36,538 research outputs found

    Optimisation of out-vessel magnetic diagnostics for plasma boundary reconstruction in tokamaks

    Full text link
    To improve the low frequency spectrum of magnetic field measurements of future tokamak reactors such as ITER, several steady state magnetic sensor technologies have been considered. For all the studied technologies it is always advantageous to place the sensors outside the vacuum vessel and as far away from the reactor core to minimize radiation damage and temperature effects, but not so far as to compromise the accuracy of the equilibrium reconstruction. We have studied to what extent increasing the distance between out-vessel sensors and plasma can be compensated for sensor accuracy and/or density before the limit imposed by the degeneracy of the problem is reached. The study is particularized for the Swiss TCV tokamak, due to the quality of its magnetic data and its ability to operate with a wide range of plasma shapes and divertor configurations. We have scanned the plasma boundary reconstruction error as function of out-vessel sensor density, accuracy and distance to the plasma. The study is performed for both the transient and steady state phases of the tokamak discharge. We find that, in general, there is a broad region in the parameter space where sensor accuracy, density and proximity to the plasma can be traded for one another to obtain a desired level of accuracy in the reconstructed boundary, up to some limit. Extrapolation of the results to a tokamak reactor suggests that a hybrid configuration with sensors inside and outside the vacuum vessel could be used to obtain a good boundary reconstruction during both the transient and the flat-top of the discharges, if out-vessel magnetic sensors of sufficient density and accuracy can be placed sufficiently far outside the vessel to minimize radiation damage.Comment: 36 pages, 17 figures, Accepted for publication in Nuclear Fusio

    Multiphysics Optimization for Water-Cooled Breeding Blanket Design Enhancement

    Get PDF
    The commercial feasibility of the first fusion power plant generation adopting D-T plasma is strongly dependent upon the self-sustainability in terms of tritium fueling. Within such a kind of reactor, the component selected to house the tritium breeding reactions is the breeding blanket, which is further assigned to heat power removal and radiation shielding functions. As a consequence of both its role and position, the breeding blanket is heavily exposed to both surface and volumetric heat loads and, hence, its design requires a typical multiphysics approach, from the neutronics to the thermo-mechanics. During last years, a great deal of effort has been put in the optimization of the breeding blanket design, with the aim of maximizing the tritium breeding and heat removal performances without undermining its structural integrity. In this dissertation, a derivative-free optimization method named “Complex method” is applied for the design optimization of the European DEMO Water-Cooled Lithium Lead breeding blanket concept. To this purpose, a potential tritium production performances-based objective function is defined and a multiphysics model of the blanket is developed inside COMSOL environment in order to solve the coupled thermo-mechanical problem, while the optimization algorithm implemented in MATLAB leads the design towards a minimum optimum point compliant with the prescribed requirements. Once the optimized design is obtained, its nuclear, thermal-hydraulic and structural performances are assessed by means of specific neutron transport and multiphysics simulations, respectively. Finally, the structural integrity is verified by means of the application of the RCC-MRx design criteria

    Technology for large space systems: A special bibliography with indexes (supplement 03)

    Get PDF
    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented

    Aerospace medicine and biology. A continuing bibliography (supplement 231)

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1982

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 204

    Get PDF
    This bibliography lists 140 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Publications of the Jet Propulsion Laboratory, July 1961 through June 1962

    Get PDF
    Jpl bibliography on space science, 1961-196

    Yield modeling for deep sub-micron IC design

    Get PDF
    corecore