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Epigraph

日就月将，学有缉熙于光明。

——《诗经·周颂·敬之》
With sun’s retreat, the moon ascends, each day a gain, each month amends. In

endless learning we engage, to find ourselves in a brighter age.
—The Carol of the Zhou Dynasty, the Book of Odes
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Abstract

Subjective and Objective Quality Assessment for Advanced
Videos

Zaixi Shang, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Alan C. Bovik

The surge of video streaming services, particularly for high motion content such
as sporting events, necessitates advanced techniques to maintain video quality, facing
challenges such as capture artifacts and distortions during coding and transmission.
The advent of High Dynamic Range (HDR) content, offering a broader and more
accurate representation of brightness and color, poses additional complexities due to
increased data volume. The critical need for robust Video Quality Assessment (VQA)
models arises from these challenges.

To meet this need, we conducted three substantial subjective quality studies and
constructed corresponding databases. The Laboratory for Image and Video Engi-
neering (LIVE) Livestream Database comprises 315 videos of 45 source sequences
from 33 original contents impaired by six types of distortions. This database facili-
tated the gathering of over 12,000 human opinions from 40 subjects. The LIVE HDR
Database, the first of its kind dedicated to HDR10 videos, includes 310 videos from
31 distinct source sequences, processed with ten different compression and resolution
combinations. This resource was instrumental in amassing over 20,000 human quality
judgments under two different illumination conditions. An additional LIVE HDR AQ
was developed with 400 videos from 40 unique source sequences. These videos were
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processed using varied compression, resolution combinations, and AQ-mode settings,
to study the effects of adaptive quantization (AQ) and rate-distortion optimization
techniques on HDR video perceptual quality.

Building on these invaluable databases, we developed two innovative objective
quality models: HDRMAX and HDRGREED. HDRMAX, a pioneering framework de-
signed to create HDR quality-sensitive features, augments the widely-deployed Video
Multimethod Assessment Fusion (VMAF) model, yielding significantly improved per-
formance on both HDR and SDR videos. HDRGREED, a novel model leveraging
localized histogram equalization and Difference of Gaussian filters, employs the Gen-
eralized Gaussian Distribution to model the bandpass responses and measure the
entropy variations between reference and distorted videos. This model is particularly
sensitive to banding and blocking artifacts introduced by inappropriate AQ settings.

In conclusion, the comprehensive subjective quality studies and databases, along
with the state-of-the-art objective quality models, HDRMAX and HDRGREED, sig-
nificantly contribute to the advancement of future VQA models. These tools cater
specifically to challenges posed by live streaming and HDR content, providing critical
resources for the development, testing, and comparison of future VQA models. These
databases, publicly available for research purposes, and the innovative models offer
valuable insights to improve and control the perceptual quality of streamed videos.
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Chapter 1: Introduction

Video traffic now occupies more than 70% of all total downstream Internet traffic
and is still expected to grow For; glo (2018). Major content providers such as Amazon
Prime Video, YouTube, Netflix, and Hulu are providing increasing amounts of video
on demand (VoD) content, as well as live streaming videos, to an expanding audience.
live streaming, which is real-time audio and video transmission of live events, is
gaining popularity very rapidly, especially for sporting events like the Super Bowl
Chen and Lin (2018).

Although significant efforts have been made to enable the delivery of high-quality,
high-resolution VoD, little effort has focused on live, high motion video streaming.
In live streaming, there are still a variety of factors that can adversely affect the
quality of live streaming videos. For example, bandwidth and stability may affect the
received video source quality, causing distortion like blocking, banding, deinterlacing
motion mismatches, local flicker Ni et al. (2011), aliasing and interpolation artifacts
Keating (1993). If the network connection is unstable or the bitrate inadequate,
then frame drops may also occur. The videos may be distorted by stutter or motion
blur, especially when there is rapid motion. By contrast with VoD streaming, a large
portion of live streamed content is still interlaced and then deinterlaced, causing
combing effects, flicker or noticeable line movements.

Video impairments like these can severely impair the delivered video quality
and users’ holistic levels of visual satisfaction. This is a pressing problem for high
motion, action content such as sports videos. high motion videos generally contain
richer temporal information and are harder to compress, hence compression artifacts
are often more severe in sports videos. Other distortions can also be exacerbated
by high motion. For example, at lower frame rates, high motion sports may appear
discontinuous over time, and may exhibit obvious judder. Likewise, high motion can
worsen the visual appearance of interlacing, causing jagged moving edges.
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The human visual system (HVS) is able to perceive luminance levels between
10−6 cd/m2 and 108 cd/m2 using various mechanical, photochemical, and neuronal
adaptive processes Kunkel et al. (2016). Traditional imaging and display systems pro-
duce content having much narrower ranges of luminance values than the vision system
is able to perceive, due to limitations on sensor technology, processing, transmission,
bandwidths, and display depths. These older content formats are commonly referred
to as Standard Dynamic Range (SDR), and have specifications on brightness, con-
trast, and color that were originally designed for display on cathode ray tube (CRT)
devices ITU (2011). Although CRTs are obsolete, a considerable fraction of content
continues to be produced according to SDR specifications. A device that displays
SDR content, which has a bit depth of 8 bits/channel, can represent a maximum
luminance of 100 nits (1 nit = 1 candela/meter2) and a minimum luminance of 0.1
nits, using the Rec. 709/sRGB color gamut ITU (2011), which covers 35.6

High Dynamic Range (HDR) is a set of techniques that extend the ranges of
luminances and color that can be represented and displayed. “HDR” pictures are
sometimes synthesized by combining photographs taken at multiple exposures into a
single picture, then tone-mapping it to the 8 bit range that is compatible with SDR
displays. What we will refer to as “true HDR” video content is captured using single
exposures with advanced sensors, and compatible with HDR displays having wider
dynamic ranges and higher average and peak brightness levels. True HDR content has
a bit depth of at least 10 bits/channel. HDR10 is an open HDR standard announced
by the Consumer Technology Association in 2015 CTA and remains the most widely
used HDR format. HDR10 content must have a bit-depth of 10 bits, use the Rec.
2020 ITU color primaries (which cover 75.8% of the CIE 1931 color space), and
must apply the SMPTE ST 2084 Standard (2014) opto-electronic Transfer Function
(OETF) to the linear RGB signals, also known as the Perceptual Quantizer (PQ).

HDR10 has seen increasing adoption over the past few years. Streaming and
video hosting services such as Amazon Prime, Netflix, and YouTube now offer content
in HDR10. HDR10 is also used as the default standard for UHD Blu-Rays. Major
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TV manufacturers such as LG, Samsung, and Panasonic support HDR10 content, and
manufacturers such as Lenovo and Apple have also recently released laptops that can
display HDR10 content. HDR10 is now part of live broadcast and film production
workflows and is progressing rapidly into an industry standard.

The adoption of HDR10 has created challenges related to the quality of user ex-
perience and the performance of compression algorithms. The increases in bit depth
and the use of nonlinear transfer functions in HDR can change the visibility and sever-
ity of compression distortions. Being able to measure and control perceptual quality
is a critical element of video compression and communication workflows. However,
there are few video quality assessment (VQA) models that address the compression
of HDR videos. Most existing VQA models can only operate on 8 bit luminance and
color data, let alone account for HDR transfer functions and expanded color gamuts.
For example, one of the most successful VQA models, the Video Multimethod As-
sessment Fusion (VMAF) algorithm Li et al. (2017) can be applied to 10 bit data,
but it does not take into account the extended luminance range or transfer function
of HDR10.

An important consideration is the nonlinear visual response to brightness. Be-
cause the vision system is more sensitive to luminance ratios than to absolute bright-
ness values, the perception of differences between luminances is governed by the
Weber-Fechner law Cornsweet and Pinsker (1965). The exponential function or
“gamma,” as specified in the industry standard BT. 709, has been traditionally ap-
plied to nonlinearly encode SDR images, but it fails to work with HDR imaging,
due to the mismatch of quantization and human perception. Therefore, SDR VQA
models, which operate under the assumption of gamma, are less effective on HDR con-
tent. This does not imply that SDR VQA models, developed under the assumption
of gamma, are always ineffective for HDR content. Several studies, such as Sugito
et al. (2022); Krasula et al. (2023), have demonstrated that these models can perform
competitively even when applied to HDR content, depending on other aspects of the
content, or the device it is displayed on, suggesting a nuanced landscape Mantiuk and
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Azimi (2021); Mikhailiuk et al. (2022). Furthermore, the perception of brightness dis-
tortions is influenced by the viewing conditions, including the image background, the
environmental light, the peak luminance, and the dynamic range of the display.

Most HDR videos are encoded using the High Efficiency Video Coding (HEVC)
standard. Adaptive quantization (AQ) is a technique used in HEVC to improve the
quality of the encoded videos. This is accomplished by adjusting the quantization
parameter for each coding block in the video frame, typically allowing for more data
to be allocated to areas of the frame that contain complex visual information, and
less data to be allocated to areas with less complex information. While this can result
in significant savings in terms of the amount of data required to represent the video,
it can also result in worse video quality. This is because the smooth areas of the
video, which are allocated fewer bits, can suffer from distortions such as banding and
blocking. These distortions are particularly noticeable to the human eye because of
the lack of contrast masking and can be quite annoying, damaging the overall quality
of the video.

The aq-mode option in most HEVC encoder, such as libx265, enables the use of
AQ in the encoder, which adjusts the quantization level on a per-block basis based
on the complexity of the source image. This means that more quantization is applied
on complex areas of the video, and less quantization on smooth areas. This can help
to offset the tendency of the encoder to spend too many bits on complex areas and
not enough in flat areas, which can cause distortions such as banding and blocking.
By enabling this option, the encoder can better balance the allocation of bits across
the video frame, resulting in improved visual quality and reduced artifacts.

In this paper, we introduce a new resource to enhance the understanding and de-
velopment of video quality assessment (VQA) models for high motion, live-streamed
sports content. This novel database, named the LIVE Livestream Database, is specif-
ically built with a diverse collection of high definition videos, featuring a total of
315 videos derived from 45 source sequences from 33 original contents. What distin-
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guishes this database from prior VQA databases is its inclusion of Full High Definition
(FHD) and Ultra High Definition (UHD) content captured by professional videogra-
phers, which are impaired by six types of common processing distortions reflective of
real-world scenarios.

With the aim of determining the perceptual quality of these live-streamed videos,
we engaged a large pool of volunteers in a human subjective study. By presenting
the aforementioned videos to these volunteers, we obtained Mean Opinion Scores
(MOS) –a vital component in comprehending viewer experiences. Moreover, we cap-
italized on this newly created database to carry out a comprehensive evaluation of
the performance of current state-of-the-art VQA models. Not only did this provide
a comparative performance analysis but it also offered insights into potential future
challenges in live streaming VQA.

Furthermore, our exploration extends to the domain of high dynamic range
(HDR) video quality prediction. We present a new HDR-specific video feature frame-
work, HDRMAX, which is used to modify the extensively validated and commercially
successful VMAF model. By supplementing the VMAF model with HDRMAX fea-
tures, we enhance its sensitivity to expanded luminance ranges, transfer functions,
and large color gamuts inherent in HDR video formats.

Lastly, we propose a novel HDR-VQA model, coined as HDR-GeneRalizEd En-
tropic Difference (GREED). The HDR-GREED model exploits localized histogram
equalization (LHE) and difference of Gaussian (DoG) filters to discern distortions on
smooth areas, thereby augmenting the model’s sensitivity to compression artifacts.
Specifically, these bandpass filters are tailored to respond to banding distortions,
which paves the way for a more precise and comprehensive assessment of video qual-
ity.
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Chapter 2: Study of the Subjective and Objective
Quality of High Motion Live Streaming Videos

2.1 Related Work

Over the past decade, there have been many efforts to build subjective video
quality databases. Among those, the LIVE VQA Database Seshadrinathan et al.
(2010) includes 10 pristine videos processed with compression and packet loss distor-
tions. Similarly, the later database in De Simone et al. (2010) contains 156 videos
modified by H.264 compression artifacts and wireless packet losses. The LIVE QoE
Database for HTTP-based Video Streaming Chen et al. (2014) studies the quality of
experience (QoE) of users who viewed compressed videos with simulated video stalls,
which can arise when there is low channel throughput. This database models the per-
ception of video quality on mobile devices, and the human study was performed on
mobile phones and tablets. Another QoE database proposed in Duanmu et al. (2017)
aims to motivate QoE prediction in video streaming, with different bitrate levels and
stalling events. Among 20 1080p source sequences, 5 videos contain high motion
content. Another databaseDe Simone et al. (2011) studied H.264 compressed videos
transferred through an error-prone network, including 156 sequences at CIF and 4CIF
spatial resolutions. The LIVE Mobile Video Quality DatabaseMoorthy et al. (2012b)
consists of 200 distorted videos created from 10 RAW HD reference videos, including
compression and wireless packet-losses, with dynamically varying distortions. The
MCL-V databaseLin et al. (2015) was designed for streaming video quality assess-
ment, and contains 12 source video clips and 96 distorted video clips impaired by
H.264 compression, as well as compression followed by spatial scaling. The TUM
databasesKeimel et al. (2010); Keimel et al., contain several synthesized videos with
H.264 compression. Other exemplars include the MCL video quality databaseWang
et al. (2017), ECVQ and EVVQVranješ et al. (2013), and the Poly@NYU Video
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Quality DatabasesOu et al. (2010, 2014).

More recently, novel databases have been introduced that contain user-generated-
content (UGC) videos with authentic distortions. The LIVE-VQC databaseSinno
and Bovik (2018) contains 585 videos, all of unique contents captured by a large
group of users deploying various camera devices, including smartphones of all brands.
The LIVE-VQC videos cover a wide range of qualities, and include complex, often
commingled authentic distortions. The large KoNViD-1k Hosu et al. (2017) video
quality database contains 1,200 video sequences, covering a wide variety of contents
and authentic distortions. The YouTube UGC DatasetWang et al. (2019) contains
1500 20-second video clips covering popular UGC video categories, including gaming
and sports.

A number of deficiencies limit the usefulness of all of these databases for the
study of the quality of live video streams. Older, legacy databases contain only limited
numbers of SD source contents, which are not representative of current high-resolution
live streaming. Although most databases consider compression distortions and packet
loss, other prevalent distortions common to live streaming videos are rarely found in
them. Given exploding interest in live streaming video, a comprehensive database
that includes both ample video content and representative live streaming distortions
is needed.

UGC video quality databases usually include a large number of contents, but
there is a lack of professionally captured content, and the distortions encountered
in live streaming often significantly differ from those caused by typical casual so-
cial media users. The only existing publicly available VQA database designed for
live streaming is the LIMP Video Quality Database Vega et al. (2016). The LIMP
database consists of nine high-quality videos taken from the LIVE Video Quality
Video DatabaseSeshadrinathan et al. (2010), with simulated compression modeling
transmitted in a controlled network. However, it suffers from the same problems men-
tioned above. Motivated by an apparent dearth of live streaming databases containing
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enough high-resolution video contents and sufficiently representative live streaming
distortions, we have created a large new resource intended to address modern aspects
of the live sports streaming video quality problem.

2.2 Relevance and Novelty

In recent years, the streaming of live high motion video content such as sports
has explodedFor. Live streaming high motion videos often suffer from severe distor-
tions less often encountered in the streaming of generic content. In live streaming,
considerations of network instability and bandwidth limitations imply greater chal-
lenges when attempting to control video quality. Moreover, the real-time requirement
greatly limits the time available for post-processing to compensate for defects. The
unique nature of live streaming introduces many obstacles that differ from those en-
countered in generic on-demand video streaming. For example, sports videos usually
include content containing complex, large motions. Rapid and irregular camera mo-
tions occurs frequently, when tracking moving objects, such as balls or players. Tem-
poral distortions often arise that are annoying and that adversely affect the viewer
experiences.

The new psychometric database that we describe here has a number of unique
attributes. It contains a larger number of unique source contents and distortion
types. We summarize the attributes of public video quality databases in Table ??.
The new database includes 45 source sequences token from 33 unique contents. All
of the videos contain complex, fast motions, which are rarely included in existing
databases. The new resource contains a wide variety of distortion classes common to
sports live streaming content that is not found in existing VQA databases. Although
LIVE-Flicker and Live-Mobile include specific temporal distortions such as flicker
or frame-freeze, neither contains a holistic collection of high motion, live streaming
distortion types.
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Figure 2.1: Exemplar screenshots of frames from source videos in the LIVE Livestream
Database.

(a) (b) (c) (d)

Figure 2.2: Simulation of motion judder from 3:2 pulldown. (a) Original frames at
23.94 fps. (b) Odd video fields. (c) Even video fields (d) Resulting frames at 29.97
fps
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(a) Flicker level 1 (b) Flicker level 2 (c) Flicker level 3

Figure 2.3: Three levels of flicker synthesis.

2.3 Details of subjective study

We constructed a new video quality database that consistent of 315 video se-
quences including 45 reference videos and 6 copies of synthetically distorted version
of each reference video. Those videos are used as stimuli in the subjective study.

2.3.1 Source Sequences

We collected 33 uncompressed, high-quality source videos with sports content.
These videos are freely available online from multiple sources, including from Tam-
pere UniversityMercat et al., the MCML GroupCheon and Lee (2017), the Netflix
Public DatasetLi et al. (2016), the VQEG HD3 DatasetVideo Quality Experts Group
(2000 (accessed October 31,2020), the Consumer Digital Video Library (CDVL)Yodel
(2011), and the SJTU Media LabSong et al. (2013). All of the selected videos were
captured with professional, high-end camera equipment and are distortion-free. The
original pristine videos all have resolutions of 1920x1080 or 3840x2160 pixels, and
were progressively scanned in YUV 4:2:0 format with audio components removed.
The videos have frame rates at 30 fps. The video contents include 10 different types
of sports, including running, football, and soccer, and one video of the audience in a
stadium, as exemplified in Fig. 2.1.

