
MITIGATING INTERCONNECT AND END HOST CONGESTION IN MODERN
NETWORKS

A Thesis
Presented to

The Academic Faculty

By

Yimeng Zhao

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

August 2020

Copyright c© Yimeng Zhao 2020

MITIGATING INTERCONNECT AND END HOST CONGESTION IN MODERN
NETWORKS

Approved by:

Dr. Mostafa H. Ammar, Co-Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Ellen W. Zegura, Co-advisor
School of Computer Science
Georgia Institute of Technology

Dr. Jim Xu
School of Computer Science
Georgia Institute of Technology

Dr. Ashutosh Dhekne
School of Computer Science
Georgia Institute of Technology

Dr. Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: June 9, 2020

To my parents, for their endless love and support

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude to my thesis advisors, Prof. Mostafa Am-

mar and Prof. Ellen Zegura for their support and guidance. Apart from their expertise in

conducting high-quality research, I would especially appreciate their trust in my capability

and the freedom they gave me in exploring my research topics. They are patient and sup-

portive, always encouraging me even when I thought about my work being fruitless and my

effort being futile. They motivated and trained me to grow into an independent researcher.

I am also grateful to the rest of my thesis committee members, Prof. Jim Xu, Prof.

Ashutosh Dhekne, and Prof. Douglas M. Blough, for their constructive suggestions that

improved many aspects of this dissertation. I would also want to thank Dr. Niky Riga,

Sarah Edward, Dr. Vicraj Thomas, Dr. Chip Elliott from Raytheon BBN, Dr. Minsung

Jang, Dr. Kaustubh Joshi from ATT Research Lab, Dr. Shiguang Wang, Dr. James Zeng

from Facebook for hosting me as a summer intern where I got the chance to work on a set

of interesting problems.

I would also like to acknowledge all my colleagues and friends in the Networking Re-

search Group at Georgia Tech. I am thankful to Dr. Ahmed Saeed, for being supportive in

several projects that we collaborated on. It was great working with Ahmed and the papers

we co-authored laid a solid foundation for this dissertation. I am also fortunate to have

worked with Dr. Samantha Lo. Although the paper that we co-authored is not part of this

dissertation, a number of things that I learned from our collaborative work have helped me

make progress in my thesis work. I would also like to thank Dr. AliReza Khoshgoftar Mon-

fare, Dr. Karim Habak, Dr. Liang Liu, Dr. Sen Yang, Tarun Mangla, Long Gong, Yifeng

Cao, Huayi Wang, Jingfan Meng for their everlasting friendship and help. The good time

we spent together made my PhD journey much easier.

Last but not least, I am deeply indebted to my parents, Jun Zhao and Qifeng Ye, for

their endless love and support. They encouraged me to start my research journey and

v

always have faith in me. I cannot imagine being able to survive my PhD journey without

their support. I would also like to express my appreciation to my boyfriend, Pingkai Liu,

for providing constructive feedback on my research work and being a great support in my

life.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction and Background . 1

1.1 Primary Contributions . 4

1.1.1 A Framework to Mitigate Inter-AS Congestion through CP/ISP Col-
laboration . 4

1.1.2 A Backpressure Mechanism for Congested Queuing System at End
Hosts . 4

1.1.3 Analyzing the CPU Cost of Networking Stack 5

1.2 Thesis Outline . 5

Chapter 2: Related Work . 6

2.1 Traffic Engineering . 6

2.1.1 Intra-domain TE for ISPs . 6

2.1.2 Inter-domain TE from CPs’ Perspective 7

2.1.3 Collaborative Inter-domain TE . 8

2.1.4 Cooperative Content Distribution and TE 9

vii

2.2 Mitigating Congestion in Data Center Networks 9

2.2.1 Congestion Control Algorithms 9

2.2.2 End Host Egress Path Congestion 10

2.2.3 End Host Ingress Path Congestion 11

2.3 End Host CPU Efficiency . 11

Chapter 3: A Framework to Mitigate Inter-AS Congestion through CP/ISP Col-
laboration . 13

3.1 Background . 15

3.1.1 Network Context . 15

3.1.2 The need for Content Provider-ISP Cooperation 17

3.1.3 Interdomain Congestion across ISP Entry Points 18

3.2 Unison Overview . 19

3.2.1 Unison Design Goals . 20

3.2.2 Architecture Overview and Operation 21

3.3 Unison vSwitch Mapper . 24

3.4 Unison Throughput Optimizer . 26

3.4.1 Traffic Matrix . 27

3.4.2 Feasibility and Weighted Fairness 28

3.4.3 Bandwidth Allocation Algorithm 30

3.5 Evaluation . 31

3.5.1 Experimental Setup . 32

3.5.2 The Value of Unison . 33

3.5.3 Impact of CP participation . 36

viii

3.5.4 Impact of environmental parameters 37

3.5.5 Summary . 38

Chapter 4: A Backpressure Mechanism for Congested End Host 39

4.1 Background and Motivation . 42

4.1.1 Packet Queuing at End Hosts . 42

4.1.2 Types of Packet Drops . 44

4.1.3 Cost of Long Queues . 46

4.1.4 Cost of Packet Drops . 46

4.2 zD Design Principles . 50

4.3 zD Overview . 52

4.3.1 Source Buffer Regulator . 53

4.3.2 Backpressure Interface . 55

4.3.3 Paused-Flows Queue . 57

4.4 Implementation . 58

4.4.1 TCP/IP Stack Implementation . 58

4.4.2 Hypervisor Implementation . 60

4.5 Evaluation . 62

4.5.1 Experiments Setup . 62

4.5.2 Overall Performance . 65

4.5.3 Microbenchmark . 69

4.6 Limitations of zD . 73

4.7 Summary . 73

ix

Chapter 5: Analyzing the CPU Cost of Networking Stack 74

5.1 Measurement Setup . 76

5.2 Overall Stack Performance . 79

5.3 Admission Control to the Stack . 80

5.3.1 Automatic Packet Sizing . 81

5.3.2 Backpressure and Scheduling . 83

5.3.3 Batching Ingress Packets . 86

5.4 Per-packet Overhead . 87

5.5 Summary . 91

Chapter 6: Concluding Remarks . 93

6.1 Future Directions . 94

References . 105

x

LIST OF TABLES

3.1 List of notation . 28

4.1 Drops and retransmission in case of standard Linux kernel and hypervisor-
only zD implementation. 71

5.1 Tuning parameters . 78

xi

LIST OF FIGURES

3.1 Network context. 15

3.2 Example of two ASes connected through two links (i.e., destination AS has
two entry points). 16

3.3 CDF showing likelihood of congestion at one or more entry points. 18

3.4 Overview of Unison architecture. 22

3.5 Traffic matrix determination in the Mapping module 23

3.6 Influencing inbound traffic through hints. 24

3.7 Throughput gain created by Unison compared to the baseline over different
ISP topologies. 33

3.8 Throughput gains comparing optimizing intra-domain only and Unison. . . 34

3.9 Comparison between WBA and MFC algorithm showing minor throughput
impact with weighted fairness. 34

3.10 OptAll v.s. only for OptPartial showing that non-participating CPs enjoy a
free ride of increased throughput in OptAll as participating CPs while only
participating CPs achieve increased throughput in OptPartial. 35

3.11 Impact of window size used in Unison on total ISP throughput under dy-
namic traffic demand. 36

3.12 Optimality gap as function of aggregate flow. 37

4.1 Schematic of queue architecture at end hosts. 40

4.2 Architecture of queues in end hosts. 42

xii

4.3 Bufferbloat, when pfifo queue size is 8k slots, leads to two orders of mag-
nitude degradation in RTT. High contention and virtual packet drop rates,
when pfifio queue size is 1k slots, leads to an order of magnitude degrada-
tion in tail latency compared to zD. 47

4.4 zD reduces CPU usage in both VM and the physical machine compared to
standard kernel implementation for TSQ (pfifo). 48

4.5 CDF of frame size, showing the impact of tail RTT performance on the
behavior of TSO autosizing algorithm. Larger tail latency yields smaller
packets, causing higher CPU cost. 49

4.6 Schematic of zD architecture at end hosts. 51

4.7 Illustration of different backpressure steps. 56

4.8 Flow chart describing TCP/IP stack with zD 60

4.9 10Gbps network speed with a qdisc of 100 slots in the hypervisor 61

4.10 10Gbps network speed with a qdisc of 1000 slots in the hypervisor 63

4.11 1Gbps network speed with a qdisc of 1000 slots in the hypervisor 64

4.12 zD reduces the tail of RTT by 100x with both 10G network and 1G network 65

4.13 Compared with Carousel, zD achieves higher throughput, lower VM CPU
usage, lower vHost CPU usage, and fewer TCP retransmissions 67

4.14 Compared with TSQ, zD achieves higher throughput and fewer TCP re-
transmissions when 1 vCPU is assigned to the VM. 67

4.15 CDF of flow RTT with hypervisor-only zD. 70

4.16 Throughput under different Qdiscs . 70

4.17 CPU usage in VM under different Qdiscs 71

4.18 CPU usage in VM under light traffic load 72

5.1 Schematic of the packet transmission path with identified pain points marked
in red. 77

xiii

5.2 Overall performance of the network stack as a function of the number of
flows . 79

5.3 CUBIC v.s. BBR with 5% drop rate. 82

5.4 CUBIC v.s. BBR with 0% drop rate. 83

5.5 CDF of flow rate showing that FQ fails to ensure fairness among flows . . . 84

5.6 CPU usage as function of Qdisc queue length 85

5.7 Average execution time of FQ enqueue operation 86

5.8 Packet transmission function call graph . 87

5.9 Rates of RX interrupts and ACK per second 88

5.10 Aggregate cache misses . 89

5.11 Time to acquire Qdisc lock . 90

5.12 Function profiling results for top functions 92

xiv

SUMMARY

One of the most critical building blocks of the Internet is the mechanism to mitigate net-

work congestion. While existing congestion control approaches have served their purpose

well in the last decades, the last few years saw a significant increase in new applications

and user demand, stressing the network infrastructure to the extent that new ways of han-

dling congestion are required. This dissertation identifies the congestion problems caused

by the increased scale of the network usage, both in inter-AS connects and on end hosts in

data centers, and presents abstractions and frameworks that allow for improved solutions

to mitigate congestion.

To mitigate inter-AS congestion, we develop Unison, a framework that allows an ISP

to jointly optimize its intra-domain routes and inter-domain routes, in collaboration with

content providers. The basic idea is to provide the ISP operator and the neighbors of the

ISP with an abstraction of the ISP network in the form of a virtual switch (vSwitch). Uni-

son allows the ISP to provide hints to its neighbors, suggesting alternative routes that can

improve their performance. We investigate how the vSwitch abstraction can be used to

maximize the throughput of the ISP.

To mitigate end-host congestion in data center networks, we develop a backpressure

mechanism for queuing architecture in congested end hosts to cope with tens of thousands

of flows. We show that current end-host mechanisms can lead to high CPU utilization,

high tail latency, and low throughput in cases of congestion of egress traffic. We introduce

the design, implementation, and evaluation of zero-drop networking (zD) stack, a new

architecture for handling congestion of scheduled buffers.

Queue overflow is not the only cause of congestion on the egress path. Another cause of

congestion is CPU resource exhaustion. The CPU cost of processing packets in networking

stacks, however, has not been fully investigated in the literature. Much of the focus of

the community has been on scaling servers in terms of aggregate traffic intensity (packets

xv

transmitted per second), but bottlenecks caused by the increasing number of concurrent

flows have received little attention. We conduct a comprehensive analysis on the CPU

cost of processing packets and identify the root cause that leads to high CPU overhead and

degraded performance in terms of throughput and RTT. Our work highlights considerations

beyond packets per second for the design of future stacks that scale to millions of flows.

xvi

CHAPTER 1

INTRODUCTION AND BACKGROUND

The Internet has established itself as a critical global infrastructure for information ex-

change. Originated from the ARPANET with a handful of nodes, the Internet has evolved

continuously to adapt to new services and performance expectations. Today, the Internet is

connecting millions of people and machines. It is now fully integrated in our society and

has revolutionized not only the way we communicate but also the way we live our lives.

The huge success of the Internet is achieved with evolving designs and protocols to cope

with new requirements. The network infrastructure and protocols may be well-suited to

support the popular uses at the time they were designed, but as time goes on, the increase in

the scale of traffic and the creation of new applications would always pose new challenges

in managing networks. The mechanism to mitigate network congestion is a classic example

of this kind. The importance of congestion control was first brought to attention in the

1980s. It is observed that the data transfer rate fell by orders of magnitude even though the

network links stayed busy. To solve the problem, the research communities designed an

algorithm that adjusts the data sending rate according to the congestion level in the network.

The algorithms were developed in an iterative design, providing a solid foundation for more

advanced mechanisms (i.e., TCP congestion control) that has been deployed widely in the

global Internet today.

Mitigating network congestion is challenging, and there is never a once-and-for-all so-

lution. Beyond the continuous evolution of the Internet, the last few years saw a significant

increase in new applications and user demand. As more digital content has migrated to

the Internet, it has become increasingly challenging for content providers and their proxies

– in the form of content distribution networks (CDNs) - to reach end users with low la-

tency. Another force driving change is the growing need for more services and applications

1

at cloud data centers. According to the Cisco global cloud index, the traffic demand and

the data storage in data center networks are experiencing a 20%- 30% compound annual

growth rate now [1]. The increased scale of network usage stresses the network infrastruc-

ture, both in network and at data centers, requiring new mechanisms to mitigate congestion

without significantly increasing the resources.

The central theme of this thesis is to identify the congestion problems caused by the

increased scale of the network usage and explore new abstractions and frameworks that

allow for improved solutions both in inter-AS connects and on end hosts in data centers to

mitigate congestion. Specifically, we focus on the following challenges:

• Inter-Autonomous System Congestion: The Internet’s goal of efficient global data con-

nectivity led to its development as a sprawling hierarchical network of interconnected

Autonomous Systems (ASes). BGP policies, initially created assuming by default that

all ASes are equal, determine the role of an AS within the hierarchy. Mechanisms de-

veloped for BGP allow for fine-grain control over how traffic exits an AS. Each AS

determines the next hop according to the policies agreed on with that next hop. This ap-

proach to inter-AS routing is feasible to manage under a hierarchical structure in which

roles are clear, and in turn who pays whom for carrying the traffic is well established.

However, with increased desire on low latency, the modern Internet is evolving from a

hierarchy of Autonomous Systems (ASes) to a flatter structure [2]. Source ASes have

the flexibility to choose how to reach their destination but it is not easy for destination

ASes to control inbound traffic [3]. This makes BGP highly asymmetrical. The asym-

metry is exacerbated by the advancements in Software Defined Interconnects [4, 5]. The

asymmetry of Internet routing, along with the current flat topology of the network, leave

routing decisions largely in the hand of content providers. This is not ideal; CPs have

limited visibility into the ISP network and some of the routing decisions made by CPs

can be erroneous, leading to congestion in ISP network [6]. This is especially prob-

lematic in the presence of congestion when an alternative entry point has to be selected

2

that does not have to be close geographically to the user [7]. In addition, dynamic path

selection by a content provider, independent from the ISP, complicates fault attribution.

In particular, a user facing poor quality of experience of an online service will typically

blame the ISP, despite that the problem can be caused by the CP selecting a longer or

more congested path [8, 9, 10, 11, 12].

• End Host Queuing Congestion: Modern network stacks have to handle traffic from tens

of thousands flows and hundreds of virtual machines per single host. This scale sparked

interest in improved scheduling and prioritization between these applications through

the introduction of efficient packet processing and scheduling mechanisms. However,

congestion control of egress path at the end host has received little attention. In current

settings, packets from different sources accumulate in the queue. Once a queue runs out

of space packets are dropped. Drops at end host are particularly inefficient as recovery

from such losses are typically handled the same way as losses in the network. This

means that losses which can be recovered through simple signaling within the end host

at nanosecond to microsecond timescales are handled through end to end signals which

operate at microsecond to millisecond timescales. Drops can also induce severe reaction

from congestion control which cuts its window in reaction to packet loss, leading to

lowered throughput. A few proposals attempt to avoid packet drops of egress traffic at

end hosts. However, their approaches have poor performance when handling a large

number of senders [13, 14].

• End Host CPU Inefficiency: Queue overflow is not the only cause of congestion on

the egress path. Another cause of congestion is exhausting CPU resources. Even if

the server has enough networking capacity, traffic must wait before being handled by a

CPU core. The CPU cost of processing packets in networking stacks, however, has not

been fully investigated in the literature. Much of the focus of the community has been

on scaling servers in terms of aggregate traffic intensity (packets transmitted per second)

3

[15, 16], but bottlenecks caused by the increasing number of concurrent clients, resulting

in a large number of concurrent flows, have received little attention.

1.1 Primary Contributions

This thesis seeks to address the challenges to mitigate network congestion in the context

discussed above. We present a brief description of our work in this section.

1.1.1 A Framework to Mitigate Inter-AS Congestion through CP/ISP Collaboration

We present the design of Unison, a framework that allows an ISP to help the CPs choose

between the entry points, with the goal of jointly optimizing the intra-domain routes and

inter-domain routes. The basic idea of Unison is to provide the ISP operator and the neigh-

bors of the ISP with an abstraction of the ISP network in the form of a virtual switch

(vSwitch). This abstraction allows the content providers to program the virtual switch with

their requirements. In addition, Unison allows the ISP to provide hints to its neighbors,

suggesting alternative routes that can improve their performance. We investigate how the

vSwitch abstraction can be used to maximize the throughput of the ISP. We show through

extensive simulations that Unison can improve ISP throughput by up to 30% through co-

operation with content providers. We also show that cooperation of content providers only

improves performance, even for non-cooperating content providers.

1.1.2 A Backpressure Mechanism for Congested Queuing System at End Hosts

We show that current end-host mechanisms can lead to high CPU utilization, high tail la-

tency, and low throughput in cases of congestion of egress traffic within the end host when

handling tens of thousands of flows. We introduce the design, implementation, and eval-

uation of zero-drop networking (zD) stack, a new architecture for handling congestion of

scheduled buffers. It allows network operators to set a fixed queue size that is independent

of the number of flows, eliminating bufferbloat issues at scale. The basic idea is to define a

4

backpressure interface that triggers packet dispatch from senders only when the scheduled

buffer has room for new packets. We implement zD in the Linux kernel to apply backpres-

sure for two cases: 1) when the queues and traffic sources are within the kernel stack (i.e.,

in the same virtual or physical machine), and 2) when the traffic sources are in the virtual

machine and the queues are in the hypervisor.

1.1.3 Analyzing the CPU Cost of Networking Stack

We conduct a measurement study to identify the bottlenecks caused by the increasing num-

ber of concurrent clients, resulting in a large number of concurrent flows. In particular,

we define two broad categories of problems; namely, admitting more packets into the net-

work stack than can be handled efficiently, and increasing per-packet overhead within the

stack. We show that these problems contribute to high CPU usage and network performance

degradation in terms of aggregate throughput and RTT. Our measurement and analysis are

performed in the context of the Linux networking stack, the only fully-implemented, pub-

licly available, most widely used network stack. However, because we are not overly reliant

on Linux-specific features, our broad conclusions generalize well to other stacks. Our work

highlights considerations required in the design of future networking stacks that need to be

capable of handling large numbers of clients and flows.

1.2 Thesis Outline

The rest of this dissertation is organized as follows. Chapter 2 reviews the previous work

related to this thesis. In chapter 3, we present the design of a system that allows an ISP

to optimize its intra-domain routes and inter-domain routes, in collaboration with content

providers. Chapter 4 investigates a scalable architecture at end hosts for applying backpres-

sure from congested queues to traffic sources to reduce packet drop at end hosts. In chapter

5, we present our analysis on bottlenecks of the Linux networking stacks that lead to CPU

inefficiency. We conclude this dissertation and provide future work in Chapter 6.

5

CHAPTER 2

RELATED WORK

Mitigating network congestion has been an active area of networking research for many

years. In this chapter we review some of the prior works that are closely related to mitigat-

ing network congestion. We organize the related work by topic according to the challenges

mentioned in section 1. We start by reviewing the traffic engineering (TE) approaches that

aim at reducing network congestion in ISPs’ and CPs’ network. Then we present tech-

niques and mechanisms to reduce congestion in the data center environment, including a

set of congestion control algorithms as well as end-host approaches to mitigate egress-path

and ingress-path congestion. Finally, we examine the state-of-art in improving the CPU

efficiency of networking stacks at end hosts.

2.1 Traffic Engineering

Traffic engineering (TE) is an optimization method for efficiently allocating resources so

that certain benefits are maximized under pre-defined constraints. A key goal of TE is to

avoid congestion by optimizing routing policies based on network topology and expected

traffic demand. TE approaches are applied in all kinds of networks, but we focus here on TE

works that decide intra-domain and inter-domain routing for ISPs and content providers.

2.1.1 Intra-domain TE for ISPs

The routing protocols are clustered into two macin groups: intra-domain protocols to route

traffic within an AS, and inter-domain protocols to route traffic between ASes. Intra-

domain routing protocols, such as Open Shortest Path First (OSPF), Intermediate System-

Intermediate System (IS-IS), and Routing Information Protocols (RIP), are widely used

by ISPs. In these protocols, each link in the network is assigned a weight, and the short-

6

est path between each source and destination node is calculated based on the assigned

weights. However, these protocols fail to take capacity constraints and traffic characteris-

tics into account in making routing decisions. In addition, arbitrary distribution of flows is

not supported.

Alternative to shortest path routing, Multi-Protocol Label Switching (MPLS) was in-

troduced as a more flexible intra-domain routing protocol. MPLS enables explicit routing,

which allows a packet to follow a pre-determined path rather than a path calculated by

shortest path routing protocols. The basic idea is to attach a fix-length label at the ingress,

and the label rather than the IP header will be used to make forwarding decisions [17].

Some other work uses SDN-based mechanisms to implement network management

frameworks to achieve varying traffic engineering goals [18, 19]. Merlin [18] is a pro-

gramming language for provisioning network resources within a single domain. SOL [19]

presents a framework that allows network operators to express a range of constraints and

objectives in high level languages from which SOL generates and solves the optimization

problems. These frameworks demonstrate the potential of SDN techniques for efficiently

solving complex network optimization problems.

