An optimal randomized algorithm for d-variate zonoid depth

Pat Morin

School of Computer Science, Carleton University, Canada

Received 5 September 2006; received in revised form 15 December 2006; accepted 18 December 2006
Available online 12 January 2007
Communicated by T. Chan

Abstract

© 2007 Elsevier B.V. All rights reserved.

Keywords: Robust statistics; Data depth; Zonoids; Zonotopes; Support vector machines

1. Introduction

Let S be a set of n points in \mathbb{R}^d. For a real number $k \geq 1$, the k-zonoid of S is defined as

$$Z_k(S) = \left\{ \sum_{p \in S} \lambda_p p : 0 \leq \lambda_p \leq 1/k \text{ for all } p \in S \text{ and } \sum_{p \in S} \lambda_p = 1 \right\}$$

[8,19]. Notice that, for $k = 1$ the 1-zonoid of S is the convex hull of S, i.e., $Z_1(S) = \text{conv}(S)$. As k increases, $Z_k(S)$ becomes smaller and smaller until the limiting case $k = n$, for which $Z_n(S)$ consists of a single point, the mean of S. The zonoid depth of a point $p \in \text{conv}(S)$ with respect to S is defined as

$$Z(p, S) = \sup \{k : p \in Z_k(S)\},$$

and is a real number in the interval $[1, n]$.

Dyckerhoff et al. [8] give an algorithm to compute $Z(p, S)$ by solving a linear program in the variables $\{\lambda_p : p \in S\}$. To obtain an efficient algorithm they make use of the fact that most of the constraints on the λ’s are independent of S. The worst-case running time of their algorithm is unclear.

Bern and Eppstein [1] study zonoids (also called reduced convex hulls) in the context of support vector machines used in machine learning. Among other things they solve a more general problem than that of zonoid depth: Given two sets S_1 and S_2 in \mathbb{R}^d, compute the minimum value k such that $Z_k(S_1) \cap Z_k(S_2)$ is non-empty. Their algorithm

E-mail address: morin@scs.carleton.ca.

0925-7721/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
has a running time of \(O(n(Ld \log n)^{O(1)})\), where \(L\) is the number of bits used to describe the points in \(S_1\) and \(S_2\). Their algorithm uses Khachiyan’s ellipsoid method for linear programming [13] to exploit the fact that, for a given direction \(v\), it is easy (see Section 3) to test if there is a hyperplane orthogonal to \(v\) that separates \(Z_k(S_1)\) and \(Z_k(S_2)\).

The zonoid depth decision problem asks, given \(p\), \(k\) and \(S\), if \(p \in \overline{Z_k(S)}\). Ogryczak and Tamir [20] show that the dual of the zonoid depth decision problem can be reduced to a linear multiple-choice knapsack problem that can be solved in \(O(n)\) time using the algorithms of Zemel [23] or Dyer [9]. Zemel and Dyer’s algorithms are, in turn, modifications of Megiddo’s \(O(n)\) time algorithm for linear programming in fixed dimensions [17,18]. While these results optimally solve the zonoid depth decision problem, further machinery is needed to turn these results into an algorithm for computing the zonoid depth of \(p\) with respect to \(S\).

Gopala and Morin [12] consider algorithms for bivariate \((d = 2)\) zonoid depth and give a randomized \(O(n)\) expected time algorithm for computing \(Z(p, S)\) when \(p\) and \(S\) are in \(\mathbb{R}^2\). Their algorithm is a combination of two techniques, namely a prune-and-search algorithm due to Lo et al. [15] for searching the \(k\)-level of a line arrangement and an optimization method due to Chan [3] for efficiently converting decision algorithms into optimization algorithms. While the latter technique extends efficiently into arbitrary (constant) dimensions [4] the former technique, unfortunately, does not.

The current paper extends and bridges the above results by giving an \(O(n)\) time algorithm to compute \(Z(p, S)\) when \(p\) and \(S\) are in \(\mathbb{R}^d\) for any constant dimension \(d\). The algorithm uses a recent method, due to Chan [4], for solving linear programs with many constraints that are defined implicitly by a small number of objects. Besides being the first linear-time algorithm for solving the zonoid depth problem in constant dimensions, the current results are interesting for two other reasons:

1. Zonoid depth is one of many definitions of depth proposed in the robust statistics literature [14]. Perhaps the gold standard in this regard is Tukey (halfspace) depth [22]:

\[
T(p, S) = \min \{ |h \cap S| : h \text{ is a closed halfspace containing } p \}.
\]

Tukey depth and zonoid depth have an interesting feature in common; under duality, the combinatorial structure of the depth \(k\) contour is determined by the \(k\)-level and the \((n - k + 1)\)-level of a set of hyperplanes. The structure of \(k\)-levels has been extensively studied by combinatorial geometers [16, Chapter 11] although our understanding of their complexity is still not complete, even in 2 dimensions.

