13 research outputs found

    Optimization of video capturing and tone mapping in video camera systems

    Get PDF
    Image enhancement techniques are widely employed in many areas of professional and consumer imaging, machine vision and computational imaging. Image enhancement techniques used in surveillance video cameras are complex systems involving controllable lenses, sensors and advanced signal processing. In surveillance, a high output image quality with very robust and stable operation under difficult imaging conditions are essential, combined with automatic, intelligent camera behavior without user intervention. The key problem discussed in this thesis is to ensure this high quality under all conditions, which specifically addresses the discrepancy of the dynamic range of input scenes and displays. For example, typical challenges are High Dynamic Range (HDR) and low-dynamic range scenes with strong light-dark differences and overall poor visibility of details, respectively. The detailed problem statement is as follows: (1) performing correct and stable image acquisition for video cameras in variable dynamic range environments, and (2) finding the best image processing algorithms to maximize the visualization of all image details without introducing image distortions. Additionally, the solutions should satisfy complexity and cost requirements of typical video surveillance cameras. For image acquisition, we develop optimal image exposure algorithms that use a controlled lens, sensor integration time and camera gain, to maximize SNR. For faster and more stable control of the camera exposure system, we remove nonlinear tone-mapping steps from the level control loop and we derive a parallel control strategy that prevents control delays and compensates for the non-linearity and unknown transfer characteristics of the used lenses. For HDR imaging we adopt exposure bracketing that merges short and long exposed images. To solve the involved non-linear sensor distortions, we apply a non-linear correction function to the distorted sensor signal, implementing a second-order polynomial with coefficients adaptively estimated from the signal itself. The result is a good, dynamically controlled match between the long- and short-exposed image. The robustness of this technique is improved for fluorescent light conditions, preventing serious distortions by luminance flickering and color errors. To prevent image degradation we propose both fluorescent light detection and fluorescence locking, based on measurements of the sensor signal intensity and color errors in the short-exposed image. The use of various filtering steps increases the detector robustness and reliability for scenes with motion and the appearance of other light sources. In the alternative algorithm principle of fluorescence locking, we ensure that light integrated during the short exposure time has a correct intensity and color by synchronizing the exposure measurement to the mains frequency. The second area of research is to maximize visualization of all image details. This is achieved by both global and local tone mapping functions. The largest problem of Global Tone Mapping Functions (GTMF) is that they often significantly deteriorate the image contrast. We have developed a new GTMF and illustrate, both analytically and perceptually, that it exhibits only a limited amount of compression, compared to conventional solutions. Our algorithm splits GTMF into two tasks: (1) compressing HDR images (DRC transfer function) and (2) enhancing the (global) image contrast (CHRE transfer function). The DRC subsystem adapts the HDR video signal to the remainder of the system, which can handle only a fraction of the original dynamic range. Our main contribution is a novel DRC function shape which is adaptive to the image, so that details in the dark image parts are enhanced simultaneously while only moderately compressing details in the bright areas. Also, the DRC function shape is well matched with the sensor noise characteristics in order to limit the noise amplification. Furthermore, we show that the image quality can be significantly improved in DRC compression if a local contrast preservation step is included. The second part of GTMF is a CHRE subsystem that fine-tunes and redistributes the luminance (and color) signal in the image, to optimize global contrast of the scene. The contribution of the proposed CHRE processing is that unlike standard histogram equalization, it can preserve details in statistically unpopulated but visually relevant luminance regions. One of the important cornerstones of the GTMF is that both DRC and CHRE algorithms are performed in the perceptually uniform space and optimized for the salient regions obtained by the improved salient-region detector, to maximize the relevant information transfer to the HVS. The proposed GTMF solution offers a good processing quality, but cannot sufficiently preserve local contrast for extreme HDR signals and it gives limited improvement low-contrast scenes. The local contrast improvement is based on the Locally Adaptive Contrast Enhancement (LACE) algorithm. We contribute by using multi-band frequency decomposition, to set up the complete enhancement system. Four key problems occur with real-time LACE processing: (1) "halo" artifacts, (2) clipping of the enhancement signal, (3) noise degradation and (4) the overall system complexity. "Halo" artifacts are eliminated by a new contrast gain specification using local energy and contrast measurements. This solution has a low complexity and offers excellent performance in terms of higher contrast and visually appealing performance. Algorithms preventing clipping of the output signal and reducing noise amplification give a further enhancement. We have added a supplementary discussion on executing LACE in the logarithmic domain, where we have derived a new contrast gain function solving LACE problems efficiently. For the best results, we have found that LACE processing should be performed in the logarithmic domain for standard and HDR images, and in the linear domain for low-contrast images. Finally, the complexity of the contrast gain calculation is reduced by a new local energy metric, which can be calculated efficiently in a 2D-separable fashion. Besides the complexity benefit, the proposed energy metric gives better performance compared to the conventional metrics. The conclusions of our work are summarized as follows. For acquisition, we need to combine an optimal exposure algorithm, giving both improved dynamic performance and maximum image contrast/SNR, with robust exposure bracketing that can handle difficult conditions such as fluorescent lighting. For optimizing visibility of details in the scene, we have split the GTMF in two parts, DRC and CHRE, so that a controlled optimization can be performed offering less contrast compression and detail loss than in the conventional case. Local contrast is enhanced with the known LACE algorithm, but the performance is significantly improved by individually addressing "halo" artifacts, signal clipping and noise degradation. We provide artifact reduction by new contrast gain function based on local energy, contrast measurements and noise estimation. Besides the above arguments, we have contributed feasible performance metrics and listed ample practical evidence of the real-time implementation of our algorithms in FPGAs and ASICs, used in commercially available surveillance cameras, which obtained awards for their image quality