2.1.2 Inter-domain TE from CPs’ Perspective

Large content providers have already taken initiatives to improve inter-domain routing

aimed at delivering high-volume traffic while improving user-perceived performance [4,

5]. To tackle the limitations of BGP, Facebook designed Edge Fabric, a system for opti-

mizing routing at the edge [5]. Edge Fabric monitors capacities and demand for outgoing

traffic, and enforces better route selection by overriding the router’s normal BGP selection

for outbound traffic in Points of Presence (PoPs). Google takes a similar approach, de-

signing an edge architecture that delivers high-demand traffic with low latency [4]. While

Facebook only optimizes routing in PoPs, Google’s architecture has a global traffic engi-

neering system that enables application-aware routing at Internet scale. Both systems use

7

their already deployed SDN infrastructure to dynamically change BGP entries.

2.1.3 Collaborative Inter-domain TE

A few research studies have explored the benefits of allowing neighboring domains to col-

laboratively manage traffic [20, 21]. In these inter-domain architectures, neighboring ISPs

exchange information about their traffic volume and preferred routes, and participate in

negotiations until they reach mutually acceptable routes. Mahajan et al. [20] propose a

negotiation-based routing framework where neighboring ISPs exchange their preference

for inter-domain paths. Shrimali et al. [21] use the idea of multi-criteria optimization

and Nash bargaining to approach the inter-domain routing problem. The negotiation-based

approach requires clean-slate architectures and protocols, which suffer from deployment

challenges.

Another research direction proposes a centralized inter-domain routing broker to pro-

vide end-to-end guaranteed paths [22, 23, 24]. In some of these proposals, ISPs provide

QoS-enabled pathlets [22], which are stitched together by a centralized mediator called

a service broker. The design requires that users submit their requirements and service

providers submit their topology information to a service broker, who chooses the proper

path in each domain and stitches the paths together to form an end-to-end path based on

a global view of all participating networks. While a centralized network provisioning ap-

proach may optimize the inter-domain routing in an efficient way, the system is difficult to

scale. The global network has a large number of independently operated networks and a

large number of BGP-speaking routers. It remains to be seen whether ISPs will agree to

participate and whether they would willing to share information with the service broker.

Other proposals show that Internet exchange points (IXPs), the physical locations where

multiple networks connect to exchange traffic, provide an ideal location to improve the

existing routing system [25, 26]. Those approaches build on recent technology trends of

Software Defined Networking (SDN) to utilize traffic-management capabilities and explore

8

various use cases ranging from inbound route selection to application-specific peering. In

the SDX approach [25], participants exchange BGP update messages with the IXP route

server, and the SDN controller combines the SDN policy with the BGP routing information

to compute forwarding table entries in the IXP fabric. However, such proposals do not

provide control over all possible ingress paths to an ISP as IXPs do not represent all possible

connection points between ISPs and CPs [4].

2.1.4 Cooperative Content Distribution and TE

In order to improve the content delivery efficiency, the collaboration of ISP and CDN has

been proposed. Jiang et al. [27] focus on the joint optimization of TE in ISP and server

selection in CDN. Poese et al. [28] shows that server selection alone, without TE in ISP,

is sufficient enough to improve the content delivery. Another line of work focuses on

mapping clients’ requests to the closest CDN clusters using DNS-based approach or SDN-

based approach [29, 30].

2.2 Mitigating Congestion in Data Center Networks

2.2.1 Congestion Control Algorithms

Congestion control protocols are an integral part of current data center networks. They

seek to maximize utilization and achieve a desired allocation of network resources without

oversubscribing any link. Currently, TCP and its variants dominate the data center net-

works. DCTCP [31], HULL [32], and TIMELY [33] relies on explicit signals that come in

a variety of forms, ranging from packet drop to Explicit Congestion Notification (ECN) to

RTT, to adjust its window size or explicit rate in response to different congestion levels.

Protocols like XCP [34], RCP [35], pFabric [36], and Fastpass [37], shift congestion

control to intermediate switches within the network. Those protocols are effective in re-

ducing TCP flow latency with fast convergence time because more information, collected

from all flows passing through switches, is used to make decisions. However, they require

9

significant modification on current hardware architecture, thus are not deployed in large

scale in data center networks.

2.2.2 End Host Egress Path Congestion

TCP Small Queue (TSQ) [14] is the most prominent mechanism in practice today that

aims at mitigating the congestion at the queuing systems in Linux kernel. TSQ limits the

number of packets of any TCP flow that can be queued below the transport layer. It prevents

further packets from queuing into the IP layer if there are already two outstanding packets

waiting to be transmitted by NIC. TSQ has been deployed in the Linux TCP stack and

works well in reducing the buffering in the network stack, but it does not solve the problem

fundamentally. With thousands of TCP flows, limiting each flow to two outstanding packets

cannot prevent packet drop from happening.

While TSQ relies on signaling within the kernel stack to maintain the per-flow limit,

more recent proposals extend TSQ signalling to enforce the per-flow limit to queues beyond

the kernel stack. Carousel employs delayed delivery of completion signals from the NIC

to the TCP stack to apply backpressure from a user-space network processor to the kernel

TCP stack [38]. While traditional completion is implemented as a signal from driver to

transport stack in the same order of packets arriving at the NIC, asking the transport stack

to send more packets, Carousel implements out-of-order completions and relies on TSQ

to limit the number of packets per flow. PicNIC [39] extends TSQ signalling to allow

backpressure from a hypervisor to traffic sources inside a VM. It also proposes a per VM

budget of packets, for cases when a VM doesn’t support the backpressure signal. Note

that Carousel and PicNIC exhibit the inherent TSQ issues discussed earlier as queues have

to accommodate O(N) packets for N flows. End host queue buildup can be handed in a

similar manner to in-network queue buildup through congestion control algorithms [40].

This approach does not eliminate packet drops but helps improve tail latency.

Queue overflow is not the only cause of congestion on the egress path. Another cause

10

of congestion is exhausting CPU resources. Several systems proposed improve the CPU

efficiency of queuing in the network stack, thus allowing it to handle more packets and

flows. SENIC [41] improves rate limiting scalability by allowing for software queues to

make use of hardware to improve rate limiting performance. Carousel [38] employs a time-

based marking of packets and the timing wheel data structure to improve the performance

of software-only rate limiting. Eiffel [42] presents a software only solution for general

purpose packet scheduling. Several proposals explore improving efficiency of scheduling

algorithms by offloading them to hardware [43, 44].

2.2.3 End Host Ingress Path Congestion

Recently several proposals have looked at congestion control of the ingress path, imple-

menting scalable networking stacks [45, 46] and enforcing isolation between receiving

flows [47, 39]. Ingress path congestion at the end host occurs when one receiver (e.g., VM

or socket) receives packets at a high rate so that it overwhelms the CPU at the receiver.

Congestion control of ingress traffic typically requires fine grain CPU scheduling to allo-

cate enough resources to process incoming packets for all receivers. Congestion can also

happen due to incast scenarios when ingress traffic demand exceeds the NIC capacity at

receiver. Resolving incast issues in data center networks has been an active area of con-

gestion control research [31, 33, 48, 49, 50]. DCTCP [31] depends on an explicit feedback

mechanism to rate limit data sources for reducing congestion. D3 [50] is a deadline-aware

congestion control that utilizes flow deadline information to allocate bandwidth. Timely

[33] is an RTT-based congestion control scheme running over NICs with OS-bypass capa-

bilities.

2.3 End Host CPU Efficiency

A number of approaches are proposed to improve the CPU efficiency of networking stacks

at end hosts. Much of the focus of these work has been on scaling servers in terms of

11

aggregate traffic intensity in terms of packets transmitted per second, while maintaining

low latency [51, 52, 53, 54, 45]. Another line of work focus on improving a specific

stack such as the scheduling stack [55, 38, 42, 56] or the TCP stack [15, 16], without

understanding the interaction between different protocols and layers.

Some recent proposals address scaling the whole stack to handle a large number of

flows [57, 58, 59, 60]. TAS steers tasks into fast and slow paths and moves the fast path to a

dedicated core to reduce the system call, cache coherence and locking overheads [59]. Fast-

path handles common-case TCP packet processing and resource enforcement while flow-

path handles heavy-weight tasks such as connection setup/teardown, congestion control,

and timeouts. TAS dynamically allocates the appropriate amount of CPUs to accommodate

the fast-path, depending on the traffic load. With changing traffic load, AS dynamically

allocates the appropriate amount of CPUs to the fast-path to improve CPU efficiency. Other

works demonstrate the benefit of running the entire networking stack in the user-space to

improve CPU efficiency [51, 57]. mTCP [57] provides a scalable TCP stack by batching

both I/Os and functions calls and is evaluated at a maximum of 16k flows. Other systems

are evaluated at a few thousands flows [59] and up to twenty thousand flows [58, 60].

These work typically focus on specific functionality (e.g., RPC performance or transport

layer performance), with emphasis on short lived flows. None of the existing optimized

components was tested with a load larger than 50k flows. Our work in this thesis fills

the gap by looking at the complicated interaction between different components when the

server scales up to handle hundreds of thousands of long-lived flows.

12

CHAPTER 3

A FRAMEWORK TO MITIGATE INTER-AS CONGESTION THROUGH CP/ISP

COLLABORATION

The asymmetry of Internet routing, along with the current flat topology of the network,

leave routing decisions largely in the hand of content providers. For example, systems like

Egde Fabric [4] and Espresso [5], employed by Facebook and Google, respectively, im-

prove reaction time of content providers (CPs) to congestion. On the other hand, access

ISPs still have to rely on typical, ineffective, standard BGP tools that take tens of minutes

to converge. This is not ideal for two main reasons. First, content providers can only make

decisions based on their view of the network which is typically based on estimates of ca-

pacity from the ISP entry point to the user (e.g., relying on CDNs or Points of Presence

physically closest to the user). This is especially problematic in the presence of congestion

when an alternative entry point has to be selected that does not have to be close geograph-

ically to the user [7]. Second, dynamic path selection by a content provider, independent

from the ISP, complicates fault attribution. This problem can be alleviated with better co-

ordination between ISPs and content providers. There has been attempts to allow such

exchange of information through brokers or at Internet Exchange Points (IXPs) [22, 23,

24]. Broker-based solutions are not scalable as they represent a centralized Internet. IXP-

based solutions (e.g., SDX [25]) provide a good first step, however, their impact is limited

to entry points connected to a single IXP and do not specify how to operate at the full scale

of an ISP network.

In this chapter, we focus on the congestion problem at inter-AS connects. We present

the design of Unison, a system that allows an ISP to jointly optimize its intra-domain routes

and inter-domain routes, in collaboration with content providers (§3.2). Unison’s design is

based on the argument that deciding which entry point traffic should take to reach a user

13

is a decision that should be performed jointly by both the ISP and the content provider.

Our work is motivated by two observations: 1) measurements of interconnect congestion

show that while some entry points between a content provider and an ISP can be congested

several other entry points are uncongested across geographic regions (§3.1.3), and 2) the

availability of software defined interconnect systems at content providers makes it feasible

to coordinate between multiple networks and control inter-domain traffic.

The basic idea of Unison is to provide the ISP operator and the neighbors of the ISP

with an abstraction of the ISP network in the form of a virtual switch. This abstraction

allows the content providers to program the virtual switch with their requirements. It also

allows the ISP to use that information to optimize the performance of its network. In

addition, Unison allows the ISP to provide hints to its neighbors, suggesting alternative

routes that can improve their performance. Unison leverages recent advancements in SDN.

In particular, Unison makes use of SDN infrastructure at most modern ISPs [61, 62] as

well as the programmable Interconnects at content providers [4, 5]. It also leverages SDX

as a means to convert a vSwitch configuration into OpenFlow and BGP rules. This enables

Unison to be a programmable platform that can be used for multiple Inter-domain routing

applications (e.g. load balancing, or redirection through middleboxes).

We focus on the objective of maximizing throughput of content provider traffic going

through the ISP. In particular, we are interested in the creation of a vSwitch abstraction from

an ISP topology (§3.3). Then, we investigate how this abstraction can be used to maximize

the throughput of the ISP (§3.4). We formulate the problem as an integer program. Through

that formulation, we investigate the value of Unison in terms of improving ISP throughput

in case of congestion. We also show the impact of non-cooperating content providers.

Our evaluation of Unison is conducted through simulations (§4.5). We show that Unison

can improve ISP throughput by up to 30% through cooperation with content providers.

We also show that cooperation of content providers only improves performance, even for

non-cooperating content providers (e.g., a single cooperating neighbour can improve ISP

14

ISP Network

Ingress router
Border router

Content Provider 1
Network

Transit
Network

Content Provider 2
Network

Data
sources

Data sources

Egress router

Users

Core
Network

Edge
Network

Figure 3.1: Network context.

throughput by up to 6%).

3.1 Background

3.1.1 Network Context

It has become increasingly important for content providers (CPs) to reach consumers with

low latency. One way this has been achieved is through direct peering between CP and

ISP networks. While this has helped, we believe it is necessary in today’s demanding

environment to also coordinate traffic routing across this peering connection. Recent work

provides evidence that large CPs use peering links to carry the majority of the traffic to

access ISPs [4], making this coordination essential for the CP to achieve its reduced latency

objective.

We consider a network similar to the schematic in Figure 3.1. Multiple CPs are con-

nected to an ISP, either directly at their points of presence, or through transit autonomous

systems. We focus on the prevalent scenario where access ISPs connect directly with CPs.

The ISP network is composed of Ingress Routers that receive traffic intended for users.

Traffic is routed through the ISP’s Core Network to Edge Networks that users connect to

15

AS S AS D
Link 1

Link 2

Figure 3.2: Example of two ASes connected through two links (i.e., destination AS has two
entry points).

directly (e.g., cellular edge). The Core Network and Edge Network are connected through

Border Routers. These Border Routers deliver traffic to a large number of users. In this

paper, we are concerned with the problem of routing data from Ingress Routers to Border

Routers, as multiple such routes can exist [5]. However, we assume that once traffic reaches

a Border Router, its path to the user is deterministic.

We assume that some or all participating networks rely on programmable infrastructure

to determine and configure routes. These assumptions are increasingly becoming the reality

in the modern Internet as announced by ISPs [61, 62] and CPs [4, 5]. We note that CP

networks without programmable infrastructure are able to handle routing suggestions from

the ISP using existing APIs, motivated by the promise of higher throughput. Moreover,

Unison does not require all CPs to cooperate with the ISP. Our results show that Unison

can remain beneficial for the majority of CPs, even if only a subset of them cooperate.

We do not make any assumptions about data placement, as none is needed for our

context. This is because our interest is in cases where network congestion, rather than

physical distance, is the main bottleneck. Although ISP-CDN collaboration allows for

strategic placement of data and routing optimization, which improves data delivery [27,

28, 29, 30], we are interested in reducing congestion where some links between the CP

and the ISP are congested. Circumventing this congestion requires using a different entry

point, that can be in a different physical location. This scenario is typical as we show later.

16

3.1.2 The need for Content Provider-ISP Cooperation

Internet Routing Asymmetry: Current Internet routing is asymmetric because it gives

traffic sources much more control over route selection compared to traffic destinations.

This asymmetry is necessary to ensure traffic is routable in case of conflicting preferences.

For instance, consider the case in Figure 3.2. Suppose the source AS prefers to send traffic

over Link 1. An irresolvable conflict would arise if the destination AS prefers to receive

the traffic over Link 2.

Current BGP mechanisms such as path prepending and selective announcement are very

limited in terms of their expression of preference. In particular, an ISP can stop announcing

certain prefixes through certain entry points, which is an extreme approach and typically

not preferred for redundancy. The other available approach is path prepending which does

not provide clear preference between paths and does not necessarily differentiate between

CPs. Furthermore, these approaches rely on BGP convergence which is known to be slow,

especially compared to Software Defined Interconnects. The asymmetry problem can be

mitigated through the use of BGP communities that depend on cooperation between peering

partners, but BGP comminities tend to leak critical information such as network topology

hence is not an ideal solution [63]. We consider our solution as an argument against using

BGP communities.

Determining Best Path to End Users: Typically, CPs try to route traffic to end users

through the geographically closest point of presence (i.e., entry point to the ISP). However,

if that entry point is congested, CPs can only guess which alternative entry point to use.

CPs do not have visibility into the ISP’s network. This means that by selecting another

entry point, CPs cannot guarantee enough capacity from that entry point to the end user.

Selecting the best entry point can only be achieved if the CPs cooperate with the ISP.

Attribution of Bad QoE: When end users face bad quality of experience (QoE), it

is natural for users to blame the ISP [12]. Blaming the ISP implies that the ISP did not

allocate enough capacity for traffic to reach the user. However, this does not necessarily

17

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5 6 7 8 9

C
D

F

Number of Congested Entry Points

Facebook
Amazon
Google

Figure 3.3: CDF showing likelihood of congestion at one or more entry points.

have to be the case. It can be that the entry point used by the CP is congested due to

large traffic volume from that CP. It can also be due to the CP choosing an entry point that

does not have the proper capacity in its connection to the targeted users, while other entry

points have that needed capacity. It can also be the case that the CP’s network is congested.

This attribution is very hard to achieve accurately and can be costly to the ISP if the CP

unilaterally moves traffic between entry points. For example, this unilateral behavior can

force the ISP to upgrade and increase the capacity of parts of its network while the same

outcome could have been achieved by simply asking the CP to use a different entry point.

3.1.3 Interdomain Congestion across ISP Entry Points

Our main hypothesis in developing Unison is that when one point of entry to an ISP is

congested, several other entry points are not congested. This hypothesis is critical as it

implies the existence of the option to move traffic from the congested entry point to another.

Unison allows this decision to be made by the ISP rather than the ISP’s neighbouring AS

because the ISP knows the best, or second best, entry point to reach its customers. We

validate our hypothesis by examining interdomain congestion data between a single ISP

and three CPs over a period of two years [64]. The data provides measurements of latency

over multiple links connecting the ASes (i.e., egress-ingress router links in Figure 3.1).

Links are grouped based on location where every location captures a single point of entry

in our analysis. Each data point represents the congestion status inferred from the latency

18

over a period of 24 hours. The congestion measurement method is based on an intuition

that if the latency to the far end of the link is elevated but that to the near end is not, then it

is highly likely that the interdomain link is congested [65].

Figure 3.3 shows the CDF of simultaneously congested entry points between Comcast

and three CPs: Facebook, Google, and Amazon. Each content provider AS is connected to

the ISP through at least twelve points of entry. The results validate our hypothesis. It is not

uncommon to have multiple links congested at the same time while there are still links that

have available capacity. In particular, we find that in the worst cases of congestion there

are 20.1%, 14.6%, 55.3% of the links are congested at a certain data point for Facebook,

Amazon, and Google respectively. This means that there are at least seven alternative entry

points available even in the worst cases of congestion. The objective of Unison is to allow

the ISP to help the CPs choose between the entry points.

3.2 Unison Overview

Unison allows an ISP to expose a programmable interface to other autonomous systems

connected to it. Unison limits the amount of information exchanged by only providing

the vSwitch abstraction which does not reveal information about exact ISP topology, but

provides some hints about capacity in exchange for improving performance. In particular,

an AS can specify its preferred routing policies, which without Unison it would enforce

regardless of the state of the ISP. Furthermore, the ISP can take into account the preferences

of ASes connected to it, as well as its own capacity, to send hints back to neighbouring

ASes suggesting better routes if any. It is left up to the neighbouring ASes to use these

hints, thus preserving the distributed nature of the current Internet. Unison performs these

functions by configuring ISP inter-domain and intra-domain routing simultaneously. Inter-

domain routes are configured based on the state of the ISP as well as the routing preferences

of its neighbouring ASes by providing neighbouring ASes with hints on entry points for

aggregates of traffic that would optimize network performance. Intra-domain routing is

19

optimized by configuring capacity within the ISP to accommodate demand from peer ASes.

We leave further anonymization of the hints to future research.

The insight we build on is that, given proper controller infrastructure, BGP routers can

be programmed dynamically based on centrally made decisions to control inter-domain

routing at scale. This was demonstrated by software defined Internet routing systems de-

veloped and deployed by CPs such as Espresso by Google [5] and Edge Fabric by Facebook

[4]. Unison also builds on systems that allow the realization of a single policy from pref-

erences set by multiple autonomous systems developed for Internet Exchange Points (e.g.,

SDX [25]). Unison is developed for an ISP setting which requires interaction with peer

ASes, as well as consolidating ISP objectives and peer ASes objectives. The design of

Unison has two major components:

1. Overlay software defined control over BGP infrastructure, à la Espresso, designed to

control the Interconnect.

2. Cross-controller coordination and consolidation, à la SDX, designed to handle coordi-

nation between the ISP and ASes connected to it in order to reach a feasible resource

allocation.

We find that despite progress made in such systems from the perspective of CPs and

Internet exchange points, the ISP perspective poses a set of new challenges and constraints.

For the rest of this section, we elaborate on these challenges as well as give an overview of

Unison.

3.2.1 Unison Design Goals

An access ISP can be connected with multiple CPs at potentially multiple ingress points

for each CP. Our goal is to provide a way for ISPs to control the network taking into

account considerations from all CPs and users in addition to its own network and business

considerations. Although Unison can be used to achieve a wide range of objectives, we

20

focus on the simple and natural objective of maximizing ISP network throughput subject to

weighted differential treatment of different CPs. Hence, all CPs observe a less congested

ISP network, which is the main goal of CP-based solutions [5, 4]. Moreover, the ISP

achieves higher utilization of its network in addition to achieving its business obligations

by providing paying CPs more bandwidth. This approach is challenging and has to be

handled under a very strict set of constraints:

• Benefits both CPs and ISPs. ISPs have to balance many CPs. Unison should improve ISP

throughput while ensuring weighted differential treatment of CPs. Our system should

also improve throughput of CPs within an ISP.

• Does not require CPs to cooperate. The benefits of Unison should be achieved even

if only a subset of CPs connecting to an ISP agree to participate, without penalizing

non-participating ones.

• Limits information disclosure: ISPs will not be willing to disclose detailed information

such as network topology, traffic load, and customer information, often considered pro-

prietary by ISPs, to third parties such as CPs.

3.2.2 Architecture Overview and Operation

Figure 3.4 shows the details of connectivity between an ISP and a Content Provider (CP).