The original 33 videos that we collected are of durations ranging from 5s to
26s. However, since viewing videos of such differences of durations could cause biases
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in subjective and objective judgments, longer videos may exhibit visible changes of
distortion over time. While the effects of video duration is interesting and worthy of
study, this also would increase the dimensionality of the study. Thus, we manually
cropped the longer videos along the temporal dimension into one or two shorter clips
of about 7 seconds with no overlap or close proximity between the clips. Based on
internal studies at UT-LIVE, it has been observed that very short videos of sports
videos may cause annoying content disruptions, such as incomplete “play,” but these
events are usually shorter than 8s. To avoid unpleasant cuts during action scenes, we
allowed some flexibility of the video durations, hence the final set of original videos
had lengths in the range 5s-8s, averaging 7.88s with a standard deviation of 1.36s. In
this way, 45 video clips were created from the 33 originals, of which 22 clips are of
resolution 1920x1080 and 23 clips are of resolution 3840x2160.

2.3.2 Synthetic Distortions

We created 6 distorted video sequences from each of the pristine sequences, using
six different distortion processes. These included H.264 compression, aliasing, judder,
flicker, frame drops, and interlacing. Since our primary goal is to model the visual
quality high motion live sports videos, the distortions chosen were judged to be the
most common and salient ones that are encountered during live sports events. During
live streaming of high motion contents, certain distortions may produce more severe
effects than on more generic video content. For example, a moving object may cause
large pixel offsets between neighboring frames or fields. If the video is interlaced,
then severe edge combing and blur may occur. If the frame rate is too slow, then
judder from 3:2 conversionDaly et al. (2015); Oh et al. may be visible in high motion
regions, which can seriously and adversely impact the appearances of sports videos.
Purely temporal distortions, such as frame drops, which cause discontinuities and
motion stalls, are difficult to detect.

When applying different levels of each distortion type, we sought to ensure that
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the distorted videos would be both perceptually separable and also cover a wide range
of perceptual qualities, following successful practice in numerous previous studies Se-
shadrinathan et al. (2010); Moorthy et al. (2012a); Sinno and Bovik (2018). However,
given the large number of source sequences, it is not practical to include multiple
copies of the same content, which can greatly increase the duration of the human
study. Moreover, having larger number of unique contents can contribute to im-
proved model building. Hence, given the fairly large number of source videos, we
dictated that each would only have a single level of severity of each distortion type
applied to it. For example, four levels of H.264 compression, corresponding to dif-
ferent constant rate factors (CRF) were defined. This was accomplished in a “round
robin” sequential manner: the first reference video could only be compressed using
the first CRF level, the second reference was only compressed using the second CRF
level, and so on. The fifth source video then had the first level of distortion applied.
However, to ensure that there would be no content-related quality bias, the first video
in the quality level cycle was also sequenced as subsequent distortions were applied.
In this way, each of the 45 clips taken from the original 33 pristine source videos has
6 associated distorted versions of it, yielding 315 videos including the 45 reference
videos.

2.3.2.1 H.264 Compression

H.264 remains the most widely-accepted and used video compression standard.
A 2020 streaming industry survey202 (2020) found that 91% of streaming services use
H.264. Although newer codecs exist, such as HEVC, VP9 and AV1, they are not yet
as widely adopted. Browsers and devices also don’t have full support for all codecs.
The Apple Safari browser supports HEVC, but not VP9, while Chrome and Firefox
support VP9 and AV1, but not HEVC. All browsers support H.264. Hence, when
designing this VQA database, we deemed H.264 to be most representative of cur-
rent practice. Moreover, even emerging standards still follow the basic hybrid codec
method of distortion, viz., quantization of DCT blocks, while several distortions are
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not compression-related. Hence, we believe that the new database will retain useful-
ness as the compression standards evolve. We fixed four levels of H.264 compression
using the criteria described earlier, by varying the CRF values. Similar to other suc-
cessful VQA databasesSeshadrinathan et al. (2010); De Simone et al. (2010); Lin et al.
(2015), we included a wide range of compression CRFs to ensure that the distorted
videos cover a wide range of perceptual qualities, while also ensuring perceptual dif-
ference between the applied compression levels, to allow for improved model-building.
Since in practice, the compression parameters differ on videos of different resolution,
we selected different sets of CRFs for the 4K videos and the 1080p videos. The CRF
values selected for the 4K videos were 9, 27, 39, and 43, while those for 1080p videos
were 9, 25, 35, and 39. All of the compressed videos were generated using FFmpeg.

2.3.2.2 Aliasing

Aliasing was simulated by first downscaling each video, then upscaling it back to
its original dimensions. The downscaling was performed by spatially downsampling
the video to half the original size without the use of an anti-aliasing filter, while the
upscaling was performed using a Lanczos filter.

2.3.2.3 Judder

Motion judder is an artifact that is introduced when scenes shot at 23.94 fps are
converted to 29.97 fps by a process called 2:3 pulldown. The ratio of these frame
rates is 4:5: for every 4 input frames, 5 output frames were created by temporally
downsampling the video to 23.94 fps, then converting the frame rate to 29.97 by 2:3
pulldown. The odd video field of every 2nd frame, and the even video field of every
3rd frame of each group of 4 frames were combined to form an additional frame, for
each group of 4 frames. This process is shown in Fig. 2.2. Classic 2:3 pulldown
followed a slightly different pattern where the 2nd and 3rd frames of the original
video would be interlaced to form the 3rd frame of the juddered video, and the 4th
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and 5th frames of the original video would be interlaced to form the 4th frame of the
juddered video. This had the disadvantage of producing two “dirty” frames, which
were the 3rd and 4th frames in each group, but was used in legacy systems where
the buffer could not hold fields from more than one frame at a time. The version we
use here is a more advanced pulldown, supported by cameras released after 2000 such
as the Panasonic DVX100 pan or the Canon XL2 can. The more advanced version
of pulldown generates only one “dirty” frame and also allows for better compression
and easier conversion back to 23.94 fps.

2.3.2.4 Flicker

We simulated flicker distortion from compression by alternating the H.264 quan-
tization parameter (QP) on the video. The QP is fixed at a constant value by passing
this parameter to libx264. These QP values were applied to each frame, regardless of
the frame type, content and motion. Three pairs of QPs were chosen to form three
flicker distortion levels: QP26 and QP32, QP26 and QP 38, and QP26 and QP44.
The flicker rate, which is the number of QP alternations per second, was kept a con-
stant roughly 5 Hz i.e. by alternating the QP every 3 frames. This process is depicted
in Fig. 2.3.

2.3.2.5 Frame Drops

We simulated video frame losses that occur when a source video is transmitted
over a channel, such as a wireless network. We simulated frame drop clusters of
adjacent frames to account for 10%-30% of a group of pictures (GOP). When a cluster
of frames was removed from a video, the previous frame was repeated as many times
as needed so that the total video duration remained unchanged. Three levels of frame
drop densities were chosen: 3, 6 and 9 frames per cluster, yielding a slight to severe
impact on the perceptual qualities of the videos.
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2.3.2.6 Interlacing

On each frame of the video, the even and odd lines were separated to form
two fields, field A and field B. Field B from each current frame and field A from
each next frame were then combined to create interlaced frames. In the presence of
motion, combing effects become evident. Since interlaced video fields are captured at
different moments in time, interlaced frames often exhibit motion combing artifacts,
when objects move quickly enough to be at different positions in each field.

2.3.3 Subjective Testing Environment and Display

The human study was carried out in the LIVE Subjective study room at The
University of Texas at Austin. The Lab was arranged to simulate a living room
environment. The windows were covered, and background distractions were removed.
A Samsung UN65RU7100FXZA Flat 65-Inch 4K UHD TV was used to display all
of the videos. All advanced motion optimization options on the TV, including the
anti-judder and anti-flicker functions, were disabled. The viewing distance was about
2H, where H is the height of the TV so that the subjects could comfortably view the
videos and assess the video distortions. The level of illumination was set to be similar
to a living room, using one stand-up incandescent lamp and two indirect white LED
studio lights behind the viewer. The lights were positioned to eliminate reflections
from the lights on the screen.

Since the TV is able to upscale 1080p content using an unknown algorithm,
all of the 1080p videos were instead upscaled using the Lanczos resizing function in
OpenCV Bradski (2000), to avoid any unpredictable effects. The 1080p videos were
upscaled to 4K, after the distortions were applied. To ensure perfect playback, all of
the videos were stored as raw YUV 4:2:0 files. The powerful Venueplayer application
developed by VideoClarity was used to guarantee smooth playback of the 4K videos,
without introducing any additional artifacts that could impact the perception of video
quality.

32



After displaying each of the test videos, a continuous rating bar was displayed
on the screen with a randomly placed cursor. The quality bar was marked with labels
“Bad,”“Poor,”“Fair,”“Good,”and “Excellent”quality to facilitate the subjects in
making decisions. The scores given by the subjects were sampled as integers from [0,
100] although numerical values were not made visible to the subjects. A Palette gear
console was provided to enable the subjects to move the cursor without distraction.
After moving the cursor to each desired scoring position, the subject depressed the
button next to the sliding bar to confirm the score, which was then recorded without
any further change. After each score was stored, the system immediately began to
play the next video on the playlist.

2.3.4 Subjective Testing Design

In the human study, a single-stimulus (SS) method was employed, as described in
the ITU-R BT 500.13 recommendationITU (2012). The reference videos are included
as “hidden reference”, not explicitly marked as “distorted” or “reference.” The sub-
jects used a rating bar to record their subjective opinion scores. Video rating scores
were given after watching each video on an (invisible) scale ranging from 0 to 100,
where 0 indicates the worst quality and 100 indicates the best quality. Due to the
large number of video sequences, each subject participated in two sessions. The 45
contents associated with the pristine videos were divided into two sessions, where
the reference videos and their corresponding distorted versions were grouped into the
same session. The playlists within each of the two sessions were placed in randomized
order for each subject, where videos of the same content, were separated by at least
one video. This was done to counter any visual memory effects that might affect the
subjective quality judgments, or any bias caused by playing the videos in a particular
order. Each session required about 40 minutes.
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2.3.5 Subjects and Training

A total of 40 human subjects were recruited from the student population at The
University of Texas at Austin. The male/female gender ratio of the subject pool was
4.0. The mean and standard deviation of the ages of the participants was 23.47 and
1.78. Each subject participated in two sessions separated by at least 24 hours. Two
of the subjects finished only one of the two sessions, while the rest of the 38 human
subjects finished both sessions. 180 of the videos were rated by 40 subjects, while 187
videos were rated by 38 subjects. The subject pool was inexperienced with the topic
of video quality assessment and video distortions.

The Snellen test and the Ishihara test were performed to validate each subject’s
vision. Two subjects were found to have 20/30 visual acuity, while one subject was
found to have a color deficiency. However, these subjects were allowed to participate
since the overall subject pool was deemed to be a good representation of the general
population, following our common practice lan. We conducted the tests as a screen
against an unusual percentage of deficient subjects. Before the study, each subject
was presented with a brief introduction to the study. The introduction described the
study’s goals, and gave detailed instructions on how to operate the system and assign
scores. Each subject was asked to rate each video by quality only, without regard
to the appeal of the content. Before the actual study commenced, each subject
participated in a training session on two videos, to familiarize themselves with the
system. The training videos and their scores were not included in the final database.

2.4 PROCESSING OF SUBJECTIVE SCORES

Subjective Mean Opinion Scores (MOS) were computed using the formulas below:
Let sij denote the score by subject i for the video j. The subject scores were then
converted into Z-scores zij for each subject. Subject rejection was performed based
on the ITU-R BR 500.11 recommendation ITU (2012). The scores zij for each video
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were tested against the normal distribution using the β2 test:

β2j =
m4

(m2)2
, (2.1)

where

mx =

N∑
i=1

(zij − zij)
x

Nj

(2.2)

for subject i and video j, where Nj is the number of subjects that viewed video j. A
score was regarded as normally distributed if β2j fell between 2 and 4. We calculated
the quantities Pi andQi for each subject i, by comparing zij with the mean z̄j standard
deviation σj of video j: If the score for video j was found to be normally distributed
then:

if zij ≥ z̄j + 2σj, then Pi = Pi + 1

if zij ≤ z̄j − 2σj, then Qi = Qi + 1

If the score for video j was found to not be normally distributed, then:

if zij ≥ z̄j +
√
20σj, then Pi = Pi + 1

if zij ≤ z̄j −
√
20σj, then Qi = Qi + 1.

A subject i was rejected if the following two conditions held:

Pi +Qi

N
> 0.05, (2.3)

and ∣∣∣∣Pi −Qi

Pi +Qi

∣∣∣∣ < 0.3. (2.4)

In our study, 8 of the 40 subjects satisfied these two conditions. However, since
most of the rejected subjects fell close to the decision boundaries, we decided to
revisit how the rejection criteria should be used. Given that the intent of subject
rejection is to eliminate the outcomes of less engaged, distracted, or otherwise deficient
subjects, we believed it worth considering whether any of the high-deviation subjects
were actually representative, as we have done in other recent studies Madhusudana
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Table 2.1: Internal Consistency

PLCC mean PLCC median

All subjects 0.9616 0.9632

Reject Group 2 & 3 0.9603 0.9618

Reject Group 3 0.9635 0.9647

et al. (2020). We therefore computed the correlations between each subject’s score
and the MOS calculated using three different variations of the rejection criterion: 8
rejected, none rejected, and 1 (most anomalous) subject rejected, as shown in Fig.
2.4a. Specifically, the subjects were divided into three groups: Group 1 included all
subjects not excluded by the ITU method. Group 2 and Group 3 included only the
8 subjects that were rejected, while Group 3 considered only of the single subject
having the worst correlation against MOS. In the end, we chose to report all of the
foregoing results by only excluding the single subject in Group 3.

Table 2.1 shows our analysis of the data’s internal consistency. Our modification
of the typical outlier rejection criterion finds support in the analysis, and allows for a
larger amount of likely representative data for model-building. We randomly divided
the subjects into two equally sized groups and computed the Pearson correlation
coefficient (PLCC) between the two groups’ scores. We repeated this calculation over
1000 results, and report the mean and median correlations in Table. 2.1. As may be
seen, the best results were attained by removing the single very anomalous subject.
We also observed negligible effect of the choice of rejection criteria on the objective
algorithm performances reported later.

The Z-scores were then linearly rescaled from [-3,3] to [0,100]:

z′ij =
100(zij + 3)

6
. (2.5)

Finally the Mean Opinion Score (MOS) of each video was calculated:
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Figure 2.4: (a) The correlations against MOS of all subjects. Group 1 are subjects not
rejected by the ITU method. Group 2 are all subjects that were rejected by the ITU
method. Group 3 consists of the single lowest-correlating subject. (b) Distribution
of MOS over all videos in the LIVE Livestream Database.

MOSj =
1

Nj

Nj∑
i=1

z′ij. (2.6)

The converted MOS score is shown in Fig. 2.4b.

Fig. 2.5 shows the distributions of scores for each individual video distortion
class. The shapes of the MOS distributions of the reference videos are more Gaussian-
like. The distorted video classes exhibit different distribution shapes, since they reflect
different types and levels of distortion. Further, the MOS of the different levels of
compression, flicker, and frame drop distortions are shown in Fig. 2.6. Generally,
the MOS ranges of different distortion levels are mostly well-separated, but there are
overlaps between distortion levels, largely because of the different interactions that oc-
cur between content and distortion. The perceptual quality of distorted (compressed
videos) is affected by content masking, e.g. in regions containing significant high
frequency spatial energy or high motion. While spatial masking is well-understood,
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Figure 2.5: Distribution of MOS of original, and synthetically distorted videos.

(a) (b) (c)

Figure 2.6: MOS of videos affected by compression, flicker, and frame drops. Each
dot in the plot is a video and the line and the shadowed regions indicate the average
MOS and the 95% confident interval. (a)Compression, (b) Flicker, and (c) Frame
drops.

temporal masking is less so, although it is known that motion has a silencing effect
on flicker Ni et al. (2011).

Fig. 2.7 plots the MOS against spatial resolution for each distortions class. The
purely temporal distortions: judder and frame drops yielded similar ranges of MOS
for 1080p and 4K videos. However, aliasing resulted in very different MOS ranges,
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Figure 2.7: Box plot comparing MOS against distortion type for both considered
video resolutions. The labels on the horizontal axis represent: f: flicker; j: judder;
c: compression; a: aliasing; i: interlacing; d: frame drop and o: original (reference
videos).

likely because of the additional upscaling of 1080p videos when displayed on the 4K
TV.

Tables 2.2 and 2.3 show measurements of the consistency of human scores for
each of the different distortion types. The Tables list the Spearman’s Rank Or-
der Correlation Coefficient (SROCC) and the Pearson Linear Correlation Coefficient
(PLCC) computed on the entire database and for each distortion type, again by ran-
domly dividing the subjects into two groups. It may be observed that the SROCC
was slightly lower than the PLCC, which might be explained by subjects having dif-
ficulty supplying correctly ordered ratings of videos of very similar quality. but still
generally able to make predictions in a linear manner. Overall, the results of the
results indicate a very high degree of internal consistency and agreement amount the
human subjects on all of the distorted video types.

Although MOS is a good representation of the subjective quality of videos and is
necessary for the development and evaluation of NR VQA algorithms, the Difference
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Table 2.2: Min, Median, and Max SROCC of Human Scores Divided Into Two Groups.

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

MIN 0.9326 0.8285 0.8097 0.9092 0.8071 0.8543 0.8908

MEDIAN 0.9552 0.8967 0.8714 0.9425 0.8860 0.9151 0.9283

MAX 0.9685 0.9470 0.9250 0.9701 0.9373 0.9565 0.9651

Table 2.3: Min, Median, and Max PLCC of Human Scores Divided Into Two Groups.