The current result shows a divergence in the computational complexity of Tukey and zonoid depth. In constant dimensions \(d \geq 3\) the fastest algorithms for computing the Tukey depth of a point have running times of \(\Omega(n^{d-1})\) [5], whereas the current result shows that zonoid depth can be computed in \(O(n)\) time in any constant dimension \(d\). When the dimension grows arbitrarily large the situation is even worse. Computing \(T(p, S)\) is NP-hard in general [2], while the result of Bern and Eppstein [1] yields a polynomial time algorithm for computing \(Z(p, S)\) in any dimension. Thus, together these results show that zonoid depth is computationally more tractable than Tukey depth in both large and small dimensions.

2. Our algorithm makes use of Chan’s recent technique for solving implicit linear programs in small dimensions [4]. Interestingly, this technique was introduced in order to solve a problem related to Tukey depth, namely the problem of finding a point \(p\) that maximizes \(T(p, S)\). Unfortunately, the resulting algorithm runs in \(O(n \log n + n^{d-1})\) time, limiting its usefulness for dimensions \(d \geq 3\). Indeed, although Chan’s technique itself does not asymptotically increase the running time as the dimension \(d\) increases, it seems that most applications of the technique either break down or have quickly increasing running times as \(d\) increases. The current result is therefore an atypical example that illustrates the full utility of this extremely powerful technique.

In the following, all points, vectors, and hyperplanes are assumed to live in \(\mathbb{R}^d\) and \(\mathbb{H}^d\) denotes the set of all hyperplanes in \(\mathbb{R}^d\). The notation \(x_i\) denotes the \(i\)th coordinate of the point \(x\). We use the notation to denote the inner-product of two points/vectors, i.e., \(x \cdot y = \sum_{i=1}^{d} x_i y_i\). For a set \(S\) of \(n\) points and a non-zero vector \(r\), \(S_1^r, \ldots, S_n^r\) is the sequence of elements of \(S\) ordered by decreasing projections onto \(r\), i.e., \(S_i^r \cdot r \geq S_{i+1}^r \cdot r\) for all \(1 \leq i \leq n - 1\).

1. In fact, this running time is probably optimal. See Chan [4, Section 1.4] for details.
2. One notable exception is parametric minimum spanning trees [11].
For a point \(x\) and a hyperplane \(h\), we denote by \(x \perp h\) the \(d\)th coordinate of the vertical projection of \(x\) onto \(h\) (the height of \(x\) when dropped onto \(h\)). For a set \(H\) of \(n\) hyperplanes, let \(H_i^x\) be the \(i\)th hyperplane in \(H\) encountered by a downward vertical ray originating at \((x_1, \ldots, x_{d-1}, \infty)\). For ease of notation we use the shorthand \(H_{-i}^x = H_{[H|-i+1]}^x\). For \(i > |H|\) we use the convention that \(H_i^x\) (respectively \(H_{-i}^x\)) is the “horizontal hyperplane at infinity” \(\{x: x_d = -\infty\}\) (respectively, \(\{x: x_d = +\infty\}\)).

The remainder of this paper is organized as follows: Section 2 reviews Chan’s generalized optimization technique. Section 3 discusses properties of zonoids in primal and dual space. Section 4 presents an algorithm to answer the zonoid depth decision problem. Finally, Section 5 describes our algorithm for computing \(Z(p, S)\).

2. Chan’s generalized optimization technique

Chan [4] used the following theorem to provide an \(O(n \log n)\) time algorithm for maximum Tukey depth. In the following, and throughout the remainder of the paper, we use the shorthand \(\cap S\) to denote \(\bigcap_{i \in S} s\).

Theorem 1. (See Chan [4].) Let \(H\) denote the set of all halfspaces in \(\mathbb{R}^d\), let \(P\) denote the set of all possible inputs to some problem, let \(f : P \mapsto 2^H\) be any function mapping problem inputs to sets of halfspaces, let \(g : \mathbb{R}^d \mapsto \mathbb{R}\) be any linear objective function, and let \(D(n) = \Omega(n^\epsilon)\), for some \(\epsilon > 0\), be a non-decreasing function of \(n\). Suppose that \(f\) and \(g\) satisfy:

0. Given inputs \(P_1, \ldots, P_d \in P\) each of constant size, a point \(p \in \cap(f(P_1) \cup \cdots \cup f(P_d))\) maximizing \(g(p)\) can be found in constant time.