Note that we focus on the prevalent scenario where access ISPs connect directly with CPs.

However, our technique will work as long as we can construct a traffic matrix that can

be translated into a virtual switch. Our approach works on a (src ip prefix, dst ip prefix)

granularity. Hence, it should tailor different negotiations to different clients of the transit

network. Unison operates in the control plane of the ISP and provides an interface to CPs.

Unison has two main components: (i) a vSwitch Synthesizer that creates and maintains the

mapping between the vSwitch abstraction and actual network equipment at the ISP, and

(ii) a vSwitch Controller that combines programs from CPs as well as the ISP to generate

21

ISP

Edge Core

Border router Ingress router

Content
Provider

Unison

Content Provider
Controller

vSwitch Synthesizer
UpdaterMapper

Content Provider
Control Logic

Unison
Programmer

vSwitch Controller

Throughput Optimizer

Program Consolidator

Hint Generator

Figure 3.4: Overview of Unison architecture.

vSwitch configurations. Unison also requires minor changes in the controller of the CP

network to specify its policies as well as receive and take into account hints from the ISP.

vSwitch Synthesizer: The main function of this component is to convert the com-

plex topology of an ISP’s network to a simple vSwitch with well-defined input and output

ports. It also realizes high level programs of the vSwitch into actual route configurations

in network elements. These two functions are the responsibility of the Mapper and Up-

dater modules, respectively. The vSwitch Synthesizer is inspired by recent work in pro-

grammable inter-domain controllers introduced by content providers [5, 4]. In particular,

these recent advancements show that a central controller can make routing decisions that

reconfigure BGP routers either on per packet basis [5] or per point-of-presence basis [4].

vSwitch Controller: This component is responsible for programming the vSwitch as

well as providing hints to neighbouring ASes. A vSwitch program is created by combin-

22

Figure 3.5: Traffic matrix determination in the Mapping module

ing programs from different neighbours of the ISP as well as the objective from ISP. Each

program from each neighbour AS specifies its traffic demand as well as its routing prefer-

ences. Programs are combined in the Program Consolidator. The combined program is fed

to the Throughput Optimizer which generates network configuration as well as hints to the

neighbours of the ISP. This component is inspired by recent advancements in interconnect

abstractions (e.g., SDX [25]). We leverage these advancements to allow the neighbours of

an ISP to indicate to the ISP how they prefer their work to be routed. Similar to SDX virtual

switch abstraction, our proposed approach allows for dynamic allocation of IPs within the

virtual switch, allowing for capturing of the complex dynamic topology.

This architecture captures a generic Unison that can be programmed to perform a wide

variety of functions, depending on the programs provided by the CPs. However, in this pa-

per we focus on the case of maximizing ISP throughput where CP programs only provide

demand as a function of the input and output ports of the vSwitch. We note that challenges

in building components such as the Program Consolidator and the Updater have been ad-

dressed in SDX. In particular, SDX combines and joins policies from multiple participating

ASes to program a virtual switch abstraction of an IXP. Then, it converts such combined

program into BGP and OpenFlow rules. In the paper, we focus on the two components

highlighted in Figure 3.4: the Mapper and the Throughput Optimizer.

23

(a) Before update (b) After update

Figure 3.6: Influencing inbound traffic through hints.

3.3 Unison vSwitch Mapper

The function of the Mapper is to convert the complicated topology of the ISP into a

vSwitch. In particular, the Mapper aims at identifying the input and output ports of the

vSwitch. This is particularly challenging when taking scalability into account. In particu-

lar, a vSwitch defined by individual ports on individual routers in the ISP topology will lead

to an intractably large vSwitch. To handle the TE problem that considers millions of egress

flows destined to hundreds thousands of external IP prefixes, recent work [66] proposes

a hierarchical framework for ISP network. The framework divides a global optimization

problem into sub-problems, each of which is assigned to a child worker so the computation

can be accelerated through parallelism. Our mapper provides an alternative for ISPs who

are not capable or not willing to build such a hierarchy framework. To insure scalability,

the ISP simplifies its network by representing it as a traffic matrix where each element is

an aggregate flow. An aggregate flow is defined by an entry point to the ISP from a specific

CP to a group of users. The entry point for an aggregate flow pair is easy to define, and

is fixed. The function of the Mapper is mostly concerned with grouping users which are

24

typically represented by an IP-prefix. We take a greedy approach, starting to de-aggregate

flows from the entry points with a predefined value for the maximum number of flows we

can handle. We consider boundary routers the same as the entry points so we have one

aggregate flow for each entry point. Then we look at the routers that are directly connected

with the boundary routers and consider them as new boundary routers. We keep doing this

until the number of aggregated flows exceeds the threshold. To that end, we divide the

ISP’s network into “core” and an “edge” networks. Boundary Routers (b-routers) separate

the ISP’s core from the edge. Unison is concerned with routing CP data within the core

network only, representing the core network by vSwitch. End users are aggregated such

that data flow to and from the users is routed to a single b-router. The division of core from

edge network is determined by the ISP. The closer the b-routers are to the users, the more

effective Unison will be in controlling individual user performance but the larger the scale

of the problem Unison solves.

Realization of the aggregate flow can be achieved through existing tunneling tech-

niques, such as MPLS, GRE, and VPNs, or emerging SDN approaches based on flow

space allocation [67]. An example of the mapping function is shown Figure 3.5. In the

figure I1 and I2 are ISP ingress routers connected directly with the CP network. e1 to e4

are b-routers connecting the core and edge networks. Traffic demands from each ingress

router to each user are shown in the left side of the figure. The aggregate flows are shown

in one column of the traffic matrix resulting from the mapping process.

For Unison efficiency, the traffic matrix, which is the output of the mapper, has to be

relatively fixed. This means that traffic from a specific CP to a group of users has to go

through the same entry point. This is achieved by the Hint Generator which communicates

to CPs to fix traffic going to a specific user IP prefix to a specific entry point. This feature

is already supported by SDX for inbound traffic engineering. For ISPs that are not con-

nected with SDX, we discuss other alternatives. Figure 3.6 demonstrates an example of

such process, which announces nonoverlaping prefixes to different interconnection links,

25

to inform CPs of the suggested inter-domain traffic metrics. Some configuration is required

between CP and ISP (e.g., disabling route damping). Figure 3.6a shows the situation before

the update takes place. There are four flows, each with a size of 10 units, destined to a1,

a2, b1, b2 respectively. Ingress router in1 announces IP address of a1 and a2, and ingress

router in2 announces IP address of b1 and b2. To shift traffic from the left peering link to

the right peering link, the ISP could announce IP address a2 at ingress router in2 instead

of at in1. Although this approach is easy to deploy, it reduces the network resilience and

may lead to routing table explosion. An alternative approach is to use AS path prepending

or MEDs. For the example shown in Figure 3.6, the ISP could announce IP address of a2

at both ingress router in1 and in2 but with a shorter AS path or a smaller MEDs value in

the announcement from in2. To generate the router-level BGP configuration from high-

level BGP policies, ISPs may use a BGP synthesizer [68], which takes as input the routing

policies and generates Quagga router configurations.

One possible concern of dynamically changing BGP entries is that unstable routes may

cause unexpected interactions among multiple nodes in a large network [69, 70]. One pos-

sible solution is to use Root Cause Notification (RCN), shown in recent work [70] to effec-

tively eliminate false suppression and undesirable timer interactions. Further, although our

design expects the ISP to trigger the monitoring and optimizing periodically (e.g., every

few minutes), the ISPs are not obliged to change the routing every time when the Opti-

mizer module generates a new inter-domain routing. The ISP may change the inter-domain

routing only when the new routing can significantly improve the throughput.

3.4 Unison Throughput Optimizer

Unison provides the neighbor ASes of an ISP with a virtual switch abstraction connecting

the neighbour AS to customers of the ISP. This abstraction allows the ISP as well as its

neighbours to program the virtual switch to implement different inter-domain applications.

We focus on the application of maximizing the total throughput of the ISP (i.e., the number

26

of bits per second delivered from the ISP entry points to the ISP customers). With argu-

ments still raging aroung Net Neutrality in the US [71], we propose a framework that can be

tuned to provide a neutral or biased ISP. In particular, we look at throughput optimization

with weighted fairness constraints, assigning different weights in the lack of net neutrality

regulations and equal weights otherwise.

The optimization problem that runs at the Optimizer is critical to the performance of the

system. The Optimizer module takes as input elements a network topology (ingress routers,

core network and b-routers as shown in the previous section), a traffic matrix that repre-

sents the demand for each CP from each ingress location to/from each of the b-routers, the

pre-defined CPs’ behavior (i.e., participating or non-participating) stated in the agreement

between CPs and ISPs, and the link capacity constraints. These constraints are translated

into decision variables for an optimization solver [72, 73] . Table 3.1 summarizes our

notation.

3.4.1 Traffic Matrix

For the intra-domain traffic matrix, we define intraTMi,i′ as the volume of traffic that

enters the ISP network at ingress point i and exits at b-router point i′. We use this intra-

domain traffic matrix for traffic from non-participating CPs. For participating CPs, an

inter-domain traffic matrix is constructed by summing the intra-domain traffic matrices

for each b-router point. For a network with two ingress points i and j, and two b-router

points i′ and j′, given the intra-domain matrix intraTMi,i′ , intraTMi,j′ , intraTMj,i′ ,

intraTMj,j′ , the elements of the inter-domain matrices are constructed as interTMk,i′ =

intraTMi,i′ + intraTMj,i′ and interTMk,j′ = intraTMi,j′ + intraTMj,j′ .

Non-cooperating Neighbours: Unison can also handle cases when neighbouring ASes

do not provide their traffic demand or accept the hints provided by the Hint Generator. In

particular, the traffic matrix can be inferred through monitoring. Recent work [74] shows

that it is possible to monitor network traffic for any prefix within an ISP network within

27

Table 3.1: List of notation

Variable Description
G(V,E) network with V routers and E links
ce capacity of edge e in E
I a set of CPs
M a set of aggregate flows
J a set of paths
T a set of aggregate flows that cannot receive a higher allo-

cated bandwidth
ti,m allocated bandwidth to aggregate flow m for CP i in T
bj,e is edge e contained in path j; binary
di,m bandwidth demand from CP i on aggregate flow m
ri,m,j bandwidth allocated to flows from CP i on aggregate flow

m over path j
ri,m bandwidth allocated to flows from CP i on aggregate flow

m
ni number of aggregate flows for CP i
wi,m weight of an aggregate flow m for CP i
wi weight of CP i
CPSati satisfaction of CP i
bl lower bound of allocated bandwidth
bh upper bound of allocated bandwidth

milliseconds. The proposed approach does not require modification on current vendor

hardware and is easy to deploy. Furthermore, to fix the aggregate flow pairs, the ISP can

leverage the existing BGP mechanisms like selective announcements or prepending. We

show the impact of non-cooperating neighbours on performance in Section 4.5.

3.4.2 Feasibility and Weighted Fairness

We model the ISP network (ingress routers, core network and b-routers) as a directed graph

G = (V,E), where V is the set of routers and E is the set of links that connect the routers.

Assume there are CPs competing for resources, each CP requesting resources for ni aggre-

gate flows (e.g., in Figure 3.5 the CP is requesting resources for 8 aggregate flows). We

define I as the set of CPs and M as the set of aggregate flows among all CPs. We use di,m

to represent the bandwidth demand from the ith CP for aggregate flow m and use ri, m to

express the rate allocated to aggregate flow m for the ith CP. We use ri,m, j to express the

28

rate allocated to flows from ith CP on aggregate flow m over path j. The ISP takes as input

the CP’s bandwidth requests for aggregate flows (i.e., di,m) as well as the topology capacity,

and generates allocations for each aggregate flow (i.e., ri,m).

Feasibility: An allocation policy is feasible if no link capacity is exceeded. The upper

limit of a feasible solution can be found by solving the following optimization:

maximize
∑
i

∑
m

∑
j

ri,m,j

subject to
∑
j

ri,m,j ≤ di,m, ∀m ∈M, ∀i ∈ I

∑
i

∑
m

∑
j

ri,m,j × bj,e ≤ ce,∀e ∈ E

bj,e ∈ {0, 1}, ri,m,j � 0,∀j ∈ J

(3.1)

bj,e is the binary variable on whether path j contains edge e and ce is capacity of edge e.

There is no fairness constraint on this optimization, so the result may assign high band-

width to aggregate flows from to a few CPs and completely starve the others in an effort to

maximize the total throughput.

Weighted Fairness In addition to being feasible, a bandwidth allocation policy should

also be fair. Fair bandwidth allocation to flows has been extensively studied in the past

[75]. Demirci et al. [76] studied how to extend these fairness definitions to multiple overlay

networks instantiated on one substrate. Kleinberg et al. [77] take routing into consideration

and prove the problem is NP-hard. In this section, we present a definition for fair allocation

among multiple CPs.

We define a weighted fairness index (WFI) to evaluate the fairness of a bandwidth

allocation policy in a multi-CP-setting. We define normalized weight of an aggregate flows

as follows:

wi,m =
di,m∑

i

∑
m di,m∑
i ni

(3.2)

29

Algorithm 1 WBA: Weighted Bandwidth Allocation
Input: Traffic metrics di,m, a set of paths bj,e in
Output: Allocated rate ti,m out

1: wi,m ←
∑

i ni × di,m∑
i

∑
m di,m

, k ← dloga[
maxdi,m×wi,m

u
]e

2: T ← ∅
3: for n = 1...k do
4: for ri,m ∈ BMCF (an−1u, anu) do
5: if (i,m) /∈ T and ri,m ≤ min(di,m, a

nu× wi,m) then
6: T ← T + (i,m), ti,m ← ri,m

return ti,m : (i,m) ∈ T

The weight of an aggregate flow is proportional to its demand and is normalized by the

average aggregate flow demand for all CPs. This insures that bandwidth allocations are

positively correlated with aggregate flow demands. As will be described in the next section,

we use these weights to insure the weighted fairness of the allocation algorithm. The weight

of a CP is defined as the sum of the CP aggregate flow weights: wi =
∑

mwi,m. We define

CP satisfaction (CPSat) in the same way as the network satisfaction metric (NetSat) in

[76] with CPSati denoting the satisfaction of CP i. The CPSat describes how close the

CP aggregate flow bandwidth allocation in the presence of other CPs is to the allocation it

would receive had it been without competition. WFI is defined as the weighted standard

deviation of the CP satisfaction metrics across all CPs sharing the resources of the ISP.

3.4.3 Bandwidth Allocation Algorithm

The brute force method to find the optimal routing is to (i) enumerate all paths between

every ingress node and b-router node pair, and then (ii) apply max-min fair bandwidth

allocation algorithm to all possible path selections to find the optimal selection that achieves

the highest total rate. To make the computation faster, we limit the possible paths to k

shortest paths instead of enumerating all paths between ingress and b-router node pair. To

further reduce the computation time, the path generation process is performed offline. We

expect valid paths to change infrequently.

The max-min fairness bandwidth allocation algorithm computes the allocation for each

30

flow iteratively: maximizing the minimal flow rate, freezing the minimal flows and then

repeating the steps for the second minimal flow. The computation quickly becomes infea-

sible as the number and size of a network grows. Inspired by SWAN approximate max-

min fairness heuristic [78], we use the Weighted Bandwidth Allocation (WBA) algorithm

shown in Algorithm 1. The algorithm achieves weighted fairness between CPs by solving

an optimization problem which we call Bounded MCF (BMCF) in k steps. In every itera-

tion, BMCF solves a multi-commodity problem (MCF) problem that aims at maximizing∑
i

∑
m

∑
j ri,m,j , which is similar with optimization problem (3.1). The difference is that

BMCF tries to achieve weighted fairness among CPs, so in each iteration it puts a lower

bound and upper bound on rate allocated to each aggregate flow:

blwi,m ≤
∑
j

ri,m,j ≤ min(di,m, bhwi,m),∀(i,m) /∈ T (3.3)

bl = an−1u and bh = anu, which is passed by WBA in step n (line 4). Aggregate

flows with lower demands have smaller weights, ending with fewer allocated rates. If an

aggregate flow is allocated with its full demand or it cannot receive a higher allocation

because of the link capacity constraints, the aggregate flow is frozen and is removed from

the next round of computation. If every aggregate flow has the same demand, this allocation

is identical to max-min fair allocation. Note that any changes in the traffic matrix require

rerunning the optimization problems. This overhead can be mitigated by only recalculating

routes for the affected parts of the network. We leave such enhancements for future work.

3.5 Evaluation

In this section, we focus our evaluation efforts on exploring how useful Unison can be under

the limitations discussed in §3.2.1. We show that Unison can provide improved throughput

and differential treatment between CPs while not harming the performance of any CPs,

even with a limited number of cooperating CPs. We also evaluate the impact of various

31

parameters and settings on the system’s performance. To evaluate the performance of our

design, we implement a proof-of-concept Optimizer that calls the CPLEX solver through

its python API to solve the optimization problem described earlier. We conduct simulations

to study the performance of our algorithm in realistic settings.

3.5.1 Experimental Setup

Topologies: We conduct experiments with a setting of one ISP and twenty CPs. Each

CP is connected with the ISP in multiple interconnection nodes (i.e, ingress nodes) and

the number of inter-domain links ranges from 1 to 5. Our simulation uses a variety of

topologies from topology zoo [79] for the ISP and CP network.

Traffic demand: We assume that there is one flow from each CP source node to each

ISP egress node. We consider all nodes excluding egress points in CP topology as source

nodes and all nodes excluding ingress points in ISP topology as egress nodes. We simulate

the traffic demand using a gravity model [80], which predicts that the traffic demand of a

CP is proportional to the corresponding node population.

Link capacity: In our simulation, inter-domain link capacities are drawn from distri-

bution of congested interconnections in recent work [4]. We generate the inter-domain link

capacity by multiplying the traffic demand with the fraction of congestion shown in [4]. For

the intra-domain link capacities, we assume that all links in the ISP have the same capacity

and the link weights are assumed to be one. The value of this capacity is calculated through

the following steps. First, we compute the routing with the default routing (i.e, OSPF) for

the ISP network and identify the link with the most traffic demand. Then we compute a ca-

pacity by multiplying a congestion parameter with the demand carried in the most heavily

loaded link. The goal of this approach is guarantee that a few links are congested. We also

experimented with other link capacity distributions (i.e., uniform random distribution) and

we observe that the results remain qualitatively similar.

Baseline: We use the early-exit policy for the default routing. The chosen interconnec-

32

 0
 10
 20
 30
 40
 50
 60

A
b
ile

n
e

A
co

n
e
t

Q
u
e
st

S
p
ri
n
t

A
R

N

G
e
a
n
t

IB
M

In
te

rn
o
d
e

B
e
st

e
l

T
a
ta

T
h
ro

u
g
h
p

u
t
g
a
in

 (
%

)

ISP Topology

Figure 3.7: Throughput gain created by Unison compared to the baseline over different ISP
topologies.

tion is the one that is the closest to the source. We assume that flows belong to the same

aggregate flow will be routed in the same way and will not be split between multiple paths.

3.5.2 The Value of Unison

Value to ISP: We compare Unison to the baseline in terms of the amount of traffic they can

deliver from CPs to end users. Figure 3.7 shows the throughput gain of Unison. We assume

all CPs are participating, i.e., agree to use the new inter-domain routing as suggested by

the ISP. It is clear that Unison’s approach to jointly optimize inter-intra-domain routing

improves ISP throughput. We also note that topologies with smaller average node degree

improve more with Unison. Compared to complex topologies, simple topologies have less

candidate paths between each ingress and egress node pair and it is more likely that a few

links are heavily used by a large portion of paths. Therefore, changing the inter-domain

routing is effective at diminishing unbalanced link usage.

Value to CPs: To better understand the value of Unison, we look at how increase in ISP

throughput is viewed from the CP. Figure 3.8 shows the performance gain in percentage.

We compare Unison to a baseline that attempts to optimize network utilization through

optimizing OSPF parameters only (i.e., Optimizing intra-domain only). We observe that

33

 0

 14

 28

 42

 56

 70

0 1 2 3 4 5 6 7 8 9 10111213141516171819

T
h

ro
u

g
h
p

u
t
g
a
in

 (
%

)

Content Provider ID

Unison
Intra-domain Opt Only

Figure 3.8: Throughput gains comparing optimizing intra-domain only and Unison.

(a) Throughput gain (b) Weighted Fairness Index

Figure 3.9: Comparison between WBA and MFC algorithm showing minor throughput
impact with weighted fairness.

most CPs achieve a much higher throughput gain when the ISP relies on Unison compared

to only optimizing intra-domain routing. This shows the value in the joint optimization of

inter- and intra-domain routing even from the perspective of CPs.

Value of jointly optimizing for weighted fairness and throughput: To show the

value of our proposed algorithm WBA, we compare it to the multi-commodity flow (MCF)

algorithm. We compare the two algorithms on Sprint and Abilene topology. Each ISP is

connected to 20 CPs and we change the number of participating CPs from 3 to 20. Figures

3.9a and 3.9b show the total allocated bandwidth and the weighted fairness index (WFI)

34

 0

 14

 28

 42

 56

 70

1 2 7 8 9 11 13 14 17 19

T
h

ro
u

g
h
p

u
t
g
a
in

 (
%

)

Content Provider ID

All Opt.
Partial Opt.

(a) Participating CPs

 0

 14

 28

 42

 56

 70

0 3 4 5 6 10 12 15 16 18

T
h
ro

u
g

h
p

u
t
g
a

in
 (

%
)

Content Provider ID

All Opt.
Partial Opt.

(b) Non-participating CPs

Figure 3.10: OptAll v.s. only for OptPartial showing that non-participating CPs enjoy a
free ride of increased throughput in OptAll as participating CPs while only participating
CPs achieve increased throughput in OptPartial.

respectively. For both of the topologies, the WFI for the bandwidth allocation generated

by the WBA algorithm is lower (better) than that of the MCF algorithm. The throughput

gain for both algorithms almost match with MCF performing negligibly better in some

cases. We also observe that the WFI achieved by the MCF algorithm shows a decreasing

trend as the number of participating CPs increases. The main reason is that the MCF

algorithm does not enforce any constraints on the bandwidth assigned to each aggregate

flow and participating CPs have advantages over non-participating CPs by adjusting the

inter-domain routing. As the number of participating CPs increases, the effect of favorable

treatment on a few CPs starts to diminish.

