
Towards a Systematic Benchmarking 
of Ontology-Based Query Rewriting Systems 

Jose Mora and Oscar Corcho 

Ontology Engineering Group, Departamento de Inteligencia Artificial, 
Fa c u l t a d d e I n f o r m ́ atica,Universidad Polit´ecnica de Madrid, Spain 

{jmora,ocorcho}@fi.upm.es 

A b s t r a c t . Query rewriting is one of the fundamental steps in ontology-
based data access (OBDA) approaches. It takes as inputs an ontology 
and a query written according to that ontology, and produces as an out­
put a set of queries that should be evaluated to account for the inferences 
that should be considered for that query and ontology. Different query 
rewriting systems give support to different ontology languages with vary­
ing expressiveness, and the rewritten queries obtained as an output do 
also vary in expressiveness. This heterogeneity has traditionally made it 
difficult to compare different approaches, and the area lacks in general 
commonly agreed benchmarks that could be used not only for such com­
parisons but also for improving OBDA support. In this paper we com­
pile data, dimensions and measurements that have been used to evaluate 
some of the most recent systems, we analyse and characterise these as­
sets, and provide a unified set of them that could be used as a starting 
point towards a more systematic benchmarking process for such systems. 
Finally, we apply this initial benchmark with some of the most relevant 
OBDA approaches in the state of the art. 

1 Introduction 

Ontology Based Data Access (OBDA) consists on superimposing a conceptual 
layer as a view to an underlying information system, which abstracts away from 
how that information is maintained in the data layer and provides inference 
capabilities [1]. The process of query answering in OBDA systems consists in 
using ontologies to transform ontology-based queries (e.g., written in SPARQL 
or in ad-hoc query languages) into queries that the underlying data sources are 
able to process (e.g., written in SQL, Datalog, etc.). This allows obtaining the 
answers for the original queries as if they had been posed to an ontology that 
contains instances, where such instances are obtained from the data available in 
those data sources. 

OBDA has been mainly applied to the combination of description logic TBoxes 
with relational databases, which are the main type of data sources. However, it is 
not uncommon to find other works focused on providing OBDA support for other 



types of data sources, such as data streams [2], spreadsheets [3], REST APIs, 
etc. In all these cases, mappings are commonly used to specify the relationships 
between the ontologies and the schema used by the underlying data sources. 
These mappings are normally called database-to-ontology mappings, in general, 
or RDB2RDF mappings, when the resulting instances are transformed (in a 
materialized or virtual manner) to RDF. In the latter case, R2RML [4] is a 
W3C recommendation that allows defining such type of mappings. 

OBDA query answering approaches normally rely on query rewriting tech­
niques [5]. In that case several stages are commonly considered in the whole 
OBDA query answering process: 

– Query rewri t ing. In this stage, ontology-based queries are rewritten into 
queries that consider the inferences that can be done with the ontology. 

– Query t rans la t ion . In this stage the previous queries are transformed into 
the query language (or API) and schema of the underlying data sources, so 
that they can be evaluated by their corresponding query evaluation systems. 
This stage makes use of the aforementioned mappings. 

– Query execution. The generated queries or API calls are evaluated or 
executed, obtaining results according to the underlying data source schema. 

– Resul t t rans la t ion . The results obtained from the evaluation are translated 
into the original ontology-based schema, so that they can be interpreted by 
the original issuer of the ontology-based queries. 

In this paper we focus on the first stage, that is, on query rewriting. The 
motivation for our work stems from the fact that query rewriting systems are 
largely heterogeneous, in terms of the ontology languages that they give support 
to and the type of output that they produce as a result of the query rewriting 
process. Besides, there is also a large heterogeneity in the test cases that have 
been proposed to evaluate these approaches, with different real-world and syn­
thetic ontologies and queries. This heterogeneity, in approaches and test cases, 
makes it difficult to compare how each of them behaves with respect to the oth­
ers, and consequently to take decisions on which approach to use for each type 
of problem to be addressed. For this reason, we propose an integrated set of 
test cases that considers those used in previous approaches, and apply them to 
a set of OBDA systems that are being actively maintained nowadays, so that 
this benchmark can be used (and extended if needed) in the future to help in 
the continuous improvement of such systems, and hence of the whole OBDA 
research and development area. 

This paper is structured as follows. In section 2 we describe the logics pre­
viously mentioned, the different systems in the state of the art that use these 
logics, and how these systems have been evaluated. In section 3 we analyse (a 
priori) the characteristics of the previously mentioned systems and their out­
puts, as well as how they relate to each other. In section 4 we present the results 
obtained from the evaluation of the different systems in the state of the art and 
analyse them (a posteriori). In section 5 we consider the limitations in the cur­
rent state of the art for evaluation of these systems and the construction of a 
standard benchmark and hint at the future lines and difficulties to overcome. 



2 Background 

In this section, we describe briefly the most relevant logics used in recent OBDA 
systems and review the most relevant implementations that use these logics. We 
consider the properties of these implementations with respect to the type of input 
that they accept, the type of output that they generate and the optimizations 
that they implement in their query rewriting process. We have decided to use a 
chronological order for the presentation. 