1. Given a point \(p \in \mathbb{R}^d\) and an input \(P \in P\) of size \(n\), there exists a \(D(n)\) time algorithm to determine whether \(p \in \cap f(P)\).

2. There exists constants \(\alpha < 1\) and \(r\) such that, for any input \(P \in P\) of size \(n\), it is possible to compute, in \(D(n)\) time, inputs \(P_1, \ldots, P_r\), each of size at most \(\lceil \alpha n \rceil\), and such that \(\cap f(P) = \cap(f(P_1) \cup \cdots \cup f(P_r))\).

Then there exists a randomized \(O(D(n))\) expected time algorithm to compute, for any input \(P \in P\) of size \(n\) a point \(p \in \cap f(P)\) that maximizes \(g(p)\).

It is worth noting that the codomain of the function \(f\) may contain infinite sets. That is, it is acceptable (and common) to have inputs \(P \in P\) that generate an infinite number of constraints, i.e., \(|f(P)| = \infty\).

3. Properties of primal and dual zonoids

The \(k\)-zonoid \(Z_k(S)\) is a convex polytope. The extreme-most vertex of \(Z_k(S)\) in direction \(x\) can be obtained as a convex combination of the \([k]\) extreme-most points of \(S\) in direction \(x\). More precisely,

\[
\arg\max_p \{p \cdot x: p \in Z_k(S)\} = \left(\sum_{i=1}^{[k]} \frac{1}{k} S_i^x\right) + (1 - [k]/k) S_{[k]}^x
\]

[1,12]. Intuitively, we assign the maximum allowable coefficient \((1/k)\) to each of the \([k]\) extreme-most vertices and the “leftover” \((1 - [k]/k)\) is assigned to the next vertex.

We wish to arrive at a situation in which we can apply Theorem 1 and this is best done by working in the dual. Consider the point-hyperplane duality function \(\varphi\) given by

\[
\varphi(x) = \{y \in \mathbb{R}^d: y_d = x_1y_1 + \cdots + x_{d-1}y_{d-1} - x_d\}
\]

when \(x\) is a point in \(\mathbb{R}^d\) and

\[
\varphi(X) = \{\varphi(x): x \in X\}
\]

when \(X\) is a subset of \(\mathbb{R}^d\). See Edelsbrunner’s book [10] for properties of this duality.

3 Actually, Theorem 1 applies to LP-type problems [21]. Here we only state it’s specialization to linear programming problems.
Let \(H = \varphi(S) \). Then, under this duality, the dual \(k \)-zonoid \(\varphi(Z_k(S)) \) is the set of all hyperplanes in \(\mathbb{R}^d \) that do not intersect either of two convex sets \(A_k(S) \) and \(B_k(S) \). That is,

\[
\varphi(Z_k(S)) = \{ h \in \mathbb{H}^d : h \cap (A_k(S) \cup B_k(S)) = \emptyset \},
\]

where

\[
A_k(S) = \left\{ x \in \mathbb{R}^d : x_d \geq \left(\sum_{i=1}^{[k]} \frac{1}{k} (x \downarrow H_i) \right) + \left(1 - \frac{|k|}{k} \right) (x \downarrow H_{\lfloor k \rfloor}) \right\} \tag{2}
\]

and

\[
B_k(S) = \left\{ x \in \mathbb{R}^d : x_d \leq \left(\sum_{i=1}^{[k]} \frac{1}{k} (x \downarrow H_i) \right) + \left(1 - \frac{|k|}{k} \right) (x \downarrow H_{\lfloor k \rfloor}) \right\}. \tag{3}
\]

The definitions of \(A_k(S) \) and \(B_k(S) \) follow from (1) and the duality \(\varphi \). The two sets \(A_k(S) \) and \(B_k(S) \) are convex, unbounded from above, respectively, below, and piecewise linear. Indeed, the linear pieces of \(A_k(S) \) (respectively \(B_k(S) \)) are in correspondence with the linear pieces of the \([k]\)-level (respectively the \((n - [k] + 1)\)-level) of the hyperplanes in \(H \).\(^4\) Thus, \(A_k(S) \) and \(B_k(s) \) are convex polytopes that are implicitly defined by the hyperplanes in \(H \) and it is these implicit “linear programs” that will ultimately allow us to apply Theorem 1.