35

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

N
o

rm
a
liz

e
d

T
o
ta

l
R

a
te

Time (seconds)

Demand
Intra-domain Opt Only

Unison winsize = 1

Unison winsize = 2
Unison winsize = 4

Figure 3.11: Impact of window size used in Unison on total ISP throughput under dynamic
traffic demand.

3.5.3 Impact of CP participation

In the previous experiments, our algorithm optimizes the inter-domain routing only for

participating CPs and optimizes the intra-domain traffic for both participating and non-

participating CPs. We call this approach Optimizing for All (OptAll). An alternative ap-

proach is to not change any routing, including intra-domain routing and the allocated rate,

for non-participating CPs while optimizing both intra- and inter-domain routing for par-

ticipating CPs. We now compare the performance of optimizing for all (OptAll) against

optimizing only for participating CPs (OptPartial). We conduct four sets of experiments

with different participating CPs and non-participating CPs selection, but due to space lim-

its we only show results (Figure 3.10) for the experiment with 10 participating CPs and 10

non-participating CPs. Our result shows that OptAll achieves a slightly higher ISP through-

put gain than OptPartial does. Compared with OptAll, OptPartial achieves similar or higher

throughput gain for participating CPs. Non-participating CPs enjoy a free ride of increased

throughput in OptAll as participating CPs. This effect may decrease CP’s motivation to

participate if there are changes to have throughput gain without participating.

36

 0
 10
 20
 30
 40
 50

 1 2 3 4 5 6 7 8

O
p
ti
m

a
lit

y
 G

a
p
 (

%
)

Number of traffic glasses

Abilene
Aconet
Quest
Sprint

Figure 3.12: Optimality gap as function of aggregate flow.

3.5.4 Impact of environmental parameters

Impact of inaccurate prediction of dynamic traffic: In our design, the Estimation mod-

ule collects the current traffic demand and uses it to estimate demand for a future window.

This estimation is the main source of error. This error in demand prediction can cause

under- or over-provisioning of bandwidth to some aggregate flows. The value of the error

is a function of the estimation window size. To measure the impact of errors in estimat-

ing the traffic demand, we conduct an experiment with dynamic traffic. The traffic data is

drawn from recent measurement study on YouTube network traffic at a campus network

[81]. Figure 3.11 compares Unison with different window sizes to the baseline routing

scheme. Unison adapts to changes when a small window size is used leading to better

throughput than the baseline. When a large window size is used, Unison causes under-and

over-provisioning frequently, which makes the default routing more preferable. Note that

the window size depends on the frequency monitoring, mapping, optimization, and update

can be run.

Impact of the traffic granularity: Traffic granularity refers to the level of traffic ag-

gregation. In our baseline experiment, we consider aggregating all traffic entering at an ISP

ingress router and routed to a b- router as an aggregate flow, and flows in the same aggregate

flow are not splittable. We expect increasing the number aggregate flows per each ingress

and b-router pair should increase the total rate until the highest rate has been achieved. Fig

37

3.12 shows the gap between the achieved total rate and the optimal allocation. Unsurpris-

ingly, the computation time increases linearly as the number of aggregate flows increases.

However, this is not a big concern. In most cases, we find that the throughput gain reaches

its largest value with aggregate flows numbers as low as 5.

3.5.5 Summary

In this chapter we propose a framework to be deployed in an access ISP network for joint

inter-intra-domain routing. We consider practical deployment issues and evaluate different

design choices. We develop a resource allocation strategy that can be deployed by ISPs

that maximizes the allocation to the CPs within the ISP capacity constraints while insuring

fairness among CP allocations. Our evaluation shows that such framework is beneficial to

both CPs and ISPs, improving total throughput of CPs within an ISP and improving ISP

throughput. We also show that the benefits of Unison can be achieved even if only a subset

of CPs connecting to an ISP agree to participate.

38

CHAPTER 4

A BACKPRESSURE MECHANISM FOR CONGESTED END HOST

In this chapter, we focus on the congestion problem at the queuing system within end hosts.

For years, improved chips added more cores than more capacity per core [82]. Rather than

relying on improved performance through increased per-core performance, parallel execu-

tion became the only way of making use of the new chips [83, 84]. From the perspective

of the networking stack, this meant that rather than having to serve a few connections per

machine, new networking stacks have to cope with requirements in the tens of thousands

of connections per machine (e.g., reports mention servers handling up to 50k flows per end

host [38]). This is further enabled by advancements in virtualization and containerization

that allows applications belonging to different users to coexist and share network resources

on the same end host (e.g., reports mention 120 VMs per end host [85]). This scale sparked

interest in improved scheduling and prioritization between these applications through the

introduction of efficient packet processing and scheduling mechanisms [38, 42, 86, 87, 85].

Processing of egress traffic in such stacks relies on holding packets in a cascade of queues

pending their processing and eventual scheduling to be transmitted on the wire.

Packet queues at an end host serve as buffers between producers and consumers with

different speeds. There are two types of buffers we are interested in: source buffers and

scheduled buffers. Source buffers hold packets prepared by traffic sources while awaiting

consumption by the underlying layer in the stack. Scheduled buffers consume packets from

multiple traffic sources and then determine the order of their transmission according to

their configured scheduling policy. While most components of the networking stack have

evolved to cope with the growing scale of applications, handling of overflowing scheduled

buffers which can lead to packet drops has received little attention.

Figure 4.1 shows how packets flow in a typical system. Packets are first sent from

39

Src 1 Src 2 Src N...Traffic Sources

Source
Buffers

Scheduled
Buffers

To Lower Layer
or NIC

Consumes packets from sources
and outputs them according to

scheduling policy; when
overflowing, drops packets.

Figure 4.1: Schematic of queue architecture at end hosts.

source buffers (e.g., TCP socket buffers) to a scheduled buffer (e.g., Qdisc [88]). Packets

from different sources accumulate in the scheduled buffer. If a scheduled buffer runs out

of space, packets are dropped. Examples of such end-host congestion exist in large scale

public clouds where a single end host is shared between multiple applications [47].

In general, packet drops are inefficient. Resources used on processing the dropped

packet (e.g., CPU) have to be used again to send the retransmissions. Moreover, drops

increase latency by adding more processing time to attempt retransmissions. Finally, drops

can also induce severe reaction from congestion control which cuts its window in reaction

to packet loss, leading to lowered throughput. When packet drops occur inside the network,

then this type of inefficiency is unavoidable because of the need for end-to-end signaling.

However, if packets are dropped inside the source host in the manner described in the

scenario of Figure 4.1, then they can be handled through signaling within the host. For

this latter type of loss we find that they are responsible for an up to 14% increase in CPU

utilization and an order of magnitude increase in tail latency (§4.1). Our goal is to consider

how signaling within the host can recover from these packet drops faster (in nanoseconds

40

to microseconds as opposed to microseconds to milliseconds) while avoiding the CPU

overhead.

In this chapter, we introduce the design, implementation, and evaluation of zD, a new

architecture for handling congestion of scheduled buffers. zD has three components (§4.2):

1) a source buffer regulator that allows a congested scheduled buffer to pause and resume

a traffic source, ii) a CPU efficient backpressure interface to define the interaction between

the congested scheduled buffer and the traffic sources, and iii) a scheduler for paused flows

to make sure that zD does not interfere with the scheduling policy implemented in the

scheduled buffer. zD allows network operators to set a fixed queue size that is independent

of the number of flows, eliminating bufferbloat issues at scale. zD maintains CPU efficiency

by defining a backpressure interface that triggers packet dispatch from senders only when

the scheduled buffer has room for new packets1. The task performed by zD can be viewed

as controlling access to the scheduled buffer rather than leaving it the CPU scheduler. Thus,

zD also reduces contention in accessing the scheduled buffer, further saving CPU resources.

zD avoids interfering with the scheduling policy implemented in the packet queue (e.g.,

Qdisc policy) by scheduling flows in a way that is consistent with the underlying packet

scheduling policy. To achieve CPU efficient scheduling, zD leverages recent developments

in software schedulers introduced by the Eiffel system [42].

We implement zD2 (§4.4) in the Linux kernel to handle backpressure for two cases: 1)

when the queues and traffic sources are within the kernel stack (i.e., in the same virtual or

physical machine), and 2) when the traffic sources are in the virtual machine and the queues

are in the hypervisor. We find that zD can significantly improve network performance at

high loads (§4.5). In particular, zD improves throughput by up to 60%, reduces retansmis-

sion by up to 1000x, and improves tail RTT by at least 10x at high loads. Furthermore,

zD improves CPU utilization spent on the networking stack by up to 2x at the end host by

reducing the effort spent on resending packets that have been dropped. We also find that

1Note that drops due to packet corruption can still happen.
2zD Code and a tutorial for using it are available at https://zd-linux.github.io/

41

https://zd-linux.github.io/

VM userspace

VM kernel

Application

TCP

Qdisc
Queue

vNIC TX
Queue

Physical host
TUN-TAP

Bridge

Qdisc
Queue

NIC TX
Queue

Socket
buffer

Vhost-net

Push

Feedback (start/stop
pushing)

Pull (by interrupts)

Figure 4.2: Architecture of queues in end hosts.

zD is lightweight as it does not incur extra overhead when the system is operating at low

utilization. The only downside to zD is that in some scenarios it can increase the CPU

overhead inside the hypervisor.

4.1 Background and Motivation

4.1.1 Packet Queuing at End Hosts

We start by giving an overview of the packet queuing architecture at end hosts. We focus

on a common architecture used in modern data centers. In particular, we focus on the case

where the end host is running a Linux virtualized environment, where the IO driver inter-

face between the guest and host is handled by virtio [89] and vhost [90]. virtio

is an I/O para-virtualized (PV) standard used for connecting the guest and host. To avoid

42

context switching in the host, vhost allows the dataplane of the guest to be mapped di-

rectly into the kernel space of the host. The queuing architecture is shown in Figure 4.2.

We focus on queues in the packet path and differentiate between queues where it is possible

to have packet drops and those that already have a form of backpressure.

The user space application in the VM generates a packet and copies it into the kernel

space socket buffer. The return value of the socket system call indicates whether the socket

buffer is full. This operation is lossless (i.e., zero drop). Packets from the socket buffer

are then queued into a Queuing Discipline (Qdisc). Packet drops can happen if the Qdisc

is full. This happens when sockets push packets faster than the Qdisc transmission speed.

Next, the Qdisc sends the packet to the vNIC TX queue. The vNIC TX queue does not

drop packets. In particular, when there is no available space in the vNIC TX queue, the

Qdisc will be paused until the queue length drops below the threshold, making the Qdisc

the primary location for drops in the VM.

The hypervisor processes packets generated by the VM through vhost which starts a

kernel thread that performs busy polling on the queue between the hypervisor and the VM.

There can be multiple such queues, called vrings with a different vhost thread assigned

for each vring. The vhost process polls the packet and sends it through the TAP device

then to a Bridge device. Packets received in the virtual bridge will be forwarded to the

Qdisc in the physical machine and then transmitted to the NIC TX queue. Note that in

this setting, the TAP and Bridge devices do not hold or drop packets, delivering all packets

they process in order to the Qdisc in the hypervisor. The Qdisc, or its counterpart in a

more complicated architecture (e.g., OpenVSwitch [91]), is the main place where packets

can be dropped due to congestion in the hypvervisor. We mark the existing backpressure

mechanism (i.e., zero drop) with solid red arrows in Figure 4.2.

We choose this setting because it is a stripped-down, yet general-purpose, virtualized

network stack. This architecture shares the same queuing components with more com-

plicated architectures. For instance, consider Andromeda [47], Google’s virtual network

43

stack. Andromeda relies on a similar basic architecture and augments it with an efficient

fast path. Note that packet drops can only happen at Andromeda itself which corresponds

to the Qdisc in the above architecture. Furthermore, the architecture we consider here,

unlike DPDK-based stacks, does not require a spinning core dedicated for network pro-

cessing. This allows us to perform fine grain measurements of CPU efficiency (e.g., ex-

periments where the VM runs on a single core). This architecture also captures the major

characteristics of other stacks in terms of potential for packet drops at the end host. For

instance, vhost used in our architecture has an analogous vhost-user used in DPDK-

based stacks where packet queues will be in the userspace network processing system. In

cases where OpenVSwitch [91] is used, the TAP and Bridge devices are replaced by Open-

VSwitch. Hence, we find that the conceptual building blocks we develop in this paper for

solving the congestion problem apply to other settings.

Ingress traffic: Most packet drops of egress traffic can be handled by coordination

within the sender. However, drops of ingress traffic can require end-to-end coordination

[92, 93] or careful allocation of CPU resources [45]. We focus on packet drops that occur

due to congestion that can be handled through signaling within the end host, which are

mostly egress traffic packet drops.

4.1.2 Types of Packet Drops

In-network packet drops are easily defined as packets being discarded by a network ele-

ment (e.g., switch). This singular definition typically has some well defined reaction from

the source associated with it (e.g., retransmission of the lost packet and congestion control

reacting by adjusting its window). However, at end hosts we find that there are two types of

packet drops. Both types of drops are expensive because a packet is processed for transmis-

sion, destroyed, and a replacement packet has to be generated which leads to higher CPU

cost as well as higher latency. However, the two types differ in the reaction of the traffic

source.

44

Virtual Packet Drops: In such cases the traffic source is aware that the packet was

dropped at the end host. This type of drop is only feasible when transmission through

the stack is performed through a series of nested function calls. The return value of these

functions indicates whether the packet was successfully transmitted or dropped by one of

these functions. If a packet is virtually dropped, the caller becomes aware of the location of

the drop, allowing it to react appropriately. For instance, the reaction of TCP to a detected

virtual packet drop is to simply attempt to resend the dropped packet without triggering its

retransmission mechanisms and the congestion control algorithms.

Physical Packet Drops: In such cases the traffic source is unaware that the drop hap-

pened at the end host and consequently reacts as if the packet was dropped in the network.

For example, the reaction of TCP to a physical packet drop will include triggering retrans-

mission and congestion control algorithms. This type of drop is more expensive as it can

lead to reduced network utilization, due to congestion control reaction (i.e., forcing flows

to operate at a low rate), in addition to the higher CPU cost and latency.

In the stack described in Figure 4.2, virtual packet drops happen inside the VM where

the TCP stack is aware of Qdisc packet drops. In current implementations, TCP reacts

to virtual packet drops by immediately attempting to resend the dropped packet without

consideration to contention at the Qdisc. This is a CPU intensive approach as we discuss

in the next section. Physical packet drops occur in the hypervisor Qdisc which does not

explicitly report drops to the guest kernel. Another important distinction between the two

types of drops is that physical packet drops can be completely avoided. However, virtual

packet drops are necessary in some cases. For example, a new flow cannot know whether

the queue is full or not until it probes the queue with a packet that can be virtually dropped.

Hence, the goal of a backpressure mechanism is to minimize virtual packet drops and

eliminate physical packet drops.

45

4.1.3 Cost of Long Queues

A naive approach to avoid loss in queues is to increase the queue size. Increasing the

queue size exhibits fundamental limitation in accommodating the increasing number of

concurrent connections, despite TCP Small Queue which attempts to combat bufferbloat

[14]. To highlight these limitations, we conduct a simple experiment within a VM, running

a large number of TCP connections using different lengths for the queue used in the VM

Qdisc. In particular, we use neper [94] to generate 4000 TCP flows. The flows run in a

VM. Queue accumulation only happens in the guest by setting a large rate for the VM in a

queue not contended by any other VMs. We use the pfifo Qdisc [95] in the guest kernel

with different queue lengths, aiming at examining behavior in two cases: 1) TSQ operation

point where no packets are dropped (i.e., 2 packets are enqueued per flow), leading to

a queue length of 8k slots, and 2) a queue length of 1k slots representing queue sizes

that avoid bufferbloat. We also compare using the two cases to zD to highlight potential

improvements. More details about our experimental setup is presented in Section 4.5.1.

We find that longer queue length leads to longer RTT, implying that relying on TSQ

leads to performance degradation as the number of flows grows. Figure 4.3a compares the

RTT of TCP flows with a pfifo queue with two queue length values. The result shows that

excess buffering in a long queue increases latency as well as causing packet delay variation

(long tail in Figure 4.3b). We also repeat the experiment with Fair Queue (FQ) Qdisc [96]

and observes that FQ has similar RTT as pfifo for a queue size of 8k slots. This behavior

occurs despite FQ attempting to reduce the variance in RTT using round robin scheduling

of active flows.

4.1.4 Cost of Packet Drops

We characterize the cost of packet drops in terms of both CPU utilization as well as tail

latency. We find that both metrics are interconnected with a negative feedback loop where

high CPU cost leads to high tail latency, which in turns increases the CPU cost further.

46

10-510-410-310-210-1 100 101

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F pfifo 1k

pfifo 8k
zD

(a) CDF of RTT

10-310-210-1 100 101 102 103

Time (s)

0.80

0.85

0.90

0.95

1.00

CD
F

(%
)

pfifo 1k
pfifo 8k
zD

(b) Zoomed in CDF of RTT

Figure 4.3: Bufferbloat, when pfifo queue size is 8k slots, leads to two orders of magnitude
degradation in RTT. High contention and virtual packet drop rates, when pfifio queue size
is 1k slots, leads to an order of magnitude degradation in tail latency compared to zD.

In this section, we explain in detail the causes of this peculiar behavior. We examine

packet queues in the same setting as the previous section (i.e., flows started inside a VM).

This allows us to examine CPU cost inside the stacks of both guest and host kernels. To

illustrate these costs, we contrast the performance of the standard Linux implementation to

our proposed system zD, which does not suffer from the same issues. We use zD simply

to illustrate the inefficiency of the current approach used in the Linux kernel, explaining its

details in subsequent sections.

CPU Cost: The CPU cost of packet queuing in the guest kernel is caused by the con-

tention between TCP flows competing to acquire Qdisc lock and fill its limited space. This

CPU overhead is a well documented issue [38, 41]. This overhead is exacerbated in cases

where virtual or physical packet drops occur. In particular, a flow competes to acquire a

lock to the Qdisc only to have it dropped, forcing the flow to try to acquire the lock again

for the same packet. This overhead is shown in Figure 4.4a. The CPU cost in the host

kernel is similar to that of the guest kernel in terms of contention to acquire Qdisc lock

between multiple VMs. Furthermore, the hypervisor runs a vhost thread per vring to

process traffic generated by the VM. The CPU utilization of vhost-net threads grows

as the number of packets generated by a VM grows. In our experiments, we have a sin-

47

20 25 30 35 40 45 50
CPU (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(%
)

TSQ
zD

(a) CPU usage in VM

0 20 40 60 80 100
CPU (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(%
)

TSQ
zD

(b) CPU usage of vhost

Figure 4.4: zD reduces CPU usage in both VM and the physical machine compared to
standard kernel implementation for TSQ (pfifo).

gle vring per VM. We find that avoiding packet drops and contention also reduces CPU

cost of the vhost-net thread (Figure 4.4b), recorded by pinning the thread to a specific

core and measuring the utilization of that core. In order to explain this behavior, we first

examine the cost of packet drops on tail latency.

Latency Cost: Packet drops, in addition to time wasted on lock contention, cause

delays to packet transmission. In particular, a packet has to successfully acquire the lock to

the queue, and find room in the queue, in order to be transmitted. Otherwise, the packet is

dropped, either physically or virtually, and forced to reattempt the process. This is clear in

comparing zD, which avoids the mentioned overhead, and standard kernel implementation

with 1k slots, shown in Figure 4.3. In particular, the impact of bufferbloat explains the

behavior of the case when a queue size of 8k is used. However, the improvements in

tail latency provided by zD compared to standard kernel implementation with 1k slots are

explained by reducing contention as well as avoiding packet drops.

Impact of RTT tail performance on vhost-net CPU: This strange interaction is

an artifact of years of optimization of the TCP stack yielding unexpected scenarios. These

optimizations are summarized in [97]. We note that all optimizations we mention here are

enabled by default in the Linux kernel stack. They start with TCP Segmentation Offload

(TSO), a mechanism to achieve low CPU utilization at high networking speed by offload-

48

0 20000 40000
Frame size

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(%
)

TSQ
zD

Figure 4.5: CDF of frame size, showing the impact of tail RTT performance on the behavior
of TSO autosizing algorithm. Larger tail latency yields smaller packets, causing higher
CPU cost.

ing TCP segmentation to hardware. However, TSO, with fixed segment size, may lead to

microbursts for flows with low rate, which is not desirable in networks relying on merchant

silicon switches with short buffers. Here lies a tradeoff between CPU and network perfor-

mance; relying on large fixed segment size saves host CPU but results in a bursty network

and using small segment sizes increases CPU cost, through processing of more packets, but

yields better network performance. The current approach used in Linux attempts a com-

promise by automatically determining the size of TSO segments based on the transmission

rate.

TSO autosizing was introduced to decide the size of data in a burst [96]. The goal of

TSO autosizing is regulating the number of packets transmitted by any single TCP flow

by changing the TSO size, and consequently reducing the burst size of the TCP flow. In

particular, TSO autosizing aims at making TCP flows send a packet every millisecond

rather than a hundred packets every 100 milliseconds. The algorithm calculating TSO size

relies on an estimate of the rate of the flow calculated as 2 × cwnd/RTT , where cwnd is

the congestion window size and RTT is a moving average of the measured RTT value in

the kernel. This means that a long tailed RTT distribution leads to a smaller pacing rate,

which means the data will be chunked into smaller sizes. This leads to higher CPU cost at

49

the vhost-net thread, as shown in Figure 4.4b. A CDF of packet sizes under standard

kernel implementation and zD is shown in Figure 4.5, where the difference between packet

sizes can be explained by the difference in tail RTT shown in Figure 4.3. Note that when

the CPU utilization of the core handling the vhost-net reaches 100%, the latency faced

by packets can increase, further impacting packet sizes, leading to a negative feedback loop

of bad performance.

