
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-based State Estimation with Probabilistic Consistency
Guarantee under Epistemic Uncertainty

Citation for published version:
Li, S, Stouraitis, T, Gienger, M, Vijayakumar, S & Shah, JA 2022, 'Set-based State Estimation with
Probabilistic Consistency Guarantee under Epistemic Uncertainty', IEEE Robotics and Automation Letters,
vol. 7, no. 3, pp. 5958-5965. https://doi.org/10.1109/LRA.2022.3154802

Digital Object Identifier (DOI):
10.1109/LRA.2022.3154802

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Robotics and Automation Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 08. Jun. 2022

https://doi.org/10.1109/LRA.2022.3154802
https://doi.org/10.1109/LRA.2022.3154802
https://www.research.ed.ac.uk/en/publications/ebfc8880-4762-498c-a5ca-924a2b85681e


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2022 1

Set-based State Estimation with Probabilistic
Consistency Guarantee under Epistemic Uncertainty

Shen Li*1, Theodoros Stouraitis*1,2, Michael Gienger3, Sethu Vijayakumar2,4, and Julie A. Shah1

Abstract—Consistent state estimation is challenging, especially
under the epistemic uncertainties arising from learned (nonlin-
ear) dynamic and observation models. In this work, we propose
a set-based estimation algorithm, named Gaussian Process-
Zonotopic Kalman Filter (GP-ZKF), that produces zonotopic
state estimates while respecting both the epistemic uncertainties
in the learned models and aleatoric uncertainties. Our method
guarantees probabilistic consistency, in the sense that the true
states are bounded by sets (zonotopes) across all time steps, with
high probability. We formally relate GP-ZKF with the corre-
sponding stochastic approach, GP-EKF, in the case of learned
(nonlinear) models. In particular, when linearization errors and
aleatoric uncertainties are omitted and epistemic uncertainties
are simplified, GP-ZKF reduces to GP-EKF. We empirically
demonstrate our method’s efficacy in both a simulated pendulum
domain and a real-world robot-assisted dressing domain, where
GP-ZKF produced more consistent and less conservative set-
based estimates than all baseline stochastic methods.

Index Terms—Robust/Adaptive Control, Physical Human-
Robot Interaction, State Estimation, Nonlinear Filtering

I. INTRODUCTION

STATE estimation is critical for robot decision making,
especially during human-robot interactive tasks, where

physical states can be partially observed due to occlusions [1]
and latent mental states can influence the interaction [2], [3].
For a robot to safely interact with a human, such states are
typically estimated based on models [4]. Due to the complex-
ity in model specification, human behavior and observation
models are usually learned from data [5]. These learned
models typically include errors, and any process has stochastic
noise; the former is described as “epistemic uncertainty,” and
the latter as “aleatoric uncertainty,” both of which present
critical challenges for estimation algorithms. For example, in
a robot-assisted dressing scenario (see Fig. 1), the epistemic
uncertainty could blind the robot, resulting in overconfidence
in an erroneous human state and rendering the robot’s be-
havior “aggressive” and unsafe. To address this challenge,
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Fig. 1. In a robot-assisted dressing scenario, we deployed our set-based
estimator—GP-ZKF—to estimate the visually occluded human elbow posi-
tion [1]. With human dynamic and observation models learned via Gaussian
Processes, GP-ZKF constructs zonotopic state estimates (illustrated with the
green box) based on the force measurements at the robot end effector.
By handling the epistemic uncertainties in the learned models, GP-ZKF
guarantees probabilistic consistency—i.e., the true human elbow positions are
bounded by the zonotopes across all time steps, with high probability.

we developed a set-based estimation algorithm that is able
to conservatively respect these uncertainties.

We focus on the problem of consistency in state esti-
mation from the view of epistemic uncertainty introduced
by learned models. In prior literature, consistency has been
analyzed within two paradigms: stochastic paradigm and set-
based paradigm. For stochastic methods, such as the Extended
Kalman Filter (EKF), a consistent estimate is defined as an
unbiased point estimate together with a covariance matching
the actual estimation error [6]. In the field of SLAM, the
inconsistency issue of EKF-based approaches, such as GP-
EKF [7], has been broadly investigated from the views of
linearization errors [8], [9] and state unobservability [10],
[11]. On the other hand, set-based methods construct sets, as
state estimates, where consistency can be interpreted as the
sets containing the true states [12]—i.e., bounded estimation
error. For known models, where epistemic uncertainty can
be omitted, set-based methods can produce estimates with
guaranteed consistency under aleatoric uncertainty [12], [13].
In contrast, we consider settings in which nonlinear models are
learned; in such circumstances, uncertainty arises from both
the learning errors (epistemic) and noises (aleatoric).

We developed Gaussian Process-Zonotopic Kalman Filter
(GP-ZKF), a set-based estimation algorithm with a proba-
bilistic consistency guarantee under learned (dynamic and
observation) models. GP-ZKF learns both nonlinear models
via Gaussian Processes (GP) and leverages GP’s confidence
intervals [14] to calibrate the epistemic uncertainties in both
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models. This extends prior work [15] that assumed bounded
epistemic uncertainties in the linear parameter-varying enclo-
sures of the nonlinear models. Similar to set-based estima-
tors [12], [13], but specifically for scenarios with learned
models, our approach recursively produces set-based estimates
that are represented as zonotopes (a special type of polytope).
These zonotopes are designed to respect both epistemic and
aleatoric uncertainties and guaranteed to contain the true states
across all times steps, with high probability, rendering GP-
ZKF consistent when both nonlinear models are learned.

We formally relate our set-based approach—GP-ZKF—
with the corresponding stochastic approach—GP-EKF [7]—
and prove that GP-ZKF reduces to GP-EKF if GP-ZKF omits
linearization errors and aleatoric, and simplifies epistemic
uncertainties. This theoretical connection under nonlinear and
learned models extends prior work [16] in relating set-based
with stochastic paradigms under linear and known models.

In this paper, we make the following contributions:
• We propose GP-ZKF, a set-based state estimator with a

probabilistic consistency guarantee under epistemic and
aleatoric uncertainties, in the case where both dynamic
and observation models are nonlinear and learned.

• We formally relate GP-ZKF with its stochastic counter-
part, GP-EKF [7], under nonlinear and learned models.

