93 research outputs found

    Robustness Verification of Support Vector Machines

    Get PDF
    We study the problem of formally verifying the robustness to adversarial examples of support vector machines (SVMs), a major machine learning model for classification and regression tasks. Following a recent stream of works on formal robustness verification of (deep) neural networks, our approach relies on a sound abstract version of a given SVM classifier to be used for checking its robustness. This methodology is parametric on a given numerical abstraction of real values and, analogously to the case of neural networks, needs neither abstract least upper bounds nor widening operators on this abstraction. The standard interval domain provides a simple instantiation of our abstraction technique, which is enhanced with the domain of reduced affine forms, which is an efficient abstraction of the zonotope abstract domain. This robustness verification technique has been fully implemented and experimentally evaluated on SVMs based on linear and nonlinear (polynomial and radial basis function) kernels, which have been trained on the popular MNIST dataset of images and on the recent and more challenging Fashion-MNIST dataset. The experimental results of our prototype SVM robustness verifier appear to be encouraging: this automated verification is fast, scalable and shows significantly high percentages of provable robustness on the test set of MNIST, in particular compared to the analogous provable robustness of neural networks

    Linear Dimensionality Reduction for Margin-Based Classification: High-Dimensional Data and Sensor Networks

    Get PDF
    Low-dimensional statistics of measurements play an important role in detection problems, including those encountered in sensor networks. In this work, we focus on learning low-dimensional linear statistics of high-dimensional measurement data along with decision rules defined in the low-dimensional space in the case when the probability density of the measurements and class labels is not given, but a training set of samples from this distribution is given. We pose a joint optimization problem for linear dimensionality reduction and margin-based classification, and develop a coordinate descent algorithm on the Stiefel manifold for its solution. Although the coordinate descent is not guaranteed to find the globally optimal solution, crucially, its alternating structure enables us to extend it for sensor networks with a message-passing approach requiring little communication. Linear dimensionality reduction prevents overfitting when learning from finite training data. In the sensor network setting, dimensionality reduction not only prevents overfitting, but also reduces power consumption due to communication. The learned reduced-dimensional space and decision rule is shown to be consistent and its Rademacher complexity is characterized. Experimental results are presented for a variety of datasets, including those from existing sensor networks, demonstrating the potential of our methodology in comparison with other dimensionality reduction approaches.National Science Foundation (U.S.). Graduate Research Fellowship ProgramUnited States. Army Research Office (MURI funded through ARO Grant W911NF-06-1-0076)United States. Air Force Office of Scientific Research (Award FA9550-06-1-0324)Shell International Exploration and Production B.V

    A Review of Formal Methods applied to Machine Learning

    Full text link
    We review state-of-the-art formal methods applied to the emerging field of the verification of machine learning systems. Formal methods can provide rigorous correctness guarantees on hardware and software systems. Thanks to the availability of mature tools, their use is well established in the industry, and in particular to check safety-critical applications as they undergo a stringent certification process. As machine learning is becoming more popular, machine-learned components are now considered for inclusion in critical systems. This raises the question of their safety and their verification. Yet, established formal methods are limited to classic, i.e. non machine-learned software. Applying formal methods to verify systems that include machine learning has only been considered recently and poses novel challenges in soundness, precision, and scalability. We first recall established formal methods and their current use in an exemplar safety-critical field, avionic software, with a focus on abstract interpretation based techniques as they provide a high level of scalability. This provides a golden standard and sets high expectations for machine learning verification. We then provide a comprehensive and detailed review of the formal methods developed so far for machine learning, highlighting their strengths and limitations. The large majority of them verify trained neural networks and employ either SMT, optimization, or abstract interpretation techniques. We also discuss methods for support vector machines and decision tree ensembles, as well as methods targeting training and data preparation, which are critical but often neglected aspects of machine learning. Finally, we offer perspectives for future research directions towards the formal verification of machine learning systems