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

MIN 0.9292 0.9547 0.9688 0.9334 0.9287 0.8891 0.9253

MEDIAN 0.9648 0.9728 0.9792 0.9633 0.9607 0.9383 0.9524

MAX 0.9741 0.9870 0.9875 0.9795 0.9763 0.9644 0.9725

Table 2.4: SROCC of the Compared FR VQA Models. The Scores of the Top Per-
forming Algorithm Are Boldfaced

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

PSNR 0.3760 0.8750 0.4012 0.2117 0.5264 0.3024 0.7507

SSIM 0.6976 0.9171 0.7341 0.3933 0.8758 0.5291 0.6623

MS-SSIM 0.6757 0.9154 0.7335 0.3622 0.8652 0.5997 0.6179

SpEEDQA 0.6894 0.8979 0.8124 0.3165 0.8780 0.5993 0.6130

ST-RRED 0.6564 0.8943 0.8269 0.2968 0.8653 0.5635 0.7121

FAST 0.6192 0.9283 0.7269 0.2769 0.9391 0.7733 0.5960

VMAF 0.6434 0.9135 0.9153 0.3039 0.9243 0.7843 0.5346

MOS (DMOS) is more commonly used in the development and evaluation of FR
VQA models, since it allows a way to reduce content dependencies of quality labels.
Since we are supplying this resource for the study of both NR and FR models, we
also calculated the DMOS of the videos with references. We calculated the DMOS
according to:

DMOSj =MOSref
j −MOSj, (2.7)

where MOSj is the MOS of video j, and MOSref
j is the MOS of the reference

video j, which is regarded as a “hidden reference,” since it is not identified as such
to the subjects.
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Table 2.5: PLCC of the Compared FR VQA Models. The Scores of the Top Perform-
ing Algorithm Are Boldfaced

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

PSNR 0.4192 0.9586 0.4885 0.3452 0.5723 0.5886 0.7840

SSIM 0.7107 0.9659 0.7483 0.5679 0.8308 0.5770 0.7460

MS-SSIM 0.6907 0.9690 0.7696 0.5259 0.8589 0.6421 0.7105

SpEEDQA 0.7235 0.9526 0.9234 0.5037 0.8432 0.6183 0.7806

ST-RRED 0.6694 0.9483 0.9425 0.3952 0.8358 0.5915 0.7465

FAST 0.6520 0.9587 0.8329 0.4142 0.9391 0.8298 0.6978

VMAF 0.6355 0.9675 0.9296 0.3043 0.9242 0.8654 0.6242

Table 2.6: RMSE of the Compared FR VQA Models. The Scores of the Top Per-
forming Algorithm Are Boldfaced

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

PSNR 10.3355 4.2304 13.6253 4.3601 9.5390 5.2311 3.9024

SSIM 8.0082 3.8493 10.3588 3.8237 6.4740 5.2852 4.1864

MS-SSIM 8.2324 3.6708 9.9705 3.9510 5.9578 4.9605 4.4235

SpEEDQA 7.8589 4.5223 5.9924 4.0129 6.2531 5.0856 3.9294

ST-RRED 8.4573 4.7155 5.2190 4.2673 6.3858 5.2174 4.1832

FAST 8.6315 4.2267 8.6452 4.2282 3.7669 3.6114 4.5028

VMAF 8.7894 3.7600 5.7557 4.4251 4.4430 3.2435 4.9154

Table 2.7: SROCC of the Compared NR VQA Models. The Scores of the Top Per-
forming Algorithm Are Boldfaced

ALGORITHM Overall COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

NIQE 0.3232 0.2775 0.2860 0.2863 0.2832 0.2842 0.2780

BRISQUE 0.6381 0.6409 0.7482 0.8039 0.6440 0.4180 0.8720

CORNIA 0.6778 0.7399 0.8142 0.7049 0.7193 0.0000 0.8782

HIGRADE 0.6916 0.7234 0.7337 0.5784 0.6429 0.5748 0.8060

V-BLIINDS 0.7330 0.7131 0.7482 0.8679 0.5769 0.7513 0.7936

TLVQM 0.7503 0.6574 0.7915 0.8246 0.6966 0.8927 0.8369

ChipQA 0.7994 0.7482 0.7998 0.8514 0.7668 0.7874 0.8111

2.5 Objective VQA Model Comparison

We evaluated several publicly available objective VQA algorithms on the LIVE
Livestream Database to demonstrate the usefulness of the new resource. Given MOS
and DMOS, we are able to test and compare both FR and NR VQA models. The
performances of the objective VQA algorithms were evaluated using three standard
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Table 2.8: PLCC of the Compared NR VQA Models. The Scores of the Top Per-
forming Algorithm Are Boldfaced.

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

NIQE 0.4962 0.2805 0.2865 0.2860 0.2848 0.2849 0.2850

BRISQUE 0.6698 0.7616 0.9415 0.8362 0.7166 0.4265 0.9185

CORNIA 0.7257 0.8197 0.9595 0.7409 0.7841 0.0000 0.9234

HIGRADE 0.6990 0.8395 0.9426 0.6310 0.6938 0.5806 0.8528

V-BLIINDS 0.7477 0.8313 0.9277 0.9239 0.6238 0.7850 0.8826

TLVQM 0.7513 0.6991 0.9550 0.8850 0.8037 0.9153 0.8648

ChipQA 0.8156 0.8408 0.9613 0.9040 0.8608 0.8470 0.8587

Table 2.9: RMSE of the Compared NR VQA Models. The Scores of the Top Per-
forming Algorithm Are Boldfaced

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

NIQE 50.4055 45.7805 45.8797 50.8770 49.9032 50.8316 50.9243

BRISQUE 9.6376 9.1434 5.5712 7.1173 8.4869 9.1254 4.3474

CORNIA 9.6960 8.0173 4.6140 8.5343 7.3121 9.7778 4.3074

HIGRADE 9.6469 7.7381 5.2704 9.9567 8.6036 8.0093 5.8163

V-BLIINDS 8.4058 7.7836 6.1912 4.7971 9.3751 5.8211 5.1704

TLVQM 8.7217 10.0801 4.8209 6.1302 7.1367 4.0113 5.5803

ChipQA 7.2874 7.7510 4.3791 5.3599 5.6626 5.0459 5.6679

metrics: the Spearman’s Rank Order Correlation Coefficient (SROCC), the Pearson
Linear Correlation Coefficient (PLCC), and the Root Mean Square Error (RMSE).

2.5.1 Performances of FR VQA Models

Here we present the results for the following seven popular FR VQA models:
PSNR, SSIM, MS-SSIM, SpEEDQA, ST-RRED, FAST, and VMAF. The distorted
versions of the 45 reference contents (270 videos in total) were processed to produce
predictions that were cast against the DMOS. Note that most FR VQA models re-
quire that there be an equal number of frames between each reference video and its
corresponding compared distorted video. However, the videos subjected to interlacing
distortions have one less frame than the originals they derive from. Hence, the final
frame of the interlaced video is duplicated to match the reference. The predicted
scores s were passed though a five-parameter nonlinear logistic regression function
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before the PLCC and MSE were computed:

f(s) = β1(
1

2
− 1

(1 + exp(β2(s− β3))
) + β4s+ β5, (2.8)

where s are the predicted scores produced by the tested algorithm and f(s) is
the mapped score. By fitting parameters βi (i = 1, 2, 3, 4, 5), the MSE between the
mapped and subjective scores is minimized. The SROCC, PLCC, and RMSE for
each category of distortions are calculated by comparing the predictions made by the
FR models and the ground truth for each of those distortions separately. Table 2.4,
2.5, and 2.6 show the performance metrics of the compared algorithms, which will be
discussed shortly.

2.5.2 Performance of NR VQA Models

We compared the quality predictions made by a variety of NR models against the
MOS. The NR VQA algorithms that were tested include NIQEMittal et al. (2012b),
BRISQUEMittal et al. (2012a), HIGRADEKundu et al. (2017), CORNIAYe et al.,
TLVQMKorhonen (2019), V-BLIINDSSaad et al. (2012), and ChipQAEbenezer et al.
(2020b, 2021). BRISQUE, HIGRADE, CORNIA, TLVQM, V-BLIINDS, and ChipQA
are supervised learning algorithms that use a support vector regressor (SVR) to learn
mappings from ‘quality-aware’ features to mean opinion scores. These algorithms
were tested on 1000 random train-test splits. On each split, 80% of the data was used
for training, and 20% for testing. Follow common practice, 5-fold cross-validation
was applied within each training set to find the best parameters for the SVR. Care
was taken to ensure that no content could appear in both the training and testing
set, or the training and validation set.

NIQE, BRISQUE and HIGRADE are image quality assessment (IAQ) algo-
rithms, so they were used to extract features frame by frame, followed by temporal
average pooling.

For the unsupervised methods (NIQE), the scores s were passed through the
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Table 2.10: Computation time on a single
3840x2160 video with 210 frames from
the LIVE Livestream VQA database

Algorithm Time (s) GFLOPS Complexity
NIQE 1008 3094 O(k2NT )

BRISQUE 301 352 O(k2NT )

TLVQM 1002 477 O(k2
1NT+

(log(N) + k2
2)NT2))

CORNIA 2056 4480 O(k2MNT )

VBLIINDS 3086 465 O((k2N+

log(w)N + w2d3)T )

HIGRADE 16240 9604 O(3(2k2 + k2)NT )

ChipQA 814 700
O(( k2

D2 + Q

RD2 +
Q log Q

R3D2 )NT )

k: window size; N pixel number per frame; T :
number of frames;
TLVQM: k1,k2: filter size, T2: number of repre-
sentative frames;
CORNIA, M : codebook size;
V-BLIINDS, w: window size, d: motion vector
tensor size;
HIGRADE, k2: gradient kernel size;
ChipQA, D: downsampling factor Q: chip
search’s quantization factor, R: size of each
dimension of a chip
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(a) Reference (b) Compression (c) Aliasing

(d) Flicker (e) Frame Drop (f) Interlacing

(g) Judder

Figure 2.8: Scatter plots of the predicted scores produced by several NR VQA models
against MOS for each class of distorted videos.

same nonlinear logistic regression process before the PLCC and MSE were computed,
as described earlier. The performances of the compared VQA models on the entire
database, as well as for each synthetic distortion, are shown in Tables 2.7, 2.8, and
2.9, where the best performing model on each distortion category is boldfaced. The
results for each specific distortion were acquired by training the SVR on the reference
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Table 2.11: Results of One-Sided T-Test Performed Between SROCC Values of Vari-
ous Algorithms on the Live Livestream Database. Each Cell Contains 7 Entries: the
Entire Database, 6 Distortions in the Order: Compression, Aliasing, Judder , Flicker,
Frame Drop, and Interlacing. A Value of’1’Indicates That the Row Is Statistically
Superior (Better Visual Quality) Than the Column, While a Value of ’0’Indicates
that the Column Is Statistically Superior Than the Row. A Value of ’-’Indicates
Statistical Equivalence Between Row and Column.

ALGORITHM NIQE BRISQUE CORNIA HIGRADE V-BLIINDS TLVQM ChipQA

NIQE ------- 0000000 0000000 0000000 0000000 0000000 0000000

BRISQUE 1111111 ------- 00-101- 0011-01 00-0101 01--101 0000001

CORNIA 1111111 11-010- ------- 011-001 01-0001 01-0101 0-10001

HIGRADE 1111111 1100-10 100-110 ------- 0000101 010010- 0000000

V-BLIINDS 1111111 11-1010 10-1110 1111010 ------- 11-1-0- 0001000

TLVQM 1111111 10--010 10-1010 101101- 00-0-1- ------- 0000011

ChipQA 1111111 111110 1-01110 1111111 1110111 1111100 -------

sequences and the specific distorted sequences. Scatter plots of some selected objective
VQA models against MOS are shown in Fig. 2.8.

2.5.3 Statistical Evaluation

A one-sided t-test was performed on the 1000 SROCC scores of the NR VQA
models computed on the LIVE Livestream Database, using the 95% confidence level
to evaluate whether one VQA algorithm was statistically superior to another. The
results are shown in Table 2.11. Results on the entire database and on individual
distortions are both included. Each entry in the table consists of 7 symbols corre-
sponding to the entire database, and the 6 distortions, in the order of compression,
aliasing, judder, flicker, frame drop, and interlacing. A symbol ‘1’ indicates using
the performance of the algorithm on the row was statistically superior to that of the
column, while a symbol ‘0’indicates that the column algorithms was statistically
better than the row algorithm. A symbol of ‘-’ indicates that the performances of the
row and the column algorithms were statistically equivalent.
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2.5.4 Computational Cost

Since we are interested in live streaming use scenarios, we studied the computa-
tional costs, the number of giga floating point operations (GFLOPS), and complexity
of the compared models, as shown in Table 2.10. The O(·) figures make clear that all
of the compared algorithms could be implemented as real-time hardware realizations.
To measure computation time, we used a single 4K video having 210 frames. Of the
compared algorithms, V-BLIINDS, and ChipQA were implemented in Python. All
other algorithms were implemented in MATLAB®. All the algorithms were run on
an Intel Xeon E5-2620 CPU with a maximum frequency of 3 GHz.

While none of the tested algorithms runs in real time in their current implementa-
tions, they may be optimized to do so. In most of the algorithms, the most expensive
step is filtering. For example, in BRISQUE the largest computation is computing the
mean subtracted contrast normalized (MSCN) coefficients. However, filtering scales
up linearly and is highly parallelizable. Frame based algorithms can be applied at
a lower frame rate with little loss of prediction efficacy Tu et al. (2021b). While V-
BLIINDS expends considerable computation on motion computation, motion vectors
can be re-used from those produced by the involved codec. The complexity of COR-
NIA, which computes dot-products between local descriptors and visual codewords,
is affected by the codebook size, which can be quite large.

2.5.5 Discussion of Results

The results presented in Tables 2.4, 2.5 and 2.6 suggest that, other than PSNR,
the compared FR VQA models generally delivered similar overall performances on
the entire database, but some algorithms yielded better performances on certain dis-
tortions. For example, SSIM, which performed well overall, obtained the highest
correlation against DMOS on the compressed videos, but low correlation on the jud-
der videos. The main reason that SSIM delivers low performance on judder videos
is that it is a frame-based model. Judder is a temporal distortion that arises when
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high motion is present in a video. The greater the magnitude of the motion, the
more apparent the distortion is likely to be. While SSIM effectively captures spatial
distortions (like compression), it is unable to capture the temporal effects of judder.
ST-RRED does include limited temporal information expressed as NSS features from
adjacent frame differences, which is inadequate to model complex or longer-duration
temporal distortions, hence it does not outperform the other compared FR models.
VMAF yielded the highest correlation on the aliased and flicker videos, but low cor-
relations on the interlaced videos. The FR VQA models tended to deliver decent
performances on common distortions found in other VQA databases, such as com-
pression, and also flicker, which is compression based. These distortions are better
studied and easier to catch with the presence of the reference. However, when tested
on the purely temporal distortions, all of the compared FR VQA models delivered
low correlations against DMOS. This suggests ample room for research on developing
better models of temporal and motion-related distortions.

From Tables 2.7, 2.8, and 2.9, it may be observed that ChipQA performed
the best among the compared NR VQA algorithms, while TLVQM and V-BLIINDS
also achieved relatively higher correlations against the human judgments. TLVQM
achieved the top performance on flicker and frame drops, likely because of the large
number of temporal features it uses. ChipQA builds a statistical representation of
local spatiotemporal data that is attuned to local orientations of motion over large
spatial fields, motivated by processes in areas V1 and MT of the brain. The ex-
plicit modeling of deviations from statistical regularity in the spatiotemporal do-
main allows it to perform well on both spatial and temporal distortions. NIQE and
BRISQUE are similar methods, but BRISQUE is trained while NIQE is completely
blind, hence BRISQUE usually can deliver predictions having higher correlations
against human quality judgments. Similar statistical features are used in V-BLIINDS
and HIGRADE. The frame-based models NIQE, BRISQUE, HIGRADE, and COR-
NIA do not access any motion information, which greatly limits their performance.
CORNIA yielded top performances on compression, aliasing, and interlacing, all of
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which present strong spatial aspects of distortion. However, the overall performance
of CORNIA was lower than that of V-BLIINDS, TLVQM, and ChipQA, due to the
lack of temporal information.
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Chapter 3: A Study of Subjective and Objective
Quality Assessment of HDR Videos

3.1 Related work
3.1.1 Subjective HDR Video Quality Databases

Over the past few years, a number of efforts have been made to create video
quality datasets for HDR, but all of these have limited usefulness, either because they
have been rendered obsolete by the rapid pace of HDR standard development, or by
the inability of authors to publicly release their data owing to copyright issues. Azimi
et al. Azimi et al. (2018) conducted a study using 18 human subjects who viewed 5
different 12-bit YUV contents captured by a RED Scarlet-X Camera and afflicted by
compression and four other types of distortion, yielding 30 videos. The videos were
displayed on a non-standard HDR device the authors designed themselves, supporting
the older, more limited BT. 709 gamut, rather than the HDR10 compliant BT. 2020
gamut, and the PQ OETF was not applied prior to compression. Moreover, the videos
were of maximum resolution 1920×1080 (1080p), while most current HDR content
is 4K. Pan et al. Pan et al. (2018) conducted a study of the effects of compression
on HDR quality using 6 source videos encoded using PQ and HLG and the BT.
2020 color space, but the codec used for compression was AVS2, which has seen little
industry adoption. The study included 144 videos that were rated by 22 subjects, but
unfortunately none of the video or subjective data has been made publicly available.
Baroncini et al. Baroncini et al. (2016) conducted a study of 12 compressed HDR
videos evaluated by 40 human subjects. The source contents did not follow ITU Rec.
BT 2020, the PQ OETF was not applied on the video data, and again, none of the
data was made publicly available. Moreover, the resolution of all the videos was
1080p. Rerabek et al. Rerabek et al. (2015) conducted a study of 5 HDR videos, each
distorted by 4 compression levels, with the aim of comparing objective HDR VQA
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algorithms, but the data was not made publicly available. The videos were all only
of resolution 944×1080, and the data was tone-mapped to 8-bit format before being
displayed to the subjects. Athat et al. Athar et al. (2019) conducted a subjective study
of HDR10 content, but none of the data was publicly released because of copyright
issues. The authors compressed 14 HDR10 source contents using H.264 and HEVC
to generate 140 distorted videos, which were viewed and rated by 51 subjects.

The study that we report here advances the field in several ways: first, all of
the source videos are compliant with the most widely used modern HDR standard
(HDR10) and include wide color gamut (WCG) and high frame rate (HFR) videos.
Second, the new dataset contains almost twice as many videos as any prior HDR VQA
dataset, and more than double the number of collected subjective opinion scores.
Third, we conducted the largest and most contemporaneous HDR VQA study on it
to date. Fourth, we compared the performances of leading HDR VQA models on
it to validate the usefulness of the collected data. Lastly, unlike nearly all of the
prior datasets, we are making the LIVE HDR dataset publicly available at http:

//live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html.