We evaluated GP-ZKF in a simulated pendulum domain and
a real-world robot-assisted dressing domain; our results show
that GP-ZKF provides not only more consistent, but less con-
servative set-based estimates than the stochastic baselines (GP-
EKF, GP-UKF, and GP-PF [7]). To the best of our knowledge,
ours is the first work with a probabilistic consistency guarantee
for state estimation with learned models.

In Sec. II, we provide the background, in Sec. III we present
the system formulation, and in Sec. IV we formally define
probabilistic consistency—our focal point for this work. We
present our method in Sec. V, prove its two main theorems in
Sec. VI, and empirically evaluate it in Sec. VII.

II. BACKGROUND

Here, we introduce our nomenclature and briefly provide the
background on intervals, zonotopes, Gaussian Process (GP),
and a high-probability bound for Gaussian noise.

Nomenclature: Uppercase symbols denote sets, bold upper
case symbols denote matrices, lowercase symbols denote
scalars, and bold lowercase symbols denote vectors. Subscripts
denote the time and dimension: e.g., xt, j, for example, is the
jth dimension of a vector, x, at time t. Superscripts denote the
function a variable is related to—e.g., µg is the mean of the
function g(·). The Minkowski sum,

⊕
, between two sets, X

and Y , is defined as X
⊕

Y := {x+y : x ∈ X ,y ∈ Y}.

A. Intervals and Zonotopes

An interval [a,b] is defined as {x : a≤ x≤ b}. A box ⊂Rn

is an interval vector, ([a1,b1], . . . , [an,bn])
T . A zero-centered

box with radius r ∈ Rn is defined as [0± r]⊂ Rn.
Zonotopes are convex polytopes that are centrally symmet-

ric [17]. A set Z ∈Rn is a zonotope if there exists (GZ ,cZ) ∈
Rn×nξ ×Rn, such that Z = {cZ +GZξ : ξ ∈ Rnξ ,‖ξ‖∞ ≤ 1}.

Here, cZ is the center, each column of GZ is a generator, and ξ

contains all generator variables. In this work, we let (Z)c refer
to the center, cZ , and let (Z)G refer to the generators, GZ . We
compactly denote Z = {GZ ,cZ}. Zonotopes are closed under
affine transformations and Minkowski sums, both of which can
be computed exactly. Formally, b

⊕
AZ = {AGZ ,b+AcZ} and

Z1
⊕

Z2 = {[GZ1 GZ2 ],cZ1 + cZ2}. For details about intervals
and zonotopes, please refer to [12], [13], [18].

B. Gaussian Process and Confidence Intervals

In this work, unknown functions are learned via GPs. First,
for any unknown function ψ(x) : Rnx → Rny , we assume
that along all dimensions, j ∈ J with J = {1, . . . ,ny}, the
function outputs, ψ j(·), are independent of each other. Then,
we equivalently reformulate the multi-output function, ψ(·),
using a single-output surrogate function, ψ ′(·) [14]. We define
ψ ′(·) : Rnx × J → R, where for each dimension j, we have
ψ ′(x, j)=ψ j(x); this allows us to apply the standard definition
of GP with a scalar output and formulate confidence intervals.

We use a GP, denoted by GP(mψ ,kψ), to learn ψ ′(·), where
the prior mean function, µψ(·), is set to 0. We assume that
the given training data points are corrupted by i.i.d. Gaussian
noise υ ∈Rny . Formally, for each dimension j, the noise υ j ∼
N (0,λ 2

υ ), where λυ ∈ R. By conditioning the GP on n data
points, we obtain that, for each j, a posterior mean function,
µ

ψ

n, j(·), and a posterior variance function, (σψ

n, j)
2(·).

This work assumes that the true function, ψ ′(·), belongs to
the reproducing kernel Hilbert space (RKHS) associated with
the kernel, kψ . The smoothness of ψ ′(·) can be measured via
its RKHS norm, denoted by ‖ψ ′‖kψ [14]; then, the confidence
intervals for the function outputs of ψ ′(·)—or, equivalently, of
ψ(·)—can be formulated as follows:

Lemma 1 (Lemma 1 in [19]). Let δ ψ ∈ (0,1). Fix ψ in RKHS
with ‖ψ ′‖kψ ≤ Bψ . Assume that each dimension of the data
of ψ ′(·) is corrupted by i.i.d. Gaussian noise υ j ∼N (0,λ 2

υ ).
Let β

ψ
n = Bψ +

√
2(γn·ny + log(1/δ ψ)). Then, with probability

at least (1−δ ψ), jointly for all n ∈ N, j = 1, . . . ,ny, x ∈ Rnx ,
we have that |µψ

n, j(x)−ψ j(x)| ≤ β
ψ
n ·σψ

n, j(x).

This lemma states that with high probability, jointly for each
dimension j, the function output of ψ j(·) is bounded by a
confidence interval centered at the posterior mean prediction
µ

ψ

n, j. The scaling, β
ψ
n , depends upon γn·ny , the information

capacity with n ·ny data points for ψ ′(·), which can be bounded
when the domain of ψ ′(·) is compact [14], [20].

C. Gaussian Noise Bound

We consider i.i.d. Gaussian noise, denoted by υt ∈Rny , for
t = 1, . . . ,T , where T ∈ N denotes a finite time horizon. With
high probability, jointly throughout all time steps, noise can
be bounded by a box, ⊂ Rny . Formally:

Lemma 2. Let vectors υ1, . . . ,υT ∈ Rny , such that for each
time t = 1, . . . ,T and dimension j = 1, . . . ,ny, the noise υt, j ∼
N (0,λ 2

υ ), where λυ ∈R. Then, with probability at least (1−
δ υ), where δ υ ∈ (0,1), jointly for all t = 1, . . . ,T , we have
that υt ∈

[
0±
√

2λυ

√
ln(T ·ny/δ υ)

]ny
⊂ Rny .
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Fig. 2. A flowchart illustrating the three phases of the set-based estimator, GP-ZKF, at time t = 1, . . . ,T : (1) Prediction: given the previous zonotopic estimate,
X̂t−1, and the control, ut−1 (omitted in the figure), GP-ZKF produces a dynamics-consistent zonotope, X̄t . (2) Measurement: given X̄t , the new measurement,
yt , and the control, ut (omitted in the figure), GP-ZKF produces a measurement-consistent polytope, X̄yt . (3) Correction: GP-ZKF computes the new zonotopic
estimate, X̂t , via X̄t ∩ X̄yt . In the prediction phase, the dynamics contains the known function, f (·); the learned function, g(·); and the process noise, w (Eq. 1).
In the measurement phase, the observation function contains the learned function, h(·), and the measurement noise, v (Eq. 2).