4.2 zD Design Principles

Packet drops are caused by demand exceeding capacity. This means that traffic sources

will get less bandwidth than their demand. The only solution to this problem is to change

capacity or demand. However, congestion control aims at optimizing reaction to such

scenarios. Hence, the overarching goal of zD is to change the indicator of congestion

at end hosts from packet drops, and to consequently achieve less throughput than demand,

lowering throughput without drops. This avoids sending an ambiguous signal that does not

differentiate between end-host drops and in-network drops. It also allows for better CPU

and network performance as discussed earlier. This high level goal has to be achieved in

tandem with the following objectives:

• Prevent drops due to scheduled buffer overflows: This is the main objective of zD.

As discussed in the previous section, packet drops lead to poor network and CPU perfor-

mance. zD allows overflowing queues to apply backpressure to traffic sources to prevent

them from enqueuing more packets.

• Maintain CPU efficiency: Preventing drops can lead to cases where the traffic sources

are constantly busy polling on available slots in the queue. This behavior trades CPU

efficiency for network efficiency. zD avoids this type of behavior.

• Maintain consistency with packet scheduling policies: Backpressure is a form of con-

trolling access to a congested scheduled buffer. zD should avoid scenarios where its

50

Src 1 Src 2 Src N...Traffic Sources

Source
Buffers

Scheduled
Buffers

To Lower Layer
or NIC

Backpressure Interface

Probe

Resume/
Pause

Paused-Flows
Queue

Regulator

Figure 4.6: Schematic of zD architecture at end hosts.

coordination of access to the queue conflicts with the scheduling algorithm performed

by the queue itself. An example of such conflict is an overflowing queue that has room

for low priority traffic and no room for high priority traffic. zD ensures that only high

priority packets get enqueued by applying backpressure to flows in a way corresponding

to the scheduling algorithm of the queue which can be configured when the scheduled

buffer is configured.

We find that these objectives can be achieved through a structuring of the queuing ar-

chitecture at end hosts that implements the following mechanisms (Figure 4.6):

1. Source Buffer Regulator (§4.3.1): The source buffer should keep a copy of pack-

ets still being processed by the networking stack until it is fully transmitted. The source

buffer should also support an interface that allows the underlying stack to pause and re-

sume transmission of packets from that buffer (e.g., TSQ). This augmentation of source

buffers allows for avoiding physical packet drops by always retaining a copy of dispatched

packets till they are actually consumed. It also provides an interface for the backpressure

mechanism to pause and resume packet dispatch.

2. Backpressure Interface (§4.3.2): To eliminate physical drops, packet queues should

51

be able to pause senders when they are full. Furthermore, senders should be able to probe

for room in the queues. Such interaction between the packet queues and senders should be

well defined through a backpressure interface. Furthermore, it should be CPU efficient, to

avoid CPU being the bottleneck of the networking stack.

3. Paused-Flows Queue (§4.3.3): Backpressure should be applied in a way that does not

change the intended scheduling behavior of the packet queue. Hence, zD schedules access

to the packet queue by keeping paused flows in a queue that is sorted in a way consistent

with that of the underlying packet scheduling policy.

The design of zD and TSQ share the regulator. Both zD and TSQ employ a mechanism

that pauses and resumes source buffers. The difference between zD and TSQ lies in how

the pause and resume decisions are made. In the case of TSQ, pause and resume decisions

are made by the source buffer. TSQ forces source buffers to maintain a maximum of two

dispatched packets per flow, leading to queue occupancy that grows as the number of active

flows grow. This limits the effectiveness of TSQ backpressure in handling bufferbloat as it

ignores the occupancy of the scheduled buffer. Furthermore, access to the scheduled buffer

becomes dependent on CPU scheduling of sender buffers and their ability to gain the lock

to the scheduled buffer. In the previous section, we show that these limitations in TSQ

lead to significant performance degradation. zD mitigates these problems by extending the

regulator as well as providing a Backpressure Interface and a Paused-Flows Queue.

4.3 zD Overview

zD applies backpressure from packet queues, which can overflow and drop packets, to

source buffers from which packets are dispatched. It provides a layer between the sender

buffer and the scheduled buffer. Instead of continuously pushing packets into the scheduled

buffer only to drop them when the queue is full, zD adds a set of additional steps in the

path of a packet. First, a copy of the packet is created to avoid physical packet drops. Then,

the packet copy is used to probe the packet queue to check if it has room, and proceeds

52

normally if the packet queue has empty slots. However, if the packet queue has no empty

slots, the packet copy is dropped, causing only a virtual packet drop. This is used as a

backpressure signal to the source buffer of that packet. The backpressure signal pauses the

backpressued flow and registers it with zD so that it can be resumed when there is room for

its packets. Figure 4.6 summarizes modifications to the current queue architecture. The zD

logic is summarized in Algorithm 2. For the rest of this section, we elaborate on each step

described in this algorithm.

zD mechanisms can be applied to multiple settings where there are source buffers and

scheduled buffers. In this paper, we focus on two such settings: 1) the TCP/IP kernel

stack, where TCP buffers are the source buffers and Qdisc is the scheduled buffer, and 2)

the hypervisor networking stack in the kernel, where the vrings of the VM are the source

buffer and the Qdisc is the scheduled buffer. The details of our implementation of zD in

these two settings are presented in Section 4.4.

Memory overhead: zD has no data-plane memory overhead except for the packets

copies used to probe scheduled queue occupancy. Such packet copies are only copies of

packet descriptors which are commonly used for different purposes in networking stacks.

In our Linux implementation, we use one of the copies already created by the kernel’s stack,

incurring no exta memory overhead. Backpressure keeps data in the application buffer thus

preventing the creation of new packets. The control plane overhead of zD is limited to the

Paused-Flows Queue that keeps a per-flow descriptor. In our Linux implementation in a 64

bit machine, with 20k flows, the memory overhead is less than 160KB.

4.3.1 Source Buffer Regulator

This module has two functions: 1) define pause/resume operations, and 2) keep a copy of

the dispatched packet until its transmission to the wire is confirmed. A flow can have two

states “Active” and “Paused”. The reaction of the stack to each state, and consequently the

implementation of pause/resume functions depend on whether the stack is push-based or

53

Algorithm 2 zD Flow Algorithm
1: procedure PROCESSFLOW(Flow F, Packet p, Queue q)
2: if F.pause then return //Regulator
3: if !q.probe() then //Backpressure Interface
4: F.pause← true //Regulate
5: PausedF lowsQ.append(F)
6: else
7: if !F.sendTwo() or PausedF lowsQ.empty() then
8: enqueue(F, p)
9: else

10: F.pause← true
11: PausedF lowsQ.append(F)

12: procedure RESUMEFLOW(Flow F)
13: F ← GQ.popFront()
14: F.pause← false
15: F.resume()

pull-based. In cases of a push-based stack (e.g., TCP/IP kernel stack), marking a flow as

“Paused” implies that no further packets are pushed by that flow. New packets generated by

the application are queued in the source buffer. Once the flow is resumed (i.e., marked as

“Active”), packets residing in the source buffer are pushed to the lower layer. On the other

hand, a pull-based stack already has to sleep when it has no packet to process. We follow a

similar approach by forcing the pull-based stack to sleep when it has no active flows. Note

that a busy-polling stack on a dedicated core (e.g., DPDK) does not need to sleep, making

the implementation of these functions a simple marking operation.

Like TSQ, zD keeps the number of packets enqueued by a single flow to a maximum

of two packets. Limiting the number of packets per flow is necessary to avoid head of line

blocking, where a single flow enqueues a large number of packets in the queue, slowing

other flows. We found that further limiting to a single packet per flow causes performance

degradation. In particular, there can be a delay between a flow becoming active and the

processing of its packet. In the case of a push-based model, this delay is caused by the

multi-threaded nature of a push-based stack, where marking a flow as “Active” does lead to

the immediate dispatch of a packet by that flow. Typically, once a flow is marked as active a

thread is started to kick-start packet dispatch for that flow. This approach has a processing

54

delay associated with delaying the dispatch of packets. In the case of a pull-based stack,

marking a flow as “Active” might happen during a sleep cycle. zD amortizes this delay over

multiple packets by making sure that an active flow has two packets pushed to the scheduled

buffer before it is paused again. Note that when a flow becomes active, it has to check the

number of its packets still in the scheduled queue and make sure that it never exceeds

two packets. We found that this approach, and specifically limiting the number of packets

to only two, provides a good compromise between amortizing the cost of pause/resume

operations and unfairness (i.e., less than two packets leads to under utilization and more

than two pakcets leads to head of line blocking and unfairness).

Unlike TSQ, the sender buffer regulator can pause a flow that does not have less than

two packets in the scheduled buffer. This is critical in order to decouple the queue length

from the number of flows, avoiding bufferbloat scenarios in cases where there is a large

number of flows.

4.3.2 Backpressure Interface

This interface defines the interaction between source buffers and the scheduled buffer.

In particular, it defines three operations: probe, pause_flow, and resume_flow.

probe informs the sender buffer on whether it can push packets to the scheduled buffer.

Scheduled buffers with different scheduling policy should have different implementation

of probe function. For example, with the simplest First-in-first-out (FIFO) queue, the

probe function returns false when the number of packets in the queue is equal to or larger

than the queue capacity and returns true otherwise. For more complicated scheduling poli-

cies such as fair queue, the probe function needs to classify the flow first and then checks

whether the flow exceeds its assigned share of the scheduled buffer.

If probe returns false, implying no room for that flow in the scheduled queue, pause_flow

is invoked. pause_flow marks the flow as “Paused” triggering the logic of the sender

buffer regulator. It also adds the flow to the Paused-flows queue. When a scheduled

55

...

1

...

2

x ...

3

...

1

...

2
...

3

Sender
Buffer

Scheduled
Buffer

Enqueue
packet

Drop Enqueue
packet

Enqueue
packet

Pause
Paused-Flows

Queue
Enqueue

Flow

...

4

a. Resume flow

b. Enqueue
packet

(a) Steps of backpressure in TCP/IP Stack

...

1

...

2

x ...

3

...

1

...

2

...

3

Sender Buffer

Scheduled
Buffer

Enqueue
packet

Drop Enqueue
packet

Enqueue
packet

Pause

Paused-Flows
QueueEnqueue

flow

...

4

a. Resume
flow

b. Enqueue
packet

(b) Steps of backpressure in zD

Figure 4.7: Illustration of different backpressure steps.

buffer has room (i.e., a packet is transmitted), resume_flow is invoked. resume_flow

fetches the highest ranked flow in the Paused-flows queue. Then, mark it as “Active”, trig-

ger the resume logic of the sender buffer regulator. Note that this logic is deadlock-free.

The advantage of this interface is that a flow is only active if either the scheduled buffer

has room for the packet or it is the first attempt of that flow to access a congested scheduled

buffer. This is unlike existing attempts where flows are always active causing either physi-

cal or virtual packet drops by continuously attempting to enqueue packets to the scheduled

buffer. Hence, the backpressure interface improves both CPU and network performance by

avoiding drops as well as only doing work when useful. The difference between the two

56

approaches is summarized in Figure 4.7.

It should be noted that the granularity of the scheduled buffer decides the granularity of

Backpressure Interface. For example, in our implementation of backpressure in the hyper-

visor, the backpressure is performed per VM because packets lose flow-level information

when it passes through from the VM to the hypervisor. The Qdisc in the physical machine

treats all traffic from a VM as an aggregate flow and probe API provides information at

the granularity of VMs.

4.3.3 Paused-Flows Queue

The aforementioned building blocks rely on the ability of zD to track paused flows. This

tracking function is performed by the Paused-flows queue. The paused-flows queue is a

global queue accessible to all stack threads through a global lock. The order in which flows

are sorted within this global queue determines the overall scheduling policy for traffic go-

ing through the stack. zD implements a library of Paused-Flows Queuing Disciplines that

correspond to the queuing disciplines implemented in the scheduled queue. The network

operator has to install a Paused-Flows Queuing Discipline that corresponds to their chosen

queuing discipline in the scheduled queue. This operation can be simplified by a simple net-

work utility application. We note that the focus of our work on zD is managing congestion

due to queue overflow of packets. Hence, in this work we implement only a small library

of Paused-Flows Queuing Disciplines (i.e., FIFO and rate limiting disciplines). Complex

queuing disciplines can be implemented to extend the functionality of zD. Efficient imple-

mentation of such disciplines is critical to avoid congestion due to high CPU utilization.

Such efficient implementation is feasible relying on building blocks proposed in our earlier

work on efficient per-flow scheduling [42].

57

4.4 Implementation

We implement backpressure in two places: (1) the Linux TCP/IP stack, and (2) the vHost

stack in the Linux hypervisor stack. Our implementation is based on Linux kernel 4.14.67,

however it is not restricted to that specific version. While the zD design described in Section

4.3 can be generally applied to both cases, we focus on these two settings as discussed

earlier.

4.4.1 TCP/IP Stack Implementation

Implementing zD requires modifying the way that the TCP stack interacts with the IP stack.

We start by giving an overview of the transmission path (Tx path) of the standard TCP/IP

stack implementation in the kernel. In the TCP Tx path, data from the userspace applica-

tion is pushed into the Socket Buffer (skb) and all paths of function calls end up calling

tcp_write_xmit function regardless of whether the TCP socket is sending a packet for

the first time or is retransmitting a packet. In the tcp_transmit_skb function, each

skb is cloned so that TCP can always keep a copy of the original data until the packet

is ACKed by the receiver. The tcp_transmit_skb function calls dev_xmit_skb,

which tries to queue the packet into the corresponding Qdisc (i.e., the scheduled buffer). If

the Qdisc queue is full, the skb will be virtually dropped. In particular, the pointer to the

next packet to send, sk_send_head, will not be advanced.

Under the standard kernel implementation, when an skb is virtually dropped, TCP will

attempt to resend it immediately unless the socket is throttled by TSQ. TSQ reduces the

number of TCP packets in the Tx path by limiting the amount of memory allocated to the

socket, forcing sk->sk_wmem_alloc to not grow above a given limit. By default, if

a socket already has two TSO packets in flight, the socket will be throttled until at least

one of the packets is freed. Note that TSQ can be viewed as the sender buffer regulator.

A socket paused by TSQ will be resumed by a callback function when a skb is free (i.e.,

58

when skb_free function is executed), with the assumption that if an skb is destroyed,

an extra space in the queue is available. This approach means that when a slot in the

queue is freed, its replacement is notified. This implies that the approach of reattempting

to send a dropped skb immediately can only make congestion at the Qdisc worse. Our

implementation is shown in Figure 4.8, where the yellow blocks show function calls we

modified.

Probe: Before dev_xmit_skb function pushes the packet into the queue according to

the queueing discipline, it checks whether the packet should be passed to the next scheduled

buffer through our extended probe API. We implement probe for the three most basic

scheduling algorithms: pfifo_fast as the default qdisc for Linux interfaces, classful

multiqueue (mq) for multiqueue devices, and token bucket filter (TBF) as a traffic shaper.

Pause: If the probe returns false, instead of resuming the socket, we mark the socket as

stopped and place a pointer of the socket into a global queue shared by all sockets. Access

to the global list is serialized through a global lock.

Resume: After an skb is consumed by the driver, the global list dequeues a socket and

marks the socket as nonstop. To ensure the socket is resumed immediately, we use a tasklet

to schedule the retransmission operation as soon as the CPU allows. We use a tasklet as a

per-CPU variable for performance considerations. As indicated earlier, the existing TSQ

interface for handling flow pause and resume is not very helpful for zD. In particular, TSQ

relies on the sk_wmem_alloc field of struct sock to make decisions on throttling

the socket. However, our implementation keeps increasing the value sk_wmem_alloc

until has_room returns true. Hence, TSQ cannot properly decide whether the flow should

be throttled. Therefore, we disable TSQ and implement our flow activation algorithm dis-

cussed in the previous section.

59

tcp_write_xmit

tcp_transmit_skb

dev_xmit_skb

q->enqueue

check q

vfree_skb
full

not full

stop

kfree_skb

with zD Implementation

paused
flows

resume
socket

tasklet

resume

update

…...

Figure 4.8: Flow chart describing TCP/IP stack with zD

4.4.2 Hypervisor Implementation

We implement zD in the hypervisor based on the zero-copy virtio Tx path. Zero-copy

transmit is effective in transmitting large packets between a guest VM to an external net-

work without affecting throughput, consuming lower CPU and introducing less latency

[98]. The vring, where virtio buffers packets, is a set of single-producer, single-

consumer ring structures that share scatter-gather I/O between the physical machine and

the guest VM. vring keeps track of two indexes: upend_idx and done_idx. The

indexes represent the last used index for outstanding DMA zerocopy buffers in the vring

and the first used index for DMA done zerocopy buffers, respectively. The vhost thread

pulls packets from the vring and attempts to enqueue them to the Qdisc.

When a process transmits data, the kernel must format the data into kernel space buffers.

60

5000 10000 15000
Number of flows

0
2000
4000
6000
8000

10000

Th
ro

ug
hp

ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

0
10
20
30
40
50
60
70

CP
U
ut
ili
za
tio

n
(%

)

TSQ
zD

(b) VM CPU

5000 10000 15000
Number of flows

0
20
40
60
80
100

CP
U
ut
ili
za
tio
n
(%
)

TSQ
zD

(c) vHost CPU

5000 10000 15000
Number of flows

0100
101102103104105106107

Re
tr

an
sm

is
si

on
TSQ
zD

(d) Retransmission

Figure 4.9: 10Gbps network speed with a qdisc of 100 slots in the hypervisor

Zero-copy mode allows the physical driver to get the external buffer to directly access

memory from the guest virtio-net driver, hence reducing the number of data copies

that require CPU involvement. In the hypervisor, the vhost process passes the userspace

buffers to the kernel stack skb by pinning the guest VM user space and allowing direct

memory access (DMA) for the physical NIC driver. The path of the skb in the hyper-

visor is shown in Figure 4.2. The Tap socket associated with the vhost process sends

out the packet through the Tap device. Packets are then received by the virtual bridge,

and the packet is passed to Qdisc. Finally, the packet is consumed by the physical NIC.

Note that when vhost pulls a packet from the vring, once the packet is processed, the

kfree_skb callback function will inform the vring to destroy the packet, whether it

was actually transmitted or dropped by Qdisc.

61

The Probe and Resume steps are implemented in this setting in a very similar fashion to

that of the TCP/IP stack. Implementation of Pause requires handling some corner cases. In

particular, if the Qdisc is full, instead of calling the kfree_skb function to free the packet

and mark the DMA as done, we mark the corresponding VM as paused, stops polling from

its vring. This step also requires moving the upend_idx back to point to the position of

the dropped packet. A significant difference between the hypervisor setting and the TCP/IP

stack setting is the potential existence of further packets in-flight from the VM that have

been pulled from the vring before the VM was marked as paused. The situation is further

complicated as those packets can reach the Qdisc and find that it now has room. This

behavior can lead to introduction of out-of-order packet delivery which can lead to TCP

performance degradation. Hence, all in-flight packets between the vring and the Qdisc

are dropped to avoid such scenarios. Note that moving the upend_idx makes sure that

those packets are retransmitted later. We implement a callback function to resume polling

from the vring when a packet is passed to the physical NIC driver.

4.5 Evaluation

4.5.1 Experiments Setup

We conduct experiments between two Intel Xeon CPU E5-1620 machines, connected with

a 10Gbps link. Both machines have four cores, with CPU frequency fixed to 3.6GHz. We

generate traffic with neper [94], a network performance measurement tool that can generate

thousands of TCP flows. The TCP flows are generated inside a virtual machine and are sent

to a remote machine. We use Qemu with KVM enabled as the hypervisor. For a baseline,

both VM and physical machines run Alpine Linux with kernel version 4.14.67. We run

a modified version of that kernel with zD implementation. In our experiments, we ran

into a known issue of vhost where the Rx path of a VM becomes bottlenecked on the

Tx path, because both are handled with the same thread [99]. The issue is inherent in the

current implementation of virtualization in the Linux kernel, affecting baselines and zD.

62

5000 10000 15000
Number of flows

0
2000
4000
6000
8000

10000

Th
ro

ug
hp

ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

0
10
20
30
40
50
60
70

CP
U
ut
ili
za
tio

n
(%

)

TSQ
zD

(b) VM CPU

5000 10000 15000
Number of flows

0
20
40
60
80
100

CP
U
ut
ili
za
tio
n
(%
)

TSQ
zD

(c) vHost CPU

5000 10000 15000
Number of flows

0
2000
4000
6000
8000

10000
12000
14000

Re
tr

an
sm

is
si

on TSQ
zD

(d) Retransmission

Figure 4.10: 10Gbps network speed with a qdisc of 1000 slots in the hypervisor

The bottleneck is resolved by allocating more CPU to the receiving path or improving the

receive path architecture [45, 46]. Hence, we perform our experiments in two settings,

one with 6 vCPUs assigned to the virtual machine (experimenting with a bottleneck-free

end host) and another with 1 vCPU assigned to the virtual machine (exposing the Rx path

bottleneck to evaluate zD under a resource constrained end host). In the first setting, we

tune CPU affinity to assign 5 cores for the Rx path. None of the six cores hit 100% thus

eliminating the issue. The second setting can still face that issue, however, we find that

zD alleviates pressure on the Tx path, making the performance of the Rx path the main

bottleneck.

The default Tx queue length is set to 1000 in both the VM and the hypervisor3. Ex-

3Earlier work with larger scale experiments used a queue length of 4000. Note that a small queue length

63

5000 10000 15000
Number of flows

0
200
400
600
800

1000
1200

Th
ro

ug
hp

ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

0
5

10
15
20
25
30
35
40

CP
U
ut
ili
za

tio
n
(%

)

TSQ
zD

(b) VM CPU

5000 10000 15000
Number of flows

0
10
20
30
40
50
60
70
80

CP
U

ut
ili

za
tio

n
(%

)

TSQ
zD

(c) vHost CPU

5000 10000 15000
Number of flows

0100
101
102
103
104
105

Re
tr

an
sm

is
si

on
TSQ
zD

(d) Retransmission

Figure 4.11: 1Gbps network speed with a qdisc of 1000 slots in the hypervisor

periments are run for 60 seconds each. Our primary metrics are aggregate throughput of

all flows, CPU utilization inside the VM, vhost CPU utilization for its pinned core, TCP

retransmissions, and RTT. We track CPU utilization in the virtual machine using dstat

and track CPU utilization of the vhost process in the physical machine using top. CPU

utilization is recorded every second. We track the number of TCP retransmissions using

netstat. In all experiments, machines are running only the applications mentioned here

making any CPU performance measurements correspond with network overhead.