3.1.2 Objective Video Quality Assessment Algorithms

Objective VQA algorithms aim to automatically predict the perceptual quality
of videos. There are three categories of objective VQA models: full-reference (FR),
reduced reference (RR), and no-reference (NR). FR VQA models operate by com-
paring pristine reference videos against distorted versions of them using perceptually
motivated features and/or training data Wang et al. (2004); Sheikh and Bovik (2005).
Reduced reference VQA models use only partial reference information to achieve ef-
ficiencies Wang and Simoncelli (2005); Wang et al. (2006); Soundararajan and Bovik
(2011); Wu et al. (2015). NR VQA models require no information regarding any ref-
erence videos, and instead predict perceptual video quality based only on information
extracted form distorted videos Mittal et al. (2012a, 2015); Moorthy and Bovik (2011);
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Saad et al. (2012). We use the new psychometric HDR VQA database to compare
leading HDR VQA models that fall into the FR VQA category. The MSE (or equiv-
alently, the PSNR) has long been used as a basic index of video quality. More recent
popular VQA models include Structural Similarity (SSIM) Wang et al. (2004), Multi-
scale SSIM (MS-SSIM) Wang et al. (2003), Gradient Magnitude Similarity Deviation
(GMSD) Xue et al. (2013), most apparent distortion (MAD) Larson and Chandler
(2010), visual information fidelity (VIF) Sheikh and Bovik (2005), and FSIM Zhang
et al. (2011), among others Vu et al. (2011); Vu and Chandler (2014); Bampis et al.
(2017a); Seshadrinathan and Bovik (2009). More recently, machine learning-based
FR-VQA frameworks have become quite popular. For example, VMAF Li et al.
(2017) combines features from two VQA models, using a Support Vector Regressor
(SVR) to map their feature sets to video quality predictions. FR VQA models that
rely on deep learning have recently achieved competitive performance, such as Deep-
VQA Kim et al. (2018), and some even use unsupervised deep learning (UDL) Vega
et al. (2017).

HDR quality prediction research is still a nascent field, and there is only a small
literature on the subject. Wang et al. (2020) discusses HDR visual quality impair-
ments and efforts at developing dedicated objective HDR video quality metrics. An
early algorithm was HDR-VDP Mantiuk et al. (2005), which considers the nonlinear
response to light of high contrast content and the full range of luminances. An im-
proved version called HDR-VDP-2 Mantiuk et al. (2011) uses a model of all luminance
conditions derived from contrast sensitivity measurements. Further improvements of
HDR-VDP-2 include HDR-VDP2.2 Narwaria et al. (2015a, 2014)) and HDR-VDP3
Mantiuk et al. (2023). The author of Aydın et al. (2008) proposed PU, a nonlinear
transform to extend normal SDR quality metrics to HDR. Recent developments such
as the PU21 encoding function have further refined the field, providing an enhanced
methodology for designing quality metrics specific to HDR images Mantiuk and Azimi
(2021). Other authors have focused on the chromatic aspects of HDR video quality
by focusing on color fidelity Abebe et al. (2015), using HDR Uniform Color Spaces
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Rousselot et al. (2019), and using color difference models Choudhury et al. (2021).
Another method called HDR-VQM utilizes spatio-temporal analysis that simulates
human perception Narwaria et al. (2015b).

Each of these prior methods has shortcomings. Most of them rely on simple
transforms that map video features to quality predictions, such as, the root mean
square error (RMSE) used in color difference models, spatial pooling in HDR-VDP-2,
or the PU-SSIM and PU-PSNR models proposed in Aydın et al. (2008). While these
methods are effective on their intended applications, they were primarily designed for
legacy HDR videos or HDR images. The modern HDR10 standard, however, intro-
duces several significant changes, including the use of the Perceptual Quantizer (PQ)
curve for encoding luminance information, the adoption of the BT.2020 color space,
and the inclusion of metadata for accurate display of HDR content. Furthermore,
our focus on a video database inherently includes temporal distortions, a factor not
present in image databases. Given these changes, it is likely that the reliability of
legacy-based quality metrics is reduced when applied to HDR10 content. Therefore,
it is necessary to evaluate these existing methods within the context of HDR10 con-
tent to ensure their continued relevance and accuracy. Additionally, our study also
emphasizes the use of the HEVC codec, which aligns with modern practice. This
new codec may introduce different types of distortions, and the visibility of these
distortions may also be different, further underscoring the need for evaluation.

3.2 Subjective Experiment Design
3.2.1 HDR Video Contents

We gathered a collection of high-quality, distortion-free HDR10 sequences from
CDV; Song et al. (2016) and nearly distortion-free content from 4km (2020). These
videos were captured by professionals using high-end cinematic HDR video cameras.
These sequences were all progressively captured at resolution 3840×2160 with the
audio signal removed. The sequences from CDV; Song et al. (2016) were captured
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Figure 3.1: Exemplar screenshots of frames from source sequences.

using Sony F55 or Sony F65 cameras with the dynamic range fixed to the S-log3 profile
and are then transformed to PQ EOTF in the post-production process. The videos
from 4km (2020) were provided in HDR10 format. The videos from CDV; Song et al.
(2016) have frame rates of 60 frames per second (fps) and those from 4km (2020)
include both 50 fps and 60 fps. All of the source sequences are HDR-WCG-HFR
videos. Following recent studies Mercer Moss et al. (2016); Mercer Moss et al. (2016);
Zhang et al. (2018); Paudyal et al. (2019), we segmented all of the video sequences
into one or more clips of 7-10 seconds duration. This range was chosen to balance
data collection efficiency and maintaining the integrity of the depicted scenes. The
31 source clips were generated from 19 different sources. When clipping the videos,
care was taken to avoid awkward interruptions of content and to prevent similar clips
from being taken from the same segments, ensuring a more coherent, diverse, and
representative set of visual experiences for studying quality assessment.

Fig. 4.1 shows several sample frames from the source sequences we acquired. The
videos span a wide range of contents. We directly applied the spatial information (SI),
or integrated Sobel magnitude, and the temporal information (TI), or absolute aver-
age frame difference, both defined in ITU (2008), to the 10-bit HDR data. Similarly,
the colorfulness measure denoted as CF was computed as in Hasler and Suesstrunk
(2003). Fig 4.2 plots the SI, TI, and CF of all of the source sequences in the LIVE-
HDR database, indicating wide coverage of low-level content and activity in space
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Figure 3.2: Spatial Information (SI) versus (a) colorfulness (CF) and (b) Temporal
Information (TI), measured on all of the source sequences in the new LIVE-HDR
Database. The corresponding convex hulls are plotted by red lines.

and time.

Moreover, we included additional characteristics of the HDR content: min, max,
mean, and median luminance, and the portion of pixels outside of the sRGB color
gamut. These new metrics, visualized in Figs. 3.3 and 3.4, provide further insights
into the diversity and coverage of the color and luminance in the HDR videos of our
database.

3.2.2 Test Sequences

We collected 9 distorted video sequences from each source sequence using the
High Efficiency Video Coding (HEVC) Codec. The selection process was subjective
but systematic, aiming to ensure that the videos are perceptually distinguishable while
spanning a broad range of perceptual qualities. We initially generated a substantial
set of videos using a range of bitrates and spatial resolutions, including but extending
beyond common settings in the streaming industry. We manually reviewed all the
videos and progressively reduced their number to make the total playback duration
suitable for our human subjective study. The final bitrate and resolution settings that
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Figure 3.3: Proportion of pixels outside of the sRGB color gamut, measured on all of
the source sequences in the new LIVE-HDR Database.

we used are listed in Table 4.1.

As for the encoding parameters, we used the libx265 encoder in constant bitrate
mode with single-pass encoding, which is most commonly used in industrial stream-
ing applications, owing to its simplicity and efficiency. While certain bitrates and
resolutions may be less prevalent in practical applications, their inclusion remains
advantageous. For instance, a 540p video with a 2.2 Mbps bitrate may exceed those
encountered in real-world situations, yet it exemplifies a scenario with pronounced
scaling artifacts and reduced compression artifacts. Conversely, the 2160p video at 3
Mbps exhibits significant compression artifacts, devoid of any scaling issues. Lastly,
the 720p video at 2.6 Mbps represents a confluence of both compression and scaling ar-
tifacts. In numerous past studies Shang et al. (2021c,b) we have found this approach
to be an effective way to cover the distortion space, helping to ensure subsequent
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Figure 3.4: Min, max, mean, and median luminance metrics measured on all of the
source sequences in the new LIVE-HDR Database.

model learning. The source videos were included in the database and subsequent psy-
chometric study, to serve as labeled reference videos against which difference mean
opinion scores (DMOS) can be calculated. The videos include four practical spatial
resolutions. The higher-resolution 4K and 1080p videos were compressed using four
and three bitrate targets, respectively, mimicking the bitrate ladders used in HDR
video streaming. The videos compressed at the highest bitrate may be observed to
present only slightly visible compression artifacts, while the videos compressed to
the lowest bitrates exhibit obvious blocking, banding, temporal and scaling artifacts.
The 1080p, 720p and 540p videos were all upscaled to 4K resolution when displayed
to the human subjects, using bicubic interpolation. This method was selected for its
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Table 3.1: Bitrate and Resolution Settings Used to Create the Distorted videos.

Number resolution bitrate (Mbps)

1 3840×2160 15
2 3840×2160 6
3 3840×2160 3
4 1920×1080 9
5 1920×1080 6
6 1920×1080 1
7 1280×720 4.6
8 1280×720 2.6
9 960×540 2.2

balance between computational efficiency and performance, which minimizes distor-
tion and delay during video playback, thereby maintaining the integrity of the HDR
content. The overall video database contains 279 distorted videos and 31 reference
videos, yielding a total of 310 videos that were presented to the human subjects.

3.2.3 Subjective Testing Design

The human study was conducted in the Laboratory for Image and Video Engi-
neering (LIVE) subjective study room at The University of Texas at Austin. A 65
inch Samsung Class Q90T QLED 4K UHD HDR Smart TV TV was used to display
the HDR content to the participating subjects. The TV was calibrated for HDR by an
Imaging Science Foundation (ISF) certified professional using a Calman Calibration
kit.

After calibration, the TV had a peak luminance of approximately 1033 cd/m2,
and a minimum luminance below the measurement threshold of 0.7 cd/m2. Color
gamut coverages were 99.88% for BT.709, 88.86% for P3, and 66.33% for BT.2020. All
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the measurement was made with a SpectraScan® Spectroradiometer PR-655. It was
crucial to ascertain that the TV detected and displayed HDR input correctly, thereby
avoiding any unintended tone mapping processes that might introduce distortions.
To accomplish this, we made specific configurations and settings adjustments.

First, we enabled the “input signal plus function” in the TV settings, allowing
the Samsung TV to receive an extended input signal range and enable HDR input.
Subsequently, in the Windows 10 operating system, we activated HDR functionality
in the Display settings. Additionally, in the Nvidia Control Panel, we modified the
output format to yuv420p and 10-bit depth, while setting the refresh rate at 60Hz.
These settings were meticulously reviewed and ensured to remain consistent through-
out the entire study. The TV was connected to a workstation having a 12 GB Titan
X Graphics Processing Unit (GPU), via an HDMI 2.0b cable allowing for smooth
playback of the videos.The Potplayer Video Player with the MadVR renderer was
used for playback. In the MadVR settings, we took additional measures to guarantee
an authentic HDR viewing experience for the subjects. Specifically, we configured
MadVR to pass through HDR content directly to the display. Moreover, we ensured
that the ”Send HDR metadata to the display” option was enabled. We also used the
test pattern in TECHNICAL (2020) to verify the display. All advanced temporal pro-
cessing options on the TV were disabled to avoid the introduction of any processing
artifacts.

For all the subjects the viewing distance was about 1.5H, where H is the height
of the display. During a session, the subject would watch each video, then see a screen
where they were asked to record a quality judgment on the video that they had just
seen, using a visible slider on the screen they controlled with their mouse. While the
rating scale was continuous, the user was guided by five Likert-like markers placed
at uniform intervals labeled as “Bad,” “Poor,” “Fair,” “Good,” and “Excellent.” The
scores given by the subjects were sampled as integers on the interval [0, 100], although
numerical values were not made visible to the subjects. In order to prevent bias due
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to initial positioning of the rating indicator, it would not appear on the sliding scale
until the subject placed the cursor on the slider and clicked on it.

The first session shown to each subject was preceded by a briefer training session
that presented six exemplar videos of two contents (different from those that followed)
that generally spanned the range of distortions that would be seen. For each of
the two contents, one reference video and two compressed versions were displayed.
All of the training videos were played in a randomized order, each followed by the
interactive rating screen, to allow the subjects to become familiar with the overall
rating protocol. We utilized the Absolute Category Rating with Hidden Reference
(ACR-HR) protocol ITU (2008) when displaying the training and test videos, hence
the videos shown in each session were displayed in randomized order. Each subject
viewed the videos in a different random order.

3.2.4 Ambient Conditions

Two different lighting conditions were used to test the effects of ambient illu-
mination on the perceived quality of HDR content. The first was a dark viewing
condition, where the incident illumination on the television was measured to be 5
lux, following the recommendation in ITU (2018) for critical viewing of HDR con-
tent, and the recommendation in ITU describing general viewing conditions for a
subjective study conducted in a laboratory environment. An incandescent table lamp
and floor lamp were used to create the light necessary for this environment.

The second ambient condition was illuminated by a pair of yellow-filtered Neewer
LED lights to produce an incident illumination on the TV of 200 lux, following the
recommendation in ITU for general viewing conditions in a home environment. In
this environment, a set of studio LED lights and a 95 W studio compact fluorescent
light were placed behind and below the television in order to create a uniform, dif-
fuse ambient illumination. In both environments, the lights were positioned so that
their reflections off the television would not be visible to the viewers. The incident
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luminance on the TV was measured by a Dr. Meter LX1330B luxmeter.

3.2.5 Subjects

A total of 66 human subjects were recruited from the student population at The
University of Texas at Austin. Each subject participated in two sessions separated by
at least 24 hours. The subjects were divided into two groups, one for each ambient
condition. Hence 33 subjects watched the videos in the darker environment and 33
watched the videos in the brighter environment. No subject was given any information
about the ambient conditions. We applied the Snellen and Ishihara tests of test each
subject’s visual acuity and color perception, respectively. One subject was found to
have a color deficiency, but no subjects had less than 20/30 visual acuity on the
Snellen test, when wearing their corrective lenses (if needed). The color deficient
subject was not rejected from the study following our common practice of promoting
a more realistic subject pool, as explained on our website liv.

3.3 Processing of Subjective Scores

There are a number of ways in which subjective scores can be converted into
Mean Opinion Scores (MOS). We computed MOS as the average of subjective scores
given by subjects (MOS), the average of z scores (ZMOS), and we also computed
MOS using the statistical method proposed in Li et al. (2020).

3.3.1 MOS

Let id index those subjects that viewed videos in the dark environment, and
ib index the subjects who viewed the videos in the bright environment. MOS is
calculated as the average of the scores given by a set of subjects, in ITU (2012). We
will also define separate MOS values for the dark and light environments. Let the
scores given by a subject ik on video j be sikj. We will refer to the MOS of a video
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j whose scores were collected under the darker (brighter) ambient conditions as the
respective average scores given under each condition: MOSdj and MOSbj, where

MOSkj =

Sk∑
ik=1

sikj, (3.1)

for k = d, b (dark, bright), and j = 1, 2 . . . N .

3.3.2 ZMOS

We also define MOS calculated as the average of the z scores Shang et al. (2021a);
Madhusudana et al. (2021a), given by

zikj =
sikj − µik

σik
(3.2)

for k = b, d, where the subjects under dark (bright) conditions are indexed id =

1, 2 . . . Sd (ib = 1, 2 . . . Sb) when rating videos indexed j = 1, 2 . . . N . In our database,
Sd = 33, Sb = 33 and N = 310. In (3.2), µik and σik are the mean and standard
deviation of the scores given by subject ik across all videos:

µik =

∑N
j=1 sikj

N
(3.3)

and

σik =

√∑N
j=1 (sikj − µik)

2

N
. (3.4)

Since there are two ambient conditions, for each video j = 1, . . . , N we will refer to
the MOS calculated from scores that were collected under darker (brighter) ambient
conditions as ZMOSdj and ZMOSbj, respectively, where

ZMOSkj =

Sk∑
ik=1

zikj (3.5)

for k = d, b (dark, bright).
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Table 3.2: Consistency Analysis of the Subjective Data.

Correlations before ITU BT 500.11
outlier removal.

Number of outliers accord-
ing to ITU BT 500.11.

Correlations after ITU BT 500.11
outlier removal.

MOSd 0.9481 0 0.9481
MOSb 0.9528 2 0.9492
ZMOSd 0.9636 7 0.9581
ZMOSb 0.9669 6 0.9665

3.3.3 Consistency Analysis

We studied the internal consistency of the scores as follows. We randomly parti-
tioned the subjects who participated under each ambient condition into two approx-
imately equal sized groups and computed the correlations between the mean MOS

computed separately from the two groups over 100 random divisions. We then com-
puted the correlation across the 100 splits. As expected, the internal consistency of
the ZMOS was better than that of MOS. We applied the outlier rejection method
suggested by ITU Rec. BT 500.11 on both the MOS and ZMOS, separately for
each ambient condition. However, we found that the internal correlations did not
improve when the outliers were removed, as shown in Table 3.2. We also examined
the scores of the color-deficient subject, and found that his scores correlated more
highly against the other subjects who participated under the same ambient condition
(0.88) than the average correlation between individual scores and group scores (0.82).
In our analysis, we therefore chose not to remove the outliers when conducting the
subsequent statistical analysis.