Proof. The proof is similar to those for Lemma 5.1 in [20] and
Lemma 4 in [21]. For each time t = 1, . . . ,T and dimension
j = 1, . . . ,ny, we bound υt, j by applying the Gaussian error
function with a probability budget, δ υ/(T ·ny); we then obtain
the result via a union bound over all t and j.

III. SYSTEM FORMULATION

We consider a discrete-time dynamical system with finite-
horizon T ∈N, nonlinear dynamics and observation functions,
and additive noises. Formally, for t = 1, . . . ,T , the system can
be described as follows:

xt = d(xt−1,ut−1,wt−1)

= f (xt−1,ut−1)+g(xt−1,ut−1)+wt−1 (1)
yt = o(xt ,ut ,vt) = h(xt ,ut)+vt (2)

Here, for all t = 0, . . . ,T , xt ∈ Rnx , ut ∈ U ⊂ Rnu , yt ∈ Rny ,
wt ∈ Rnx , and vt ∈ Rny denote the system state, control, mea-
surement, process noise, and measurement noise, respectively.
We assume that the domain U is compact, and each element
of wt and vt are i.i.d. Gaussian. Formally, for each dimension
j, we have wt, j ∼ N (0,λ 2

w) and vt, j ∼ N (0,λ 2
v ), where

λw,λv ∈ R. Here, wt+1 and vt correspond to υt in Sec. II-B.
The function f (·) denotes the prior known dynamic model,
which can be a parametric physics model. The functions g(·)
and h(·) denote the unknown functions to be learned via GP,
and correspond to ψ(·) in Sec. II-B.

Remark 1. By applying Lemma 2, we construct boxes, de-
noted by W ⊂ Rnx and V ⊂ Rny , to bound noises w and
v, respectively. Formally, given δ w ∈ (0,1), with probability
at least (1− δ w), jointly for all t = 1, . . . ,T , we have that
wt−1 ∈W. Given δ v ∈ (0,1), with probability at least (1−δ v),
jointly for all t = 1, . . . ,T , we have that vt ∈V .

IV. PROBLEM DEFINITION

Our goal is to develop a set-based state estimator that
can produce consistent estimates. Let X̂t ⊂ Rnx denote a set-
based state estimate produced by our algorithm at time t. By
assuming that the controls are given, the estimation process,
at time t = 1, . . . ,T can be represented as a recursive function,
X̂t = E(X̂t−1,ut−1,ut ,yt).

When the dynamic and observation models, d(·) and o(·)
(respectively), are known, prior arts in set-based state es-
timation [12], [13], [22] have achieved strict consistency

guarantees. In contrast, we focus on a scenario where both
d(·) and o(·) are learned with a limited amount of data; hence,
we relax the strict consistency and focus on probabilistic
consistency, or δ -consistency, defined as follows:

Definition 1 (δ -consistency). Given δ ∈ (0,1); an initial set-
based estimate, X̂0 ⊂ Rnx such that x0 ∈ X̂0; a sequence of
controls, {ut}T

t=0 ⊂ U ; and a sequence of measurements,
{yt}T

t=1 ⊂ Rny ; Then, a state estimator is δ -consistent if the
sequence of estimates, {X̂t}T

t=1, computed via E, satisfies:

Pr[∀t = 1 . . .T : xt ∈ X̂t ]≥ 1−δ

This definition states that δ -consistent estimators are able to
guarantee that with high probability, jointly for each time step
within a finite time horizon, the set-based estimate contains
the true state. Note that: (1) Def. 1 implies that the high-
probability consistency guarantee holds jointly throughout the
finite time horizon, rather than per time-step in the form of
∀t = 1 . . .T : Pr[xt ∈ X̂t ] ≥ 1− δ [23]. (2) Def. 1 indicates a
filtering (rather than smoothing) problem, as future measure-
ments are never used to estimate past or current states.

Problem Statement. Design a set-based estimator that guar-
antees δ -consistency under the epistemic uncertainties in the
learned models, g(·) and h(·), and the aleatoric uncertainties
in the noises, w and v.

V. METHOD

Our recursive set-based estimator, GP-ZKF, shown in Fig. 2,
follows the algorithmic structure of Kalman filter and set-based
estimators [12], [24]. We choose zonotopes to represent the
set-based estimates due to their computational advantages in
affine transformation and Minkowski sum (see Sec. II-A).

At time step t = 1, . . . ,T , GP-ZKF computes a new zono-
topic estimate, X̂t ⊂ Rnx in three phases: (1) Prediction:
Given ut−1 ∈ U and X̂t−1 ⊂ Rnx that contains xt−1 (for-
mally, X̂t−1 3 xt−1), GP-ZKF constructs a dynamics-consistent
zonotope, X̄t ⊂ Rnx , to bound the output of the dynamics,
d(·), with high probability. (2) Measurement: Given ut ∈U ,
X̄t and a new measurement, yt ∈ Rny , GP-ZKF constructs a
measurement-consistent polytope, X̄yt ⊂ Rnx , that contains all
states consistent with yt , with high probability. We choose
polytopes to represent the potentially asymmetric set, X̄yt . (3)
Correction: GP-ZKF constructs the new zonotopic estimate,
X̂t , via the intersection X̄t ∩ X̄yt .
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A. Phase 1: Prediction
In the prediction phase, given ut−1 and X̂t−1 3 xt−1, GP-

ZKF constructs a dynamics-consistent zonotope, X̄t , to bound
the outputs of d(·), with high probability. As defined in Eq. (1),
d(·) is decomposed into three components: a known function,
f (·); an unknown but to-be-learned function, g(·); and a noise,
w. In this section, we separately formulate bounds for each
component and then integrate them into X̂t−1 to bound d(·).

1) Bounding the Known Function: Bounding arbitrary
functions is nontrivial. In this work, we focus on smooth
functions by making the following assumption:

Assumption 1. (i) f (·) is twice continuously differentiable;
(ii) f (·) is L f -Lipschitz continuous with respect to the 2-norm;
and (iii) ‖ f (x0,u)−x0‖2 ≤ B f for each x0 ∈ X̂0,u ∈U .