64

10-510-410-310-210-1 100 101

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(%
)

TSQ
zD

(a) 10G network with 100 qlen

10-510-410-310-210-1 100 101

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

TSQ
zD

(b) 10G network with 1000 qlen

10-510-410-310-210-1 100 101

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(%
)

TSQ
zD

(c) 1G network with 1000 qlen

Figure 4.12: zD reduces the tail of RTT by 100x with both 10G network and 1G network

4.5.2 Overall Performance

We start by reporting the overall performance of zD in a setting where packet drops can

occur in the VM and the hypervisor. These experiments represent the general case of

modern cloud infrastructure. In particular, we consider three cases: 1) a high bandwidth

VM with a short queue in the hypervisor, where we allocate the whole 10 Gbps to the VM

but configure a short queue of 100 slots4, 2) a high bandwidth VM with a long queue in

the hypervisor, where we allocate the whole 10Gbps to the VM and configure a queue of

1000 slots, and 3) a low bandwidth VM with a long queue, where the hypervisor forces

a 1 Gbps limit on the VM in a queue with 1k slots. In the high bandwidth VM setting,

is also critical to avoid bufferbloat.
4We choose a small queue length to force congestion in the hypervisor. This emulates production scenarios

where queue lengths are larger but the number of VMs per end host will also be much larger, making the
effective queue length per VM small.

65

we use a pfifo Qdisc in the physical machine. In the low bandwidth VM setting we

use tbf to perform rate limiting in the hypervisor. We use the default queue size 1000

for the qdisc inside the VM. The first setting represents strict performance requirements

(i.e., small processing budget per packet and high probability of packet drop, as shown in

recent work [39]), while the second and third represent the more general case. We vary the

number of flows from 500 to 16k and measure throughput, CPU utilization inside the VM,

vhost CPU utilization and TCP retransmissions. For both settings we measure the RTT

at 4k flows. We focus on cases with a single VM to be able to better analyze the results.

We further restrict the settings in the following sections, to explain the value of individual

zD mechanisms. We allocate 6 vCPUs to the VM to avoid having the Rx path being the

bottleneck. VM with less vCPUs will be evaluated in the micro-benchmark section.

Figure 4.9 shows the performance of the standard kernel implementation and zD for the

first setting. zD performs better in terms of all metrics. In particular, zD achieves around

50% improvement on the aggregate throughput when there are more than 4k flows (Fig-

ure 4.9a). Such improvements in throughput come from the elimination of the vhost CPU

utilization as the bottleneck (Figure 4.9c). zD saves between 40% to 50% of the thread uti-

lization of its CPU core, which is 100% utilized in the standard implementation, making

it the performance bottleneck and leading to 50% loss in network throughput. Further-

more, zD reduces tail latency by 80x from 4s to 0.05s (Figure 4.12) which is mostly due

to reduction of TCP retransmissions by 1000x (Figure 4.9d). There is a slight degradation

in median latency but such slight degradation is generally tolerable to significantly reduce

the tail latency [32]. Note that in this scenario zD is lightweight as at low loads it con-

sumes less CPU and achieves better network performance, compared to the standard kernel

implementation.

Figure 4.10 shows the results for the second case. Compared with the first setting,

TSQ achieves higher throughput and less retransmission because of fewer drops on the

hypervisor qdisc. But still, zD achieves higher throughput, lower VM CPU usage, lower

66

10002000300040005000
Number of flows

0
2000
4000
6000
8000
10000

Th
ro
ug
hp
ut
 (M
bp
s)

TSQ
Carousel
zD

(a) Throughput

1000 2000 3000 4000 5000
Number of flows

0
20
40
60
80
100

CP
U
ut
ili
za
tio

n
(%

)

TSQ
Carousel
zD

(b) VM CPU

1000 2000 3000 4000 5000
Number of flows

0
20
40
60
80
100

CP
U
ut
ili
za
tio

n
(%

)

TSQ
Carousel
zD

(c) vHost CPU

10002000 30004000 5000
Number of flows

2000
4000
6000
8000

10000
12000
14000

Re
tr

an
sm

is
si

on TSQ
Carousel
zD

(d) Retransmission

Figure 4.13: Compared with Carousel, zD achieves higher throughput, lower VM CPU
usage, lower vHost CPU usage, and fewer TCP retransmissions

5000 10000 15000
Number of flows

0
2000
4000
6000
8000

10000

Th
ro

ug
hp

ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

102

103

104

105

106

Re
tr

an
sm

is
si

on TSQ
zD

(b) Retransmission

Figure 4.14: Compared with TSQ, zD achieves higher throughput and fewer TCP retrans-
missions when 1 vCPU is assigned to the VM.

67

vHost CPU usage, and fewer TCP retransmissions. We observe there are less than 100

packet drops in the hypervisor qdisc so the improvement mainly comes from the advantages

of using zD in the VM. The zD vHost CPU usage is lower than that of the standard (TSQ)

kernel when the number of flows is smaller than 16K. When there are 16K flows, zD has

higher vhost CPU usage because it pushes much more traffic than the standard kernel. The

tail latency is significantly reduced from 8s to 0.05s (Figure 4.12).

Figure 4.11 shows the results for the third setting. zD again improves all network

metrics. In particular, zD improves throughput by up to 5% (Figure 4.11a) and reduces

retransmissions by 1000x (Figure 4.11d). Most notably, zD reduces tail latency by 45x

from 9s to 0.2s (Figure 4.12). zD also reduces VM CPU utilization by 15%. However, zD

incurs higher vhost CPU cost by up to 40%. The higher vHost CPU usage results from

the extra work of vhost trying to resend the packets dropped in the physical machine

Qdisc instead of relying on the TCP socket in the VM to retransmit the packets. This

shows a tradeoff between network performance and VM CPU on one side and hypervisor

CPU on the other side. We also envision that userspace stacks can amortize the cost in the

hypervisor due to their busy polling nature [87, 86].

Comparison with Carousel: We use Carousel as a baseline to examine if the combi-

nation of efficient queuing data structure and TSQ-like backpressure can improve on the

performance of standard Linux Qdiscs. We implemented Carousel in Linux Qdisc using a

more efficient integer priority queue data structure [42] and compared zD with carousel in

the 10G network setting with a queue of 1000 slots in the hypervisor. Figure 4.13 shows

that zD outperforms Carousel in all metrics. While Carousel achieves higher CPU effi-

ciency and a higher throughput compared with TSQ, it does not fundamentally solve the

problem when a queue runs out of space with a large number of flows. As discussed earlier,

Carousel relies on TSQ-like backpressure to limit the number of packets per flow, which

works reasonably well with a small number of flows. Unfortunately, with a large number

of flows, limiting two packets per flow can still overflow the queue, leading to performance

68

degradation.

4.5.3 Microbenchmark

zD with VM-only bottleneck: In the previous section, we looked at the general case where

drops happen in both the VM and the hypervisor. In this section, we look at cases where

there is a single bottleneck. We focus on the case where drops happen at the VM because

it is easier to test it at large scale (i.e., large number of flows) compared to the hypervisor

which requires scaling to a large number of VMs. We prevent drops in the hypervisor by

a long unscheduled queue (i.e., pfifo with 1k slots). Note that this setting is convenient

and allows for a better understanding of the performance of zD because adding more VMs

causes drops in the hypervisor, which results in a similar scenario as the one we studied

earlier.

We start by looking at the case where the VM is allocated 6 vCPUs, thus eliminating

the Rx path bottleneck. The result is similar to what we show in Figure 4.10. When we

use a queue of 1000 slots in the hypervisor, regardless whether zD is implemented in the

hypervisor or not, the performance is similar because the hypervisor queue is not easily

congested due to the high-speed NIC and the low latency of the networking stack.

To highlight the value of zD, we rerun the experiment in the setting where 1 vCPU is

assigned to the virtual machine. zD’s value is clear in its impact on throughput as shown

in Figure 4.14a. In particular, zD can maintain 43% higher throughput at 16k flows. This

significant improvement is mostly due to reduction in retransmission rate (Figure 4.14b).

We find that zD and the standard kernel exhibit similar CPU performance for both the VM

and the vhost thread when the number of flows is larger than 2k. Both systems have

100% VM CPU utilization and their vhost CPU utilization was about 49% for the Linux

kernel and 43% for zD. The reason for degradation of kernel implementation moving from

allocating 6 vCPUs to a single vCPU is the higher retransmission rate in the latter case.

This is mostly due to the Rx path congestion which leads ACK packets to be delayed.

69

10-610-510-410-310-210-1 100

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(%
)

TSQ
zD

Figure 4.15: CDF of flow RTT with hypervisor-only
zD.

pfifo mq tbf0
2000
4000
6000
8000

10000

Th
ro

ug
hp

ut
 (M

bp
s)

TSQ zD

Figure 4.16: Throughput under different Qdiscs

This causes TCP spurious retransmissions, where senders timeout and retransmit packets

whose ACK is delayed. zD achieves lower TCP retransmission by reducing the number of

interrupts in VM Tx path reducing the Rx path congestion.

zD with Hypervisor-only bottleneck: Next we quantify the benefit of zD when it is

only implemented in the physical machine. We use tbf Qdisc to set a bandwidth limit of

1Gbps in the physical machine with only 100 flows. This setting forces packet drops to

happen only in the hypervisor. In both settings, the flows achieve the targetted aggregate

70

Table 4.1: Drops and retransmission in case of standard Linux kernel and hypervisor-only
zD implementation.

Drop in Qdisc TCP retransmission
Linux kernel with TSQ 6.67× 105 1× 105

zD 562 110

20 30 40 50 60 70 80
CPU (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(%
)

TSQ pfifo
zD pfifo
TSQ mq
zD mq
TSQ tbf
zD tbf

Figure 4.17: CPU usage in VM under different Qdiscs

rate. However, zD improves RTT by avoiding packet drops. Figure 4.15 shows the CDF of

flow RTT. With vanilla kernel, the 99.99th percentile is large at around 0.8s. The 99.99th

percentile of zD is less than 0.1s. We present the number of drops in Qdisc and the number

of TCP retransmission for both the standard kernel and zD in Table 4.1. zD reduces the

TCP retransmission caused by packet drop in Qdisc by 1000x. Note that CPU utilization is

low and comparable for both implementations due to the limited scale of the experiment.

Interaction with different Qdisc: We explore zD performance under different Qdiscs

to show that zD can operate with different underlying policies. We implement a FIFO

policy for the Paused-flows Queue, which is compatible with all queuing policies used

here. However, each queuing policy requires a different implementation of the has_room

function. We conduct our experiments for pfifo, mq, and tbf Qdiscs and measure the

throughput and CPU usage inside the VM with 4k flows. The chosen setting is similar to

the case where drops happen only at the VM.

Figure 4.16 shows that zD achieves around 12% throughput improvement with pfifo

71

1000 2000 3000
Throughput (Mbps)

20
25
30
35
40
45

CP
U

(%
)

TSQ
zD

Figure 4.18: CPU usage in VM under light traffic load

and around 8% throughput improvement with tbf. With mq, both zD and the standard

kernel have similar throughput because the instances of vhost process scale as the number

of queues increases. Figure 4.17 shows the CDF of CPU usage in the VM under different

Qdiscs. zD reduces the CPU usage by 7% under pfifo and by 25% under mq but has

slightly higher CPU usage under tbf. The higher CPU usage with tbf results from the

extra work performed by zD to stop and resume the vring. Although dropping packets

directly can save hypervisor CPU, the dropped packets need to be recovered by the TCP

retransmission mechanism thus wasting CPU in the VM.

zD at light loads: zD achieves its goals by adding more coordination between traffic

sources and packet queue, which might cause significant overhead at light loads. However,

we find that this is not the case. To conduct experiments with low loads, we use 10 instances

of iperf as the traffic generator, each generating 100 TCP flows. We control the load by

setting a rate limit in the application layer, reducing demand of individual flows. Figure

4.18 shows the effect of varying the TCP loads on CPU usage in VM. zD has similar CPU

usage as the standard kernel because there is little packet drop in Qdisc when the traffic load

is light. Hence, no coordination between traffic sources and the packet queue is needed. As

the traffic load increases, getting closer to an aggregate rate of 3 Gbps, the number of drops

in Qdisc also increases and zD starts to outperform the standard kernel.

72

4.6 Limitations of zD

We show that zD can improve network and CPU performance by applying backpressure

from the scheduled buffer to the source buffers. Our work on zD has some modest limi-

tations. In particular, the overhead of backpressure in the hypervisor can, in some cases,

cause the vhost thread to consume more CPU than a standard implementation. We be-

lieve that with further engineering this overhead can be eliminated completely. A minor

limitation of our evaluation approach is our focus on simple scheduling policies in the

Paused-flows queue. However, we find that recent work on efficient packet schedulers in

software has thoroughly handled the issue [42], allowing us to focus more on handling

cases of congestion.

4.7 Summary

Packet queuing and scheduling is a standard operation at end hosts. Congestion of sched-

uled queues at end hosts typically incurs packet drops which lead to high CPU cost as well

as degradation in network performance. In this chapter, we show that by augmenting ex-

isting architectures with three simple mechanisms, CPU and network performance can be

significantly improved under high loads, improving tail latency by 100x. Our work on zD

should extend the scalability of current end-host stacks and motivate revisiting the queuing

architecture in other network elements.

73

CHAPTER 5

ANALYZING THE CPU COST OF NETWORKING STACK

Modern servers at large scale operators handle tens of thousands of clients simultaneously

[60, 100, 38]. This scale will only grow as NIC speeds increase [101, 102, 103] and servers

get more CPU cores [84, 104]. For example, a server with a 400 Gbps NIC [102] can serve

around 80k HD video clients and 133k SD video clients.1 This scale is critical not only for

video on demand but also for teleconferencing and AR/VR applications. The focus of the

community has been on scaling servers in terms of packets transmitted per second [52, 106,

53, 107, 45, 54], with little attention paid to developing complete stacks that can handle

large numbers of flows well [57, 59].

We envisage servers delivering large volumes of data to millions of clients simulta-

neously. Our goal is to identify bottlenecks that arise when servers reach that scale. In

particular, we take a close look at network stack components that become the bottleneck as

the number of flows increases. We find that as the number of flows increases competition

between flows can lead to overall performance degradation, requiring fine-grain schedul-

ing. Further, the overhead of per-flow bookkeeping and flow coordination increases. Thus,

we categorize problems that arise due to increase of number of concurrent flows into two

categories:

1) Admission Control to the Stack: The admission policy determines the frequency at

which a flow can access the stack and how many packets it can send per access. The

backpressure mechanism determines how a flow is paused (e.g., denied admission) and

resumed (i.e., granted admission). The frequency at which a flow gets access to network

resources and the duration of each access determine the throughput it can achieve. As

the number of flows increases, admission control becomes critical for the efficiency of the

1HD and SD videos consume up to 5 Mbps and 3 Mbps, respectively [105].

74

stack. For example, admitting and alternating between flows at a high frequency can reduce

Head-of-Line (HoL) blocking and improve fairness but at the expense of CPU overhead,

which can become a bottleneck, leading to throughput loss.

2) Per-packet Overhead within the Stack: The overhead of most per-packet operations

is almost constant or a function of packet length (e.g., checksum, routing, and copying).

However, the overhead of some operations depends entirely on the number of flows or

clients serviced by the system. For example, the overhead of demultiplexing is tied to the

number of flows in the system. The overhead of scheduling, for some scheduling policies,

depends on the number of flows in the system (e.g., fair queueing).

We focus our attention on the Linux stack. Despite its well documented inefficien-

cies (e.g., the overhead of system calls, interrupts, and per-packet memory allocation [57,

108]), the Linux networking stack remains the only fully implemented, publicly available

networking stack. Further, emerging network processing engines sometimes interface with

different parts of the stack to make use of its functionality [109]. Hence, our focus on

Linux is critical for two reasons: 1) our results are immediately useful to a wide range of

server operators, and 2) we are able to identify all possible bottlenecks that might not ap-

pear in other stacks because they lack the functionality. However, a major goal of our study

is to focus on performance issues that are common with other stacks, avoiding the well

documented issues that are Linux-specific. Thus, we avoid documenting problems like the

overhead of system calls, slow memory allocation, and reliance on interrupts [57, 108].

We are not the first to identify some of the bottlenecks and performance impairments

we discuss in this paper. For instance, there have been several proposals to improve the

performance of data structures used in scheduling [55, 38, 42]. There has also been work

improving the performance of transport layer [57] and backpressure [110]. In our study,

each of these problems represents an instance of a broader category. The contribution of

this work is defining these broad categories and identifying new instances of each of them.

75

5.1 Measurement Setup

Testbed: We conduct our experiments on two dual-socket servers. Each server is equipped

with two Intel E5-2680 v4 @ 2.40GHz processors. The socket directly connected to the

NIC is considered the local socket. Each server has an Intel XL710 Dual Port 40G NIC

Card with multi-queue enabled. The machines belong to the same rack. Both machines

use Ubuntu Server 18.04 with Linux kernel 5.3.0. We bind multiple IP addresses to each

server so the number of TCP flows that can be generated is not limited by the number of

ports available for a single IP address.

Testbed Tuning: To reduce cache synchronization between different cores and im-

prove interrupts affinity, we configure each transmit/receive queue pair to always use the

same core. We enable Receiver Packet Steering (RPS), which computes a hash source and

destination IPs and ports and determines which CPU to send the packet to based on the

hash. Then, the packet is assigned to the appropriate per-CPU queue for further processing

by softirq. We limit all network processing to exclusively use the local socket. We

find that using both cores leads to performance degradation at 200k flows. We compare

the aggregate throughput of 200k flows when they all use the local socket and when they

are divided between the two CPU sockets. We observe that aggregate throughput drops by

15% with equal or more than 200k flows when the two sockets are used. When CPU usage

reaches 50%, the CPU resource is saturated because we bind the application and interrupts

to only one socket.

We enabled different hardware offload functions including GSO, GRO, and LRO to

lower CPU utilization. We also enabled interrupt moderation which generates interrupts

per batch of packets, rather than per packet. We use TCP CUBIC as the default transport

protocol, providing it with maximum buffer size, to avoid memory bottlenecks. The entire

set of parameters is shown in Table 5.1.

Traffic Generation: We generate traffic with neper [111], a network performance

76

Figure 5.1: Schematic of the packet transmission path with identified pain points marked
in red.

measurement tool to generate up to 300k concurrent flows. With 40 Gbps aggregate

throughput, the per-flow rate can range from 133 Kbps, which is a typical flow rate for

web service [112], to 400 Mbps, which might be large data transfer [113]. We ran experi-

ments with different numbers of threads ranging from 200 to 2000 and observed that using

more threads causes higher overhead in book-keeping and context switching, leading to

degraded throughput when the server needs to support hundreds of thousands of flows. The

results shown in this paper are with 200 threads if not specified otherwise. For the rest of

the paper, we use flows and clients interchangeably.

Figure 5.1 visualizes our assumed stack architecture. Our focus is on the overhead

of the transport and scheduling components of the stack. We experiment with differ-

77

Table 5.1: Tuning parameters

Parameter Tuned
RX-Ring MAX [4096]
net.core.netdev max backlog 65536
net.core.tcp max syn backlog 65536
net.ipv4.tcp rmem 8192 65536 16777216
net.ipv4.tcp wmem 8192 87380 16777216
net.ipv4.tcp mem 768849 1025133 1537698
net.core.somaxconn 65535
net.netfilter.nf conntrack max 600000
TSO,GSO enabled
interrupt moderation enabled
irqbalance disabled

ent scheduling algorithms using different Queuing Disciplines (qdiscs). In our multi-core

multi-queue scheme, the multiqueue qdisc (mq) is used to avoid having a single lock for

all hardware queues. All scheduling algorithms are implemented by per-queue within mq.

Thus, enforcement of scheduling policies is somewhat distributed. By default, mq handles

packets FIFO in its queues. However, we use Fair Queue (fq) [96] as the default qdisc

combined with mq. fq is designed to avoid HoL blocking by ensuring fairness among

flows sharing the same queue. In some experiments, we use fq_codel qdisc [114] to

reduce latency within the qdisc.

Measurement Collection: Experiments are run for 100 seconds each. In all experi-

ments, machines are running only the applications mentioned here making any CPU per-

formance measurements correspond with packet processing. We track overall CPU utiliza-

tion using dstat [115] and track average flow RTT using ss [116]. We track the TCP

statistics using netstat [117] and tcpdump [118]. Performance statistics of specific

functions in kernel is obtained using perf [119].

The entire set of tuning parameters is shown in table 5.1.

78

102 103 104 105

Number of flows

15
20
25
30
35
40
45

Th
ro

ug
hp

ut
 (G

bp
s)

fq
per flow rate limit
codel

(a) Aggregate Throughput

102 103 104 105

Number of flows

0
10
20
30
40
50

CP
U

ut
ili

za
tio

n
(%

)

(b) CPU Usage

102 103 104 105

Number of flows

10-1
100
101
102
103
104

RT
T

(m
s)

(c) RTT

102 103 104 105

Number of flows

0
2
4
6
8

10
12

Re
tr

an
sm

is
si

on
 (%

)

(d) Retransmission

Figure 5.2: Overall performance of the network stack as a function of the number of flows

5.2 Overall Stack Performance

We start by observing the overall performance of the stack as we increase the number of

flows. Our goal is to observe how bottlenecks arise as we increase the number of flows,

affecting overall server performance. In particular, we look at aggregate throughput, CPU

utilization, average RTT, and retransmissions. Figure 5.2 shows a summary of our results.

The Linux stack can maintain line rate up to 200k flows (Figure 5.2a). As the number

of flows increases, the CPU utilization steadily increases until it becomes the bottleneck.

Recall that we are only using a single socket, which means that 50% utilization means full

utilization in our case (Figure 5.2b). The increase in CPU utilization can be explained by

79

the inefficiency of packet admission control (increasing the packet rate and flow scheduling

overhead) and per-packet processing components, which we explore thoroughly in the next

two sections.

