86 research outputs found

    Emulating and evaluating hybrid memory for managed languages on NUMA hardware

    Get PDF
    Non-volatile memory (NVM) has the potential to become a mainstream memory technology and challenge DRAM. Researchers evaluating the speed, endurance, and abstractions of hybrid memories with DRAM and NVM typically use simulation, making it easy to evaluate the impact of different hardware technologies and parameters. Simulation is, however, extremely slow, limiting the applications and datasets in the evaluation. Simulation also precludes critical workloads, especially those written in managed languages such as Java and C#. Good methodology embraces a variety of techniques for evaluating new ideas, expanding the experimental scope, and uncovering new insights. This paper introduces a platform to emulate hybrid memory for managed languages using commodity NUMA servers. Emulation complements simulation but offers richer software experimentation. We use a thread-local socket to emulate DRAM and a remote socket to emulate NVM. We use standard C library routines to allocate heap memory on the DRAM and NVM sockets for use with explicit memory management or garbage collection. We evaluate the emulator using various configurations of write-rationing garbage collectors that improve NVM lifetimes by limiting writes to NVM, using 15 applications and various datasets and workload configurations. We show emulation and simulation confirm each other's trends in terms of writes to NVM for different software configurations, increasing our confidence in predicting future system effects. Emulation brings novel insights, such as the non-linear effects of multi-programmed workloads on NVM writes, and that Java applications write significantly more than their C++ equivalents. We make our software infrastructure publicly available to advance the evaluation of novel memory management schemes on hybrid memories

    Write-rationing garbage collection for hybrid memories

    Get PDF
    Emerging Non-Volatile Memory (NVM) technologies offer high capacity and energy efficiency compared to DRAM, but suffer from limited write endurance and longer latencies. Prior work seeks the best of both technologies by combining DRAM and NVM in hybrid memories to attain low latency, high capacity, energy efficiency, and durability. Coarse-grained hardware and OS optimizations then spread writes out (wear-leveling) and place highly mutated pages in DRAM to extend NVM lifetimes. Unfortunately even with these coarse-grained methods, popular Java applications exact impractical NVM lifetimes of 4 years or less. This paper shows how to make hybrid memories practical, without changing the programming model, by enhancing garbage collection in managed language runtimes. We find object write behaviors offer two opportunities: (1) 70% of writes occur to newly allocated objects, and (2) 2% of objects capture 81% of writes to mature objects. We introduce writerationing garbage collectors that exploit these fine-grained behaviors. They extend NVM lifetimes by placing highly mutated objects in DRAM and read-mostly objects in NVM. We implement two such systems. (1) Kingsguard-nursery places new allocation in DRAM and survivors in NVM, reducing NVM writes by 5x versus NVM only with wear-leveling. (2) Kingsguard-writers (KG-W) places nursery objects in DRAM and survivors in a DRAM observer space. It monitors all mature object writes and moves unwritten mature objects from DRAM to NVM. Because most mature objects are unwritten, KG-W exploits NVM capacity while increasing NVM lifetimes by 11x. It reduces the energy-delay product by 32% over DRAM-only and 29% over NVM-only. This work opens up new avenues for making hybrid memories practical

    Cooperative cache scrubbing

    Get PDF
    Managing the limited resources of power and memory bandwidth while improving performance on multicore hardware is challeng-ing. In particular, more cores demand more memory bandwidth, and multi-threaded applications increasingly stress memory sys-tems, leading to more energy consumption. However, we demon-strate that not all memory traffic is necessary. For modern Java pro-grams, 10 to 60 % of DRAM writes are useless, because the data on these lines are dead- the program is guaranteed to never read them again. Furthermore, reading memory only to immediately zero ini-tialize it wastes bandwidth. We propose a software/hardware coop-erative solution: the memory manager communicates dead and zero lines with cache scrubbing instructions. We show how scrubbing instructions satisfy MESI cache coherence protocol invariants and demonstrate them in a Java Virtual Machine and multicore simula-tor. Scrubbing reduces average DRAM traffic by 59%, total DRAM energy by 14%, and dynamic DRAM energy by 57 % on a range of configurations. Cooperative software/hardware cache scrubbing reduces memory bandwidth and improves energy efficiency, two critical problems in modern systems

    Coupling Memory and Computation for Locality Management

    Get PDF
    We articulate the need for managing (data) locality automatically rather than leaving it to the programmer, especially in parallel programming systems. To this end, we propose techniques for coupling tightly the computation (including the thread scheduler) and the memory manager so that data and computation can be positioned closely in hardware. Such tight coupling of computation and memory management is in sharp contrast with the prevailing practice of considering each in isolation. For example, memory-management techniques usually abstract the computation as an unknown "mutator", which is treated as a "black box". As an example of the approach, in this paper we consider a specific class of parallel computations, nested-parallel computations. Such computations dynamically create a nesting of parallel tasks. We propose a method for organizing memory as a tree of heaps reflecting the structure of the nesting. More specifically, our approach creates a heap for a task if it is separately scheduled on a processor. This allows us to couple garbage collection with the structure of the computation and the way in which it is dynamically scheduled on the processors. This coupling enables taking advantage of locality in the program by mapping it to the locality of the hardware. For example for improved locality a heap can be garbage collected immediately after its task finishes when the heap contents is likely in cache

    Measuring NUMA effects with the STREAM benchmark

    Full text link
    Modern high-end machines feature multiple processor packages, each of which contains multiple independent cores and integrated memory controllers connected directly to dedicated physical RAM. These packages are connected via a shared bus, creating a system with a heterogeneous memory hierarchy. Since this shared bus has less bandwidth than the sum of the links to memory, aggregate memory bandwidth is higher when parallel threads all access memory local to their processor package than when they access memory attached to a remote package. But, the impact of this heterogeneous memory architecture is not easily understood from vendor benchmarks. Even where these measurements are available, they provide only best-case memory throughput. This work presents a series of modifications to the well-known STREAM benchmark to measure the effects of NUMA on both a 48-core AMD Opteron machine and a 32-core Intel Xeon machine

    Kindergarten Cop : dynamic nursery resizing for GHC

    Get PDF
    Generational garbage collectors are among the most popular garbage collectors used in programming language runtime systems. Their performance is known to depend heavily on choosing the appropriate size of the area where new objects are allocated (the nursery). In imperative languages, it is usual to make the nursery as large as possible, within the limits imposed by the heap size. Functional languages, however, have quite different memory behaviour. In this paper, we study the effect that the nursery size has on the performance of lazy functional programs, through the interplay between cache locality and the frequency of collections. We demonstrate that, in contrast with imperative programs, having large nurseries is not always the best solution. Based on these results, we propose two novel algorithms for dynamic nursery resizing that aim to achieve a compromise between good cache locality and the frequency of garbage collections. We present an implementation of these algorithms in the state-of-the-art GHC compiler for the functional language Haskell, and evaluate them using an extensive benchmark suite. In the best case, we demonstrate a reduction in total execution times of up to 88.5%, or an 8.7 overall speedup, compared to using the production GHC garbage collector. On average, our technique gives an improvement of 9.3% in overall performance across a standard suite of 63 benchmarks for the production GHC compiler.Postprin
    • …
    corecore