2.1 Logics Used in OBDA Approaches 

In an OBDA context, query rewriting is a process that uses at least an ontology 
O to transform a query q into a rewritten query qo. In principle, the ontology 
O may be implemented in any ontology language C. However, there is a tradeoff 
between the expressiveness of such ontology language C and the computational 
cost of processing ontologies in that language to obtain the rewritten queries. 
In this context, several languages have been proposed as interesting compromise 
solutions between expressiveness and tractability, among which we can cite: the 
DL-Lite family [6], which includes DL-Litecore, DL-Lite T and DL-Liten; the 
QL profile of OWL2 [7]; and some families in Datalogi [8]. Along with these 
logics, we can also find ECHIO¬ [9], where rewriting also remains tractable 
(PTlME-complete). 

A common property for all these logics, except for ECHIO¬, is that query 
rewriting with them is first-order language reducible (also known as first-order 
rewritable). Intuitively, query rewriting over some ontological language C is FOL-
reducible if any union of conjunctive queries q expressed over a TBox T in the 
language C can be rewritten into a FOL query qj such that the answers for 
qj over the data source are the same that we would expect from q over T and 
the data source. In short, FOL-reducibility means that rewritten queries are 
first-order queries, what allows converting them to languages like SQL without 
using advanced features like recursion. It has been shown that the combined 
complexity of satisfiability on these logics is polynomial, while data complexity 
is AC [10,11]. 

Now we will describe in more detail these logics: 

– The DL-Lite family diverged into DL-Lite-jz and DL-Lite^, both extending 
DL-Litecore, where concept inclussions are restricted to A C B and A C 
¬B. DL-Lite-jz includes ISA and disjointness assertions between roles and 
DL-Litejr includes functionality restrictions on roles. These logics are first-
order reducible with a tractable complexity [6]. 

– The OWL2 QL profile was inspired by the DL-Lite family and designed 
to keep the complexity of rewriting low, considering first-order rewritability. 
As a summary of a more extensive comparison [10], the main differences 
with DL-Lite are the status of the unique name assumption (UNA) which 
is adopted in DL-Lite but not in OWL, which uses instead explicit relations 
sameAs and differentFrom. OWL2 also lacks constructs that would conflict 



with UNA and cause a greater complexity, like number restrictions, function­
ality constraints and keys. Among the constructs in OWL 2 not supported 
in DL-Lite we can remark nominals, concepts of the form {a}. 
The ECHXO¬ logic [9] is more expressive; it extends the expressiveness of 
DL-Lite-jz by including basic concepts of the form {a}, T, and B\ n B2, 
as well as axioms of the form 3R.B C C. This logic is the only one in 
this section that does not present the first-order rewritability property, this 
means that depending on the query and the expressiveness in the ontology, 
the generated Datalog may contain recursive predicates, thus some queries 
cannot be unfolded into a union of conjunctive queries (UCQ) and must 
be rewritten to recursive Datalog when considering ££HTO¬ ontologies. In 
spite that, the computational complexity of the rewriting process remains 
tractable (PTlME-complete). 
Some families in Datalogi preserve the property of first-order rewritabil­
ity to SQL equivalent languages while offering a greater expressiveness for 
rewritings to SQL or non-recursive Datalog, mainly because of the fact that 
Datalogi predicates are n-ary. Some of the Datalog paradigms that ensure 
decidability are chase termination, guardedness or stickiness, extended to 
weak-stickiness by Cal`ı [12]. These paradigms limit the loops that can be 
present in some Datalog to ensure decidability of the unfolding and thus 
first-order rewritability. 
Finally, Horn-STLIQ includes the role hierarchies and inverse roles as ECHIO. 
It does also include universal restrictions and transitive roles (S) axioms of the 
form A n. VR.B and trans(R). This logic does also include qualified cardinal­
ity restrictions (Q) axioms of the form A Q< 1R.B. The Horn prefix refers to 
the Horn fragment ofSHIQ, this means that the axioms in this fragment can 
be converted to Horn clauses. 

2.2 OBDA Query Rewriting Systems 

These logics have been used in several approaches, starting with the perfect 
reformulation [6], which is implemented in Quonto and by Perez-Urbina [9]. 
This approach accepts ontologies written in the DL-Lite family (DL-Litecore, 
DL-Lite^ and DL-Lite-jz) and generates a UCQ as a result of the rewriting 
process. This approach was the first of a series and would inspire many others, 
usually generating UCQs and optimizing the query rewriting process, for instance 
by applying optimizations based on query decomposition or identification of 
connected components. 

The RQR algorithm in the REQUIEM system [9] accepts ECHIO¬ ontolo­
gies and generates a rewriting using resolution with free selection (RFS) [13]. 
Both RQR and RFS form the basis for the algorithm presented here. RFS is 
proven to be correct and complete on Horn clauses [14] however due to space 
limitations RFS will not be explained, we refer the reader to previous citations. 
RQR reduces the number of useless factorizations in RFS, queries generated and 
processing time through several optimisations, the main one being the introduc­
tion of Skolem functions when an existential quantification occurs in the head of 



a clause, which was handled in previous approaches as a nameless variable. The 
output generated by this approach is again a UCQ. Resolution in REQUIEM 
is splitted in two steps, the first one is saturation, which generates a (possibly 
recursive) Datalog program, and the second one is unfolding, which unfolds this 
Datalog program to generate a UCQ. REQUIEM may produce a Datalog pro­
gram for the output by simply skipping the latter stage. If the ontology includes 
recursion the UCQ cannot be complete, in this case the unfolding generates a (re­
cursive) linear Datalog program (at most one intensional predicate per clause). 
The number of different head predicates in this Datalog program is reduced in 
the unfolding stage in this case to reduce the amount of information loss in the 
case that clauses with head predicates different from the query predicate are 
dropped by the system that receives the output. 