    An Exponential Lower Bound on the Complexity of Regularization Paths

    Full text link
    For a variety of regularized optimization problems in machine learning, algorithms computing the entire solution path have been developed recently. Most of these methods are quadratic programs that are parameterized by a single parameter, as for example the Support Vector Machine (SVM). Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. It has been assumed that these piecewise linear solution paths have only linear complexity, i.e. linearly many bends. We prove that for the support vector machine this complexity can be exponential in the number of training points in the worst case. More strongly, we construct a single instance of n input points in d dimensions for an SVM such that at least \Theta(2^{n/2}) = \Theta(2^d) many distinct subsets of support vectors occur as the regularization parameter changes.Comment: Journal version, 28 Pages, 5 Figure

    Set-based State Estimation with Probabilistic Consistency Guarantee under Epistemic Uncertainty

    Get PDF
    Consistent state estimation is challenging, especially under the epistemic uncertainties arising from learned (nonlinear) dynamic and observation models. In this work, we propose a set-based estimation algorithm, named Gaussian Process-Zonotopic Kalman Filter (GP-ZKF), that produces zonotopic state estimates while respecting both the epistemic uncertainties in the learned models and aleatoric uncertainties. Our method guarantees probabilistic consistency, in the sense that the true states are bounded by sets (zonotopes) across all time steps, with high probability. We formally relate GP-ZKF with the corresponding stochastic approach, GP-EKF, in the case of learned (nonlinear) models. In particular, when linearization errors and aleatoric uncertainties are omitted and epistemic uncertainties are simplified, GP-ZKF reduces to GP-EKF. We empirically demonstrate our method's efficacy in both a simulated pendulum domain and a real-world robot-assisted dressing domain, where GP-ZKF produced more consistent and less conservative set-based estimates than all baseline stochastic methods.Comment: Published at IEEE Robotics and Automation Letters, 2022. Video: https://www.youtube.com/watch?v=CvIPJlALaFU Copyright: 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any media, including reprinting/republishing for any purposes, creating new works, for resale or redistribution, or reuse of any copyrighted component of this wor

    An optimal randomized algorithm for d-variate zonoid depth

    Get PDF
    AbstractA randomized linear expected-time algorithm for computing the zonoid depth [R. Dyckerhoff, G. Koshevoy, K. Mosler, Zonoid data depth: Theory and computation, in: A. Prat (Ed.), COMPSTAT 1996—Proceedings in Computational Statistics, Physica-Verlag, Heidelberg, 1996, pp. 235–240; K. Mosler, Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach, Lecture Notes in Statistics, vol. 165, Springer-Verlag, New York, 2002] of a point with respect to a fixed dimensional point set is presented

    SVM via Saddle Point Optimization: New Bounds and Distributed Algorithms

    Get PDF
    We study two important SVM variants: hard-margin SVM (for linearly separable cases) and ν\nu-SVM (for linearly non-separable cases). We propose new algorithms from the perspective of saddle point optimization. Our algorithms achieve (1ϵ)(1-\epsilon)-approximations with running time O~(nd+nd/ϵ)\tilde{O}(nd+n\sqrt{d / \epsilon}) for both variants, where nn is the number of points and dd is the dimensionality. To the best of our knowledge, the current best algorithm for ν\nu-SVM is based on quadratic programming approach which requires Ω(n2d)\Omega(n^2 d) time in worst case~\cite{joachims1998making,platt199912}. In the paper, we provide the first nearly linear time algorithm for ν\nu-SVM. The current best algorithm for hard margin SVM achieved by Gilbert algorithm~\cite{gartner2009coresets} requires O(nd/ϵ)O(nd / \epsilon ) time. Our algorithm improves the running time by a factor of d/ϵ\sqrt{d}/\sqrt{\epsilon}. Moreover, our algorithms can be implemented in the distributed settings naturally. We prove that our algorithms require O~(k(d+d/ϵ))\tilde{O}(k(d +\sqrt{d/\epsilon})) communication cost, where kk is the number of clients, which almost matches the theoretical lower bound. Numerical experiments support our theory and show that our algorithms converge faster on high dimensional, large and dense data sets, as compared to previous methods
    corecore