction of the input concepts, which provide
no insight on the commonalities shared by the selected concepts. In this thesis we
investigated two approaches to remedy this problem. Each of the approaches is tailored
to one application scenario to extend DL knowledge bases.

Supporting the bottom-up approach for extending knowledge bases, we pro-
pose to proceed in a two step procedure to obtain non-trivial common subsumers. We
first ‘translate’ each of the selected input descriptions into a DL L2 that does not offer
disjunction and then compute the lcs in the DL L2. To this end we have introduced the
non-standard inference concept approximation, that realizes the translation between
different DLs. In this thesis we have provided a formal definition of this new infer-
ence service, devised computation methods for concept approximation for two pairs
of DLs. In particular, we have devised computation methods for ALE-approximations
of ALC-concept descriptions and for ALEN -approximations of ALCN -concept descrip-
tions. Since these methods build on the computation of the lcs, the complexity of the
lcs gives a lower bound for the approximation methods. More precisely, the computa-
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tion of ALE-approximations is necessarily worst case exponential, while the algorithm
for computing ALEN -approximations is at least a double-exponential time algorithm.

To assess the information loss due to first approximating the input concepts, we
proposed a syntactic difference operator. Given an ALC- and an ALE-concept de-
scription this operator identifies the sub-concept descriptions that are captured in the
ALC-concept description alone. We have devised a heuristic algorithm to compute
the difference of ALC- by ALE-concept descriptions.

Supporting customization of background terminologies requires to deal with
two kind of DLs: the ‘user DL’ with few concept constructors and the ‘background
DL’, where more concept constructors including disjunction are provided. We have
investigated in depth the instance of this framework where the user DL is ALE and the
background DL is ALC. We have shown for this constellation that the lcs does not
exists if the background ontology contains GCIs or is cyclic. In case the background
ontology is acyclic the lcs does always exists. However, no constructive method for
computing these least common subsumer could be devised. Instead we resort to
compute ‘good common subsumers’, which need not be least. In this thesis we have
described three different methods to obtain good common subsumers and two of these
methods were investigated in depth in this thesis. The acs uses approximation to
obtain a common subsumer w.r.t. background knowledge bases. The other method to
compute good common subsumers is based on the computation of the subsumption
closure is the scs. Since the method for the scs is only based on subsumption relations
from the background TBox, this method can even be employed for cyclic TBoxes or
TBoxes with GCIs.

In this thesis we have described our implementation of the inferences proposed here.
Furthermore, we have devised a set of optimization techniques that are applicable for
the computation of common subsumers as well as for approximation. Some of these
techniques are already successfully applied for standard inferences, while the conjunct-
wise computation, for instance, is a new technique tailored to the computation of
approximation.

Since all of the three algorithms to obtain non-trivial common subsumers in the
presence of disjunction might not capture all the commonalities of the input exactly,
but might lose some information, we provided an evaluation of the precision of these
algorithms. The test knowledge bases used in our experiments were obtained from
practical applications. The test data was chosen such that it resembles the cases
encountered in the application scenario. It showed in our tests that:

• It is feasible to employ the here proposed inferences, despite their computational
complexity to compute common subsumers w.r.t. TBoxes of realistic size.

• The approximation based method to compute common subsumers, does capture
the exact lcs in more than the half of the cases encountered in our experiments.

• The acs performs similarly well as the approximation based approach and the
scs yields even more specific common subsumers than the acs. There were only
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very few cases encountered in our test suite where the scs was more general than
the trivial lcs.

• The average run-times measured for the computation of the three different meth-
ods, were mostly below 1,5 seconds, with the exception of approximation, which
took 6,5 seconds on the average for the larger one of our test knowledge bases.

Our implementation demonstrates that the here proposed methods can perform well
enough to permit interactive use and provide a good starting point for the modeler to
introduce new concept definitions.

The implementations of the non-standard inferences (NSI) investigated in this
thesis are, among others, provided by our non-standard inference system Sonic. By
the implementation of the different NSIs Sonic can provide reasoning support also
for ‘extension by import’ and ‘extension by modification’— besides the bottom-up
approach and the customization approach.

8.2 Directions for future work

On the theoretical side one main direction for future work is to extend the here pro-
posed inferences to more expressive DLs and TBox formalisms. It is clear from the
results in [Baa03b], that the lcs w.r.t. cyclic TBoxes does not need to exist even for DLs
only offering conjunction and existential restrictions. However, as we saw for unfold-
able TBoxes, the approaches to compute good common subsumers are already helpful
to provide a starting point for the modeler to come up with a new concept definition.
Thus extending these approaches to general TBoxes is surely worth investigating.

For TBoxes that contain GCIs which can be treated by concept absorption, the
absorption technique can be used to obtain a TBox with more concept definitions,
which, if not cyclic can be treated by the methods proposed in this thesis. Further-
more, acyclic range restrictions for roles can be integrated easily into the here proposed
approaches by propagating these restrictions when computing the common subsumer
for the concept descriptions nested in value and existential restrictions.

Another direction to investigate is to extend the set of concept constructors for
which computation methods of common subsumers are devised. In particular extend-
ing the methods from unqualified number restrictions to qualified ones seems to be
an interesting choice, since the OWL 1.1 standard will include this kind of number
restrictions.

This thesis itself poses open problems to be addressed in future work. For instance,
a constructive method for the ALE(T )-lcs (computed w.r.t. background knowledge
bases), is to be devised. Such a procedure would require the structural characterization
of subsumption in ALC. This, in turn, would allow us to devise the exact difference
operator, instead of just a heuristic. Equipped with such a difference operator for
ALC, we would be able to assess the information loss by computing the gcs in the
customization framework.

On the practical side, we plan to complete the implementation of the here proposed
optimization techniques and evaluate them. In particular, it would be interesting to
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see which of the conflicting optimizations (as for instance lazy unfolding vs. conjunct-
wise approximation) result in a more efficient implementation. The next inference to
implement in Sonic is the computation of the most specific concept (msc) or a heuris-
tic for it to complement the bottom-up approach by deriving concept descriptions from
individuals in the ABox.

The next major release of our NSI system Sonic, more precisely, the Sonic server
will provide a DIG 2.0 NSI extension implementation. By the use of this extension,
other programs can use the NSIs as system services. The Sonic front-end will be
adapted to Protégé 4.0, while at the time of writing a version of RacerPorter

(see [WM07]) including the Sonic reasoning services is on the way.
By the contribution of this thesis and the system Sonic developed in the course

of this project, non-standard inferences are no longer only considered in theoretical
respect, but can, in fact be employed to provide the reasoning services for practical
applications.
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R. Möller, editors, Proc. of ADL Workshop 2001, number 44 in CEUR-
WS, 2001. See http://CEUR-WS.org/Vol-44/. → p. 15, 62

[BT02a] F. Baader and A.-Y. Turhan. On the problem of computing small rep-
resentations of least common subsumers. In M. Jarke, J. Köhler, and
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[HM01a] V. Haarslev and R. Möller. High performance reasoning with very large
knowledge bases: A practical case study. In B. Nebel, editor, Proc. of
IJCAI’01, pages 161–166, 2001. → pp. 4, 39, 105
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