The previous approaches generate a large number of queries in the UCQ, 
as the generation of this UCQ from Datalog presents a combinatorial blowup 
that depends on the length of the query. P r e s to [15] addresses this problem on 
DL-LiteR, this does not include expressions of the form R.B, which eases the 
search for most-general subsumees (MGS). MGS are used to remove existential 
join variables, to then remove unbound variables and redundant atoms. This way 
the query is recursively factorized and splitted, depending on the existential joins 
and the connectivity in the query. Presto obtains results that are several orders 
of magnitude faster in the query rewriting process than previous approaches. 
Depending on the ontology and the query, the resulting non-recursive Datalog is 
also normally briefer in the number of clauses, hiding the combinatorial explosion 
that would result from unfolding. As a result of the factorization, several parts 
of the query are rewritten into (potentially equivalent) subqueries. 

Stamou [16] takes a different approach in the handling of Skolem functions. 
This approach has evolved into Rap id [17], which handles an expressiveness 
that falls between REQUIEM and Presto: expressions of the form R.B are 
allowed in REQUIEM but not in Presto; and in the case of Rapid they are 
allowed in the right hand side but not in the left hand side of subsumption 
axioms. Rapid applies two rules alternatively, query shrinking and query unfold­
ing. Query shrinking removes a bound variable by unifying it with a functional 
term. Skolem functions are internally handled in this resolution rule, so they do 
not appear after applying it. Query unfolding replaces a set of atoms with its 
unfoldings, preserving the terms in the atoms (no functional terms are used). 
This strategy generates less subsumed (redundant) queries and it is possible to 
restrict the search for subsumed queries among subsets of the queries generated. 
The output is equivalent to REQUIEM as far as the ontology used is contained 
in the expressiveness that Rapid can handle. 

A similar approach using two different resolution steps (factorization and 
rewriting) in a stratified strategy is the one implemented in Nyaya [18]. During 
the factorization step the query is compacted with unifications that preserve the 
query semantics, and in the rewriting step the query is unfolded. An optional 
step removes redundant atoms in the queries. In Nyaya, the expressiveness is 
greater than in previous cases by allowing the use of n-ary predicates. However 



there is no statement about which additional ontological axioms could be covered 
with this. This expressiveness is limited for efficiency, in this case the body of 
the clauses is restricted to those that have only one atom. With this it is possible 
to identify atoms in the body of a query that are implied by some other atom 
in the body, what means that they can be eliminated, reducing the size of the 
query, the UCQ and the required processing. This approach is specially tailored 
at reducing the size of the UCQ that are generated in the process. Depending on 
the query, this optimisation may provide much smaller queries, in size, width or 
length, which are respectively, the number of queries in the UCQ, the number 
of joins to be performed and the number of atoms in the perfect rewriting as 
explained in the evaluation done for this approach. 

Another approach that should be mentioned is the one taken by Ve n e t i s [19], 
based on perfect reformulation. This approach is based on the fact that users 
normally pose a succession of queries, refining an initial conjunctive query by 
adding or removing atoms. In these cases it is possible to use partial results from 
previous rewritings in the new rewritings. 

P r e x t o [20] modifies Presto by considering extensional constraints, concept 
and role disjointness assertions and role functionality assertions, so as to reduce 
the size of the rewritten UCQ. Disjointness and role functionality assertions 
are considered when construcing the Datalog program along with subsumption. 
And in the unfolding stage these assertions are considered again, along with the 
extensional constraints, to reduce the views by removing the parts considered as 
unnecessary according to these criteria. These considerations allow reducing the 
combinatorial explosion usual in the unfolding of these Datalog programs and 
the size of the rewritten UCQ. 

Cl ipper [21] aims at more expressive logics, more precisely Horn-SHIQ. 
This approach can rewrite the ontology including TBox and ABox or only the 
TBox. The ontology is in this case preprocessed and saturated independently 
of the query, and the query is rewritten into a UCQ with additional Datalog 
rules that “complete” the ABox, which is comparable to a Datalog program. 
Despite the high expressiveness, the time to obtain the rewritings and the size 
of the rewritings are kept low. This is achieved by aiming at this UCQ with 
rules output and using a Datalog system that can handle it, such as DLV [22] 
or Clingo [23], instead of obtaining a UCQ as other systems do. 