In this section, we use Assumption 1(i) to bound the outputs
of f (·); we will incorporate Assumption 1(ii, iii) (based on
Assumption 3 in [21]) in the following section (Sec. V-A2).

Assumption 1(i) allows us to directly apply reachability
analysis [18] to bound the outputs of f (·), given ut−1 and
X̂t−1 3 xt−1. In particular, we first linearize f (·) around a
reference point x̄t−1 ∈Rnx , which is chosen to be the center of
X̂t−1. The linearized function f̄ (xt−1,ut−1) = f (x̄t−1,ut−1)+
J f

x ·(xt−1− x̄t−1), where J f
x is the Jacobian of f (·) with respect

to xt−1, evaluated at (x̄t−1,ut−1). Given ut−1 and X̂t−1 3 xt−1,
the linearization error can be bounded by a zero-centered box
that ⊂ Rnx (see Prop. 3.7 [18]). Formally, for all xt−1 ∈ X̂t−1,
ut−1 ∈U , we have:

f (xt−1,ut−1)− f̄ (xt−1,ut−1) ∈ R f (X̂t−1,ut−1)⊂ Rnx (3)

Here, R f (·) denotes the function used to compute the box that
bounds the error based on X̂t−1 and ut−1.

2) Bounding the Unknown Function: The unknown func-
tion g(·) is learned via a GP (see Sec. II-B). In this section,
we formulate a high-probability bound for the output of
g(xt−1,ut−1), given ut−1 and X̂t−1 3 xt−1, in the following five
steps: (i) We state certain regularization assumptions about
g(·); (ii) show that the state space is compact, with high
probability; (iii) utilize this compactness to derive a bound
for the GP posterior mean, µg(·); (iv) present a bound for the
GP posterior standard deviation, σg(·); and (v) integrate both
bounds of µg(·) and σg(·) into the GP confidence intervals,
as introduced in Lemma 1, to bound the output of g(·).

(i) Regularization assumptions: We denote the kernel for
g(·) as kg and the single-output surrogate function as g′(·)
(see Sec. II-B), and assume the following:

Assumption 2. (i) kg is 2-times continuously differentiable
(Def. 4.35 in [25]), (ii) kg is bounded by ‖kg‖∞ (Eq. 4.15 in
[25]), (iii) kg has bounded derivatives (Assumption 4 in [21]),
and (iv) ‖g′‖kg ≤ Bg (see Sec. II-B).

This assumption states that kg(·, ·) and g(·) are smooth and
bounded; common smooth kernels, such as square exponential
and rational quadratic kernels, satisfy this assumption. As-
sumption 2 (i, iii, iv) implies that g(·) is Lg-Lipschitz continu-
ous with respect to the 2-norm (Cor. 2 in [21]).

(ii) Compact state space: The infinite support of the process
noise, w, makes the state space of our system unbounded.

Taking a step back, the following lemma states that, with high
probability, the reachable state space is compact during the
estimation processes:

Lemma 3. With Asm. 1 (ii, iii), Asm. 2, and our Gaussian
Asm. on w (Sec. III), and given initial set X̂0 3 x0, then with
probability at least (1− δ w), jointly for all t = 0, . . . ,T , we
have that xt ∈X , where X is a box ⊂ Rnx (compact) that
depends upon X̂0, T , λ w, δ w, L f , Lg, B f , Bg, ‖kg‖∞, nx.

Lemma 3 can be proven by integrating X̂0 and our noise
bound, W (Remark 1 in Sec. III), into Lemma 44 in [21]. The
intuition behind the proof is that our Assumption 1 (ii, iii),
Assumption 2, and the Gaussian nature of w (with a probabil-
ity budget δ w) “prevent” f (·), g(·), and w (respectively) from
deviating the state infinitely far away from X̂0.

(iii) Bound posterior mean: Next, we derive a bound for the
posterior mean, µg(·). We first linearize µg(·) around x̄t−1,
which is chosen to be the center of X̂t−1. The linearized func-
tion is µ̄g(xt−1,ut−1) = µg(x̄t−1,ut−1) + Jµg

x · (xt−1 − x̄t−1),
where Jµg

x is the Jacobian of µg. Lemma 3 implies that the
domain of µg(·) during the estimation process is compact, with
high probability. Together with Assumption 2 (i), we obtain
that, with high probability, for each j = 1, . . . ,nx, the mean
µ

g
j is twice continuously differentiable with Lg

∇µ
-Lipschitz

gradient. We then follow the steps in V(A)2) in [14] to derive
a bound for the linearization error, as follows:

|µg
j (xt−1,ut−1)− µ̄

g
j (xt−1,ut−1)| ≤ 1

2 Lg
∇µ
· ‖xt−1− x̄t−1‖2

2 (4)

Here, with probability at least (1−δ w), this bound holds uni-
formly for all t = 1, . . . ,T , j = 1, . . . ,nx, xt−1 ∈X , ut−1 ∈U ,
where the probability (1−δ w) is derived from Lemma 3.

(iv) Bound standard deviation: We approximate the stan-
dard deviation, σg(xt−1,ut−1), using σg(x̄t−1,ut−1). Assump-
tion 2 (i, ii, iii) allows the use of (Eq. 21,22 in [26]) to bound
the approximation error. Formally, with Lg

σ ∈ R, we have for
all t = 1, . . . ,T , j = 1, . . . ,nx, xt−1 ∈ Rnx , ut−1 ∈U :

|σg
j (xt−1,ut−1)−σ

g
j (x̄t−1,ut−1)| ≤ Lg

σ · ‖xt−1− x̄t−1‖1/2
2 (5)

(v) Bound combination: Assumption 2 (iv) allows the use
of Lemma 1 to construct confidence intervals for g(·) with
δ g ∈ (0,1). Via a union bound, we combine the confidence
intervals and our bounds for the mean and standard deviation
to bound the error, |g(·)− µ̄g(·)|, as follows:

|g j(xt−1,ut−1)− µ̄
g
j (xt−1,ut−1)|

≤ 1
2

Lg
∇µ
· ε2︸ ︷︷ ︸

Linearization error of µ
g
j (·)

+ β
g ·σg

j (x̄t−1,ut−1)+β
g ·Lg

σ · ε1/2︸ ︷︷ ︸
Epistemic uncertainty

⊕
Approx. error of σ

g
j (·)

(6)