3.3.4 SUREAL Scores

A number of deficiencies in the ITU BT 500.11 outlier removal method have
been observed in Li et al. (2020), along with an improved method called SUREAL
that finds a Maximum Likelihood (ML) estimate of the scores. Using this method,
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Figure 3.5: Histograms showing distributions of MOS, ZMOS, and SUREAL scores.

represent the opinion scores sikj as random variables Sikr

Sikj = ψkj +∆ik + νikX, (3.6)

where ψkj is the true quality of video j under ambient condition k, ∆ik represents the
bias of subject ik, the non-negative term νik represents the inconsistency of sub-
ject ik, and X ∼ N(0, 1) are i.i.d. Gaussian random variables. The quantities
ψkj,∆ik , νik are estimated by computing the log-likelihood of the observed scores,
using the Newton-Raphson method to solve for the values of ψkj,∆ik , νik that maxi-
mize the log-likelihood. We plotted the estimated subject biases in Fig. 14 and their
inconsistencies in Fig. 12 in the supplementary material. It may be observed that
both the subject biases and inconsistencies are quite dispersed. In this way, subject
biases are accounted for when estimating the true qualities ψkj, and the method is
robust against subject inconsistencies.

3.4 Effect of ambient illumination

We used all three types of summary subjective opinion scores to analyze the
effects of ambient illumination on impressions of quality. It is worth noting that the
MOS and SUREAL scores preserve the differences between the absolute values of
the scores under the two ambient conditions, while the ZMOS scores do not, since
they are normalized. The distributions of MOS, ZMOS, and SUREAL are shown
in Fig. 3.5. The MOS and SUREAL values under each of the ambient conditions
cover a wide range, and it may be observed that the overall distributions of scores
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Figure 3.6: A box plot showing the distribution of MOS under two ambient illumi-
nation settings for each distortion combination.

under the two ambient conditions are similar. Since SUREAL and MOS are absolute
scores, one may deduce from Fig. 3.5 that the videos watched under darker ambient
conditions were rated as being of slightly higher qualities than those watched under
bright ambient conditions. The same conclusions cannot be drawn regarding ZMOS,
which is a normalized score, suggesting that these results reflect a slight preference
for viewing under the darker conditions, but the relative ratings remain largely unaf-
fected. Fig. 3.6 plots MOS against spatial resolution and bitrate. It may be observed
that the MOS recorded under both ambient conditions fell in similar ranges for each
spatial resolution and bitrate combination, but the MOS recorded under brighter
conditions were slightly lower than under darker conditions at most resolution and
bitrate settings. These differences, however, were more pronounced at lower bitrates
and resolutions.

To assess the possible significance of the differences that we observed in Fig. 3.6,
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we conducted Welch’s two-sided t-test on the MOS under both ambient illumination
settings. We compared the MOS at each resolution and bitrate setting, obtaining
the p-values shown in Table 3.3. As may be seen, none of the resolution and bitrate
combinations yielded a p-value less than 0.05, indicating that, while differences may
be discerned between the MOS obtained under the two different illumination settings,
these differences were not statistically significant. Separately, we also tested the raw
(non-averaged) scores that were recorded by the individual subjects under the two
ambient conditions. From among 310 labeled videos, only 17 were associated with
differences in quality judgments that were statistically significant.

We further investigated the influence of ambient illumination on perceived video
quality through a permutation test as outlined in Li et al. (2019). Despite 17 videos
showing statistically significant differences in mean scores under different viewing
conditions in our initial t-test analysis (D = 17), we sought to examine whether this
could occur by chance. In the permutation test, subjects were randomly divided into
two groups and mean scores for each video were recalculated. A paired t-test was
then executed for each video. This process was replicated 10,000 times to construct a
distribution of counts of significant differences, D′, under random group assignment.

For ambient illumination to be considered significant, it must satisfy Pr(D′ <

D) ≥ 0.95. Our analysis revealed that the 95th percentile of the D′ distribution was
41, greater than observed D = 17, leading to the conclusion that differences between
bright and dark conditions were not statistically significant. The D′ distribution,
observed D, and the 95th percentile are shown in Fig. 3.7, illustrating the lack of
significant impact of the ambient illumination on video quality ratings.

Further, we calculated the average luminances of each video which does not de-
pend on the illumination. Fig. 3.8 shows a scatter plot of the p-values of videos in
the raw score comparisons against the computed average luminances. There was no
clear tendency of p-values against the average luminance. Indeed, the Pearson’s cor-
relation coefficient between the p-values and the average luminances were essentially

66



Table 3.3: The P-value of Each Bitrate and Resolution Settings for the Distorted
Videos.

Number resolution bitrate (Mbps) p-value

1 3840×2160 ref 0.5987
2 3840×2160 15 0.1539
3 3840×2160 6 0.1750
4 3840×2160 3 0.1538
5 1920×1080 9 0.3422
6 1920×1080 6 0.2856
7 1920×1080 1 0.3105
8 1280×720 4.6 0.4361
9 1280×720 2.6 0.3645
10 960×540 2.2 0.7095

nil (0.03).

We also used the confidence intervals of the SUREAL scores to study the effects
of ambient illumination. The SUREAL method provides 95% confidence intervals
on the subjective scores using the Cramer-Rao bound. The values of ψdj and ψbj

are plotted in Fig. 15 in the supplementary material. We found that for 10 of the
310 videos, the confidence intervals did not overlap, indicating statistically significant
differences. We also computed the 95% confidence intervals of the MOS (assuming
normality) and plotted the scores and their confidence intervals in Fig. 16 in the
supplementary material.

3.5 Objective Video Quality Model Design

The goal of our model design is to find features that are expressive of distortions
that are more noticeable in HDR videos. As compared to SDR videos, HDR videos
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Figure 3.7: Distribution of significant differences (D′) under random group assignment
for the permutation test. The observed value D = 17 and the 95th percentile of the D′

distribution are also shown, indicating that the observed differences in scores under
bright and dark ambient conditions are not statistically significant.
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Figure 3.8: Scatter plot of the p-values of the raw score comparison against the
average luminances of each video .

contain lower black levels, higher peak luminances, and more brilliant colors. Rich
visual information, and visible distortions, can be observed in the dark and bright
zones, both affecting subjective quality; however, conventional SDR VQA models
have difficulty capturing this information.

The reason for this is that the responses of conventional VQA feature sets are
dominated by, or at least strongly affected by distortions on regions that are “SDR-
like,” i.e., occupying the mid-range of brightnesses. The feature responses to very
dark and bright regions become dilute, greatly reducing the sensitivity of standard
VQA models to highly conspicuous “HDR” distortions. Moreover, the visual response
to luminance is highly nonlinear. The visual system is able to map large ranges of
luminances onto much smaller ranges of perceived lightness, thereby achieving a high
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degree of compression Radonjić et al. (2011). For a distortion of fixed magnitude,
the Weber ratio of luminance is higher on dark and is reduced as the luminance
increases. Thus, small changes in luminance in dark regions will be more noticeable
than in bright regions.

Because of these reasons, distortions on the darkest and brightest areas have
distinct perceptual responses and contributions to perceptual quality. The perceptual
distortion information in these areas is not effectively captured by conventional VQA
feature sets. Thus, we introduce additional feature computation pathways to capture
“HDR-specific” features in parallel with the traditional “SDR” features, to better
account for perceived distortions in these areas.

Specifically, we introduce HDRMAX, a simple but effective way to process bright
and dark regions separately, and computing HDR-aware quality features on them,
while avoiding complicated computations such as image segmentation. Instead, we
define a pair of nonlinear transforms that expand the luminance ranges of very dark
and bright regions, at the expense of the mid-range, which effectively amplifies the
impact of “HDR” distortions on VQA feature responses. Following the transforms,
we define separate and parallel feature extraction paths, to drive the quality-aware
features specific to each of the areas, so that features computed on the nonlinearly
altered frames can be used to augment conventional SDR VQA features.

3.5.1 Double Exponential Nonlinearity

The main characteristic of the nonlinear transform is to stretch the brightness
values near the minimal (darker) and maximum (lighter) values, thereby enhancing
the contrast there.

Neural responses are adequately modelled as sigmoidal functions Billock and
Tsou (2011):

R = Rmax
In

In + Ins
, (3.7)
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where R is the response to an input signal I, Rmax is a maximum response, Is is a
semisaturation constant, and n depends on the type of neuron, but usually falls in
the range [1, 2] Bertalmío (2020). The sigmoidal function has the greatest slope for
the smallest input magnitudes, gradually decreasing as the input increases.

We selected an exponential functions as a simple and effective way to amplify
the brightness values at the extreme ends of the dynamic range in a nonlinear fash-
ion, while gradually compressing the mid-range brightness values. This choice was
guided by the simplicity of an exponential function’s form and the control it provides
over the degree of expansion through its parameters. The numerical stability it offers
also contributed to its selection. While we do not claim that it accurately models
the perceptual response, its use is quite perceptually relevant to VQA model design.
The reason is that it is making perceptually relevant distortion information more
available to VQA algorithms. It does this in a way that is copacetic with theories of
distortion-sensitive natural video statistics. In this sense it may be viewed as a pool-
ing preprocessing step that can remedy the defects of current learning-based VQA
models. Since it is not meant to model a biological perceptual process, there may be
other functional forms that are as effective, or more so, but our choice is a simple
one. Moreover, HDRMAX incorporates a local adaptation operation, a process fun-
damental to vision, facilitating adjustment to a wide range of brightness values. Local
adaptation adjusts the sensitivity of the visual system based on the local luminance
level, acting specifically on each region of the retina Ledda et al. (2004). A refined
model of this process, building upon the Naka-Rushton equation, has been proposed
to simulate the physiological adaptations of the retina. Particularly, it modifies the
half-saturation parameter, depending on the local luminance level. Inspired by this
model of local brightness adaptation, we integrated a mean debiasing operation into
HDRMAX. This operation precedes the exponential transform, its purpose being to
adjust the nonlinearity based on the local mean luminance, thereby preserving sensi-
tivity across different local luminance levels within each frame.

In the context of the HDRMAX augmentation, the mean debiasing operation
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is positioned before the input into conventional SDR VQA models. This reflects
the local adaptation model that simulates the initial stages of visual processing in the
retina. Implementing this operation before later stages of the visual pathway modeled
by existing SDR VQA models aligns with the natural flows of visual processing. As
a result, HDRMAX ensures that the local nonlinear operation maintains sensitivity
and responsiveness across varying local luminance levels.

The basic goal of HDRMAX is to address the inability of conventional SDR VQA
models to capture some HDR distortion characteristics. Our method makes better
available distortion information in the extreme range of luminance and color that are
highly visible but not well accessed by current VQA models such as VMAF. We do
this by introducing a separate processing pathway that expands the extreme ends of
the dynamic range. This is accomplished by introducing an expansive nonlinearity
whose outputs are nicely analyzable using natural video statistics model.

The nonlinearities are applied on the perceptually uniform PQ-encoded luma.
However, their inherent flexibility also enables their use with linear luminance. An
advantage of applying the nonlinearities on perceptually uniform luma is that it al-
lows for predictable modifications to video content. This predictability enables a clear
understanding of how the nonlinearities stretch or compress bright/dark regions, pro-
viding a greater level of control over the quality assessment process.

Assume that the brightness values I(x, y, t) fall within the range [0, 1]. If they
don’t, linearly scale the brightness range [A,B] 7→ [0, 1], where A and B represent
the minimum and maximum brightness values within each frame, respectively. This
scaling operation aligns the dynamic range of each frame’s brightness values with
the [0, 1] interval, while controlling the strength of the applied exponential function,
maintaining uniformity across each frame and avoiding extreme values. We then
apply point operations on the scaled brightness values, with the goal of nonlinearly
expanding the dynamic ranges of the extreme high (bright) and dark ends. Once
these operations are applied, feature extraction is conducted in parallel on three

72



videos at each frame instant - two nonlinearly transformed, and the original. The
nonlinear transformations are adaptive, since it includes local mean debiasing. The
two nonlinearly transformed videos are given by:

Ĩ l1(x, y, t) = exp[δ1(I(x, y, t)− Ī l(x, y, t))], (3.8)

and
Ĩ l2(x, y, t) = exp[−δ2(I(x, y, t)− Ī l(x, y, t))]. (3.9)

The parameters δ1, δ2 ∈ 0.5, 1, 2, 5 in equations 8 and 9 control the expansion strength
in the bright and dark areas, respectively. This choice, akin to a log grid search, offers
a balance between model complexity and computational feasibility, and appropriately
captures the inherent data patterns.

These parameters help modulate the representation of HDR details in dark and
bright regions. Extreme values could lead to under-detailed or unnaturally contrasted
images, emphasizing the need for careful selection of these parameters. In the experi-
ments, we fixed δ1 = 0.5 and δ2 = 5 but we discuss these choices and how performance
varies with them in the performance evaluation section. Ī l(x, y, t) is the local mean
brightness estimate:

Ī l(x, y, t) =
K∑

k=−K

L∑
j=−L

wk,lIk,l(i, j), (3.10)

where w = {wk,l|k = −K, ...,K, l = −L, ..., L} is a 2D circularly-symmetric unit-
volume Gaussian weighting function sampled out to 3 standard deviations. We used
K = L = 31 in our experiments and we discuss the choice of the parameter later in
the performance evaluation section.

We show plots of the exponential transforms in Fig. 3.9, illustrating the expansion
of the extreme dark and bright ranges. We use separate transformations, because
it allows flexibility when accessing information at the bright and dark ends. For
example, we assume throughout that the brightness values are expressed as luma,
rather than luminance. In most HDR streaming video workflows, the PQ OETF is

73



applied to the linear luminance signals received by RGB sensors to convert them to
nonlinear color R’G’B’, which are then weighted and summed to compute luma and
color-difference channels (Y ′C ′

BC
′
R, sometimes referred to as YUV.) The nonlinearities

(3.8)-(3.10) are flexible enough to be used either on luma or on luminance, the latter
of which has already been transformed by an asymmetric nonlinearity. Moreover,
the relative sensitivities of the human eyes to distortions in bright and dark areas is
at least partly determined by Weber’s Law, which states that the visibility of signal
perturbations is affected by the local brightness.

Two sample reference frames taken from the ‘flower’ and the ‘firework’ videos,
as well as the result of applying the nonlinear transformations to the ‘flower’ and
‘firework’ frames, are shown in Fig. 3.10. The ‘flower’ video frame contains areas con-
taining mostly mid-range brightness values, while the ‘firework’ video frame contains
very bright areas on a very dark background. As such, the nonlinearly processed
‘firework’ video will contain more heavily enhanced areas. Of course, these printed
representations are not HDR and are being shown to give an idea of the applied ef-
fects. To illustrate the effects on distortion visibility, we also show magnified areas
of ‘flower’ and ‘firework’ before and after compression and with nonlinearities applied
in Fig. 3.11 and Fig. 3.12. To demonstrate the amplification of distortions on the
bright areas, we also show the result of applying transformation (3.8) and (3.9). As
may be observed, application of the nonlinear transformation greatly enhances the
distortions in the bright regions of ‘firework,’ and less so on the mid-range distortions
in ‘flower.’

3.5.2 Modifying VMAF Using HDRMAX Features

VMAF is a data driven video quality framework that extracts several highly
successful VQA features, then uses a trained SVR to map the features to human
judgments. The features used in VMAF 2.3.0 include the Detail Loss Metric (DLM),
four Visual Information Fidelity (VIF) features computed on different oriented fre-
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Figure 3.9: The two exponential transforms in (3.8) (left) and (3.9) (right) plotted
for several values of the expansion parameters δ1 and δ2.

Figure 3.10: The reference frames ‘flower’ and ‘firework’ (left), the transformed ref-
erence frames after processing with (3.8) (middle) and (3.9) (right).

quency bands, and a simple frame difference feature, all of which are applied on the
PQ luma component only. Modifying VMAF to include HDRMAX features is quite
simple. On the brightness component of each video frame, also compute the nonlin-
early transformed frames Ĩ l1 and Ĩ l2, along with the usual VMAF features computed
on I. Table 4.2 summarizes the features used.
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(a) (b)

(c) (d)

Figure 3.11: A patch from ‘flower’. (a) from the reference frame; (b)-(d) from the
compressed frame. (b) before nonlinear transformation; (c) after nonlinear transfor-
mation (3.8); (d) after nonlinear transformation (3.9).

3.6 Objective Video Quality Assessment Experiments

As a way of demonstrating the usefulness of the new LIVE HDR Database,
we used it to study the performance of several existing HDR VQA models, as well
as state-of-the-art (SOTA) SDR VQA models. We also studied the performance of
VMAF augmented by HDRMAX features as its parameters were varied.
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(a) (b)

(c) (d)

Figure 3.12: A patch from ‘firework’. (a) from the reference frame; (b)-(d) from the
compressed frame. (b) before nonlinear transformation; (c) after nonlinear transfor-
mation (3.8); (d) after nonlinear transformation (3.9).

3.6.1 Evaluation Criteria

We used the SUREAL scores owing to their statistical reliability. Since they are
absolute quality scores, we obtained quality differences referred to as difference MOS
(DMOS). Given a video indexed j with SUREAL score ψdj, compute the difference
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Table 3.4: Descriptions of Features

Feature index Description

f1 − f5 VIF and DLM features from the original frame.

f6 Motion feature

f7 − f16 VIF and DLM features from the frames following the non-
linear transformation.

score
Dψdj = ψref

dj − ψdj. (3.11)

The performances of the compared algorithms, including VMAF+HDRMAX, were
evaluated using three standard metrics: the Spearman’s Rank Order Correlation
Coefficient (SROCC), the Pearson Linear Correlation Coefficient (PLCC), and the
Root Mean Square Error (RMSE). Following common practice Sheikh et al. (2006),
we fit the predicted scores to the real scores using a logistic function

f(s) = β1(
1

2
− 1

(1 + exp(β2(s− β3))
) + β4s+ β5 (3.12)

before computing the PLCC and the RMSE.

3.6.2 Evaluation Protocol

We used an SVR to learn the mappings from features to DMOS. The SVR was
implemented using the linear kernel. All of the compared algorithms were evaluated
using 1000 random train-test splits. On each split, 80% of the data was used for
training, and the other 20% for testing, while not allowing any sharing of content
between training and testing subsets. Notably, the new dataset includes several videos
derived from the same longer clips, specifically, the football videos (football 1-8) and
golf videos (golf 1-2). We diligently ensured that these videos were not split between
the training and testing sets, to avoid any potential leakage of similar content between
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the sets. We applied 5-fold cross-validation to find the optimal SVR parameters for
each training set.