Finally, kyrie modifies REQUIEM by adding some engineering optimisations 
to speed up the process of query rewriting with the side effect of a possible 
reduction in the Datalog program generated when the output is set to Datalog. 
The optimisations performed in this case consist on a preprocessing step that 
materializes some of the conclusions that would be derived later in the query 
rewriting phase, additional subsumption checks to reduce the size of the rewriting 
as soon as possible, a more strict ordering strategy for resolutions and data 
structures to simplify the search for relevant clauses. This approach keeps the 
resolution with free selection from REQUIEM as well as the possibility to handle 
ELHIO expressiveness. Hence it cannot be ensured that the output can be 
reduced to a (finite) UCQ as the Datalog produced can be recursive. Resolution 



is split into a few more stages, more precisely the first resolution stage to produce 
the Datalog query is split into three stages, one is done in the preprocessing and 
the other two are performed separately with two different selection functions for 
efficiency reasons. 

2.3 Previous Efforts in Benchmarking Query Rewriting Systems 

All previous systems have been evaluated formally and empirically, at least with 
a set of examples. However, we find the first and most noteworthy example 
of benchmarking query rewriting systems in the work of Imprialou [24], who 
proposes an algorithm to generate an automatic benchmark. 

This algorithm accepts an ontology as the input and generates a set of queries. 
There is no statement about how well these queries may represent real queries 
that could be posed by users. The automatic generation of the queries allows 
querying for all the concepts in the ontology. This coverage allowed the detection 
of problems in the soundness and completeness of the benchmarked algorithms. 
Most of the detected problems were solved in latter versions of these systems. 
Therefore, a good coverage is key for an appropriate benchmarking and even for 
the individual testing of the systems. 

In this paper we give a more granular and quantitative focus to queries and 
their results assuming soundness and completeness wrt a given expressiveness. 
We do also analyse ontologies and the impact that their characteristics can have 
on the behaviour of query rewriting systems. 

3 Analysis of Dimensions and Assets to Be Used for 
Benchmarking 

3.1 Dimensions and Challenges in Query Rewriting Approaches 

We will first start analysing the main differences among different query rewriting 
approaches, so as to be able to obtain some of the dimensions and challenges 
that should be considered when comparing among them: 

Determine the Ontology Language Expressiveness. We have already seen 
that query rewriting in an OBDA context uses at least an ontology O to trans­
form a query q into a rewritten query qo . The main characteristics of this process 
are the computational cost of the rewriting and the complexity of the rewritten 
query, both of which depend on the expressiveness of the ontology. We have also 
described briefly the main logics used in the state of the art in section 2. Each 
logic has a different expressiveness, which determines the coverage of the ontol­
ogy that can be performed when converting it from a description logic language 
into a set of clauses in Datalog, Datalogi or FOL. The conversion to FOL hap­
pens in Rapid, REQUIEM and kyrie. Given the languages that they give support 
to, these systems consider expressions of the form 3R.A Q B. These expressions 
generate Skolem functions, what implies the production of FOL clauses that are 



later processed and converted to Datalog. Nyaya considers as well the existential 
quantifier in Datalog±. 

Charac ter i se t h e Impac t of Reduced Expressiveness in Each Approach . 
The conversion of the ontology O into a set of clauses Σ that can be handled 
by the approach is one of the first main differences among systems, as discussed 
above. In fact, it normally happens that some axioms of the original ontology 
may be even lost or discarded in this transformation process. This can lead to 
unnecessarily complex queries, incomplete results and even incorrect results: 

– Some systems may not be able to handle the additional expressiveness, which 
means the loss of completeness wrt that expressiveness and the loss of some 
answers. 

– Non-recursive Datalog may be a precondition for some systems. This sys­
tems may enter infinite loops when the axioms in some ontology lead to the 
production of recursive Datalog. 

– The subsumption of some clauses may be implied by some axioms out of the 
handled expressiveness. Thus clauses that could have been eliminated upon 
checking that subsumption will be preserved in the rewritten query. 

– Negations (or disjunctions) may not be handled by some systems. This means 
the rewritten query may contain clauses that are contradictory and will 
not obtain answers (they could be eliminated) or if the data source is not 
consistent with these negations then incorrect answers may be obtained, 
according to the semantics of the TBox. 

The impact of the lost expressiveness has not been considered in previous 
evaluations. And to the best of our knowledge, there is no evaluation about 
which is the usual expressiveness in the ontologies that can be found and reused 
to enable OBDA. 

De te rmine t h e Complexi ty of Rewr i t t en Quer ies . Evaluation of query 
rewriting systems has mainly focused so far on the most comparable cases: on­
tologies whose expressiveness is at the intersection of the expressiveness of all 
the systems to be compared. Most systems allow choosing whether the output of 
the query rewriting process should be a Datalog program or a UCQ. If Datalog 
is produced then this Datalog is always non-recursive for FOL-reducible logics. 
If the expressiveness is in the aforementioned intersection of all systems, then 
rewritten queries are ensured to be complete and correct wrt this expressiveness. 
In this case the only difference that can be found among different UCQs, for the 
same ontology and query, is in terms of subsumed clauses or atoms that are not 
removed from the final result. Datalog rewritings may vary more due to different 
ways in which subqueries can be arranged. This adds a lot of heterogeneity and 
complexity to the evaluation process. 