    Editable View Optimized Tone Mapping For Viewing High Dynamic Range Panoramas On Head Mounted Display

    Get PDF
    Head mounted displays are characterized by relatively low resolution and low dynamic range. These limitations significantly reduce the visual quality of photo-realistic captures on such displays. This thesis presents an interactive view optimized tone mapping technique for viewing large sized high dynamic range panoramas up to 16384 by 8192 on head mounted displays. This technique generates a separate file storing pre-computed view-adjusted mapping function parameters. We define this technique as ToneTexture. The use of a view adjusted tone mapping allows for expansion of the perceived color space available to the end user. This yields an improved visual appearance of both high dynamic range panoramas and low dynamic range panoramas on such displays. Moreover, by providing proper interface to manipulate on ToneTexture, users are allowed to adjust the mapping function as to changing color emphasis. The authors present comparisons of the results produced by ToneTexture technique against widely-used Reinhard tone mapping operator and Filmic tone mapping operator both objectively via a mathematical quality assessment metrics and subjectively through user study. Demonstration systems are available for desktop and head mounted displays such as Oculus Rift and GearVR

    Contours and contrast

    Get PDF
    Contrast in photographic and computer-generated imagery communicates colour and lightness differences that would be perceived when viewing the represented scene. Due to depiction constraints, the amount of displayable contrast is limited, reducing the image's ability to accurately represent the scene. A local contrast enhancement technique called unsharp masking can overcome these constraints by adding high-frequency contours to an image that increase its apparent contrast. In three novel algorithms inspired by unsharp masking, specialized local contrast enhancements are shown to overcome constraints of a limited dynamic range, overcome an achromatic palette, and to improve the rendering of 3D shapes and scenes. The Beyond Tone Mapping approach restores original HDR contrast to its tone mapped LDR counterpart by adding highfrequency colour contours to the LDR image while preserving its luminance. Apparent Greyscale is a multi-scale two-step technique that first converts colour images and video to greyscale according to their chromatic lightness, then restores diminished colour contrast with high-frequency luminance contours. Finally, 3D Unsharp Masking performs scene coherent enhancement by introducing 3D high-frequency luminance contours to emphasize the details, shapes, tonal range and spatial organization of a 3D scene within the rendering pipeline. As a perceptual justification, it is argued that a local contrast enhancement made with unsharp masking is related to the Cornsweet illusion, and that this may explain its effect on apparent contrast.Seit vielen Jahren ist die realistische Erzeugung von virtuellen Charakteren ein zentraler Teil der Computergraphikforschung. Dennoch blieben bisher einige Probleme ungelöst. Dazu zählt unter anderem die Erzeugung von Charakteranimationen, welche unter der Benutzung der traditionellen, skelettbasierten Ansätze immer noch zeitaufwändig sind. Eine weitere Herausforderung stellt auch die passive Erfassung von Schauspielern in alltäglicher Kleidung dar. Darüber hinaus existieren im Gegensatz zu den zahlreichen skelettbasierten Ansätzen nur wenige Methoden zur Verarbeitung und Veränderung von Netzanimationen. In dieser Arbeit präsentieren wir Algorithmen zur Lösung jeder dieser Aufgaben. Unser erster Ansatz besteht aus zwei Netz-basierten Verfahren zur Vereinfachung von Charakteranimationen. Obwohl das kinematische Skelett beiseite gelegt wird, können beide Verfahren direkt in die traditionelle Pipeline integriert werden, wobei die Erstellung von Animationen mit wirklichkeitsgetreuen Körperverformungen ermöglicht wird. Im Anschluss präsentieren wir drei passive Aufnahmemethoden für Körperbewegung und Schauspiel, die ein deformierbares 3D-Modell zur Repräsentation der Szene benutzen. Diese Methoden können zur gemeinsamen Rekonstruktion von zeit- und raummässig kohärenter Geometrie, Bewegung und Oberflächentexturen benutzt werden, die auch zeitlich veränderlich sein dürfen. Aufnahmen von lockerer und alltäglicher Kleidung sind dabei problemlos möglich. Darüber hinaus ermöglichen die qualitativ hochwertigen Rekonstruktionen die realistische Darstellung von 3D Video-Sequenzen. Schließlich werden zwei neuartige Algorithmen zur Verarbeitung von Netz-Animationen beschrieben. Während der erste Algorithmus die vollautomatische Umwandlung von Netz-Animationen in skelettbasierte Animationen ermöglicht, erlaubt der zweite die automatische Konvertierung von Netz-Animationen in so genannte Animations-Collagen, einem neuen Kunst-Stil zur Animationsdarstellung. Die in dieser Dissertation beschriebenen Methoden können als Lösungen spezieller Probleme, aber auch als wichtige Bausteine größerer Anwendungen betrachtet werden. Zusammengenommen bilden sie ein leistungsfähiges System zur akkuraten Erfassung, zur Manipulation und zum realistischen Rendern von künstlerischen Aufführungen, dessen Fähigkeiten über diejenigen vieler verwandter Capture-Techniken hinausgehen. Auf diese Weise können wir die Bewegung, die im Zeitverlauf variierenden Details und die Textur-Informationen eines Schauspielers erfassen und sie in eine mit vollständiger Information versehene Charakter-Animation umwandeln, die unmittelbar weiterverwendet werden kann, sich aber auch zur realistischen Darstellung des Schauspielers aus beliebigen Blickrichtungen eignet

