Integrating Ontologies and Relational Data

Abstract

In recent years, an increasing number of scientific and other domains have attempted to standardize their terminology and provide reasoning capabilities through ontologies, in order to facilitate data exchange. This has spurred research into Web-based languages, formalisms, and especially query systems based on ontologies. Yet we argue that DBMS techniques can be extended to provide many of the same capabilities, with benefits in scalability and performance. We present OWLDB, a lightweight and extensible approach for the integration of relational databases and description logic based ontologies. One of the key differences between relational databases and ontologies is the high degree of implicit information contained in ontologies. OWLDB integrates the two schemes by codifying ontologies\u27 implicit information using a set of sound and complete inference rules for SHOIN (the description logic behind OWL ontologies. These inference rules can be translated into queries on a relational DBMS instance, and the query results (representing inferences) can be added back to this database. Subsequently, database applications can make direct use of this inferred, previously implicit knowledge, e.g., in the annotation of biomedical databases. As our experimental comparison to a native description logic reasoner and a triple store shows, OWLDB provides significantly greater scalability and query capabilities, without sacrifcing performance with respect to inference

    Similar works