Furthermore, there is neither standard nor a set of tools to convert the Datalog 
or the UCQs obtained with these systems to actual queries to perform on a 



data source. As we have seen in section 2.2 some systems are integrated in 
OBDA systems and some are not, but the modular design and implementation 
does not come with a modular evaluation that can compare them properly. A 
workaround for this limitation has been proposed in the evaluation of Nyaya by 
measuring more carefully the UCQs generated (Datalog is not considered in this 
evaluation). More precisely they propose considering the number of clauses, the 
number of atoms and the number of joins. However, it is not specified whether 
the number of atoms is the total number of atoms or the number of distinct 
atoms. Atom repetition may have a big impact on the execution of the query 
depending on whether the query translation uses some kind of temporary tables 
to store intermediate results or repeated atoms are translated to as many queries 
as times they are related. However the differences among systems are small in 
the resulting UCQs due to the lack of freedom in this structure: UCQs are 
flat and unlike Datalog the results are basically equal in all systems, unless 
some subsumed atoms or clauses are kept in the UCQ or there is some loss of 
completeness or correctness. This should not be the case for any of these systems 
if the ontologies used do not exceed the expressiveness that they can handle. 

De te rmine t h e Impac t of t h e Complexi ty of Original Quer ies . The 
behaviour of query rewriting systems may also vary greatly depending on the 
original queries that are posed to the systems. Among the main characteristics 
to be considered for queries we can cite: 

– length of the queries, in terms of predicates in the body of the query and 
variables in the head. 

– types of variables and number of variables of each type. Variables may be 
present in queries in different roles 

• distinguished variables (those in the head of the query). 
• existential variables (non distinguished variables that appear only in one 

predicate). 
• join variables (non distinguished variables that appear in at least two 

predicates). 
– length of the property paths in the queries. 
– hanging or closed property paths. Hanging property paths leads to existential 

variables, closed property paths lead to distinguished variables. 
– separability of some parts of the query as independent subqueries. 

A set of queries has traditionally been used for evaluations in the state of the 
art. However, this set of queries has not been adequately characterised in terms 
of their realism or the coverage of the casuistry. 

Usage of Addi t ional Information for t h e Query Rewri t ing Process . 
Additionally to ontologies and queries, some systems add the possibility to use 
additional information for the query rewriting process (e.g., the use of an EBox 
in Prexto). Such additional information may provide potentially further optimi­
sations of the process and results. However, as such additional information may 



be very ad-hoc for each system, it is difficult to compare results among systems 
that use and do not use it. Furthermore, in the case of EBoxes, for instance, 
their application in realistic scenarios is still largely unknown, what makes it 
harder to evaluate the impact of EBoxes in the rewriting (process and results). 

3.2 Assets Used for Evaluat ions 

Despite the difficulties and challenges presented above, several approaches have 
been formulated for the comparison of query rewriting approaches. However, 
there is a large heterogeneity in these approaches, what claims for the need to 
come up with a common evaluation framework to allow better comparisons and 
to provide sufficient information as well for system developers to improve their 
systems, as in any general benchmarking process. 

Some of the seminal work can be attributed to the perfect reformulation pro­
posal from Calvanese [6], which is evaluated only in theoretical terms w.r.t. 
complexity, completeness and correctness. P´erez-Urbina compared his approach 
with this by using a set of ontologies that have become common across evalua­
tions in this area: 

– Adolena (A). Developed to allow OBDA for the South African National 
Accessibility Portal [25]. This is the largest ontology in this set of ontologies. 

– path1 (P1) and path5 (P5). Synthetic ontologies to help understand (and 
show) the “impact of the reduction step” in REQUIEM. Despite their appar­
ent simplicity, rewriting times for Datalog in these ontologies are significant. 

– StockExchange (S). It captures information about European Union financial 
institutions, Rodr´ıguez-Muro [26] uses this as a driving example to explain 
OBDA and how users may benefit from it. 

– University (U). A DL-LiteR version of LUBM [27]. LUBM focuses on the 
ABox more than the TBox. On the one hand this allows systems like Clipper 
to use the ABox for further evaluation of rewritten queries. On the other 
hand it has a rather flat TBox [28], which means that the rewritings are 
simple, it takes a short time to be produce them and the rewritten queries 
are also short, as we will see in the next section. 

– Vicodi (V). An ontology of European history developed in the EU-funded 
VICODI project [29]. 

This set of ontologies was expanded with AX, P5X, and UX, where some of 
the previous ontologies included auxiliary predicates. These auxiliary predicates 
replace the existential predicates by applying the encoding required by the pre­
vious approach [6]. These ontologies are accompanied by a set of five queries for 
each of them. 

For the evaluation of Presto these sets of queries are incremented up to seven 
queries for each of the ontologies. The ontologies are also incremented with 
the ontologies from Kontchakov [30], more examples from the LUBM bench­
mark (besides of U and UX) and a newly created ontology. The ontologies from 
Kontchakov are: 



— Galen-Lite. The DL-Litecore approximation of the well-known medical on­
tology Galen [31]. The interest in this ontology is mainly in its taxonomy, 
and few axioms involve roles. 

— Core. A DL-Litecore representation of (a fragment of) a supply-chain man­
agement system used by the bookstore chain Ottakar’s, now rebranded as 
Waterstone’s. Contrary to Galen, the taxonomy in Core is smaller but it 
contains a rich set of axioms about roles. 