    High dynamic range images: processing, display and perceptual quality assessment

    Get PDF
    2007/2008The intensity of natural light can span over 10 orders of magnitude from starlight to direct sunlight. Even in a single scene, the luminance of the bright areas can be thousands or millions of times greater than the luminance in the dark areas; the ratio between the maximum and the minimum luminance values is commonly known as dynamic range or contrast. The human visual system is able to operate in an extremely wide range of luminance conditions without saturation and at the same time it can perceive fine details which involve small luminance differences. Our eyes achieve this ability by modulating their response as a function of the local mean luminance with a process known as local adaptation. In particular, the visual sensation is not linked to the absolute luminance, but rather to its spatial and temporal variation. One consequence of the local adaptation capability of the eye is that the objects in a scene maintain their appearance even if the light source illuminating the scene changes significantly. On the other hand, the technologies used for the acquisition and reproduction of digital images are able to handle correctly a significantly smaller luminance range of 2 to 3 orders of magnitude at most. Therefore, a high dynamic range (HDR) image poses several challenges and requires the use of appropriate techniques. These elementary observations define the context in which the entire research work described in this Thesis has been performed. As indicated below, different fields have been considered; they range from the acquisition of HDR images to their display, from visual quality evaluation to medical applications, and include some developments on a recently proposed class of display equipment. An HDR image can be captured by taking multiple photographs with different exposure times or by using high dynamic range sensors; moreover, synthetic HDR images can be generated with computer graphics by means of physically-based algorithms which often involve advanced lighting simulations. An HDR image, although acquired correctly, can not be displayed on a conventional monitor. The white level of most devices is limited to a few hundred cd/m² by technological constraints, primarily linked to the power consumption and heat dissipation; the black level also has a non negligible luminance, in particular for devices based on the liquid crystal technology. However, thanks to the aforementioned properties of the human visual system, an exact reproduction of the luminance in the original scene is not strictly necessary in order to produce a similar sensation in the observer. For this purpose, dynamic range reduction algorithms have been developed which attenuate the large luminance variations in an image while preserving as far as possible the fine details. The most simple dynamic range reduction algorithms map each pixel individually with the same nonlinear function commonly known as tone mapping curve. One operator we propose, based on a modified logarithmic function, has a low computational cost and contains one single user-adjustable parameter. However, the methods belonging to this category can reduce the visibility of the details in some portions of the image. More advanced methods also take into account the pixel neighborhood. This approach can achieve a better preservation of the details, but the loss of one-to-one mapping from input luminances to display values can lead to the formation of gradient reversal effects, which typically appear as halos around the object boundaries. Different solutions to this problem have been attempted. One method we introduce is able to avoid the formation of halos and intrinsically prevents any clipping of the output display values. The method is formulated as a constrained optimization problem, which is solved efficiently by means of appropriate numerical methods. In specific applications, such as the medical one, the use of dynamic range reduction algorithms is discouraged because any artifacts introduced by the processing can lead to an incorrect diagnosis. In particular, a one-to-one mapping from the physical data (for instance, a tissue density in radiographic techniques) to the display value is often an essential requirement. For this purpose, high dynamic range displays, capable of reproducing images with a wide luminance range and possibly a higher bit depth, are under active development. Dual layer LCD displays, for instance, use two liquid crystal panels stacked one on top of the other over an enhanced backlight unit in order to achieve a dynamic range of 4 ÷ 5 orders of magnitude. The grayscale reproduction accuracy is also increased, although a “bit depth” can not be defined unambiguously because the luminance levels obtained by the combination of the two panels are partially overlapped and unevenly spaced. A dual layer LCD display, however, requires the use of complex splitting algorithms in order to generate the two images which drive the two liquid crystal panels. A splitting algorithm should compensate multiple sources of error, including the parallax introduced by the viewing angle, the gray-level clipping introduced by the limited dynamic range of the panels, the visibility of the reconstruction error, and glare effects introduced by an unwanted light scattering between the two panels. For these reasons, complex constrained optimization techniques are necessary. We propose an objective function which incorporates all the desired constraints and requirements and can be minimized efficiently by means of appropriate techniques based on multigrid methods. The quality assessment of high dynamic range images requires the development of appropriate techniques. By their own nature, dynamic range reduction algorithms change the luminance values of an image significantly and make most image fidelity metrics inapplicable. Some particular aspects of the methods can be quantified by means of appropriate operators; for instance, we introduce an expression which describes the detail attenuation introduced by a tone mapping curve. In general, a subjective quality assessment is preferably performed by means of appropriate psychophysical experiments. We conducted a set of experiments, targeted specifically at measuring the level of agreement between different users when adjusting the parameter of the modified logarithmic mapping method we propose. The experimental results show a strong correlation between the user-adjusted parameter and the image statistics, and suggest a simple technique for the automatic adjustment of this parameter. On the other hand, the quality assessment in the medical field is preferably performed by means of objective methods. In particular, task-based quality measures evaluate by means of appropriate observer studies the clinical validity of the image used to perform a specific diagnostic task. We conducted a set of observer studies following this approach, targeted specifically at measuring the clinical benefit introduced by a high dynamic range display based on the dual layer LCD technology over a conventional display with a low dynamic range and 8-bit quantization. Observer studies are often time consuming and difficult to organize; in order to increase the number of tests, the human observers can be partially replaced by appropriate software applications, known as model observers or computational observers, which simulate the diagnostic task by means of statistical classification techniques. This thesis is structured as follows. Chapter 1 contains a brief background of concepts related to the physiology of human vision and to the electronic reproduction of images. The description we make is by no means complete and is only intended to introduce some concepts which will be extensively used in the following. Chapter 2 describes the technique of high dynamic range image acquisition by means of multiple exposures. In Chapter 3 we introduce the dynamic range reduction algorithms, providing an overview of the state of the art and proposing some improvements and novel techniques. In Chapter 4 we address the topic of quality assessment in dynamic range reduction algorithms; in particular, we introduce an operator which describes the detail attenuation introduced by tone mapping curves and describe a set of psychophysical experiments we conducted for the adjustment of the parameter in the modified logarithmic mapping method we propose. In Chapter 5 we move to the topic of medical images and describe the techniques used to map the density data of radiographic images to display luminances. We point out some limitations of the current technical recommendation and propose an improvement. In Chapter 6 we describe in detail the dual layer LCD prototype and propose different splitting algorithms for the generation of the two images which drive the two liquid crystal panels. In Chapter 7 we propose one possible technique for the estimation of the equivalent bit depth of a dual layer LCD display, based on a statistical analysis of the quantization noise. Finally, in Chapter 8 we address the topic of objective quality assessment in medical images and describe a set of observer studies we conducted in order to quantify the clinical benefit introduced by a high dynamic range display. No general conclusions are offered; the breadth of the subjects has suggested to draw more focused comments at the end of the individual chapters.XXI Ciclo198