3.6.3 Performance Evaluation of VMAF+HDRMAX

We tested the performance of VMAF+HDRMAX against different choices of the
expansion parameters δ1 and δ2. For each parameter combination, we computed the
16 features in Table 4.2, on the LIVE HDR Database and conducted 1000 train-test
splits. The median values of the obtained performance metrics SROCC, PLCC and
RMSE are given in Table 3.5. For better visualization, a heatmap of the SROCC
as the parameters δ1, δ2 were varied is shown in Fig. 3.13. As may be observed,
smaller values of δ1 and larger value of δ2 generally resulted in higher SROCC, while
(δ1, δ2) = (0.5, 5.0) yielded the best SROCC. One possible explanation for this is
that HDR10 videos extend the original SDR luminance range from 0.01-100 nits to
0.0001-10000 nits. The difference between the darkest blacks of SDR and HDR is
much less than between the brightest SDR and HDR values, suggesting that greater
expansion is required on the darker end. However, although the choice of the pa-
rameter selection does influence the measured model efficacy, the differences are not
large, and every choice and combination resulted in excellent performance relative to
other, prior models. This demonstrates the efficacy of the nonlinear transformation
and HDR features.

We also conducted experiments on the patch size W used in transformation
(3.8) and (3.9). The results for W = 9, 17, 31 and 63 are reported in Table 3.6 using
δ1 = 0.5 and δ2 = 5. We avoided W values that are multiples of 4 to avoid alignments
of the transformation window edges with compression block boundaries. The choice
of window size had a minor effect on performance, but we chose the one giving the
highest degree of correlation between predicted quality against human judgments.

We also studied other design choices. First, we extended the nonlinear transfor-
mation to the components of three color spaces: the BT.2020 RGB color space, the
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Table 3.5: Performance of Luma VMAF+HDRMAX as the Expansion Parameters δ1
and δ2 Varied, for Using the Nonlinear Transform (3.8)-(3.10). The Top Performing
Combination is Boldfaced.

δ1 δ2 SROCC PLCC RMSE

0.5 0.5 0.8470 0.8056 11.9296

0.5 1 0.8238 0.7918 11.4521

0.5 2 0.8610 0.8167 10.8815

0.5 5 0.8755 0.8397 10.1410

1 0.5 0.8516 0.8099 11.6104

1 1 0.8500 0.8125 11.5388

1 2 0.8628 0.8303 10.9217

1 5 0.8584 0.8213 11.2416

2 0.5 0.8335 0.7861 11.5870

2 1 0.8282 0.7953 11.5907

2 2 0.8433 0.8200 10.1993

2 5 0.8540 0.8268 10.1404

5 0.5 0.8378 0.8003 11.8099

5 1 0.8422 0.8086 11.3328

5 2 0.8203 0.8081 11.6327

5 5 0.8216 0.7958 11.6869
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Figure 3.13: A heatmap visualizing median SROCC as (δ1, δ2) are varied for the
nonlinear transformation (3.8)-(3.10).

Y CBCR ITU color space, and the HDR−Lab Fairchild and Chen (2011) color space.
The RGB space is associated with acquisition and display. Y CBCR is a common
format for HDR videos. In HDR − Lab, the L∗ component captures the perceived
lightness of a color as compared to a white reference. The a∗ and b∗ components
represent the position of the color between red/magenta and green, yellow and blue
respectively. For each variant model, we extracted the original six VMAF features
on each channel, and also extracted the four VIF features and the DLM feature on
the nonlinearly transformed frames of each component. Thus, each color variant of
VMAF+HDRMAX utilizes 46 features. As a final comparison model, we applied
the nonlinearity (3.8)-(3.10) on the linear luminances instead of the PQ luma values,
but without any color components. The performance results for these four variants of
HDRMAX are shown in Table 3.7. The results for all models were quite good, but not
as high as for the luma-only VMAF+HDRMAX results. Since the database contains
videos that have excellent color diversity and coverage, this suggests that most of
the distortion artifacts can be captured and analyzed within the luma channel, while
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Table 3.6: Performance of the Nonlinear Transform for Various Window Sizes. Top
Performance is Boldfaced.

W SROCC PLCC RMSE

9 0.8601 0.8265 11.1056

17 0.8552 0.8354 11.0654

31 0.8755 0.8397 10.1410

63 0.8675 0.8205 11.1852

Table 3.7: Performance of Color Variants of VMAF+HDRMAX. The “setting” col-
umn indicates the color space. “Linear” Indicates the Two-Exponential Transform
and Features are Performed on the Linear Luminance Values. The Top Performance
in Each Domain is Boldfaced.

Setting SROCC PLCC RMSE

HDR− Lab 0.7850 0.7348 14.3641

RGB 0.7986 0.7477 13.3448

Y CBCR 0.8025 0.7502 13.7340

linear 0.8355 0.8068 11.3307

increasing the dimension of the feature space slightly reduces the model performance.

3.6.4 Comparison Against Other VQA Models

We also evaluated several other FR HDR and FR SDR VQA models on the new
database and compared them against the VMAF+HDRMAX. The existing HDR
algorithms we studied are the latest PU21 enhanced models, including PSNR, SSIM,
MS-SSIM, FSIM Zhang et al. (2011) and VSI Zhang et al. (2014), HDR-VDP2.2,
HDR-VDP3, and HDR-VQM, while the compared SDR methods are PSNR, SSIM,
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MS-SSIM, STRRED, SpEED-QA, and VMAF. Most of these models are not trained.
We listed both the pre-trained and retrained VMAF for comparison. The results of the
comparison are shown in Table 3.8 and Table 3.9 against the DMOS obtained from the
dark environment and bright environment respectively. It may be seen that VMAF
modified using HDRMAX was able to significantly outperform the other models,
including retrained VMAF. The fact that VMAF+HDRMAX outperforms VMAF by
a large margin implies that the unmodified VMAF largely captures distortions from
the usually dominant mid-range of brightness.

To further substantiate our claim, we performed a one-sided t-test for statistical
analysis. For each model, we used 1000 SROCC values, obtained from individual
train-test splits. In the case of models that do not require training, we randomly se-
lected a 20% video sample to calculate a comparable SROCC sample. The single-sided
t-test was then performed on the SROCCs between our proposed VMAF+HDRMAX
method and the rest of the models, under both bright and dark conditions. The de-
tails of these t-test analyses can be found in Table 3.10. It may be observed that the
SROCC values for pretrained and retrained VMAF appear to be similar in Tables 3.8
and 3.9, but show some difference in Table 3.10. This minor difference arises from
the fact that we sample 20% of the videos for the pretrained VMAF in the process
of t-test, leading to slightly varied SROCC values obtained from these samples. This
provided statistical evidence of our method’s superior performance, with all p-values
below the threshold of 0.05, denoting statistical significance.

3.6.5 Evaluation on SDR Database

We also trained and evaluated VMAF+HDRMAX on the SDR-only LIVE Livestream
Database Shang et al. (2022, 2021b) to study the efficacy of the nonlinear transfor-
mation prior to conducting SDR VQA. We also re-trained the original (SDR) VMAF
in a similar manner for a fair comparison. The LIVE Livestream Database was se-
lected because it is both modern and very diverse. It contains 315 videos of varying
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Table 3.8: Performance of the Compared HDR and SDR Quality Models Evaluated
Using the Scores from the Dark Environment. The Top Performance is Boldfaced.

Method SROCC PLCC RMSE

SDR
Qual-
ity
Mod-
els

PSNR 0.5798 0.6229 13.6735

SSIM 0.4982 0.4925 15.2124

MS-SSIM 0.5139 0.5252 14.8741

STRRED 0.5670 0.5506 14.5913

SpEED-QA 0.5716 0.5685 14.6258

VMAF (original) 0.7628 0.7492 12.2953

VMAF (retrained) 0.7940 0.7679 11.4522

HDR
Qual-
ity
Mod-
els

HDR-VDP2.2 0.5868 0.5128 15.0052

HDR-VDP3.0.7 0.7363 0.7307 11.9332

HDR-VQM 0.5543 0.5450 14.3890

PU21-PSNR 0.5841 0.5767 14.2798

PU21-SSIM 0.6019 0.6065 13.8971

PU21-MSSSIM 0.6593 0.6564 13.1868

PU21-FSIM 0.6470 0.6372 13.4705

PU21-VSI 0.6795 0.6667 13.0284

VMAF+ HDRMAX 0.8755 0.8397 10.1410
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Table 3.9: Performance of the Compared HDR and SDR Quality Models Evaluated
Using the Scores from the Bright Environment. The Top Performance is Boldfaced.

Method SROCC PLCC RMSE

SDR
Qual-
ity
Mod-
els

PSNR 0.6268 0.6621 13.0476

SSIM 0.5493 0.5406 14.6461

MS-SSIM 0.5740 0.5831 14.1442

STRRED 0.6373 0.6167 13.7048

SpEED-QA 0.6435 0.6254 13.6944

VMAF (original) 0.8184 0.7947 11.0224

VMAF (retrained) 0.8133 0.7890 11.0915

HDR
Qual-
ity
Mod-
els

HDR-VDP2.2 0.6472 0.6254 13.9861

HDR-VDP3.0.7 0.8080 0.8098 10.2139

HDR-VQM 0.6315 0.6144 13.5114

PU21-PSNR 0.6117 0.5963 13.9762

PU21-SSIM 0.6403 0.6301 13.5188

PU21-MSSSIM 0.7120 0.6969 12.4859

PU21-FSIM 0.7116 0.6904 12.5951

PU21-VSI 0.7290 0.7058 12.3334

VMAF+ HDRMAX 0.8693 0.8256 10.6864
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resolutions (1080p and 4K) multiple types of distortions and significant high-motion
temporal content. It offers professional-quality videos captured under controlled lab
conditions, similar to the anticipated application scenarios of the HDRMAX model.
Moreover, there is no content overlap with the LIVE-HDR database, ensuring inde-
pendent evaluation.

Our findings, displayed in Table 3.11, indicate that HDRMAX notably enhances
performance on SDR content as well, underscoring the value of focusing on dark
and bright regions during VQA. This improvement does not merely result from an
increase in the size of the feature space. In the context of machine learning, it is widely
recognized that adding more features does not inherently enhance model performance.
Instead, the efficacy of a feature lies in its discriminative power and its relevance to
the task at hand. The features added by HDRMAX are both discriminitive and highly
sensitive to video quality characteristics, thus contributing to improved performance.
Recognizing potential interest in the contribution of HDRMAX features, we also
include the standalone performance of these features.

I removed the blue font color from the table.

3.6.6 Evaluation on HDR Inage Database

To better illustrate the generalizability of our method, we conducted additional
testing on the Unified Photometric Image Quality dataset (UPIQ) Mikhailiuk et al.
(2022). UPIQ is an expansive collection of over 4000 HDR and SDR images, and has
proven to be a valuable resource for developing and validating HDR metrics. However,
given the scope of our study, we focused exclusively on the 380 HDR images in UPIQ.

It is noteworthy that the images in UPIQ are represented in absolute photometric
and colorimetric units, reflecting light emitted from a display. To make these images
compatible with our method, we transformed the pixel values into PQ before applying
our models. We show the results in Table 3.12. Although our model didn’t outperform
all of the existing HDR metrics on this dataset, it still demonstrated commendable
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performance. This extra evaluation indicates the potential of our approach on diverse
HDR contents and highlights its applicability to real-world scenarios.
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Table 3.10: Statistical Analysis of Model Comparisons

Test Condition Dark Bright

Model t-statistic p-Value t-statistic p-Value

SDR
Quality
Models

PSNR 7.32 1.78E-13 3.72 1.01E-04

SSIM 23.67 1.07E-109 21.42 4.43E-92

MS-SSIM 31.76 6.76E-180 25.71 1.72E-126

ST-RRED 14.20 5.87E-44 12.60 2.18E-35

SpEED-QA 19.32 1.02E-76 14.31 1.30E-44

VMAF (original) 29.59 3.34E-160 17.93 4.18E-67

VMAF (retrained) 2.63 4.30E-03 3.52 2.23E-04

HDR
Quality
Models

HDR-VDP 2.2 13.46 6.78E-40 12.46 1.19E-34

HDR-VDP3.0.7 40.53 5.86E-263 24.05 9.69E-113

HDR-VQM 405.60 0 444.17 0

PU21-PSNR 74.90 0 74.11 0

PU21-FSIM 61.62 0 48.35 0

PU21-MSSSIM 57.80 0 74.55 0

PU21-SSIM 73.21 0 69.63 0

PU21-VSI 53.53 0 45.73 2.44E-313
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Table 3.11: Performance of the Evaluated Algorithms on LIVE Livestream Database.
The Top Performance is Boldfaced.

Algorithms SROCC PLCC RMSE
PSNR 0.3760 0.4192 10.3355
SSIM 0.6976 0.7107 8.0082

MS-SSIM 0.6757 0.6907 8.2324
STRRED 0.6564 0.6694 8.4573

SpEED-QA 0.6894 0.7235 7.8589
VMAF (original) 0.6434 0.6355 8.7894
VMAF (retained) 0.6836 0.6912 8.2712

HDRMAX 0.6613 0.6755 8.9744
VMAF+HDRMAX 0.7632 0.7743 7.2468

Table 3.12: Performance of the Evaluated Algorithms on UPIQ Database. The Top
Performance is Boldfaced.

SROCC PLCC RMSE

HDR-VDP 3.0.7 0.8448 0.8426 0.3528

HDR-VQM 0.8893 0.8824 0.3082

PU21-FSIM 0.7358 0.71944 0.4551

PU21-MSSSIM 0.8192 0.8193 0.3757

PU21-PSNR 0.4903 0.4192 0.5950

PU21-SSIM 0.7215 0.7270 0.4499

PU21-VSI 0.6792 0.6713 0.4857

VMAF+HDRMAX 0.8485 0.8417 0.3680
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Chapter 4: A Subjective and Objective Study of
Adaptive Quantization of HDR Videos

4.1 Related work
4.1.1 Adaptive Quantization

There have been numerous efforts in recent years to improve the effectiveness
of AQ for video coding. Xiang et al. proposed a novel AQ algorithm that ana-
lyzes several factors influencing the efficacy of AQ while accounting for the temporal
characteristics leading to visually pleasing quantization parameter (QP) offset distri-
butions Xiang et al. (2018). He et al. proposed an adaptive frame-level QP selection
algorithm for H.265/HEVC random access coding that considers inter-frame depen-
dencies He et al. (2018). Bichon et al. designed per-block optimal quantizers that
achieve global rate-distortion optimization, which was incorporated into the HEVC
reference model Bichon et al. (2019). Dai et al. proposed a perceptual AQ technique
based on a convolutional neural network (CNN) and HEVC Dai et al. (2022), which
adaptively determines CTU-level QP values in HEVC intra-coding using high-level
features extracted by the CNN. Vu et al. used the Video Multimethod Assessment
Fusion (VMAF) algorithm to find the optimal QP for the x.264 codec, resulting in bi-
trate savings Vu et al. (2022). In addition to these efforts to optimize the performance
of AQ algorithms, Somdyuti et al. proposed a method for estimating the contrast
masking threshold on natural scene patches, using these estimates to enhance AQ for
AV1 encoding Paul et al. (2021). This method produces fewer visible compression
artifacts at lower bitrates as compared to a variance-based AQ approach.

4.1.2 Subjective HDR Video Quality Databases

A number of studies have been conducted in the past to create perceptual video
quality datasets for HDR content. All the databases used in these studies are com-
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prised of professional contents. However, many of these datasets have limited useful-
ness due to either the rapid pace of development of the HDR standards, or copyright
issues that prevent those authors from releasing the data publicly. For example, Az-
imi et al. conducted a study using 30 videos that were displayed on a non-standard
HDR device supporting the older BT. 709 gamut, rather than the modern HDR10-
compliant BT. 2020 gamut, and the PQ OETF was not applied prior to compression.
The videos were also only 1080p resolution Azimi et al. (2018). Pan et al. Pan et al.
(2018) conducted a study of the effects of compression on HDR quality using 6 source
videos encoded using PQ, HLG, and the BT. 2020 color space, but the codec used for
compression was AVS2, which has seen little industry adoption. The study included
144 videos that were rated by 22 subjects. Baroncini et al. Baroncini et al. (2016)
conducted a study on 12 compressed HDR videos that were evaluated by 40 subjects,
but the source contents did not follow the ITU Rec. BT 2020 standard, and the
PQ OETF was not applied on the video data. Rerabek et al. Rerabek et al. (2015)
conducted a study of 5 HDR videos, each distorted by 4 compression levels, with
the aim of comparing objective HDR VQA algorithms. The videos were all of only
resolution 944×1080, and the data was tone-mapped to 8-bit format before being
displayed to the subjects. Athat et al. Athar et al. (2019) conducted a subjective
study on 14 HDR10 source contents compressed by H.264 and HEVC to generate 140
distorted videos. More recently, Shang et al. conducted a subjective quality study
on 42 source contents to benchmark the performance of leading FR VQA models on
common streaming problems, including compression, scaling, and quality crossovers
among resolutions and frame rates Shang et al. (2023).

By contrast with these previous HDR video quality studies, our investigation
includes source videos that adhere to the widely used HDR10 standard. It also signif-
icantly expands upon previous efforts as it contains almost twice as many videos and
more than double the number of subjective scores collected. Moreover, we systemat-
ically consider the important perceptual effects of AQ on resulting compressed HDR
VQA study to date, and demonstrate its usefulness by evaluating the performance of
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leading VQA models.

4.1.3 Objective VQA Algorithms

There have been substantial efforts dedicated to the development of objective
VQA models aiming to automatically predict the perceptual quality of videos. FR
VQA models operate by comparing pristine reference videos against distorted ver-
sions of them using perceptually motivated features and/or training data Wang et al.
(2004); Sheikh and Bovik (2005). The MSE (or equivalently, the peak signal-to-noise
ratio (PSNR)) has long been used as a basic index of video quality. More recent
popular VQA models include Structural Similarity (SSIM) Wang et al. (2004), Mul-
tiscale SSIM (MS-SSIM) Wang et al. (2003), Gradient Magnitude Similarity Deviation
(GMSD) Xue et al. (2013), most apparent distortion (MAD) Larson and Chandler
(2010), visual information fidelity (VIF) Sheikh and Bovik (2005), and FSIM Zhang
et al. (2011), among others Vu et al. (2011); Vu and Chandler (2014); Bampis et al.
(2017a); Seshadrinathan and Bovik (2009). In recent years, machine learning-based
FR VQA models have gained widespread popularity. One example is VMAF Li et al.
(2017), which leverages features from two VQA models to drive a Support Vector
Regressor (SVR) to predict video quality scores. FR VQA models that employ deep
learning techniques have also demonstrated impressive performance, such as Deep-
VQA Kim et al. (2018). Additionally, some FR VQA models utilize unsupervised
deep learning (UDL) methods, as in Vega et al. (2017).