Later approaches like Rapid, Nyaya, Clipper and kyrie inherit these men­
tioned ontologies and queries, and keep on using them for evaluation purposes. 
Prexto is only compared with Presto by means of a small unnamed ontology 
to show the impact that the optimisations in Prexto may have, which is done 
more as an example than an empirical evaluation. In the case of kyrie some 
newly created ontologies named AXE, AXEb, P5XE and UXE are used. These 
ontologies expand AX, P5X and UXE by including additional axioms that fall 
in the expressiveness of ECHIO, which is not covered in less expressive systems. 
Again the purpose of this evaluation is showing how these axioms may impact 
results, regardless of realism or empirical significance. 

Upon a closer analysis of the ontologies and the queries we can see that they 
are fairly heterogeneous, rewritings may vary greatly in time and size, depending 
on the characteristics of the ontology and the query as we have mentioned in the 
previous section. Finally, there is not a well-founded analysis of whether these 
ontologies are representative enough to cover all the challenges and characteris­
tics that we have discussed in the previous section. 

4 Experimental Results 

We have executed five of the systems described in section 2.2 (REQUIEM with 
the F mode, Presto, Rapid, Nyaya or Clipper, and kyrie) using the assets (on­
tologies and queries) described in section 3.2. In this paper we will only show 
and discuss results for ontologies U and UX, which are representative enough 
for our analysis and are also some of the most widely used, as they are based on 
LUBM. The full results for this evaluation are available online1. 

In table 1 we can see the results for the execution of the queries for these two 
ontologies when the output is set to datalog. In table 2 we can see the analogous 
results when the output is set to UCQ. Please note that Nyaya and Clipper only 
produce one type of output, thus one replaces the other on each table. 

The results have been obtained on cold runs, by restarting the applications 
after every query since there was no perceptible difference in the results. The 
consistency of the results regardless of how the systems are run has been ensured 
by appropriately measuring the time required by discarding all operations done 
before and after the query rewriting. The only exception to this rule was Prexto, 
where the results differed; here we show the results for a second run in Prexto 
and we refer the reader to the full results to check the times on a cold run. 

1 http://www.oeg-upm.net/files/jmora/iswc2013/ 

http://www.oeg-upm.net/files/jmora/iswc2013/


Ta b l e 1 . Results of the execution to obtain datalog (time in ms) 

o 

U 

UX 

q 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
6 
7 
8 
9 

REQUIEM(F) 
size 
19 
47 
20 
64 
53 
20 
49 
10 
29 
22 
52 
24 
70 
56 
24 
55 
11 
32 

time 
12 
16 
9 
15 
12 
12 
25 
9 
15 
6 
15 
15 
15 
15 
18 
28 
6 
15 

Presto 
size 

4 
2 
8 
3 
8 
19 
22 
13 
24 
7 
2 
10 
6 
11 
28 
29 
14 
30 

time 
7 
9 
16 
12 
15 
6 
15 
6 
12 
10 
15 
28 
19 
15 
15 
21 
12 
21 

Rapid 
size 

4 
2 
8 
3 
8 

21 
22 
13 
24 
7 
2 
10 
6 
11 
27 
27 
14 
30 

time 
3 
9 
12 
3 
12 
15 
18 
9 
17 
3 
15 
9 
12 
15 
22 
21 
13 
15 

Clipper 
size 

2 
49 
21 
63 
53 
16 
44 
10 
19 
5 
54 
25 
69 
56 
20 
50 
11 
22 

time 
21 
19 
24 
18 
15 
18 
18 
20 
20 
27 
27 
28 
22 
21 
19 
28 
26 
46 

kyrie 
size 

2 
47 
20 
64 
53 
16 
45 
10 
21 
5 
52 
24 
70 
56 
20 
51 
11 
24 

time 
0 
3 
3 
3 
0 
9 
12 
3 
7 
6 
3 
3 
0 
12 
3 
12 
1 
4 

Ta b l e 2 . Results of the execution to obtain UCQ (time in ms) 

O 

U 

UX 

q 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
6 
7 
8 
9 

REQUIEM(F) 
size 

2 
1 
4 
2 
10 
29 
42 
10 

960 
5 
1 

12 
5 

25 
323 
1456 
20 

4200 

time 
15 
103 
212 

3762 
13034 

47 
797 
15 

1893 
15 
172 

2062 
31422 
91878 

468 
37212 

21 
30506 

Rapid 
size 

2 
1 
4 
2 
10 
29 
42 
10 

960 
5 
1 

12 
5 

25 
323 
224 
20 

4200 

time 
3 
15 
9 
12 
18 
28 
37 
18 

209 
12 
12 
15 
15 
27 
106 
81 
23 
739 

Prexto 
size 

2 
1 
4 
2 
10 
28 
70 
10 

960 
5 
1 

12 
5 

25 
448 
280 
20 

4200 

time 
9 
15 
18 
15 
15 
12 
18 
6 

928 
12 
16 
28 
23 
23 
178 
75 
15 

21181 

Nyaya 
size 

2 
1 
4 
2 
10 
40 
54 
10 

960 
5 
1 
12 
5 
25 

348 
264 
20 

4200 

time 
5 
1 

34 
4 

33 
1595 
670 
63 

75135 
22 
3 

55 
6 

39 
2685 
852 
61 

366673 

kyrie 
size 

2 
1 
4 
2 
10 
29 
42 
10 

960 
5 
1 

12 
5 

25 
323 
224 
20 

4200 

time 
0 

34 
18 
50 
37 
28 
43 
3 

1107 
9 

37 
21 
47 
46 
187 
121 

9 
16875 



Each query has been run a minimum of five times per system and the results av­
eraged. The hardware used in the evaluation is a Intel® Core™2 6300 @1.86GHz 
with 2GB of RAM, Windows® XP and Java™version 1.6.0_33. We have mea­
sured the systems in the same way they are measured in their respective evalu­
ations, displaying the number of clauses, time for the rewriting, etc. 