    Real-Time Algorithms for High Dynamic Range Video

    Full text link
    A recurring problem in capturing video is the scene having a range of brightness values that exceeds the capabilities of the capturing device. An example would be a video camera in a bright outside area, directed at the entrance of a building. Because of the potentially big brightness difference, it may not be possible to capture details of the inside of the building and the outside simultaneously using just one shutter speed setting. This results in under- and overexposed pixels in the video footage. The approach we follow in this thesis to overcome this problem is temporal exposure bracketing, i.e., using a set of images captured in quick sequence at different shutter settings. Each image then captures one facet of the scene's brightness range. When fused together, a high dynamic range (HDR) video frame is created that reveals details in dark and bright regions simultaneously. The process of creating a frame in an HDR video can be thought of as a pipeline where the output of each step is the input to the subsequent one. It begins by capturing a set of regular images using varying shutter speeds. Next, the images are aligned with respect to each other to compensate for camera and scene motion during capture. The aligned images are then merged together to create a single HDR frame containing accurate brightness values of the entire scene. As a last step, the HDR frame is tone mapped in order to be displayable on a regular screen with a lower dynamic range. This thesis covers algorithms for these steps that allow the creation of HDR video in real-time. When creating videos instead of still images, the focus lies on high capturing and processing speed and on assuring temporal consistency between the video frames. In order to achieve this goal, we take advantage of the knowledge gained from the processing of previous frames in the video. This work addresses the following aspects in particular. The image size parameters for the set of base images are chosen such that only as little image data as possible is captured. We make use of the fact that it is not always necessary to capture full size images when only small portions of the scene require HDR. Avoiding redundancy in the image material is an obvious approach to reducing the overall time taken to generate a frame. With the aid of the previous frames, we calculate brightness statistics of the scene. The exposure values are chosen in a way, such that frequently occurring brightness values are well-exposed in at least one of the images in the sequence. The base images from which the HDR frame is created are captured in quick succession. The effects of intermediate camera motion are thus less intense than in the still image case, and a comparably simpler camera motion model can be used. At the same time, however, there is much less time available to estimate motion. For this reason, we use a fast heuristic that makes use of the motion information obtained in previous frames. It is robust to the large brightness difference between the images of an exposure sequence. The range of luminance values of an HDR frame must be tone mapped to the displayable range of the output device. Most available tone mapping operators are designed for still images and scale the dynamic range of each frame independently. In situations where the scene's brightness statistics change quickly, these operators produce visible image flicker. We have developed an algorithm that detects such situations in an HDR video. Based on this detection, a temporal stability criterion for the tone mapping parameters then prevents image flicker. All methods for capture, creation and display of HDR video introduced in this work have been fully implemented, tested and integrated into a running HDR video system. The algorithms were analyzed for parallelizability and, if applicable, adjusted and implemented on a high-performance graphics chip

    Real-Time Computational Gigapixel Multi-Camera Systems

    Get PDF
    The standard cameras are designed to truthfully mimic the human eye and the visual system. In recent years, commercially available cameras are becoming more complex, and offer higher image resolutions than ever before. However, the quality of conventional imaging methods is limited by several parameters, such as the pixel size, lens system, the diffraction limit, etc. The rapid technological advancements, increase in the available computing power, and introduction of Graphics Processing Units (GPU) and Field-Programmable-Gate-Arrays (FPGA) open new possibilities in the computer vision and computer graphics communities. The researchers are now focusing on utilizing the immense computational power offered on the modern processing platforms, to create imaging systems with novel or significantly enhanced capabilities compared to the standard ones. One popular type of the computational imaging systems offering new possibilities is a multi-camera system. This thesis will focus on FPGA-based multi-camera systems that operate in real-time. The aim of themulti-camera systems presented in this thesis is to offer a wide field-of-view (FOV) video coverage at high frame rates. The wide FOV is achieved by constructing a panoramic image from the images acquired by the multi-camera system. Two new real-time computational imaging systems that provide new functionalities and better performance compared to conventional cameras are presented in this thesis. Each camera system design and implementation are analyzed in detail, built and tested in real-time conditions. Panoptic is a miniaturized low-cost multi-camera system that reconstructs a 360 degrees view in real-time. Since it is an easily portable system, it provides means to capture the complete surrounding light field in dynamic environment, such as when mounted on a vehicle or a flying drone. The second presented system, GigaEye II , is a modular high-resolution imaging system that introduces the concept of distributed image processing in the real-time camera systems. This thesis explains in detail howsuch concept can be efficiently used in real-time computational imaging systems. The purpose of computational imaging systems in the form of multi-camera systems does not end with real-time panoramas. The application scope of these cameras is vast. They can be used in 3D cinematography, for broadcasting live events, or for immersive telepresence experience. The final chapter of this thesis presents three potential applications of these systems: object detection and tracking, high dynamic range (HDR) imaging, and observation of multiple regions of interest. Object detection and tracking, and observation of multiple regions of interest are extremely useful and desired capabilities of surveillance systems, in security and defense industry, or in the fast-growing industry of autonomous vehicles. On the other hand, high dynamic range imaging is becoming a common option in the consumer market cameras, and the presented method allows instantaneous capture of HDR videos. Finally, this thesis concludes with the discussion of the real-time multi-camera systems, their advantages, their limitations, and the future predictions