Research on predicting the quality of HDR videos is in relatively early stages.
One of the earliest algorithms, HDR-VDP Mantiuk et al. (2005), takes into account
the nonlinear response to light of high contrast content and the full range of lu-
minances. An improved version, called HDR-VDP-2 Mantiuk et al. (2011), uses a
model based on contrast sensitivity measurements to account for all luminance condi-
tions. Further developments of HDR-VDP-2 include the implementation of improved
pooling methods (HDR-VDP2.2 Narwaria et al. (2015a, 2014)). Another approach,
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proposed in Aydın et al. (2008), involves using a nonlinear transform to extend tra-
ditional SDR quality metrics to the HDR domain. Other researchers have focused
on the chromatic aspects of HDR video quality, such as color fidelity Abebe et al.
(2015), the use of HDR Uniform Color Spaces Rousselot et al. (2019), and color differ-
ence models Choudhury et al. (2021). Another method, called HDR-VQM, utilizes a
spatio-temporal analysis to simulate human perception Narwaria et al. (2015b). The
HDRMAX model Ebenezer et al. (2023); Shang et al. (2018), is a set of features that
was designed by applying nonlinear transforms to enhance the measurability of the
distortions in the brightest and darkest local regions of video frames. The features
are used to improved the performance of state-of-the-art (SOTA) VQA models on
HDR and 10-bit videos.

The majority of existing HDR quality prediction algorithms rely on simple trans-
forms to map video features to quality predictions, such as the root mean square error
(RMSE) used in color difference models, and spatial pooling in HDR-VDP-2. These
approaches often target legacy HDR videos or simply HDR images, which differ sig-
nificantly from the modern HDR10 standard. Additionally, many of these models
lack sensitivity to distortions in smooth areas, which are particularly susceptible to
banding and blocking artifacts. As such, there is a need for more advanced algo-
rithms that can accurately predict the quality of modern HDR videos while taking
into consideration these kinds of visual distortions.

4.2 Subjective Experiment Design
4.2.1 HDR Video Contents

We gathered 40 high-quality, distortion-free source HDR10 video clips. The
videos include both Video-on-Demand (VoD) videos as well as live streaming con-
tents acquired from one of the streaming service provider and thus, they are a good
representation of real-world videos. Nevertheless, due to copyright restrictions, the
video contents will not be made publicly available. However, we will extract quality-
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Figure 4.1: Exemplar frames from the source sequences.

aware features as done in Bampis et al. (2017b). All of the videos had acquisition,
grading and production processes performed on them by industry professionals. The
source sequences all have resolution 3840x2160 pixels, frame rate 25-30 fps and were
progressively scanned with audio removed. Although four of the contents are sports-
related and originally 50 fps, we temporally downsampled them to 25 fps to maintain
consistency and avoid introducing an extra variable in our dataset. These contents
include at least 10 videos having large smooth areas as well as texture-rich regions, on
which the effects of compression are often more apparent, and which may benefit by
the use of AQ. We carefully segmented the video sequences into clips of 7-10 seconds,
varying the durations and endpoints to prevent awkward or annoying scene cuts.

Figure 4.1 presents several sample frames from the source sequences that were
acquired for this study. These videos encompass a wide range of content. Following
prior work Chen et al. (2021); Tu et al. (2021a), we calculated low-level descriptors on
each source sequence, including spatial information (SI) (integrated Sobel magnitude),
temporal information (TI) (absolute average frame differences) defined in ITU (2008),
and a popular measure of colorfulness (CF) described in Hasler and Suesstrunk (2003).
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Figure 4.2: Spatial Information (SI) versus (a) colorfulness (CF) and against (b)
Temporal Information (TI), measured on all of the source sequences in the new LIVE
AQ-HDR Database. The corresponding convex hulls are plotted by red lines.

Figure 4.2 plots the SI, TI, and CF of all of the source sequences in the new database,
illustrating the wide range of low-level content and activity present in these sequences
in the spatial, temporal, and color dimensions.

4.2.2 Test Sequences

The new HDR VQA database contains a total of 400 videos, which is significantly
larger than any prior HDR VQA dataset. It includes 30 source videos processed to
obtain 8 different combinations (indexed 1-8 in Table 4.1) of bitrates and resolutions
with the AQ option turned on. Additionally, we have 10 “AQ content” compressed
with 12 different combinations, i.e., combinations indexed 1-8 in Table 4.1 with the
AQ option turned on, and another 4 combinations processed with level 2,5,7,8 in
Table 4.1 with the AQ option turned off. These bitrates and resolutions were chosen
to cocompass common HDR video streaming practice, using the HEVC Codec. To
ensure a broad range of quality levels in the dataset, we introduced bitrate variations
by sampling from Gaussian distributions centered on the specified mean bitrates.
The means and standard deviations, as well as the AQ options for every considered
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Table 4.1: Bitrate and Resolution Settings Used to Create the Distorted videos. Four
of the Sports Videos are Compressed at 1.7 Mbps instead of 1 Mbps at Number 3.

Number resolution bitrate mean (Mbps) bitrate stand deviation (Mbps) AQ option

1 3840×2160 11.2 0.3 on

2 3840×2160 3 0.3 on/off

3a 3840×2160 1 0.1 on

3b 3840×2160 1.7 0.1 on

4 1920×1080 5.4 0.3 on

5 1920×1080 1.2 0.1 on/off

6 1920×1080 0.5 0.1 on

7 1280×720 1.5 0.3 on/off

8 960×540 0.8 0.2 on/off

bitrate and resolution combination indexed 1-8 are shown in Table 4.1. Every video
was subjected to every bitrate/resolution combination 1-8, with the exception of
combination 3, where the bitrates of four high motion videos were increased to 1.7
Mbps to avoid strong motion artifacts. These four processed videos were processed
using combination 3(b), while the other 36 videos were processed as in combination
3(a).

4.2.3 Subjective Testing Design

We conducted a subjective human study in the Laboratory for Image and Video
Engineering (LIVE) at The University of Texas at Austin. The study was conducted
in a controlled environment, where participants viewed the videos on a 65-inch Sam-
sung Class Q90T QLED 4K UHD HDR Smart TV TV connected to a workstation
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with a 12 GB Titan X Graphics Processing Unit (GPU) via an HDMI 2.0b cable.
The VLC player VideoLAN was used for HDR video playback, and all advanced tem-
poral processing options on the TV were disabled to ensure the integrity of the test
conditions and to avoid the introduction of any additional artifacts.

The participants were each asked to view every video, providing a quality judg-
ments on each using a visible slider on the display, which was controlled with a
mouse. The rating scale was continuous, with five Likert-like markers labeled ”Bad,”
”Poor,” ”Fair,” ”Good,” and ”Excellent” placed at uniform intervals to guide the
subjects when giving ratings. Scores were recorded as integers on the interval [0,
100], although numerical values were not made visible to the participants. In order
to prevent bias due to initial positioning of the rating indicator, it did not appear
on the sliding scale until the participant placed the cursor on the slider and clicked,
where upon it became visible at that location, but remained visible and available to
be moved and repositioned as the subject desired.

The first session for each subject was preceded by a training session where in-
structions were given, followed by six exemplar videos of two different content types
that generally spanned the range of distortions that would be seen in the subsequent
videos. The Absolute Category Rating with Hidden Reference (ACR-HR) protocol
ITU (2008) was used for the training and test videos, and the order in which the videos
were presented was randomized for each subject. Participants viewed the videos from
a distance of approximately 1.5 times the height of the display.

4.2.4 Subjects

A total of 42 human subjects were recruited from the student population at The
University of Texas at Austin. Each subject participated in two sessions separated
by at least 24 hours. We applied the Snellen and Ishihara tests of each subject’s
visual acuity and color perception, respectively. No subject was found to have a color
deficiency, and no subject had less than 20/30 visual acuity on the Snellen test, when
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wearing their corrective lenses (if needed).

4.3 Processing of Subjective Scores
4.3.1 Computing of Mean Opinion Score

We computed Mean Opinion Score (MOS) using the statistical method pro-
posed in Li et al. (2020). An improved method to recover MOS from noisy data
called SUREAL finds a Maximum Likelihood (ML) estimate of the scores. Using
this method, the opinion scores sij of video j from subject i are regarded as random
variables

Sij = ψj +∆i + νiX, (4.1)

where ψj is the true quality of video j, ∆i represents the bias of subject i, the non-
negative term νi represents the inconsistency of subject i, and X ∼ N(0, 1) are i.i.d.
Gaussian random variables. The quantities ψj,∆ik , νi are jointly estimated in an
iterative manner. By adjusting the weights according to subjects’ inconsistency νi,
the recovered MOS converges to a final value. Since this method assigns a smaller
weights to subjects having higher inconsistencies, subject biases are accounted for
when estimating the true qualities ψj, and the method is robust against subject
inconsistencies. The inconsistency of each subject can also be used to reject the
scores obtained from a subject.

The distribution of human subjective scores is depicted in Figure 4.3, using a
box plot. As may be seen, the distortion combinations provided a wide range of
perceived qualityies. The box at 2160p 1.7Mbps represents the four afore mentioned
high motion videos, which exhibit a similar range of quality as the other contents
compressed at 1Mbps despite their increased bitrate.
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Figure 4.3: Box plots of the distributions of the MOS at each bitrate and resolution
combination.

4.3.2 Effect of AQ on MOS

We also plotted the SUREAL MOS of the ten contents for the two AQ options
(on and off) in Fig 4.4. It may be observed that the quality of the videos is more
affected by bitrate, and less so by AQ. Intriguingly, some contents, such as content 2
and content 6, which feature particularly large smooth sky areas, appear to benefit
from AQ across the entire bitrate range. Conversely, other contents exhibit minimal
improvement from AQ or only show benefits at specific bitrates, contingent upon
the nature of the content as shown in Fig. 4.5. We performed a t-test on the raw
scores obtained from the subjective study to study the statistical significance of the
scores. The resulted p-values are also plotted in Fig. 4.5. The computed p-values
were usually above 0.05, indicating that although AQ produces differences in quality,
these are relatively subtle, and rarely significant.
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Figure 4.4: Box plots of the distributions of the MOS of the videos with both AQ
options.

4.4 Objective Video Quality Model Design

Taking inspiration from models of the human visual pathway, we have developed
new quality-aware features that we use to define a new VQA model that is able to ac-
curately identify and analyze distortions related to AQ option, such as banding. This
could be used in video compression workflows to affect decisions regarding whether
to deploy AQ.
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Figure 4.5: A group of bar plots showing differences of MOS between AQ enabled and
AQ disabled contents. The left vertical axis of each plot express the MOS difference
between the video scores with AQ on and AQ off, while the vertical axis on the right
side of the plots are the p-values obtained by the t-test.

4.4.1 Banding Distortions

Banding is a distortion that commonly affects images and videos. It is char-
acterized by the appearance of visible bands or stripes in the image, with abrupt
transitions between adjacent colors, brightness, or tones. These bands can be caused
by a variety of factors, including lossy compression, limited bit depth, and other types
of quantization errors. To detect and measure the impact of banding artifacts on the
perceived quality of videos, we propose a new set of features combines difference-
of-Gaussian (DoG) filters, statistical features, and local histogram processing with
the Space-Time GeneRalized Entropic Difference (ST-GREED) model Madhusudana
et al. (2021b).

We design the DoG filters to target specific frequency bands in videos that may
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be associated with banding artifacts. We show that this allows us to more accurately
detect and measure the impact of banding. An example of the effect of the DoG filters
is depicted in Fig. 4.6 and 4.7. Fig. 4.6 shows a frame of a video and a compressed
version of it. The latter exhibits very noticeable banding artifacts in the dark sky
regions. When the DoG filter is applied, as shown in Fig. 4.7, the banding artifacts
become more pronounced.

Figure 4.6: The ‘taipei’ video. Top: an original frame; Bottom: the compressed
frame exhibiting apparent banding artifacts. (The contrasts have been enhanced for
visualization.)

In the ST-GREED model, the statistics of spatial and temporal bandpass video
coeficients are analyzed to measure the perceived quality of videos of diverse frame
rates. We replace the spatial filters in ST-GREED with specially designed DoG filters,
customizing their frequency responses to better detect and isolate banding artifacts.
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Figure 4.7: Application of DoG filters to the video frames in Fig 4.6. Top: original;
Bottom: compressed showing enhanced banding artifacts. (The contrasts have been
enhanced for visualization.)

4.4.1.1 Generalized Gaussian Distribution

The Generalized Gaussian Distribution (GGD) is a reliable model of the statistics
of bandpass-processed natualistic videos Wang and Simoncelli (2005); Madhusudana
et al. (2021b); Bampis et al. (2017a). Here, we deploy the GGD to model the bandpass
statistics of reference and distorted videos denoted by R and D, having frames Rt

and Dt, where t is the temporal index. The responses of a suitable band-pass filter
to the reference and distorted videos will be denoted by BR

t and BD
t , respectively,

both of which are assumed to follow a GGD model, the parameters of which may
vary with t: BR

t and BD
t follows a GGD model, i.e., BR

t ∼ GGD(µR
t , α

R
t , β

R
t ) and

BD
t ∼ GGD(µD

t , α
D
t , β

D
t ).

Here the location parameters µt are the distribution means, while the scale pa-
rameters αt determine the variances, and the parameters βt control the shapes of the
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distributions (tail weight and peakiness). Let the bandpass coefficients at frame t
be partitioned into non-overlapping patches/blocks of size

√
M ×

√
M and indexed

by p ∈ {1, 2, ...P}. The vectors of bandpass responses in patch p of subband k on
frame t of the reference and distorted videos will be denoted BR

pt and BD
pt. Following

Sheikh and Bovik (2006, 2005); Madhusudana et al. (2021b), we model any perceptual
imperfections using an additive neural noise model:

B̃R
pt = BR

pt +WR
pt , B̃D

pt = BD
pt +WD

pt (4.2)

where BR
pt and BD

pt are independent of WR
pt and WD

pt , respectively, and where WR
pt and

WD
pt are Gaussian distributed noise fields with zero mean and variance σ2

W IM, where
IM is the identity matrix of dimensions M ×M . The presence of distortion, such as
banding, causes the statistics of videos to be altered in ways that can be predictive of
quality. One way of capturing these statistical changes is by comparing (differencing)
their entropies before and after distortions. The entropy of a GGD random variable
X ∼ GGD(0, α, β) has a closed form expression given by:

h(X) =
1

β
− log( β

2αΓ(1/β)
) (4.3)

To obtain the values of α and β, the bijective mapping between the GGD parameters
and kurtosis is applied; interested readers can refer to Madhusudana et al. (2021b)
for complete details.

4.4.1.2 DoG GREED Measure

We obtain spatial bandpass responses using a DoG filter

G(x, y) = G1(x, y)−G2(x, y), (4.4)

where G1(x, y) and G2(x, y) are Gaussian kernels of the form

Gi(x, y) =
1

2πσ2
i

exp
(
−x

2 + y2

2σ2
i

)
(4.5)
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where σ2 > σ1. The fourier transform of (4.4) is of the form

H̃(w) = exp
[
−2(πσ1)

2
(w
N

)2
]
− exp

[
−2(πσ2)

2
(w
N

)2
]
. (4.6)

where we let σ1 = σ and σ2 = kσ. The peak response of (4.6) occurs at

w = wp = ± N

πσ

√
ln
√
k

k2 − 1
. (4.7)

Following numerous other authors we take k =
√
2. The upper and lower half-peak

cutoff frequencies of the DoG filter may be found by solving

H̃(w) =
1

2
H̃(wp) (4.8)

which yields wLOW ≈ N
4πσ

and wHIGH ≈ N
3σ

. We explain the role of WLOW and WHIGH

on model performance in Section 4.5.2.

The bandpass coefficients by filtering the reference and distorted videos using
(4.4) are

RDoG
t (x, y) = Rt ∗G(x, y), DDoG

t (x, y) = Dt ∗G(x, y). (4.9)

The spatial entropies h(R̃DoG
t ) and h(D̃DoG

t ) of the responses in (4.9) are calculated
using equation (4.3), where under the additive noise model (4.2). The scaling factors
and modified entropies are defined as in Bampis et al. (2017a); Madhusudana et al.
(2021b); Soundararajan and Bovik (2011):

ηRpt = log(1 + σ2(R̃DoG
t )), ηDpt = log(1 + σ2(D̃DoG

t ))

θRpt = ηRpth(R̃
DoG
t )), θDpt = ηDpth(D̃

DoG
t ).

(4.10)

Finally, we define the DoG-GREED index as:

SGREEDt =
1

P

P∑
p=1

|θDpt − θRpt|. (4.11)
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4.4.2 Localized Histogram Equalization Features

Histogram equalization is commonly used to improve the contrast or dynamic
range of an image by stretching the range of intensities or luminances values in an
image, while approximately equalizing their frequencies of occurrence. This is done
by calculating the empirical cumulative distribution function (CDF) then using it to
remap the pixel values. LHE operates by applying histogram equalization on local
spatial regions, defined either by image partition or a moving window Hummel (1977).
This allows the brightness distribution to be modified in a more localized and selective
manner. In the simplest form of LHE, each pixel is transformed by equalizing the
histogram within a neighborhood of each pixel.