To our surprise, the average latency introduced by the stack increases to around one

second at 200k flows. A part of this latency can be explained by well-documented Linux

stack inefficiencies due to relying on interrupts [120, 51, 57, 108]. This can be seen as we

apply a per-flow rate limit, targeting an aggregate rate that is 90% of NIC capacity. The

rate is applied by setting SO_MAX_PACING_RATE. Targeting a lower rate than capacity

and preventing any single flow from bursting eliminates all admission control issues and

any resource contention between flows. It also avoids overwhelming the NIC. Thus, we get

minimal latency till 2k flows. Enforcing this per-flow rate leads to higher CPU utilization,

leading to loss in throughput at 50k flows.

We try to understand how much of the latency is caused by transport and scheduling

components of the stack. Thus, we use fq_codel with a target latency of 100µs. CoDel

drops packets if their queueing delay exceeds the target delay. This allows for a reduction

of latency by 2.5 to 10× compared to using fq without CoDel. It also matches the latency

of per-flow rate limiting between 50k and 300k flows. This leads us to the conclusion that

a significant part of the latency difference between the fq case and the fq_codel case is

caused by inefficiencies in transport and scheduling on the egress path of the Linux stack,

which is our focus in this paper. Note that CoDel comes at a price of higher CPU utilization

due to packet drop and retransmission (Figure 5.2d).

5.3 Admission Control to the Stack

Network stacks are typically optimized to maximize the number of packets per second they

can handle. However, we find that as the number of flows increases, a lot of room arises for

optimizing the number of packets per second that enter the stack. Such optimization can

improve the CPU efficiency of the stack, without compromising network utilization. There

80

are three parts of the stack that determine the number of packets entering:

Automatic packet sizing: determines the number of packets a block of data is broken into.

For instance, a 64KB block of data can be handled by the stack as a single TCP segment of

64KB or many smaller segments. Sending a large segment can hurt network performance

by bursting [96]. Breaking it up into small pieces increases CPU utilization, potentially

leading to low network utilization.

Backpressure: rate limits or pauses flows based on the load on the network stack. Back-

pressure typically limits the number of packets a flow can have outstanding in the stack.

However, as the number of packets increases, even having a single packet per flow can

overwhelm the server’s capacity.

Batching ingress packets: reduces CPU overhead by amortizing the cost of traversing the

stack over a batch of packets. Batching balances CPU utilization and packet latency. A

large batch size can mean delaying packets for a long time till a full batch is ready while a

small batch size means that the stack is invoked more frequently. Another drawback of a

small batch size at the NIC is not giving LRO enough time to coalesce packets belonging to

the same flow. The chance of such coalescing decreases as the number of flows increases,

further increasing the CPU overhead by delivering small packets, at a high rate, to the stack.

For the rest of this section, we take a closer look at the implementation of each of these

operations in the kernel, showing that at a large number of flows, better algorithms are

needed to perform these tasks.

5.3.1 Automatic Packet Sizing

Packet autosizing decides the size of data in a burst, by ensuring that flows send a packet

at least every 1ms [96]. The algorithm is triggered if a flow is sending at a rate lower

than 512 Mbps (i.e., a thousand Maximum Segment Sized (MSS) segments every second,

assuming an MSS of 64KB). When triggered, it reduces the size of the segments transmitted

every 1ms, where inter-packet gap is enforced through a pacer. Autosizing infers the rate

81

103 104 105

Number of flows

0
1
2
3
4
5
6
7
8
9

Pa
ck

et
/s

1e5

cubic
bbr

(a) Packet Rate

103 104 105

Number of flows

10
15
20
25
30
35
40

CP
U

(%
)

cubic
bbr

(b) CPU Usage

Figure 5.3: CUBIC v.s. BBR with 5% drop rate.

of a flow by dividing the number of bytes sent during an RTT (i.e., the cwnd) over the

measured RTT. This allows for maintaining the same average sending rate while spreading

packet transmission over time. The technique provides a tradeoff between CPU utilization

and network performance by increasing the number of packets per second handled by the

server while lowering the size of bursts the network deals with.

The CPU tradeoff becomes even more costly when the number of flows increases. In

particular, the same aggregate rate of 512 Mbps can result in a packet rate of 1k packets

per second for one flow or 1M packets per second for 1k flows in the worst case.2 This

increase in packet rate causes the overloading of the stack , leading to delay in packet

transmission (Figure 5.2c). The increased delay makes the autosizing algorithm misbehave.

In particular, RTT increases when the stack is overloaded, leading to underestimation of the

rates of all flows handled by the stack. This causes autosizing to reduce the size of bursts

unnecessarily, creating more packets, increasing the congestion at the server [110].

Reducing delay introduced in the stack can help autosizing infer the rates of flows more

accurately. However, as we will show later, scheduling flows, including delaying packets,

2The number of packets is typically much smaller than the worst case scenario due to imperfect pacing.
Delays in dispatching packets, resulting from imperfect pacing, require sending larger packets to maintain
the correct average rate, leading to a lower packet rate. However, the CPU cost of autosizing increases with
the number of flows even with imperfect pacing.

82

103 104 105

Number of flows

0
1
2
3
4
5
6
7
8
9

Pa
ck

et
/s

1e5

cubic
bbr

(a) Packet Rate

103 104 105

Number of flows

10
15
20
25
30
35
40

CP
U

(%
)

cubic
bbr

(b) CPU Usage

Figure 5.4: CUBIC v.s. BBR with 0% drop rate.

is essential to scaling the end host. This means that autosizing-like algorithms need to

differentiate between network congestion and end-host congestion. This will be useful in

avoiding generating extra packets which might congest the end host but not the network.

Autosizing has the side effect of causing different congestion control algorithms to have

different CPU costs. In particular, algorithms that react more severely to congestion (e.g.,

CUBIC which halves its window on a packet drop) send at lower rates, forcing autosizing

to create more packets. On the other hand, algorithms that react mildly to congestion (e.g.,

BBR) can generate a smaller number of packets and maintain the high rate. Figure 5.3

show the difference between CUBIC and BBR at 5% drop rate induced by a netem Qdisc

at the receiver. The relationship between number of flows and packet rate is similar at 0%

drop but there is no difference between BBR and CUBIC at 0% drop rate (Figure 5.4). We

set MTU size to 7000 to eliminate the CPU bottleneck.

5.3.2 Backpressure and Scheduling

When a flow has a packet to send, its thread attempts to enqueue the packet to the packet

scheduler (i.e., Qdisc in the kernel stack). In order to avoid HoL blocking, TCP Small

Queue (TSQ) limits the number of packets enqueued to the qdisc to only two packets per

flow [14]. TSQ combined with fair queueing at the qdisc can ensure fairness between a

83

10-410-310-210-1100101102103

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

no pacing
pacing

(a) 300 flows

10-410-310-210-1100101102103

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

no pacing
pacing

(b) 30k flows

Figure 5.5: CDF of flow rate showing that FQ fails to ensure fairness among flows

small number of flows. However, as the number of flows increases two configurations

are possible. First, we can allow only a small queue buildup in the qdisc, dropping any

excess packets. This is appealing because it limits bufferbloat at the server [13, 110]. But

this means that not all flows get their packets enqueued in the qdisc, hindering the fair

queueing functionality as the qdisc is not aware of all active flows. Further, limiting the

capacity of the qdisc leads to drops. The current approach in Linux is to immediately retry

to enqueue the dropped packet. This leads to poor CPU utilization as threads keep retrying

to enqueue packets. Figure 5.6 shows the CPU utilization for different values of maximum

queue length at the qdisc. As we decrease the maximum queue length the CPU utilization

increases. Further, thread scheduling has no notion of per-flow fairness, leading to severe

unfairness between flows.

The second configuration is to allow long queues, which has the drawback of causing

bufferbloat, but should allow for better fairness as all flows get a chance to enqueue their

packets and it is up to the scheduler to ensure fairness. However, we find that unfairness still

exists due to the distributed nature of scheduling in a multi-queue system [56]. Figure 5.5

compares the CDF of rates achieved when fq is used with a small number of 300 and 30k

flows. The two scenarios are contrasted with the per-flow pacing scenario which achieves

best possible fairness by rate limiting all flows to the same rate, with aggregate rate below

84

103 104 105

Number of flows

0.00
0.05
0.10
0.15
0.20
0.25
0.30

CP
U

(%
)

1k
2k

3k
10k

Figure 5.6: CPU usage as function of Qdisc queue length

NIC capacity, thus avoiding creating any bottlenecks. In the 30k flows scenario, the largest

rate is two orders of magnitude greater than the smallest rate. This is caused by the batching

on the NIC queue.

Packet transmission in an end-host refers to the process of a packet traversing from the

user space, to the kernel space, and finally to the NIC in packet transmission process. The

application generates a packet and copies it into the kernel space TCP buffer. Packets from

the TCP buffer are then queued into the Qdisc. Then there are two ways of dequeuing a

packet from the Qdisc to the driver buffer: 1)dequeue a packet immediately, and 2) schedule

a packet to be dequeued later through the softriq, which calls net_tx_action to retrieve

packet from the Qdisc (Figure 5.8). The net_tx_action function calls into the Qdisc

layer and starts to dequeue skb through dequeue_skb function. Multiple packets can be

returned by some queues, and a list of skb may be sent to the NIC, blocking packets from

other queues. We observe that there are many more requeue operations in Qdisc when

pacing is not used than when pacing is used, indicating that pacing prevents the NIC from

being overwhelmed by a subset of queues.

Addressing this problem requires combining two techniques. The first relies on per-flow

scheduling instead of per-packet scheduling [110, 109]. These approaches allow a flow to

85

103 104 105

Number of flows

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

La
te

nc
y

(u
s)

fq
pfifo

Figure 5.7: Average execution time of FQ enqueue operation

enqueue a packet only when there is room for it in the scheduler, avoiding unnecessary

drops and retries. Second, distributed multi-queue scheduling allows for enforcing accurate

scheduling policies in a multi-queue setting [56].

5.3.3 Batching Ingress Packets

The two previous sections discuss controlling the packet rate on the egress path. In this

section, we consider controlling the packet rate on the ingress path. A receiver has little

control on the number of incoming packets, aside from flow control. By coalescing packets

belonging to the same flow on the ingress path using techniques like LRO, the receiver can

improve the CPU efficiency of the receive path by reducing the number of packets it has to

process. This is important even for servers as ACK coalescing can help reduce the overhead

of the ingress path. Batching algorithms deliver packets to the software stack once the

number of outstanding packets in the NIC reaches a certain maximum batch size or some

timer expires. As the number of flows increases, the chances of such coalescing decrease

as the likelihood of two incoming packets belong to the same flow decreases (Figure 5.9).

In the Linux setting, this is especially bad as increasing the number of incoming packets

results in an increase in interrupts, leading to severe degradation in CPU efficiency.

86

Figure 5.8: Packet transmission function call graph

Better batching techniques that prioritize short flows, and give LRO more time with

long flows, can significantly help improve the performance of the ingress path. Some

coarse grain adaptive batching techniques have been proposed [121, 122], however, we

believe that better performance can be achieved with fine-grain per-flow adaptive batching.

5.4 Per-packet Overhead

To identify the operations whose overhead increases as the number of flows increases, we

use perf [119] and observe the CPU utilization and latency of different kernel functions

as we change the number of flows. In particular, operations whose computational complex-

ity is a function of the number of flows will have higher CPU utilization as we increase the

87

0.1 0.5 1.0 1.5 2.0 2.5 3.0
Number of flows 1e5

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

rx
_ir

q
pe

r s
ec

on
d

1e6
IRQ

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

AC
K

pe
r s

ec
on

d

1e6
ACK

Figure 5.9: Rates of RX interrupts and ACK per second

number of flows. Operations that are bottlenecked on a different type of resource will have

higher latency as we increase the number of flows. Figures 5.12a and 5.12b show the top

four functions in each category. There is an overlap between functions with high latency

and functions with high CPU utilization; this is typical because high CPU utilization can

lead to high latency (e.g., fq_dequeue and inet_lookup). However, there are func-

tion with high latency but low CPU utilization (e.g., tcp_ack and dev_queue_xmit).

Through further profiling of the code of these functions, we find that there are two types of

bottlenecks that arise: cache pressure and lock contention. Note that the overhead of the

tg3_poll_work function is part of inefficiency of the Linux reception path [123] and is

not the focus of our work.

Data structures: There are two operations whose complexity is a function of the number

of flows: packet scheduling and packet demultiplexing. The overhead of packet scheduling

is captured by the CPU utilization of fq_enqueue and fq_dequeue. The two functions

handle adding and removing packets to the fq Qdisc, which sorts flows in a red-black tree

based on the soonest transmission time of their packets. The overhead of enqueue and de-

queue operations in O(log(n)), where n is the number of flows. The overhead of packet

demultiplexing is captured by the CPU utilization of inet_lookup which matches in-

coming packets to their flows using a hashmap. As the number of flows increases, the

88

chances of collision increases, increasing the overhead of finding the match. Further, find-

ing a match, in the case of collision, requires processing information of flows whose hash

collide. This increases the cache miss ratio of the function (Figure 5.12c), further increas-

ing the latency of the function.

103 104 105

Number of flows

0
1
2
3
4
5

Ti
m

e
to

 a
cq

ui
re

 lo
ck

(u
s)

Figure 5.10: Aggregate cache misses

Data structure overhead requires reexamining all complex data structures used in the

stack, taking into account that the stack can process millions of packets per second coming

from millions of flows. For example, the overhead of scheduling can be reduced by using

simpler policies, at the expense of network performance (Figure 5.7). We compare the fq

with pfifo_fast qdiscs in terms of enqueueing latency. The time to enqueue a packet

into pfifo_fast queue is almost constant while the enqueue time for fq increases with

the number of flows. This is because the FQ uses a tree structure to keep track of every

flow and the complexity of insertion operation isO(log(n)). The cache miss when fetching

flow information from the tree also contributes to the latency with large number of flows.

Cache pressure: One of the functions with the highest cache miss ratio is tcp_ack,

which clears the TCP window based on received acknowledgements. The function does

use any complex data structures or wait on locks. Its overhead stems from the overhead

89

103 104 105

Number of flows

0
20
40
60
80

100

M
is

s
Ra

tio
 (%

) L2
LLC

Figure 5.11: Time to acquire Qdisc lock

of fetching flow information and modifying it. To understand the impact of cache misses

on throughput performance, we measure the cache miss ratio and aggregated throughput

with a varying number of flows. As shown in Figure 5.10, the cache miss ratio in both

L2 cache and Last Level Cache (LLC) increases as the number of flows increases. While

cache misses are not a huge bottleneck in our setting, we believe that as the number of flows

increases, with tighter requirements on latency, cache miss ratio will have to be minimized.

Lock contention: Another source of high latency is lock contention when accessing shared

resources. The biggest critical section in the Linux stack is the one used to protect access to

the qdisc, done in dev_queue_xmit. The overhead of acquiring the qdisc lock is well

documented [124, 38]. Increasing the number of flows exacerbates the problem. Figure

5.11 shows that as the time to acquire lock increases by 4 times as the number of flows

increases from 1k to 300k. Another factor contributing to the increase in lock acquisition

time is the increase in packet rate which we have shown to increase as the number of flows

increases (Figure 5.4a). Distributed and lazy coordination between independent multiple

queues can help alleviate the problem by reducing the need for locking [38, 56].

90

5.5 Summary

In this section, we identify the different bottlenecks that arise when we scale the number of

flows to hundreds of thousands in a fully implemented stack. Despite the progress made in

improving the performance of network stacks, we have not been able to identify a single,

publicly available stack that addresses all the problems we discuss in this section. As we

present throughout the section, there have been efforts to address some of the individual

problems in isolation. However, integrating and testing such solutions at the scale of hun-

dreds of thousands to millions of long-lived simultaneously-active flows remains an open

problem. This is critical for new stacks that support Quic, which are being designed from

scratch to support scalable servers [125, 126]. We hope that our work sheds some light on

the pain points that stack designers should pay attention to when building next generation

stacks that scale to terabits per second and millions of flows.

Another observation is that hardware offload solutions are not a panacea. Admission

control issues require careful coordination between the software part of the stack, includ-

ing the application, and the hardware part of the stack. Careful hardware and data structure

design can help reduce the latency of complex operations [44]. However, data structure is-

sues do not disappear when implemented in hardware. We hope that this work can highlight

some of the needed improvements in the interface between the software and the hardware

components of the network stack.

91

10k 20k 30k 50k 100k 200k 300k0
2
4
6
8

10
12

Ca
ch
e
m
is
se
s

dev_queue_xmit
fq_dequeue

inet_lookup
tcp_ack

tcp_write_xmit
tg3_poll_work

(a) CPU usage

10k 20k 30k 50k 100k 200k 300k0
5

10
15
20

La
te
nc
y

(u
s)

dev_queue_xmit
fq_dequeue

tcp_v4_rcv
tcp_ack

tcp_write_xmit
tg3_poll_work

(b) Average function execution time

10k 20k 30k 50k 100k 200k 300k0
2
4
6
8

10
12

Ca
ch
e
m
is
se
s

dev_queue_xmit
fq_dequeue

inet_lookup
tcp_ack

tcp_write_xmit
tg3_poll_work

(c) Cache misses

Figure 5.12: Function profiling results for top functions

92

CHAPTER 6

CONCLUDING REMARKS

The thesis has identified and addressed a variety of network congestion problems caused

by limited bandwidth, buffer space, and CPU resources, both in the Internet and in the data

center networks. In summary, the contributions of this thesis are:

A Framework to Mitigate Inter-AS Congestion through CP/ISP Collaboration:

We design a framework to be deployed in an access ISP network for joint inter-intra-domain

routing. We consider practical deployment issues and evaluate different design choices.

We develop a resource allocation strategy that can be deployed by ISPs that maximizes the

allocation to the CPs within the ISP capacity constraints while insuring fairness among CP

allocations. Our evaluation shows that such framework is beneficial to both CPs and ISPs,

improving total throughput of CPs within an ISP and improving ISP throughput. We also

show that the benefits of Unison can be achieved even if only a subset of CPs connecting

to an ISP agrees to participate.

A Backpressure Mechanism for Congested Queuing System at End Hosts: Con-

gestion of scheduled queues at end hosts typically incurs packet drops which lead to high

CPU cost as well as degradation in net- work performance. This work presents design,

implementation, and evaluation of a backpressure mechanism for handling congestion of

scheduled buffers. We show that by augmenting existing architectures with three sim-

ple mechanisms, CPU and network performance can be significantly improved under high

loads, improving tail latency by 100x. This work should extend the scalability of current

end-host stacks and motivate revisiting the queuing architecture in other network elements.

A Measurement Study on CPU Efficiency with a Focus on Large Number of Flows

: CPU efficiency of the networking stack is critical for next generation servers where a

single machine serves hundreds of thousands and even a million requests. We conduct a

93

measurement study on end host CPU efficiency to identify the bottlenecks caused by the

increasing number of concurrent flows. We categorize problems that arise due to increase

of number of concurrent flows into two categories; namely, admitting more packets into the

network stack than can be handled efficiently, and increasing per-packet overhead within

the stack. We show that these problems contribute to high CPU usage and network perfor-

mance degradation in terms of aggregate throughput and RTT.

6.1 Future Directions

The work done in this thesis can be extended in several directions:

Mitigating Inter-AS Congestion at Scale: Our work Unison is a first step towards

designing an Internet-wide framework to optimize inter-and-intra domain routing with the

collaboration between access ISPs and CPs. Our work focuses on a one-ISP-multiple-CPs

setting and we designed a framework to be deployed on an access ISP network. A natu-

ral extension of the work is to consider a more challenging situation where multiple ISPs

and multiple CPs are involved. In this case the content provider needs to synchronize with

multiple ISPs, and the scalability of the control architecture will be considered a signifi-

cant challenge. Unison suggests aggregating flows to limit the scale of the problem in the

one-ISP-multiple-CPs setting, but more questions need to be answered as the scale of the

problem increases: How can we apply congestion control to the aggregate flows? Should

we consider breaking the flow to enforce dynamic congestion control policies?

Applying zD for UDP, Ingress Traffic, and Userspace Stacks: Our zD work focuses

on the TCP stack in the kernel, mostly due to the ubiquity of such a setting. As QUIC gains

a larger share of Internet traffic, handling backpressure on UDP flows becomes more impor-

tant. Such backpressure is particularly important because UDP packet drops are physical

drops, as UDP does not provide reliability. This puts more stress on the QUIC stack to

recover these losses. We do not envision any significant engineering or research challenges

extending zD to the UDP stack. The situation is similar for ingress traffic where drops are

94

caused by NIC buffers overwhelming a kernel buffer. We envision that CPU overhead can

be saved if zD is applied in such scenarios. The situation is different for userspace Network

Stacks (e.g., DPDK). While we believe the building blocks of zD can be mapped to such

stacks, we envision that porting it will require engineering effort.

Improving Granularity of Backpressure: In our zD work, the granularity of the

scheduled buffer decides the granularity of Backpressure Interface. For example, the back-

pressure performed from the hypervisor to a VM considers all traffic from the VM as an

aggregate flow because packets lose flow-level information when it passes through from

the VM to the hypervisor. A future direction is to enforce flow-level backpressure from hy-

pervisor to VMs to increase the granularity of the backpressure mechanism. The challenge

is to allow VMs and the hypervisor to share more flow information.

Building a Network Stack for a Million Flows: Our work identifies the bottlenecks of

the network stack when the server scales up in terms of number of flows. A promising di-

rection is to build a network stack that is capable of serving a million flows simultaneously.

The stack should define APIs that: 1) allow for the implementation of different transport

and scheduling algorithms, 2) allow for coordination between different components of the

stack that ultimately perform the same task (e.g., determine the number of packets to be

processed or transmitted), and 3) provide a scalable way of accessing shared data structures

(e.g., scheduled queues and routing tables).

95

REFERENCES

[1] Cisco global cloud index 2015–2020, 2020.

[2] A. Dhamdhere and C. Dovrolis, “The Internet is Flat: Modeling the Transition from
a Transit Hierarchy to a Peering Mesh,” in Proc. ACM CoNEXT, 2010.

[3] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig, “Interdomain
Traffic Engineering with BGP,” IEEE Communications magazine, 2003.

[4] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha, J.
Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering egress with edge fab-
ric: Steering oceans of content to the world,” in Proc. ACM SIGCOMM, 2017.

[5] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,
T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka, M.
Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying, M. Kalla-
halla, B. Koley, and A. Vahdat, “Taking the edge off with espresso: Scale, reliability
and programmability for global internet peering,” in Proc. ACM SIGCOMM, 2017.

