2,311 research outputs found

    Query Rewriting and Optimization for Ontological Databases

    Full text link
    Ontological queries are evaluated against a knowledge base consisting of an extensional database and an ontology (i.e., a set of logical assertions and constraints which derive new intensional knowledge from the extensional database), rather than directly on the extensional database. The evaluation and optimization of such queries is an intriguing new problem for database research. In this paper, we discuss two important aspects of this problem: query rewriting and query optimization. Query rewriting consists of the compilation of an ontological query into an equivalent first-order query against the underlying extensional database. We present a novel query rewriting algorithm for rather general types of ontological constraints which is well-suited for practical implementations. In particular, we show how a conjunctive query against a knowledge base, expressed using linear and sticky existential rules, that is, members of the recently introduced Datalog+/- family of ontology languages, can be compiled into a union of conjunctive queries (UCQ) against the underlying database. Ontological query optimization, in this context, attempts to improve this rewriting process so to produce possibly small and cost-effective UCQ rewritings for an input query.Comment: arXiv admin note: text overlap with arXiv:1312.5914 by other author

    Teaching an RDBMS about ontological constraints

    Get PDF
    International audienceIn the presence of an ontology, query answers must reflect not only data explicitly present in the database, but also implicit data, which holds due to the ontology, even though it is not present in the database. A large and useful set of ontology languages enjoys FOL reducibility of query answering: answering a query can be reduced to evaluating a certain first-order logic (FOL) formula (obtained from the query and ontology) against only the explicit facts. We present a novel query optimization framework for ontology-based data access settings enjoying FOL reducibility. Our framework is based on searching within a set of alternative equivalent FOL queries, i.e., FOL reformulations, one with minimal evaluation cost when evaluated through a relational database system. We apply this framework to the DL-LiteR Description Logic underpinning the W3C's OWL2 QL ontology language, and demonstrate through experiments its performance benefits when two leading SQL systems, one open-source and one commercial, are used for evaluating the FOL query reformulations

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft
    • …
    corecore