The times have been measured with the code the systems provide to do this. 
All systems are developed in Java and for time measurement most of these 
systems use the difference between two calls to System.currentTimeMillisQ. 
The only two exceptions are Nyaya and Presto/Prexto. In the case of Nyaya 
System.nanoTime() is used instead. In the case of Presto and Prexto we did not 
have access to the source code but the results obtained take measurements of 
the time with an accuracy of 15 or 16 milliseconds, which suggest that the same 
method (System.currentTimeMillisQ) is used. Regardless of the accuracy 
of different methods for time measurement and the possibilities to improve it, 
we can consider rewriting times are negligible when they are shorter than 15 
milliseconds, specially when compared with the times that may be needed for 
the actual execution of the rewritten queries in an OBDA context. 

Upon closer inspection of the results we can see that a single axiom in an 
ontology or a single atom in a query can produce very significant variations 
in the obtained results wrt query rewriting time and wrt size of the rewritten 
queries. This is the case for query 5 in AX and AXE, differing only in one axiom. 
We can see a similar example in queries 6 and 7 in ontology UX, differing only in 
one atom. This impact in’ behaviour stresses the relevance of representative test 
cases, to show and evaluate the behaviour of these systems in realistic scenarios 
including those that may have a big impact on performance or results. 

5 Evaluation and Conclusions 

We can group the shortcomings we have seen in section 3 into two main groups, 
one relating with the input of the systems and the other relating with the output. 

On the side of the input we need to know how well the tests represent reality, 
in terms of (1) queries wrt (1a) syntax, (1b) expressiveness, (1c) shape and (1d) 
size, (2) ontologies in terms of (2a) shape, (2b) size and (2c) expressiveness 
and whether it is possible to consider (3) additional information such as ABox 
dependencies or EBoxes. 

On the side of the output we need to know how well rewritten queries may 
perform when posed to some other system, and again we should focus on the 
same details like the (1) shape in terms of (1a) expressiveness (Property paths 
in SPARQL, subqueries in Datalog, UCQs), (1b) types of clauses (non-recursive 
Datalog, linear Datalog), (1c) syntax with special characteristics (SPARQL, 
SQL, Datalog), and (2) size in terms of (2a) number of clauses, (2b) number 
of atoms and distinct atoms, (2c) number of joins. 

In the experimental results we have seen these characteristics of the input of 
these systems are relevant and may cause the output to vary greatly. Clearly the 
same principle may apply to underlying systems, which means that the same 
care should be put on the evaluation of the output. 



We have given a first step to the solution of these shortcomings. Nowadays 
we can make better comparisons thanks to the additional approaches and how 
they behave in different testcases. We can see that: 

– R E Q U I E M was an interesting addition to the state of the art and being 
among the most expressive systems allows comparisons with systems that 
handle less expressive logics. 

– Rap id has improved REQUIEM in every aspect except expressiveness, which 
is more reduced, if the ontology can be handled by Rapid then this is the 
most competitive approach on the light of the data. 

– P r e x t o is unique among the evaluated approaches in the handling of the 
EBox. The EBox can produce dramatic improvements by reducing the size 
of the rewritten query and the time to obtain it. 

– Nyaya is the only system that paid attention to the size of the queries in 
terms of atoms and joins. As the area matures and standardization continues 
we will be able to evaluate the impact of these factors on the underlying 
systems. 

– Cl ipper improves previous approaches in terms of expressiveness, it handles 
the most expressive logic among the evaluated approaches (Horn-SHIQ) but 
its output is also the most expressive, only Datalog meant to be evaluated 
by Datalog engines. It offers the most and it also requires the most. 

– kyrie has improved REQUIEM in every aspect except expressiveness, which 
is exactly the same. If the ontology cannot be handled by Rapid then kyrie 
allows handling this expressiveness more efficiently than REQUIEM. 

As more systems are developed and evaluated, we will be able to ascertain 
with more detail the impact of their differences by analysing how they behave. 
As more test data is available, we will be able to determine with better accuracy 
the significance of each test, how representative they are among all the tests. 
Finally, as the area goes through standardization and the underlying systems 
are standardized in the area, we will be able to compare how well the output of 
rewriting systems can be handled by these underlying systems. 

In this paper we have shown that it is already possible to do this evaluation 
despite of current limitations, we have pointed at current limitations and future 
lines in the area and we have compiled and shared test data (available in the 
links) to help to address mentioned current limitations and future lines. 