An example of the effect of LHE is depicted in 4.8, which shows the same frames
as in Fig. 4.6. As depicted in Fig. 4.8, the banding artifacts become even more
noticeable. When the LHE is applied, the frame exhibiting the banding effect is
significantly enhanced on the same compressed frame as Fig. 4.6, especially along
the edges of the banding, as shown in Fig. 4.8 (bottom). However, no such effect is
observed on the original frame although many other features are highlighted, as may
be seen in Fig. 4.8 (top). Given reference and distorted frames, Rt and Dt, denote
the LHE processed frames by R′

t and D′
t. The next stage is to quantify the statistical

differences between the LHE-processed videos. To do this, one can compute the
local mean-subtracted, contrast-normalized (MSCN) coefficientsR′MSCN

t andD′MSCN
t

Ebenezer et al. (2020a); Mittal et al. (2012a); Kundu et al. (2017) often used to model
contrast-gain masking processes in early human vision Carandini et al. (1997); Rao
et al. (2001). The MSCN coefficients R′MSCN

t and D′MSCN
t of an LHE transformed

video frame R′
t and D′

t are:

R′MSCN
t [i, j] =

R′
t[i, j]− µRt[i, j]

σRt[i, j] + C
, (4.12)

and
D′MSCN

t [i, j] =
D′

t[i, j]− µDt[i, j]

σDt[i, j] + C
, (4.13)
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Figure 4.8: Application of local histogram equalization (LHE) to the video frames in
Fig 4.6. Top: original; Bottom: compressed showing enhanced banding artifacts.

where i ∈ {1, 2..,M}, j ∈ {1, 2.., N} are spatial indices, M and N are the frame
height and width, respectively, the constant C = 0.01 imparts numerical stability,
and where

µ[i, j] =
k=K∑
k=−K

l=L∑
l=−L

w[k, l]R′
t[i+ k, j + l] (4.14)

and

σ[i, j] = (
k=K∑
k=−K

l=L∑
l=−L

w[k, l](R′
t[i+ k, j + l]

− µRt[i, j])
2)

1
2

(4.15)

for the reference frame. The statistics µDt and σDt are computed in identical manner
on the distorted frames. The weights w = {w[m, l]|m = −L, . . . , L, l = −L, . . . , L}

are a 2D circularly-symmetric Gaussian weighting function sampled out to 3 standard
deviations and rescaled to unit volume, where K = L = 3. The same spatial entropies
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h(R̃′MSCN
t ) and h(D̃′MSCN

t ) are calculated using (4.3) under the additive neural noise
model. The scaling factors and modified entropies computed as

γRpt = log(1 + σ2(D̃′MSCN
t )), γDpt = log(1 + σ2(D̃′MSCN

t ))

ϵRpt = γRpth(D̃
′MSCN
t )), ϵDpt = γDpth(D̃

′MSCN
t ).

(4.16)

Finally, define the LHE-GREED index as:

LHE-GREEDt =
1

P

P∑
p=1

|ϵDpt − ϵRpt|. (4.17)

4.4.3 PSNR features

PSNR was included as an additional component to provide a complementary per-
spective on the evaluation of video quality. Although PSNR is a simple and widely
used metric, it can offer insights into differences between original and distorted videos
on a per-pixel basis. By incorporating PSNR into the HDR-GREED algorithm, the
model can benefit in cases where banding artifacts lead to significant pixel value
differences. Combining PSNR with the more advanced features and human visual
system-inspired components of HDR-GREED allows for a more comprehensive as-
sessment of HDR video quality.

4.4.4 Implementation Details

For simplicity, we implemented our model only in the luminance domain. When
calculating entropies we used spatial patches of size 5× 5 (i.e.

√
M = 5). The neural

noise variance was always fixed at σ2
W = 0.1 in (4.2), matching those employed in

Soundararajan and Bovik (2011) and Bampis et al. (2017a). Similar to Bampis et al.
(2017a); Madhusudana et al. (2021b), we found that out model is most effective when
DoG-GREED and LHE-GREED are calculated over multiple spatial scales. Hence,
we computed all features over 6 spatial scales, by bicubically downsampling the frames
2s times, s ∈ {0, 1, 2, ..., 5} Madhusudana et al. (2021b); Soundararajan and Bovik
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Table 4.2: Descriptions of Features Used In HDR-GREED

Feature index Description

f1 − f16 Original ST-GREED features

f17 − f22 DoG-GREED features

f23 − f28 LHE-GREED features

f29 PSNR feature

(2011); Bampis et al. (2017a); Li et al. (2017). Finally, the entropy terms are pooled
over all temporal indices by averaging them:

h̄ =
1

T

T∑
t=1

ht (4.18)

where T is the number of frames for each video.

4.4.5 Regression

The DoG-GREED, LHE-GREED, and original ST-GREED features form a pow-
erful set of quality aware features, which we used to train a support vector regressor
(SVR) on the new database to map the features to human judgments of quality.
These features are summarized in Table 4.2.

4.5 Objective VQA Experiments

To demonstrate the usefulness of the new LIVE AQ Video Quality Database,
we conducted a series of experiments to evaluate the performances of several leading
HDR VQA models, as well as SOTA standard dynamic range (SDR) VQA models.
We also examined the effects of varying the parameters of the HDR-GREED model,
which is defined by the feautres in Table 4.2. These experiments allowed us to assess
the relative capabilities and limitations of these different models.
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4.5.1 Evaluation Protocol

To evaluate the performances of the compared VQA algorithms, we employed
an SVR model with a linear kernel to learn the mappings from features to difference
mean opinion scores (DMOS). We conducted 1000 random train-test splits of the
data, where in each, 80% of the data was used for training and 20% was used for
testing, with no overlap between the training and testing subsets, nor of the original
content the videos derived from. We applied 5-fold cross-validation to determine the
optimal SVR parameters for each training set. This allowed us to robustly assess
the compared algorithms and study their generalization capabilities. We used three
standard performance metrics: the Spearman’s Rank Order Correlation Coefficient
(SROCC), the Pearson Linear Correlation Coefficient (PLCC), and the RMSE.

4.5.2 Selection of DOG-GREED Parameters

We first studied the performance of HDR-GREED against different choices of
parameters of the DoG filter used to generate DoG-GREED features. From the
previous section wLOW ≈ N

4πσ
and wHIGH ≈ N

3σ
, where units of σ are in pixels and

frequencies are in cycles/frame. Let N = 3840 for 4K videos, we studied candidate
DoG frequency falling in the range 2 − 20 cycles/frame. The reason we selected
this frequency range is empirical, yet it is unique and based on sound observation.
Banding artifacts are usually repetitive, especially in critical, large sky regions. These
quasi-periodic degradations are typically quite low-frequency and it is convenient to
consider them in units of cycles/frame, where we use “frame” to mean the longer
frame dimension. We have found that repetitive bands nearly always have reciprocal
periods (fundamental frequencies) in the range of 2 − 20 cycles/frame. The DoG
bandpass parameters are determined by σ; we used grid search over wLOW to find an
optimal parameter for the DoG filter. The parameters sets that we experimented are
shown in Table 4.3.

The results of using the parameter values in Table 4.3 are shown in Table 4.4.
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Table 4.3: The Parameters Used in the DoG filter.

wLOW wHIGH σ

2 8.3773 152.7933

4 16.7546 76.3966

6 25.1320 50.9310

8 33.5093 38.1983

10 41.8866 30.5586

12 50.2640 25.4655

14 58.6413 21.8276

16 67.0186 19.0991

18 75.3960 16.9770

20 83.7733 15.2793

Plots that showing the performance against different choices of the parameters are
provided in Fig. 4.9. As may be observed, the DoG-GREED features generally per-
formed well, obtaining high correlations against human judgments, and significantly
better than when the DoG-GREED features were removed (“None” in Table 4.4).
From Fig. 4.9, the correlation first increases and then decreases as the cutoff fre-
quency increases. This clear pattern provides valuable insights into the relationship
between the cutoff frequency and the performance of the DoG-GREED features for-
for predicting human judgments. The peak performance was obtained at wLOW = 6

cycles/frame, corresponding to a σ = 50.93 and the bandpass filter spanning ap-
proximately 6− 25.13 cycles/frame.

111



Table 4.4: Correlations against Human Score Obtained by HDR-GREED as σ Is
Varied in DoG-GREED. The Top Performing Parameter is Boldfaced.

W_low SROCC PLCC RMSE

None 0.8572 0.8477 10.0364

2 0.8735 0.8699 9.4725

4 0.8804 0.8751 9.4199

6 0.8797 0.8763 9.3201

8 0.8782 0.8752 9.3795

10 0.8767 0.8709 9.4203

12 0.8725 0.8678 9.5515

14 0.8726 0.8669 9.4585

16 0.8709 0.8667 9.5849

18 0.8719 0.8660 9.5583

20 0.8729 0.8672 9.6743

4.5.3 Performance comparison and benchmark

We conducted a comparison of various leading FR VQA models designed for
both HDR and SDR videos on the new LIVE AQ-HDR Database. We included
PSNR, SSIM, MS-SSIM Wang et al. (2003), SpEED-QA Bampis et al. (2017a), and
ST-RRED Soundararajan and Bovik (2011), VMAF Li et al. (2017), HDR-VDP 2.2
Mantiuk et al. (2011), and HDR-GREED. Since many FR VQA algorithms directly
compute video quality predictions without using machine learning when mapping
features to human opinion scores, we modified some of the leading FR algorithms
to extract individual quality-aware features, then applied the same machine learn-
ing protocol as the other trained models to map them to predictions of perceptual
quality, to ensure fair comparisons. Specifically, we decomposed SSIM into three
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features: those representing luminance, contrast, and structural similarity. Similarly,
we decomposed MS-SSIM into eleven features, comprising two SSIM features from
each of four spatial scales, and three from the coarsest scale. For SpEED-QA, we
extracted both the reduced-reference and single-number versions of the spatial and
temporal SpEED-QA values, yielding a total of four features. The ST-RRED features
were obtained from five levels of the steerable pyramid used in that algorithm, and
the HDR-VDP features were obtained by pooling quality features over nine spatial
scales. We then trained an SVR to map these features to human quality judgments on
the new LIVE AQ-HDR database. We also conducted an ablation study with HDR-
GREED, removing each feature set and evaluating the performance of the rest of the
feature sets in the algorithm. The results of the comparison are shown in Table 4.5
and the ablation study is shown in Table 4.6. We also calculated the performance
of the FR VQA algorithms on the AQ videos and non-AQ videos separately in the
LIVE AQ-HDR Database. The results are shown in Table 4.7. It may be observed
from the table that HDR-GREED outperformed on the non-AQ videos in the LIVE
AQ-HDR Database. Although it doesn’t obtain top performance on the AQ videos,
it is competitive and improves on the performance by a great amount comparing
to ST-GREED. Overall, HDR-GREED outperformed all of the other algorithms by
healthy margins. This superior performance can be attributed to the predictive abil-
ity of the new features, which are able to capture HDR-relevant distortions, including
when AQ is varied to attempt to ameliorate banding effects. It is noteworthy that
both HDR-VDP and PSNR effectively capture distortions in banding videos, likely
because of their pixel-based video differencing, which can accurately capture subtle
differences present in banding videos.

We also evaluated the performances of the same VQA models on the recent
LIVE-HDR database, which is a new database dedicated to the study of HDR per-
ception but without AQ variations. This database consists of 310 HDR10 videos
that were viewed by 66 subjects, where the distorted videos were created by applying
compression and spatial downscaling using the x265 encoder. By testing the models
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Table 4.5: Performances of the Compared HDR and SDR Quality Models When Eval-
uated on the LIVE AQ-HDR Database. The Top Performing Models Are Boldfaced.

Algorithm SROCC PLCC RMSE

PSNR 0.7330 0.7176 12.5456

SSIM 0.5337 0.5491 14.6435

MS-SSIM 0.5706 0.5914 14.6072

SpEED-QA 0.7810 0.7781 11.6660

ST-RRED 0.6960 0.6886 13.2177

HDR-VDP2.2 0.8094 0.8073 11.0161

VMAF 0.8186 0.8224 10.8991

ST-GREED 0.8092 0.8186 10.8458

HDR-GREED 0.8815 0.8763 9.3047

Table 4.6: Ablation Study on the LIVE AQ-HDR Database.

Features removed SROCC PLCC RMSE

LHE-GREED 0.8633 0.8615 9.8531

DoG-GREED 0.8572 0.8477 10.0364

ST-GREED 0.8737 0.8698 9.3622

PSNR 0.8439 0.8404 10.1536

None 0.8815 0.8763 9.3047
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Table 4.7: Performances of the Compared HDR and SDR Quality Models When
Evaluated on the LIVE AQ-HDR Database, Separated by AQ and Non-AQ Videos.
The Top Performing Models Are Boldfaced.

Non-AQ videos AQ videos

Algorithm SROCC PLCC RMSE SROCC PLCC RMSE

PSNR 0.7644 0.7613 12.2169 0.8470 0.8524 8.3270

SSIM 0.5122 0.5144 16.2522 0.7026 0.7391 12.3005

MS-SSIM 0.5995 0.6178 15.4960 0.6061 0.6057 13.1560

ST-RRED 0.6817 0.7000 13.6990 0.6522 0.5468 14.9204

SpEED-QA 0.7858 0.7917 11.9264 0.7148 0.6892 13.2230

HDR-VDP2.2 0.8379 0.8413 10.6262 0.8317 0.8020 10.4441

VMAF 0.8259 0.8391 10.8275 0.8043 0.8147 9.7939

ST-GREED 0.8377 0.8357 10.9461 0.6504 0.6661 13.1795

HDR-GREED 0.8745 0.8819 9.4293 0.8026 0.786 11.2271
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Table 4.8: Performances of the Compared HDR and SDR Quality Models When
Evaluated on the LIVE HDR Database. The Top Performing Model Is Boldfaced.

Algorithm SROCC PLCC RMSE

PSNR 0.6242 0.6357 14.2095

SSIM 0.5208 0.4898 16.9252

MS-SSIM 0.6007 0.5810 15.5789

ST-RRED 0.6863 0.6569 13.2224

SpEED-QA 0.6110 0.6196 14.3763

HDR-VDP2.2 0.7041 0.6722 13.7727

VMAF 0.6753 0.6086 14.8758

ST-GREED 0.6456 0.6180 14.6678

HDR-GREED 0.7398 0.7241 11.6438

on this database, we sought to study the generalizability of the compared models.
As shown in Table 4.8, HDR-GREED was able to deliver significant improvement
and outperforance, on an independent dataset containing different applied distortion
processes.

4.5.4 Evaluation on SDR Database

We also trained and evaluated HDR-GREED on the SDR-only LIVE ETRI
Database Lee et al. (2021) to study the efficacy of the new models. The LIVE ETRI
database consists of 437 videos that have undergone compression, spatial aliasing, and
temporal subsampling. Human subjective scores are also provided for these videos.
The videos in this database are standard dynamic range (SDR) and were encoded
using 10 bits per pixel, with a BT 709 gamma curve and color gamut. As shown in
Table 4.9, the HDR-GREED model achieved comparable performance to SOTA VQA
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Table 4.9: Performances of the Compared Algorithms on the LIVE ETRI Database.
The Top Performing Model is Boldfaced.

Algorithm SROCC PLCC RMSE

PSNR 0.4941 0.4289 13.3712

SSIM 0.3568 0.3358 14.0594

MS-SSIM 0.5234 0.5319 13.2987

ST-RRED 0.7500 0.7587 10.9945

SpEED-QA 0.7461 0.7676 9.8110

VMAF 0.6439 0.6415 11.8306

ST-GREED 0.7245 0.7613 9.9702

HDR-GREED 0.7772 0.7847 9.8033

methods on this dataset. This suggests that the features employed by HDR-GREED
are not restricted to HDR content and generalize well to other types of artifacts that
may occur in SDR streaming scenarios, even in the presence of another different class
of applied distortions.
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Chapter 5: Discussion

This research journey embarked on addressing critical aspects in the field of
Video Quality Assessment (VQA) by developing comprehensive databases and ad-
vanced models. In line with this objective, we established two large-scale video quality
databases designed specifically for high-motion, live-streaming scenarios and HDR10
video format. The former includes 45 source sequences from 33 original contents with
six different distortion types, while the latter contains 310 videos with subjective
evaluations under two lighting conditions.

The most compelling aspect of these new databases is their accessibility to the
public. By offering these resources to the wider research community, we facilitate
testing, comparison, and development of both No-Reference (NR) and Full-Reference
(FR) VQA models. This represents a significant leap forward in making high-quality
datasets available for the development and improvement of VQA models.

The unique focus of our study on the HDR10 format, a commonly used standard
in contemporary video technology, addresses a critical gap in the field. While our
current efforts are centered around HDR10, this research has the potential to stimulate
further work in other HDR formats such as HDR10+, Dolby Vision, and Hybrid Log-
Gamma (HLG), opening up new avenues for future investigation.

Our work significantly advances the HDR VQA discipline by leveraging the
HDR10 standard, incorporating a diverse selection of both Video on Demand (VoD)
and live videos from actual streaming sources. This strategy results in a dataset
that is much more representative of modern HDR content than previous attempts.
Furthermore, the introduction of an evaluation database encoded with and without
Adaptive Quantization (AQ) options allows for an in-depth analysis of AQ’s impact
on perceived HDR video quality, an aspect often overlooked in previous research.

In the course of this research, we designed and implemented two distinct yet com-
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plementary models: a framework for defining HDR quality-aware features and a novel
HDR VQA model called HDR-GREED. The latter integrates Laplacian of Gaussian
(LoG) and Difference of Gaussian (DoG) filters to enhance the model’s sensitivity
to spatial distortions such as banding and blocking. These distortions are particu-
larly relevant in HDR context, further improving the practicality and effectiveness of
HDR-GREED.

Despite the enhanced performance and the additional feature extraction stages
in our new models, we ensured that computational complexity remains minimal rela-
tive to conventional models such as VMAF. Notably, these feature extraction stages
can occur in parallel on the transformed and original frames, suggesting that paral-
lel computation can substantially accelerate feature extraction, thereby presenting a
significant improvement in the computational efficiency of VQA models.

Finally, the HDR-GREED model exhibited impressive performance, surpassing
state-of-the-art (SOTA) Full-Reference models on the new LIVE AQ-HDR Database.
It also demonstrated its robustness and effectiveness across previous HDR and SDR
databases, underscoring its potential as a versatile tool for evaluating video quality
across diverse formats and applications. This achievement symbolizes a culmination
of our efforts, and we look forward to seeing how our contributions will propel the
field of HDR VQA further into the future.
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