Here, ε = ‖X̂t−1 − x̄t−1‖2 is the norm of the translated
zonotope. (We provide the derivation in the Appendix.) Let
Rg(X̂t−1,ut−1) be a zero-centered box ⊂ Rnx , whose radius
along each dimension j = 1, . . . ,nx is the RHS of Eq. 6.
Thus, with probability at least (1− δ g− δ w), jointly for all
t = 1, . . . ,T , X̂t−1 ⊂X , ut−1 ∈U , xt−1 ∈ X̂t−1, we have that

g(xt−1,ut−1)− µ̄
g(xt−1,ut−1) ∈ Rg(X̂t−1,ut−1) (7)
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3) The Prediction Phase: We define a linear func-
tion, d̄(·), by summing the linearized f (·) and µg(·) as
d̄(xt−1,ut−1) = f̄ (xt−1,ut−1) + µ̄g(xt−1,ut−1). We define a
box, Rd(X̂t−1,ut−1) ⊂ Rnx , by Minkowski summing the error
bounds of f (·) (Eq. 3), g(·) (Eq. 7), and w (Remark 1 in
Sec. III). Then, with probability at least (1−δ g−δ w), the error
between d(·) and d̄(·) can be bounded by Rd(·) as follows:

d(xt−1,ut−1,wt−1)− d̄(xt−1,ut−1) ∈ Rd(X̂t−1,ut−1)

:= R f (X̂t−1,ut−1)︸ ︷︷ ︸
Linearization err. of f (·)

⊕
Rg(X̂t−1,ut−1)︸ ︷︷ ︸

Epistemic
⊕

Lin. err. of µg(·)⊕
Approx. err. of σg(·)

⊕
W︸︷︷︸

Aleatoric
(8)

Given that d̄ is a linear function, ut−1 is known, and xt−1 ∈
X̂t−1, the output d̄(xt−1,ut−1) is bounded by a zonotope
obtained by linearly transforming X̂t−1. Then, by Minkowski-
summing this transformed zonotope and Rd(X̂t−1,ut−1), we
obtain another zonotope, denoted by X̄t , that bounds the output
d(xt−1,ut−1,wt−1) (see Sec. II-A). Let D(X̂t−1,ut−1) denote
the function to compute X̄t ; we now summarize the steps
described throughout this section in the following lemma:

Lemma 4. Let δ g,δ w ∈ (0,1). For all n ∈ N, we choose β
g
n

according to Lemma 1. Given an initial set X̂n,0 3 xn,0, then,
with probability at least (1− δ g− δ w), the following holds
jointly for all n ∈ N, t = 1, . . . ,T :
(i) d(xn,t−1,un,t−1,wn,t−1) ∈ X̄n,t = D(X̂n,t−1,un,t−1),

for all X̂n,t−1 ⊂X , xn,t−1 ∈ X̂n,t−1, un,t−1 ∈U ,
where wn,t−1 is the process noise as assumed in Sec. III.

(ii) xn,t ∈X , xn,0 ∈X .

Proof. The noise bound, W (Remark 1), and Lemma 3 hold
jointly, with probability at least (1−δ w). Then, by applying a
union bound to combine the above result with the confidence
intervals of g(·) (Lemma 1), we arrive at the bound, X̄n,t .

In conclusion, the prediction phase computes the dynamic-
consistent zonotope, X̄t = D(X̂t−1,ut−1)⊂ Rnx , which bounds
the output of the dynamic function, d(·) (Lemma 4).

B. Phase 2: Measurement

In the measurement phase, given X̄t from Lemma 4 and ut ,
GP-ZKF constructs a measurement-consistent polytope [24],
X̄yt , to bound all possible states consistent with the new
measurement, yt , with high probability.

The unknown function h(·) is learned via GP (see Sec. II-B).
We denote the single-output surrogate function by h′(·), and
the kernel by kh. Similar to Assumption 2 about kg and g(·),
we make the following assumption about kh and h(·):

Assumption 3. (i) kh is 2-times continuously differentiable
(Def. 4.35 in [25]), (ii) kh is bounded by ‖kh‖∞ (Eq. 4.15 in
[25]), (iii) kh has bounded derivatives (Assumption 4 in [21]),
and (iv) ‖h′‖kh ≤ Bh (see Sec. II-B).

To bound h(·), we follow the same steps described in
Sec. V-A2 to bound g(·). Bound posterior mean: We linearize
µh(·) around x̄t = the center of X̄t , and obtain µ̄h(xt ,ut) =
µh(x̄t ,ut)+Jµh

x · (xt− x̄t). Lemma 4 (ii) implies the compact-
ness of the domain of µh(·) within the estimation process,

which leads to a linearization error bound (similar to Eq. 4).
Bound standard deviation: With Assumption 3, we derive a
bound for σh(·) (similar to Eq. 5). Bound combination: Given
δ h ∈ (0,1), Lemma 1 allows us to construct confidence in-
tervals for h(·). Via a union bound, we determine that the
confidence intervals and noise bound vt ∈V (see Remark 1)
jointly hold with probability at least (1− δ h − δ v). Then,
similar to Rg in Eq. 7, we obtain a box, Rh(X̄t ,ut)⊂Rny . Thus,
with probability at least (1−δ g−δ w)(1−δ h−δ v), jointly for
all t = 1, . . . ,T , X̄t ⊂X , ut ∈U , xt ∈ X̄t , we have that

h(xt ,ut)− µ̄
h(xt ,ut) ∈ Rh(X̄t ,ut) (9)

Here, the product rule, (1−δ g−δ w)(1−δ h−δ v), results from
the assumption that noises w and v are independent with each
other (Sec. III). By expanding µ̄h and then combining the
noise bound V (Remark 1) with Eq. 9, we obtain that with
probability at least (1−δ g−δ w)(1−δ h−δ v), jointly for all
t = 1, . . . ,T , X̄t ⊂X , ut ∈U , xt ∈ X̄t , the following holds:

µ̄
h(xt ,ut)−o(xt ,ut ,vt)

= µ
h(x̄t ,ut)+ Jµh

x · (xt − x̄t)−h(xt ,ut)−vt

∈ Ro(X̄t ,ut) := Rh(X̄t ,ut)︸ ︷︷ ︸
Epistemic

⊕
Lin. err. of µh(·)⊕

Approx. err. of σh(·)

⊕
V︸︷︷︸

Aleatoric

(10)

Given a new measurement, yt = o(xt ,ut ,vt) ∈ Rny (Eq. 2),
the measurement-consistent states must satisfy the bound in
Eq. 10. Hence, we equivalently represent the bound in Eq. 10
as a polytope, X̄yt ⊂ Rnx , with xt as the variable, as follows:

X̄yt = {xt ∈ Rnx : Jµh
x ·xt − [yt −µ

h(x̄t ,ut)+ Jµh
x · x̄t ] ∈ Ro(X̄t ,ut)} (11)

The output of the measurement step is the measurement-
consistent polytope, X̄yt ⊂ Rnx . Let Oinv(X̄t ,ut ,yt) denote the
function to compute X̄yt , where the superscript inv emphasizes
that Oinv is the “inverse” of our observation model, o(·).

