115 research outputs found

    Mitigating interconnect and end host congestion in modern networks

    Get PDF
    One of the most critical building blocks of the Internet is the mechanism to mitigate network congestion. While existing congestion control approaches have served their purpose well in the last decades, the last few years saw a significant increase in new applications and user demand, stressing the network infrastructure to the extent that new ways of handling congestion are required. This dissertation identifies the congestion problems caused by the increased scale of the network usage, both in inter-AS connects and on end hosts in data centers, and presents abstractions and frameworks that allow for improved solutions to mitigate congestion. To mitigate inter-AS congestion, we develop Unison, a framework that allows an ISP to jointly optimize its intra-domain routes and inter-domain routes, in collaboration with content providers. The basic idea is to provide the ISP operator and the neighbors of the ISP with an abstraction of the ISP network in the form of a virtual switch (vSwitch). Unison allows the ISP to provide hints to its neighbors, suggesting alternative routes that can improve their performance. We investigate how the vSwitch abstraction can be used to maximize the throughput of the ISP. To mitigate end-host congestion in data center networks, we develop a backpressure mechanism for queuing architecture in congested end hosts to cope with tens of thousands of flows. We show that current end-host mechanisms can lead to high CPU utilization, high tail latency, and low throughput in cases of congestion of egress traffic. We introduce the design, implementation, and evaluation of zero-drop networking (zD) stack, a new architecture for handling congestion of scheduled buffers. Besides queue overflow, another cause of congestion is CPU resource exhaustion. The CPU cost of processing packets in networking stacks, however, has not been fully investigated in the literature. Much of the focus of the community has been on scaling servers in terms of aggregate traffic intensity, but bottlenecks caused by the increasing number of concurrent flows have received little attention. We conduct a comprehensive analysis on the CPU cost of processing packets and identify the root cause that leads to high CPU overhead and degraded performance in terms of throughput and RTT. Our work highlights considerations beyond packets per second for the design of future stacks that scale to millions of flows.Ph.D

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    PLAN: Joint policy- and network-aware VM management for cloud data centers

    Get PDF
    Policies play an important role in network configuration and therefore in offering secure and high performance services especially over multi-tenant Cloud Data Center (DC) environments. At the same time, elastic resource provisioning through virtualization often disregards policy requirements, assuming that the policy implementation is handled by the underlying network infrastructure. This can result in policy violations, performance degradation and security vulnerabilities. In this paper, we define PLAN, a PoLicy-Aware and Network-aware VM management scheme to jointly consider DC communication cost reduction through Virtual Machine (VM) migration while meeting network policy requirements. We show that the problem is NP-hard and derive an efficient approximate algorithm to reduce communication cost while adhering to policy constraints. Through extensive evaluation, we show that PLAN can reduce topology-wide communication cost by 38 percent over diverse aggregate traffic and configuration policies

    High performance network function virtualization for user-oriented services

    Get PDF
    The Network Function Virtualization (NFV) paradigm proposes to transform those network functions today running on dedicated and often closed appliances (e.g., firewall, wan accelerator) into pure software images, called Virtual Network Functions (VNFs), which can be consolidated and executed on high-volume standard servers. In this context, this dissertation focuses on the possibility of enabling each single end user (and not only network operators) to set up network services by means of NFV, allowing him to custoimize the set of services that are active on his Internet connection. This goal mainly requires to address flexibility and performance issues. Regarding to the former, it is important: (i) to support services including both network (e.g., firewall) and cloud (e.g., storage server) applications; (ii) to allow the user to define the service with an intuitive and high-level abstraction, hiding infrastructure-layer details. Instead, with respect to performance, multiple software-based services operating on the user's traffic should not introduce penalties in the user’s Internet experience. This dissertation solves the above issues by proposing a number of improvements in the context of Network Function Virtualization, both in terms of high level models and architectures to define and instantiate network services, and in terms of mechanisms to efficiently interconnect VNFs. Experimental results demonstrate that the goal of allowing end users to deploy services operating on their own traffic is feasible without impacting the Internet experience

    PLAN: Joint Policy- and Network-Aware VM Management for Cloud Data Centers

    Get PDF
    Policies play an important role in network configuration and therefore in offering secure and high performance services especially over multi-tenant Cloud Data Center (DC)environments. At the same time, elastic resource provisioning through virtualization often disregards policy requirements, assuming that the policy implementation is handled by the underlying network infrastructure. This can result in policy violations, performance degradation and security vulnerabilities. In this paper, we define PLAN, a PoLicy-Aware and Network-aware VM management scheme to jointly consider DC communication cost reduction through Virtual Machine (VM) migration while meeting network policy requirements. We show that the problem is NP-hard and derive an efficient approximate algorithm to reduce communication cost while adhering to policy constraints. Through extensive evaluation, we show that PLAN can reduce topology-wide communication cost by 38% over diverse aggregate traffic and configuration policies
    • …
    corecore