    Bio-inspired Collision Detection with Motion Cues Enhancement in Dim Light Environments

    Get PDF
    Detecting looming objects robustly and timely is a huge challenge for artificial vision systems in complex natural scenes, including dim light scenes. Insects have evolved remarkable capacities in collision detection despite their tiny eyes and brains. The locusts’ LGMD1 neuron shows strong looming-sensitive property for both light and dark objects, which is a source of inspiration for developing collision detection systems. Furthermore, specialized visual processing strategies in nocturnal animals’ brains can provide inspiration for detecting faint motion like dim-light collision detection when challenged with low light conditions. This research aims to explore theLGMD1 based collision detection methods, adaptive low-light image enhancement methods, biologically-inspired solutions for enhancing faint motion cues as well as collision detection methods in low light conditions. The major contributions are summarized as follows. A new visual neural system model (LGMD1) is developed, which applies a neural competition mechanism within a framework of separated ON and OFF pathways to shut off the translating response. The competition-based approach responds vigorously to monotonous ON/OFF responses resulting from a looming object. However, it does not respond to paired ON-OFF responses that result from a translating object, thereby enhancing collision selectivity. Moreover, a complementary denoising mechanism ensures reliable collision detection. To verify the effectiveness of the model, we have conducted systematic comparative experiments on synthetic and real datasets. The results show that our method exhibits more accurate discrimination between looming and translational events—the looming motion can be correctly detected. It also demonstrates that the proposed model is more robust than comparative models. A framework is proposed for adaptively enhancing low-light images, which implements the processing of dark adaptation with proper adaptation parameters in R,G and B channels separately. Specifically, the dark adaptation processing consists of a series of canonical neural computations, including the power law adaptation, divisive normalization and adaptive rescaling operations. Experimental results show that the proposed bioinspired dark adaptation framework is more efficient and can better preserve the naturalness of the image compared with several representative low light image enhancement methods. A dim-light motion cues enhancement (DLMCE) model is designed for extracting extremely faint motion cues. This model integrates dark-adaptation, spatio-temporal constraint and neural summation mechanisms, which are achieved with canonical neural computations and neural summation in temporal and spatial domains, to enhance faint motion cues. With the DLMCE model, the image intensity and contrast are first increased by the dark adaptation processing, then the strong motion cues are extracted by the spatio-temporal constraint strategy, and these motion cues are further enhanced by neural summation mechanisms. Experimental results have demonstrated that the presented DLMCE model outperforms the existing methods for dim-light motion cues enhancement, and faint motion cues can be successfully detected in consecutive frames efficiently. As demonstrated in the experiments, the proposed DLMCE model provides a robust and effective solution for autonomous systems in detecting moving objects under low light conditions. A bio-inspired collision detection model is developed for detecting looming objects in dim light environments. The model combines the DLMCE model with the classical four-layered LGMD1 model to detect dimly illuminated approaching objects. To verify the effectiveness of the model, we have conducted comparative experiments on real looming datasets. The results have demonstrated that the proposed bio-inspired collision detection model can correctly recognize looming objects under low light conditions since the DLMCE model enhances the faint looming cues

    Technologies of information transmission and processing

    Get PDF
    Сборник содержит статьи, тематика которых посвящена научно-теоретическим разработкам в области сетей телекоммуникаций, информационной безопасности, технологий передачи и обработки информации. Предназначен для научных сотрудников в области инфокоммуникаций, преподавателей, аспирантов, магистрантов и студентов технических вузов
    corecore