C. Phase 3: Correction

In the correction phase, the goal is to construct a zonotope
X̂t as the intersection X̄t ∩ X̄yt , where X̄t is formulated in
Lemma 4 and X̄yt is defined in Eq. 11. Note that the bound in
Eq. 10 requires X̄t ⊂X ; therefore, GP-ZKF instead computes
the intersection X̄t ∩ X̄yt ∩X . This intersection cannot be
computed exactly, and hence is outer-approximated by X̂t . The
new zonotope, X̂t , is potentially less conservative than X̄t and
X̄yt in bounding the possible states, as X̂t takes into account
both dynamics and measurements. Formally:

Lemma 5. Let δ g,δ w,δ h,δ v ∈ (0,1). For all ng,nh ∈ N, we
choose β

g
ng ,β h

nh according to Lemma 11. Given an initial set
X̂0 3 x0, then, with probability at least (1−δ g−δ w)(1−δ h−
δ v), jointly for all ng,nh ∈ N, t = 1, . . . ,T , X̂t−1 ⊂X , xt−1 ∈
X̂t−1, ut−1,ut ∈U , and yt ∈ Rny , we have the following:

d(xt−1,ut−1,wt−1) ∈ (X̄t ∩ X̄yt ∩X )⊂ X̂t (12)

where wn,t−1 is the process noise as assumed in Sec. III, X̄t =
D(X̂t−1,ut−1) (Lemma 4), and X̄yt = Oinv(X̄t ,ut ,yt) (Eq. 11).

1We omit the subscripts ng,nh for every variable in this lemma for clarity.
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This lemma states that the true state at time t lies within the
zonotope, X̂t , with high probability. Lemma 5 summarizes the
derivations in Sec. V-B; it can be proved by directly combining
Lemma 4 and the bound in Eq. 10.

The intersection in Eq. 12 is outer-approximated in two
steps: First, GP-ZKF follows Prop. 1 in [24] to obtain a
zonotope denoted by Zt(Λt) and parameterized by the matrix
Λt , such that Zt(Λt)⊃ (X̄t ∩ X̄yt ). The parameter Λt is obtained
by analytically solving a convex program that minimizes the
“size” of Zt(Λt) (see Sec. 6.1 in [12]). Then, GP-ZKF follows
the same procedures to construct X̂t ⊃ (X̄t ∩ X̄yt ∩X ).

The essence of the correction step can be represented by the
function E(X̂t−1,ut−1,ut ,yt), which conducts the intersections
and outputs the new zonotopic estimate, X̂t .

VI. THEORETICAL GUARANTEES

We present two key theorems about GP-ZKF. First, as both
epistemic and aleatoric uncertainties have been bounded, GP-
ZKF is δ -consistent (Def. 1); second, when both uncertainties
are relaxed, GP-ZKF reduces to GP-EKF [7].

Theorem 1. Given δ ∈ (0,1), GP-ZKF chooses
δ g,δ h,δ w,δ v ∈ (0,1) such that (1−δ g−δ w)(1−δ h−δ v)≥
(1 − δ ). For all ng,nh ∈ N, GP-ZKF chooses β

g
ng ,β h

nh

according to Lemma 1. Then, GP-ZKF is δ -consistent.

Proof. Similar to the proof for Cor. 7 in [14], we recursively
apply Lemma 5 from t = 1 to T and obtain with high
probability, jointly for all t = 1, . . . ,T , that xt ∈ X̂t .

GP-EKF [7] is an EKF-based state estimator that learns
both dynamic and observation models via GPs; we see GP-
EKF as the stochastic counterpart to our set-based GP-ZKF.
At every time t = 1, . . . ,T , GP-EKF computes the Kalman
gain, Kt ∈Rnx×ny , and outputs a point estimate, µt ∈Rnx , and
a covariance, Σt ∈ Rnx×nx (see Table 2 in [7]). To draw an
analogy similar to Thm.7 in [16], we define GP-ZKF’s Kalman
gain as the matrix Λt , which parameterizes the intersection X̄t∩
X̄yt , as mentioned at the end of Sec. V-C. We define GP-ZKF’s
point estimate as the zonotope center, (X̂t)c, and covariance as
(X̂t)G((X̂t)G)

T (the zonotope covariation, as seen in Def. 4 in
[16]). Next, we formally demonstrate that GP-ZKF can be
reduced to (the Joseph form of) GP-EKF:

Theorem 2. Assume that GP-ZKF’s set-based estimates are
always inside the state space—i.e., for all t = 1, . . . ,T , the
zonotope Zt(Λt) ⊂ X , where Zt(Λt) is defined at the end
of Sec. V-C. Given the same initial condition, µ0 = (X̂0)c
and K0 = (X̂0)G((X̂0)G)

T , if GP-ZKF: (i) sets the confidence
interval scalings for g(·) and h(·), denoted by β g and β h

(respectively), to 1; (ii) omits all noise bounds for w and v
by setting W = /0 and V = /0 (Remark 1); and (iii) omits all
linearization errors for f (·), µg, σg, µh, and σh by setting
R f (·) = /0 (Eq. 3), Lg

∇µ
= 0 (Eq. 4), Lg

σ = 0 (Eq. 5), Lh
∇µ

= 0
(Sec. V-B), and Lh

σ = 0 (Sec. V-B); then, for time t = 1, . . . ,T ,
we have Kt = Λt , µt = (X̂t)c, and Σt = (X̂t)G((X̂t)G)

T .