[6] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-L. Zhang,
“Unreeling Netflix: Understanding and improving multi-CDN movie delivery,” in
Proc. of IEEE INFOCOM, 2012.

[7] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and S. Rao, “Dis-
secting video server selection strategies in the Youtube CDN,” in Proc. of IEEE
ICDCS, 2011.

[8] R. Andrews and S. Higginbotham, YouTube sucks on French ISP Free, and French
regulators want to know why, (Date last accessed 1-April-2019), 2013.

[9] J. Brodkin, Time Warner, net neutrality foes cry foul over Netflix Super HD de-
mands, (Date last accessed 1-April-2019), 2013.

[10] ——, Why YouTube buffers: The secret deals that make—and break—online video,
(Date last accessed 1-April-2019), 2013.

[11] S. Buckley, France Telecom and Google entangled in peering fight, (Date last ac-
cessed 1-April-2019), 2013.

[12] C. Dovrolis, “The evolution and economics of internet interconnections,” Submitted
to Federal Communications Commission, 2015.

96

[13] V. Cerf, V. Jacobson, N. Weaver, and J. Gettys, “BufferBloat: What’s Wrong with
the Internet?” ACM Queue, vol. 9, 2011.

[14] E. Dumazet and J. Corbet, TCP small queues, https://lwn.net/Articles
/507065/, 2012.

[15] J. LaVoie, E. Nahum, and R. Flynn, “Profiling tcp: An in-depth analysis of process-
ing costs,” IBM Research Report, 2007.

[16] H.-W. Jin and C. Yoo, “Impact of protocol overheads on network throughput over
high-speed interconnects: Measurement, analysis, and improvement,” The Journal
of Supercomputing, vol. 41, no. 1, pp. 17–40, 2007.

[17] D. O. Awduche and B. Jabbari, “Internet traffic engineering using multi-protocol
label switching (mpls),” Computer Networks, vol. 40, no. 1, pp. 111–129, 2002.

[18] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and N. Foster,
“Merlin: A language for provisioning network resources,” in Proceedings of the
10th ACM International on Conference on emerging Networking Experiments and
Technologies, ser. CoNEXT ’14, ACM, 2014, pp. 213–226.

[19] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying Software-Defined Network
Optimization Using SOL,” in Proc. USENIX NSDI, 2016.

[20] R. Mahajan, D. Wetherall, and T. Anderson, “Negotiation-based routing between
neighboring ISPs,” in Proc. USENIX NSDI, 2005.

[21] G. Shrimali, A. Akella, and A. Mutapcic, “Cooperative Interdomain Traffic Engi-
neering Using Nash Bargaining and Decomposition,” IEEE/ACM Transactions on
Networking (TON), 2010.

[22] P Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet Routing,” Proc. of ACM
SIGCOMM, 2009.

[23] H. Esquivel, C. Muthukrishnan, F. Niu, S. Chawla, and A. Akella, “RouteBazaar:
An Economic Framework for Flexible Routing,” Technical Report TR1654, De-
partment of Computer Sciences, 2009.

[24] V. Kotronis, R. Klöti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, and X. Dim-
itropoulos, “Stitching Inter-domain Paths over IXPs,” in Proc. ACM SOSR, 2016.

[25] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feamster, J.
Rexford, S. Shenker, R. Clark, and E. Katz-Bassett, “SDX: A Software Defined
Internet Exchange,” in Proc. ACM SIGCOMM, 2014.

97

https://lwn.net/Articles/507065/
https://lwn.net/Articles/507065/

[26] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rexford, and
L. Vanbever, “An Industrial-Scale Software Defined Internet Exchange Point,” in
Proc. USENIX NSDI, 2016.

[27] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative content distri-
bution and traffic engineering in an isp network,” in ACM SIGMETRICS Perfor-
mance Evaluation Review, ACM, vol. 37, 2009, pp. 239–250.

[28] I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann, and B. Maggs, “En-
abling content-aware traffic engineering,” ACM SIGCOMM Computer Communi-
cation Review, vol. 42, no. 5, pp. 21–28, 2012.

[29] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feldmann, “Improving content
delivery using provider-aided distance information,” in Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement, ACM, 2010, pp. 22–34.

[30] M. Wichtlhuber, J. Kessler, S. Bücker, I. Poese, J. Blendin, C. Koch, and D. Hausheer,
“Soda: Enabling cdn-isp collaboration with software defined anycast,” in 2017 IFIP
Networking Conference (IFIP Networking) and Workshops, IEEE, 2017, pp. 1–9.

[31] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-
gupta, and M. Sridharan, “Data center tcp (dctcp),” in Prof. of ACM SIGCOMM
’11, 2011.

[32] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda, “Less
is more: Trading a little bandwidth for ultra-low latency in the data center,” in Prof.
of USENIX NSDI ’12, 2012.

[33] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based congestion control for the
datacenter,” in Proc. of ACM SIGCOMM ’15, 2015.

[34] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-
delay product networks,” in ACM SIGCOMM computer communication review,
ACM, vol. 32, 2002, pp. 89–102.

[35] N. Dukkipati, “Rate control protocol (rcp): Congestion control to make flows com-
plete quickly,” 2008.

[36] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S.
Shenker, “Pfabric: Minimal near-optimal datacenter transport,” in ACM SIGCOMM
Computer Communication Review, ACM, vol. 43, 2013, pp. 435–446.

98

[37] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fastpass: A
centralized zero-queue datacenter network,” in ACM SIGCOMM Computer Com-
munication Review, ACM, vol. 44, 2014, pp. 307–318.

[38] A. Saeed, N. Dukkipati, V. Valancius, T. Lam, C. Contavalli, and A. Vahdat, “Carousel:
Scalable Traffic Shaping at End-Hosts,” in Proc. of ACM SIGCOMM ’17, 2017.

[39] P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li, V. Valancius, J. Adriaens,
S. Gribble, N. Foster, and A. Vahdat, “Picnic: Predictable virtualized nic,” in Proc.
of ACM SIGCOMM ’19, 2019.

[40] K. He, W. Qin, Q. Zhang, W. Wu, J. Yang, T. Pan, C. Hu, J. Zhang, B. Stephens,
A. Akella, and Y. Zhang, “Low latency software rate limiters for cloud networks,”
in Proc. of ACM APNet’17, 2017.

[41] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat,
“SENIC: scalable NIC for end-host rate limiting,” in Proc. of USENIX NSDI ’14,
2014.

[42] A. Saeed, Y. Zhao, N. Dukkipati, E. Zegura, M. Ammar, K. Harras, and A. Vah-
dat, “Eiffel: Efficient and flexible software packet scheduling,” in Proc. of USENIX
NSDI ’19, 2019.

[43] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient NIC packet
scheduling,” in Prof. of USENIX NSDI ’19, 2019.

[44] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in hardware,” in
Proc. of ACM SIGCOMM ’19, 2019.

[45] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan, “Shenango:
Achieving high CPU efficiency for latency-sensitive datacenter workloads,” in Proc.
of USENIX NSDI ’19, 2019.

[46] G. Prekas, M. Kogias, and E. Bugnion, “Zygos: Achieving low tail latency for
microsecond-scale networked tasks,” in Proc. of ACM SOSP ’17, 2017.

[47] M. D. et al., “Andromeda: Performance, isolation, and velocity at scale in cloud
network virtualization,” in Proc. of USENIX NSDI ’18, 2018.

[48] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Rain-
del, M. H. Yahia, and M. Zhang, “Congestion control for large-scale rdma deploy-
ments,” in Proc. of ACM SIGCOMM ’15, 2015.

99

[49] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang, F. Kelly,
M. Alizadeh, and M. Yu, “Hpcc: High precision congestion control,” in Proc. of
ACM SIGCOMM ’19, 2019.

[50] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never than late:
Meeting deadlines in datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, ACM, vol. 41, 2011, pp. 50–61.

[51] Intel DPDK: Data plane development kit, https://www.dpdk.org/, 2014.

[52] L. Rizzo, “Netmap: A novel framework for fast packet i/o,” in 21st USENIX Secu-
rity Symposium (USENIX Security 12), 2012, pp. 101–112.

[53] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishnamurthy, “High
performance packet processing with flexnic,” in Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems, 2016, pp. 67–81.

[54] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion,
“{ix}: A protected dataplane operating system for high throughput and low la-
tency,” in 11th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 14), 2014, pp. 49–65.

[55] F. Checconi, L. Rizzo, and P. Valente, “Qfq: Efficient packet scheduling with tight
guarantees,” IEEE/ACM Transactions on Networking, vol. 21, no. 3, 2013.

[56] M. Hedayati, K. Shen, M. L. Scott, and M. Marty, “Multi-queue fair queuing,” in
2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019.

[57] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park, “Mtcp:
A highly scalable user-level {tcp} stack for multicore systems,” in 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 14), 2014,
pp. 489–502.

[58] M. Rotaru, F. Olariu, E. Onica, and E. Rivière, “Reliable messaging to millions of
users with migratorydata,” in Proceedings of the 18th ACM/IFIP/USENIX Middle-
ware Conference: Industrial Track, 2017, pp. 1–7.

[59] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and T. An-
derson, “Tas: Tcp acceleration as an os service,” in Proceedings of the Fourteenth
EuroSys Conference 2019, 2019, pp. 1–16.

[60] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “Acceltcp: Accelerating network ap-
plications with stateful TCP offloading,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), 2020, pp. 77–92.

100

https://www.dpdk.org/

[61] S. Tse and G. Choudhury, “Real-time traffic management in at&t’s sdn-enabled
core ip/optical network,” Optical Fiber Communication Conference, 2018.

[62] M. Birk, G. Choudhury, B. Cortez, A. Goddard, N. Padi, A. Raghuram, K. Tse,
S. Tse, A. Wallace, and K. Xi, “Evolving to an sdn-enabled isp backbone: Key
technologies and applications,” IEEE Communications Magazine, vol. 54, no. 10,
pp. 129–135, 2016.

[63] B. Donnet and O. Bonaventure, “On bgp communities,” ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 2, pp. 55–59, 2008.

[64] MANIC: Measurement and ANalysis of Internet Congestion, (Date last accessed
18-August-2019).

[65] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K. P. Mok, G.
Akiwate, K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy, “Inferring persistent
interdomain congestion,” in Proc. ACM SIGCOMM, 2018.

[66] M. Moradi, Y. Zhang, Z. M. Mao, and R. Manghirmalani, “Dragon: Scalable, flex-
ible, and efficient traffic engineering in software defined isp networks,” IEEE Jour-
nal on Selected Areas in Communications, vol. 36, no. 12, pp. 2744–2756, 2018.

[67] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar, E. Salvadori,
and B. Snow, “OpenVirteX: Make your Virtual SDNs Programmable,” in Proc.
ACM SIGCOMM HotSDN Workshop, 2014.

[68] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t Mind
the Gap: Bridging Network-wide Objectives and Device-level Configurations,” in
Proc. ACM SIGCOMM, 2016.

[69] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz, “Route Flap Damping
Exacerbates Internet Routing Convergence,” in ACM SIGCOMM Computer Com-
munication Review, 2002.

[70] B. Zhang, D. Pei, D. Massey, and L. Zhang, “Timer Interaction in Route Flap
Damping,” in Proc. IEEE ICDCS, 2005.

[71] A. A. Gilroy, “The net neutrality debate: Access to broadband networks,” Congres-
sional Research Service, Washington, DC, 2019.

[72] “Using the CPLEX Callable Library and CPLEX Mixed Integer Library,” CPLEX
Optimization, Incline Village, 1993.

[73] The gurobi optimizer, (Date last accessed 15-May-2018).

101

[74] O. Tilmans, T. Bühler, S. Vissicchio, and L. Vanbever, “Mille-Feuille: Putting ISP
traffic under the Scalpel,” in Proc. ACM HotNets, 2016.

[75] J. Jaffe, “Bottleneck Flow Control,” IEEE Transactions on Communications, 1981.

[76] M. Demirci and M. Ammar, “Fair Allocation of Substrate Resources among Mul-
tiple Overlay Networks,” in Proc. IEEE MASCOTS, 2010.

[77] J. Kleinberg, Y. Rabani, and É. Tardos, “Fairness in routing and load balancing,” in
Proc. of IEEE FOCS, 1999.

[78] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wat-
tenhofer, “Achieving High Utilization with Software-Driven WAN,” in Proc. ACM
SIGCOMM, 2013.

[79] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The Internet
Topology Zoo,” IEEE Journal on Selected Areas in Communications, 2011.

[80] M. Roughan, M. Thorup, and Y. Zhang, “Traffic Engineering with Estimated Traffic
Matrices,” in Proc. ACM IMC, 2003.

[81] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of Youtube Network Traffic
at a Campus Network–Measurements, Models, and Implications,” Computer net-
works, 2009.

[82] M. M. Waldrop, “The chips are down for moore’s law,” Nature News, vol. 530,
2016.

[83] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus ipc:
The end of the road for conventional microarchitectures,” in ACM SIGARCH Com-
puter Architecture News, vol. 28, 2000.

[84] D. Geer, “Chip makers turn to multicore processors,” IEEE Computer, vol. 38,
2005.

[85] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker, “Extending
networking into the virtualization layer,” in Proc. of ACM HotNets-VIII, 2009.

[86] Bess: Berkeley extensible software switch, https://github.com/NetSys/
bess/wiki, 2017.

[87] Intel DPDK: Data plane development kit, https://www.dpdk.org/, 2014.

[88] W. Almesberger, J. H. Salim, and A. Kuznetsov, “Differentiated services on linux,”
in Proc. of IEEE GLOBECOM ’99, 1999.

102

https://github.com/NetSys/bess/wiki
https://github.com/NetSys/bess/wiki
https://www.dpdk.org/

[89] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,” ACM SIGOPS
Operating Systems Review, vol. 42, 2008.

[90] M Tsirkin, “vhost-net and virtio-net: Need for Speed,” in Proc. KVM Forum, 2010.

[91] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.
Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The design and imple-
mentation of open vswitch,” in Proc. of USENIX NSDI ’15, 2015.

[92] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understanding TCP
incast throughput collapse in datacenter networks,” in Proc. of the ACM workshop
on Research on enterprise networking (WREN ’09), 2009.

[93] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg, and C. Kim,
“EyeQ: Practical Network Performance Isolation at the Edge,” in Proc. of USENIX
NSDI ’13, 2013.

[94] neper: a Linux networking performance tool, https://github.com/googl
e/neper, 2016.

[95] A. N. Kuznetsov, pfifo-tc: PFIFO Qdisc, https://linux.die.net/man/
8/tc-pfifo/, 2002.

[96] E. Dumazet and J. Corbet, Tso sizing and the fq scheduler, https://lwn.net/
Articles/564978/, 2013.

[97] Y. Cheng and N. Cardwell, “Making linux tcp fast,” in Netdev 1.2 Conference,
2016.

[98] H.-k. J. Chu, “Zero-copy TCP in Solaris,” in Proc. of USENIX ATC ’96, 1996.

[99] J. Tan, C. Liang, H. Xie, Q. Xu, J. Hu, H. Zhu, and Y. Liu, “VIRTIO-USER: A New
Versatile Channel for Kernel-Bypass Networks,” in Proc. of the ACM Workshop on
Kernel-Bypass Networks (KBNets ’17), 2017.

[100] T. Zhang, J. Wang, J. Huang, J. Chen, Y. Pan, and G. Min, “Tuning the aggressive
tcp behavior for highly concurrent http connections in intra-datacenter,” IEEE/ACM
Transactions on Networking, vol. 25, no. 6, pp. 3808–3822, 2017.

[101] High-performance, feature-rich netxtreme R© e-series dual-port 100g pcie ethernet
nic, https://www.broadcom.com/products/ethernet-connectiv
ity/network-adapters/100gb-nic-ocp/p2100g.

103

https://github.com/google/neper
https://github.com/google/neper
https://linux.die.net/man/8/tc-pfifo/
https://linux.die.net/man/8/tc-pfifo/
https://lwn.net/Articles/564978/
https://lwn.net/Articles/564978/
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/100gb-nic-ocp/p2100g
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/100gb-nic-ocp/p2100g

[102] “Ieee standard for ethernet - amendment 10: Media access control parameters,
physical layers, and management parameters for 200 gb/s and 400 gb/s operation,”
IEEE Std 802.3bs-2017, pp. 1–372, 2017.

[103] IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Part II, 2020.

[104] Microprocessor trend data, https://github.com/karlrupp/micropro
cessor-trend-data, 2018.

[105] Netflix Help Center: Internet Connection Speed Recommendations, https://
help.netflix.com/en/node/306, 2020.

[106] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter rpcs can be general and
fast,” in 16th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 19), 2019, pp. 1–16.

[107] M. Hock, M. Veit, F. Neumeister, R. Bless, and M. Zitterbart, “Tcp at 100 gbit/s–
tuning, limitations, congestion control,” in 2019 IEEE 44th Conference on Local
Computer Networks (LCN), IEEE, 2019, pp. 1–9.

[108] J. D. Brouer, “Network stack challenges at increasing speeds,” in Proc. Linux Conf,
2015, pp. 12–16.

[109] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli, M. Dal-
ton, N. Dukkipati, W. C. Evans, S. Gribble, et al., “Snap: A microkernel approach
to host networking,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, ACM, 2019, pp. 399–413.

[110] Y. Zhao, A. Saeed, E. Zegura, and M. Ammar, “Zd: A scalable zero-drop network
stack at end hosts,” in Proceedings of the 15th International Conference on Emerg-
ing Networking Experiments And Technologies, 2019, pp. 220–232.

[111] neper: a Linux networking performance tool, https://github.com/googl
e/neper, 2020.

[112] F. R. P. Cavalcanti and S. Andersson, Optimizing wireless communication systems.
Springer, 2009, vol. 386.

[113] Q.-C. Chen, X.-H. Yang, and X.-L. Wang, “A peer-to-peer based passive web
crawling system,” in 2011 International Conference on Machine Learning and Cy-
bernetics, IEEE, vol. 4, 2011, pp. 1878–1883.

[114] FlowQueue-Codel, https://tools.ietf.org/id/draft-ietf-aqm-
fq-codel-02.html, 2020.

104

https://github.com/karlrupp /microprocessor-trend-data
https://github.com/karlrupp /microprocessor-trend-data
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://github.com/google/neper
https://github.com/google/neper
https://tools.ietf.org/id/draft-ietf-aqm-fq-codel-02.html
https://tools.ietf.org/id/draft-ietf-aqm-fq-codel-02.html

[115] dstat-Linux man page, https://linux.die.net/man/1/dstat, 2020.

[116] ss-Linux man page, https://linux.die.net/man/8/ss, 2020.

[117] netstat-Linux man page, https://linux.die.net/man/8/netstat,
2020.

[118] Tcpdump Manual, https://linux.die.net/man/8/tcpdump, 2020.

[119] Perf Manual, https://www.man7.org/linux/man-pages/man1/
perf.1.html, 2020.

[120] J. C. Mogul and K. Ramakrishnan, “Eliminating receive livelock in an interrupt-
driven kernel,” ACM Transactions on Computer Systems, vol. 15, no. 3, pp. 217–
252, 1997.

[121] L. Sun and P. Kostic, Adaptive hardware interrupt moderation, US Patent App.
13/534,607, 2014.

[122] Y. Li, L. Cornett, M. Deval, A. Vasudevan, and P. Sarangam, Adaptive interrupt
moderation, US Patent 9,009,367, 2015.

[123] C. Benvenuti, Understanding Linux network internals. ” O’Reilly Media, Inc.”,
2006.

[124] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat,
“{senic}: Scalable {nic} for end-host rate limiting,” in 11th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 14), 2014, pp. 475–
488.

[125] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F.
Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The quic
transport protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, ser. SIG-
COMM ’17, 2017.

[126] J Iyengar and M Thomson, “Quic: A udp-based multiplexed and secure transport;
draft-ietf-quic-transport-24,” Internet Engineering Task Force: Newark, DE, USA,
2019.

105

https://linux.die.net/man/1/dstat
https://linux.die.net/man/8/ss
https://linux.die.net/man/8/netstat
https://linux.die.net/man/8/tcpdump
https://www.man7.org/linux/man-pages/man1/perf.1.html
https://www.man7.org/linux/man-pages/man1/perf.1.html

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Primary Contributions
	A Framework to Mitigate Inter-AS Congestion through CP/ISP Collaboration
	A Backpressure Mechanism for Congested Queuing System at End Hosts
	Analyzing the CPU Cost of Networking Stack

	Thesis Outline

	Related Work
	Traffic Engineering
	Intra-domain TE for ISPs
	Inter-domain TE from CPs' Perspective
	Collaborative Inter-domain TE
	Cooperative Content Distribution and TE

	Mitigating Congestion in Data Center Networks
	Congestion Control Algorithms
	End Host Egress Path Congestion
	End Host Ingress Path Congestion

	End Host CPU Efficiency

	A Framework to Mitigate Inter-AS Congestion through CP/ISP Collaboration
	Background
	Network Context
	The need for Content Provider-ISP Cooperation
	Interdomain Congestion across ISP Entry Points

	Unison Overview
	Unison Design Goals
	Architecture Overview and Operation

	Unison vSwitch Mapper
	Unison Throughput Optimizer
	Traffic Matrix
	Feasibility and Weighted Fairness
	Bandwidth Allocation Algorithm

	Evaluation
	Experimental Setup
	The Value of Unison
	Impact of CP participation
	Impact of environmental parameters
	Summary

	A Backpressure Mechanism for Congested End Host
	Background and Motivation
	Packet Queuing at End Hosts
	Types of Packet Drops
	Cost of Long Queues
	Cost of Packet Drops

	zD Design Principles
	zD Overview
	Source Buffer Regulator
	Backpressure Interface
	Paused-Flows Queue

	Implementation
	TCP/IP Stack Implementation
	Hypervisor Implementation

	Evaluation
	Experiments Setup
	Overall Performance
	Microbenchmark

	Limitations of zD
	Summary

	Analyzing the CPU Cost of Networking Stack
	Measurement Setup
	Overall Stack Performance
	Admission Control to the Stack
	Automatic Packet Sizing
	Backpressure and Scheduling
	Batching Ingress Packets

	Per-packet Overhead
	Summary

	Concluding Remarks
	Future Directions

	References