Acknowledgements . We would like to kindly thank authors of systems (1) 
REQUIEM, (2) Rapid, (3) Presto/Prexto, (4) Nyaya and (5) Clipper for their 
help in the usage of their systems and respectively (1, 2, 5) publishing the code, 
(3) sharing the binaries and (4) sharing the code. 

The work presented in this paper has been funded by an PIF grant (Personal 
Investigador en Formaci´on) from UPM (Universidad Polit´ecnica de Madrid) 
(RR01/2008) and by the Spanish national project myBigData (TIN2010-17060). 



References 

1. Calvanese, D., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Ontology -based 
database access, tech. rep., CiteSeerX (2007) 

2. Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to 
streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., 
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, 
vol. 6496, pp. 96–111. Springer, Heidelberg (2010) 

3. Priyatna, F., Buil-Aranda, C., Corcho, O.: Applying SPARQL-DQP for federated 
SPARQL querying over google fusion tables. In: ESWC 2013 Demo (2013) 

4. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. 
W3C RDB2RDF Working Group (September 2012) 

5. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: What is query rewrit­
ing? In: Klusch, M., Kerschberg, L. (eds.) CIA 2000. LNCS (LNAI), vol. 1860, pp. 
51–59. Springer, Heidelberg (2000) 

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable 
reasoning and efficient query answering in description logics: The DL-Lite family. 
Journal of Automated Reasoning 39, 385–429 (2007) 

7. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel Schneider, P., Sattler, 
U.: OWL 2: The next step for OWL. Web Semantics: Science, Services and Agents 
on the World Wide Web 6, 309–322 (2008) 

8. Cal`ı, A., Gottlob, G., Pieris, A.: New expressive languages for ontological query 
answering. In: Burgard, W., Roth, D. (eds.) AAAI. AAAI Press (2011) 

9. P´erez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2. 
In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, 
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer, 
Heidelberg (2009) 

10. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family 
and relations. J. Artif. Int. Res. 36(1), 1–69 (2009) 

11. Gottlob, G., Orsi, G., Pieris, A.: Ontological query answering via rewriting. In: 
Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 1–18. 
Springer, Heidelberg (2011) 

12. Cal`ı, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in 
datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 
1–17. Springer, Heidelberg (2010) 

13. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto­
mated Reasoning, vol. 1, pp. 19–99 (2001) 

14. Lynch, C.: Oriented equational logic programming is complete. Journal of Symbolic 
Computation 23, 23–45 (1997) 

15. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: 
Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings of the Twelfth Interna­
tional Conference on the Principles of Knowledge Representation and Reasoning. 
AAAI Press (2010) 

16. Stamou, G., Trivela, D., Chortaras, A.: Progressive semantic query answering. 
In: The 6th International Workshop on Scalable Semantic Web Knowledge Base 
Systems (SSWS 2010), p . 112 (2010) 

17. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL. 
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 
192–206. Springer, Heidelberg (2011) 



18. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization 
(extended version). arXiv:1112.0343 (December 2011) 

19. Venetis, T., Stoilos, G., Stamou, G.: Query rewriting under query extensions for 
OWL 2 QL ontologies. In: The 7th International Workshop on Scalable Semantic 
Web Knowledge Base Systems (SSWS 2011), p . 59 (2011) 

20. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In: 
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. 
LNCS, vol. 7295, pp. 360–374. Springer, Heidelberg (2012) 

ˇ 
21. Eiter, T., Ortiz, M., Simkus, M., Tran, T.-K., Xiao, G.: Query rewriting for horn-

SHIQ plus rules. In: Proc. of the 26th AAAI Conference on Artificial Intelligence. 
AAAI (2012) 

22. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The 
DLV system for knowledge representation and reasoning. ACM Trans. Comput. 
Logic 7, 499–562 (2006) 

23. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, 
M.: Potassco: The potsdam answer set solving collection. AI Commun. 24, 107–124 
(2011) 

24. Imprialou, M., Stoilos, G., Grau, B.C.: Benchmarking ontology-based query rewrit­
ing systems. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial 
Intelligence. AAAI (2012) 

25. Keet, C.M., Alberts, R., Gerber, A., Chimamiwa, G.: Enhancing web portals with 
Ontology-Based Data Access: the case study of South Africa’s Accessibility Portal 
for People with Disabilities. In: OWLED (2008) 

26. Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data 
access: A plug-in for prot´eg´e. In: IEEE 24th International Conference on Data 
Engineering Workshop, ICDEW 2008, pp. 286–289 (2008) 

27. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. 
Web Semantics: Science, Services and Agents on the World Wide Web 3, 158–182 
(2005) 

28. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR. AAAI Press 
(2012) 

29. Nagypal, G.: History ontology building: The technical view. In: Proceedings of the 
XVI International Conference of the Association for History and Computing, pp. 
207–214. Royal Netherlands Academy of Arts and Sciences, Amsterdam (2005) 

30. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: Combined 
FO rewritability for conjunctive query answering in DL-Lite. In: Grau, B.C., Hor-
rocks, I., Motik, B., Sattler, U. (eds.) Description Logics. CEUR Workshop Pro­
ceedings, vol. 477, CEUR-WS.org (2009) 

31. Rogers, J., Rector, A.: The GALEN ontology. Medical Informatics Europe MIE 
1996, 174–178 (1996) 