Proof. Under the relaxations above, Eq. 12 becomes
(X̄t ∩ X̄yt ∩X ) ⊂ Zt(Λt) = X̂t . And each of the uncertainty
bounds, Rd(·) (Eq. 8) and Ro(·) (Eq. 10), only contains one

TABLE I
THE ESTIMATION RESULTS IN THE SIMULATED PENDULUM DOMAIN.

Data Method RMSE (θ , θ̇) Incl. Radius (θ , θ̇) Time
shift ( ◦, ◦/s) (%) ( ◦, ◦/s) (s)

Both GP-EKF 20.2, 37.5 5 1.7, 9.2 0.003
models GP-UKF 7.4, 15.6 38 10.0, 32.1 0.009

GP-PF 90.5, 64.4 28 27.0, 54.6 1.459
GP-ZKF 16.4, 20.4 83 46.7, 131.4 0.004

Dynamics GP-EKF 15.3, 22.1 0.17 0.2, 0.4 0.003
model GP-UKF 2.2, 10.8 27 1.6, 17.8 0.009

GP-PF 69.6, 46.9 16 11.8, 25.5 1.500
GP-ZKF 16.4, 21.5 88 44.6, 72.5 0.004

Observation GP-EKF 15.6, 21.7 4 1.4, 2.0 0.003
model GP-UKF 25.4, 31.2 27 35.9, 40.6 0.009

GP-PF 222.7, 157.4 18 82.9, 100.2 1.544
GP-ZKF 15.3, 18.6 87 47.9, 126.0 0.004

None GP-EKF 15.4, 20.4 0.00 0.2, 0.4 0.003
GP-UKF 2.2, 7.8 18 1.5, 5.1 0.009
GP-PF 161.3, 126.7 10 47.0, 47.8 1.573

GP-ZKF 16.6, 19.7 92 47.1, 72.8 0.004

standard deviation. As introduced at the end of Sec. V-C,
GP-ZKF obtains X̂t(Λt) by optimizing Λt . With the analytical
solution, Λt , we reach the final conclusion by induction (see
the proof of Thm.7 in [16]).

This theorem states that with certain relaxations, GP-ZKF
could produce the same Kalman gain, point estimate, and co-
variance as GP-EKF. The Kalman gain in GP-ZKF, Λt , weighs
the dynamic-consistent zonotope, X̄t , and the measurement-
consistent polytope, X̄yt , when “mixing” them within the outer-
approximated intersection. In contrast to GP-EKF, Thm. 2
signifies the conservativeness of GP-ZKF in bounding the
linearization errors and aleatoric and epistemic uncertainties
during estimation. The conservativeness echoes GP-ZKF’s
consistency guarantee, as stated in Thm. 1.

VII. EXPERIMENT AND RESULT

In Sec. VI, we theoretically highlight GP-ZKF’s consistency
guarantee and its connection with GP-EKF. We also empir-
ically demonstrate GP-ZKF’s improved consistency against
three GP-based stochastic approaches: GP-EKF, GP-UKF, and
GP-PF [7], in both a simulated inverted pendulum domain
under significant epistemic uncertainty and a real-world robot-
assisted dressing domain.

In both domains, we evaluated all methods using the fol-
lowing metrics: (1) Avg. root-mean-square error (RMSE) (per
dimension) for the point estimate. GP-ZKF’s point estimate
is defined as the zonotope center, (X̂t)c (see Sec. VI). (2)
Inclusion: the percentage of time steps during which the true
state is “included” by the set-based estimate, which measures
a method’s consistency. Recall that Thm. 2 draws equivalence
between GP-ZKF’s zonotopic estimate and the unscaled co-
variance from GP-EKF. In practice, we defined GP-EKF, GP-
UKF, and GP-PF’s set-based estimates as the 95% confidence
ellipsoids determined by the up-scaled covariance matrices
(GP-PF’s posteriors were approximated as Gaussians) such
that they can be on par with GP-ZKF. (3) Avg. radius (per
dimension): the radius of the box that outer-approximates
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Fig. 3. Zonotopic estimates along a trajectory produced by GP-ZKF under
the Shift None condition. The zonotopic estimates, X̂t (green fill), always
outer-approximate the intersection between the dynamic-consistent zonotope,
X̄t (yellow fill), and the measurement-consistent zonotope, X̄yt (blue outline).
(1) Despite the erroneous point estimates, defined as (X̂t)c (green dots), the
zonotopes, X̂t , still contain the true states (black dots). (2) Even though the
volumes of X̄t may grow rapidly during uncertainty propagation, the volumes
of X̂t shrink when informative measurements are available.

the set-based estimates, which measures conservativeness. (4)
Avg. computation time per time step.

A. Simulated Pendulum Domain

We simulated a discrete-time 2D inverted pendulum con-
trolled by an infinite-horizon linear quadratic regulator. The
state, x = [θ , θ̇ ]T (angle and angular velocity), and the set-
point correspond to the pendulum standing upright (0◦). The
dynamics, d(·), is the closed-loop system, with noise www
(λw = 7.16◦). The observation function, o(·), maps the state
to the end effector position and velocity ∈ R4, with noise
vvv (λv = 8.88◦). The known dynamics, f (·), is given by the
linearized and discretized system around the set-point.

To evaluate the methods’ consistency under significant
epistemic uncertainties, we induced distribution shifts between
training and testing. For testing, we ran each method with
T = 15 from four uniformly sampled starting points within
the testing region, θ ∈ [π,2π], with 10 repetitions per starting
point. The training data included four variants: (1) Shift
Both: the GPs for both g(·) and h(·) were trained with a
default dataset with nine rollouts inside the training region,
θ ∈ [0,π]. The epistemic uncertainties in both the dynamic
and observation models were high due to the shift from the
training region to the testing region. (2) Shift Dynamics: the
GP for h(·) was trained with an additional dataset whose
input locations were uniformly sampled in the testing region.
(3) Shift Observation: the GP for g(·) was trained with five
additional rollouts inside the testing region. (4) Shift None: g(·)
and h(·) were each trained with their own additional dataset
besides the default dataset. Similar to [14], confidence interval
scalings β g and β h are conservative. We specified and scaled
them when more data was available, to reflect their dependency
upon the information capacity, γ .

We present our results in Tab. I. Due to the nonlinearity
of the dynamic and observation functions, the linearization-
based method (GP-EKF) performed poorly, with very low

TABLE II
THE ESTIMATION RESULTS IN THE ROBOT-ASSISTED DRESSING DOMAIN.

Arm Method RMSE (x,y,z) Incl. Radius (x,y,z) Time
pose (cm,cm,cm) (%) (cm,cm,cm) (s)

Bend GP-EKF 3.9, 3.3, 3.8 83 11, 19, 23 0.25
GP-UKF 9.8, 3.0, 6.1 76 26, 10, 15 1.68
GP-PF 2.4, 2.6, 3.0 73 6, 6, 7 29.93

GP-ZKF 2.8, 3.4, 4.3 88 8, 8, 8 0.25

Lower GP-EKF 5.2, 3.0, 6.9 94 24, 19, 22 0.11
GP-UKF 9.2, 12.4, 13.6 80 27, 22, 33 0.71
GP-PF 5.0, 2.7, 4.1 70 11, 8, 11 12.74

GP-ZKF 4.6, 2.7, 4.7 97 12, 10, 12 0.11

Straight GP-EKF 2.0, 3.0, 3.9 88 14, 15, 14 0.12
GP-UKF 3.4, 3.8, 3.6 64 7, 7, 9 0.78
GP-PF 2.5, 3.0, 2.8 62 6, 6, 6 13.95

GP-ZKF 1.7, 2.8, 4.1 92 8, 8, 8 0.12

inclusions and small radii. GP-UKF (not linearization-based)
performed better, with lower RMSEs, higher inclusions and
larger radii. GP-PF produced large RMSEs, potentially due
to the narrowness of GP’s predictive distributions. In contrast,
GP-ZKF achieved the highest amount of inclusions for all con-
ditions; this empirically validates GP-ZKF’s conservativeness
in respecting linearization errors and epistemic and aleatoric
uncertainties, which echos GP-ZKF’s probabilistic consistency
guarantee (Thm. 1). Fig. 3 illustrates the zonotopic estimates
produced by GP-ZKF under the Shift None condition. Admit-
tedly, GP-ZKF is more conservative than the others, resulting
in larger radii. We argue that GP-ZKF’s conservativeness
actually scales appropriately with the domain, as we will next
demonstrate its low conservativeness in the dressing domain.

B. Robot-Assisted Dressing Domain
A robot arm was controlled to dress a long-sleeved jacket

onto a human arm (Fig. 1). We evaluated all methods offline to
estimate the visually occluded positions of human elbow [1].

During data collection, the human naturally moved his arm,
the configuration of which was tracked by the Xsens motion
capture system, which does not suffer from visual occlusion.
The robot was controlled to move from the human hand to the
elbow, and then to the shoulder position. The data is composed
of three initial arm conditions: bend, lower, and straight, with
17, 11, and 12 trajectories, respectively.

The state, x∈R3, is the human elbow position. The control,
u∈R9, contains the positions of the human hand and shoulder,
and the robot end effector. The measurement y ∈ R3 is the
processed force signal, obtained at the robot end effector. We
applied a low-pass filter to the force and converted it to the
approximate position of the center of the cuff via a tether-
inspired parametric model [27]. The known dynamic model is
specified as f (x,u) = x; the variances of the noises, w and v,
are automatically identified within GP regression.

We present the cross-validated results within each initial
arm condition in Tab. II. Both GP-EKF and GP-UKF achieved
high amount of inclusions that were comparable with GP-ZKF;
however, GP-ZKF’s radii were much smaller, demonstrating its
appropriate conservativeness. Essentially, GP-ZKF provided
consistent set-based estimates without being overly conserva-
tive; Fig. 4 illustrates the zonotopic estimates it produced.
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(a) (b) (c)

Fig. 4. Keyframes of the robot-assisted dressing task (cloth is omitted). The
simulated robot and human motions were reproduced based on real-world data
(Fig. 1). Each keyframe illustrates a few ground-truth states of the human arm
and the zonotopic estimate of the human elbow position (outer-approximated
as boxes ⊂ R3, visualized in green).

VIII. CONCLUSION AND FUTURE WORK

This work proposes a set-based estimator, GP-ZKF, that
is able to produce zonotopic estimates based on learned
dynamic and observation models. Theoretically, GP-ZKF guar-
antees probabilistic consistency. In addition, the stochastic
approach, GP-EKF, can be seen as a special case of our
set-based method, GP-ZKF—i.e., where linearization errors
and aleatoric uncertainties are omitted and epistemic uncer-
tainties are simplified. Empirically, GP-ZKF outperformed the
stochastic baselines (GP-EKF, GP-UKF, and GP-PF [7]) in
both a simulated pendulum and real-world dressing domain.
Future work will focus on combining our approach with
control methods [28], [29], as well as richer and more com-
putationally scalable models for force-based estimation.

IX. APPENDIX

We combine the confidence intervals for g(·) (Lemma 1)
with the bounds for µg (Eq. 4) and σg (Eq. 5) to bound the
error |g j(·)− µ̄

g
j (·)| for each j = 1, . . . ,nx as follows:

|g j(xt−1,ut−1)− µ̄
g
j (xt−1,ut−1)|

≤ |µg
j (xt−1,ut−1)− µ̄

g
j (xt−1,ut−1)|+ |g j(xt−1,ut−1)−µ

g
j (xt−1,ut−1)| (b)

≤ 1
2

Lg
∇µ
· ‖xt−1− x̄t−1‖2

2 +β
g ·σg

j (xt−1,ut−1) (c)

≤ 1
2

Lg
∇µ
· ‖xt−1− x̄t−1‖2

2 +β
g ·σg

j (x̄t−1,ut−1)+β
gLg

σ · ‖xt−1− x̄t−1‖1/2
2 (d)

≤ 1
2

Lg
∇µ
· ‖X̂t−1− x̄t−1‖2

2 +β
g ·σg

j (x̄t−1,ut−1)+β
gLg

σ · ‖X̂t−1− x̄t−1‖1/2
2 (e)

Here, (b) is obtained via the triangle inequality, and we achieve
(c) by using a union bound to combine the mean’s error
bound (Eq. 4) and confidence intervals (Lemma 1). Hence, all
inequalities starting at (c) hold with probability at least (1−
δ g−δ w). (d) is obtained by applying the standard deviation’s
error bound (Eq. 5); (e) is due to the norm of the translated
zonotope ‖X̂t−1− x̄t−1‖2 := maxxt−1∈X̂t−1

‖xt−1− x̄t−1‖2 [30].
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