4. The decision algorithm

Next we consider the following decision problem: Given a point set \(S \) and an integer \(k \), is the origin contained in \(Z_k(S) \)? By translation, a solution to this problem allows us to test if an arbitrary point \(p \in \mathbb{R}^d \) is contained in \(Z_k(S) \). One approach to solving this problem is to compute the intersection of \(Z_k(S) \) with the vertical line \(\{ x \in \mathbb{R}^d : x_0 = x_1 = \cdots = x_{d-1} = 0 \} \) through the origin and then check if this intersection contains the origin.

Under the duality \(\varphi \), the above strategy is equivalent to finding the lowest point on \(A_k(S) \) and the highest point on \(B_k(S) \) and checking that each of these points is above, respectively, below, the hyperplane \(\{ x \in \mathbb{R}^d : x_d = 0 \} \). In the remainder, we focus on determining the lowest point in \(A_k(S) \). Finding the highest point in \(B_k(S) \) is done in a symmetric manner. However, before we can proceed, we need to define a slightly more general problem involving weights.

Let \(S \) be a set of \(n \) points in \(\mathbb{R}^d \) and let \(w : S \mapsto \mathbb{N} \) be a function assigning positive integer weights to the elements of \(S \). We denote by \(S^w \) the multiset in which each element \(p \in S \) occurs \(w(p) \) times. The \(w \)-weighted zonoid \(Z_k(S, w) \) is simply the \(k \)-zonoid of the multiset \(S^w \), i.e., \(Z_k(S, w) = Z_k(S^w) \). As with standard zonoids, the weighted zonoid \(Z_k(S, w) \) dualizes to the set of all hyperplanes that do not intersect either of two convex regions \(A_k(S, w) \) and \(B_k(S, w) \), where \(A_k(S, w) = A_k(S^w) \) and \(B_k(S, w) = B_k(S^w) \).

This definition of weighted zonoids allows us to naturally define subproblems. For a subset \(C \subseteq S \), define the total weight

\[
w(C) = \sum_{p \in C} w(p)
\]

and the weighted mean

\[
\mu(C) = \frac{1}{w(C)} \sum_{p \in C} p \times w(p).
\]

The contraction of \((S, w) \) by \(C \) is obtained by replacing the points of \(C \) by their weighted average, \(\mu(C) \). More precisely, the contraction of \((S, w) \) by \(C \) is the pair \((R, v)\) where

\[
R = (S \setminus C) \cup \{ \mu(C) \}
\]

\(^4\) When \(k \) is not an integer, there is a bijection between the pieces of \(A_k(S) \) and the \([k]\)-level of \(H \). When \(k \) is an integer there is an injection from \(A_k(S) \) onto the \(k \)-level of \(H \).
Lemma 1. If \((R, v) \) is a contraction of \((S, w)\) by \(C \) then \(Z_k(R, v) \subseteq Z_k(S, w) \).

Proof. Let \(x \) be any point in \(Z_k(R, v) \). Then, by the definition of zonoids:

\[
x = \sum_{p \in R^v} \lambda_p p = \left(\sum_{p \in (R \setminus (\mu(C)))^w} \lambda_p p \right) + \left(\sum_{p \in (\mu(C))^w} \lambda_{\mu(C)} p \right)
\]

\[
= \left(\sum_{p \in (S \setminus C)^w} \lambda_p p \right) + \left(\sum_{p \in C^w} \lambda_{\mu(C)} p \right) \in Z_k(S, w)
\]
as required. \(\square \)

We now have all the tools required to apply Theorem 1 to solve our decision problem.

Theorem 2. Given a set \(S \) of \(n \) points in \(\mathbb{R}^d \) and a function \(w : S \mapsto \mathbb{N} \) that is computable in constant time, the point \(x \in A_k(S, w) \) such that \(x_d \) is minimum can be found in \(O(n) \) expected time.

Proof. Let \(f \) be the function that maps the pair \((S, w)\) onto a set of halfspaces whose intersection is \(A_k(S, w) \) and let the objective function \(g(x) = x_d \). We need to show that the functions \(f \) and \(g \) satisfy conditions 0–2 of Theorem 1.

To satisfy condition 0 of Theorem 1 we can enumerate all the linear constraints generated by each of the \(d \) subproblems and use any linear programming algorithm to find a point \(x \) that satisfies all constraints and such that \(x_d \) is minimum. There are only \(d \) subproblems, each of constant size, so this step takes constant time, as required.

To satisfy condition 1 of Theorem 1 we observe that testing if \(x \in A_k(S, w) \) simply involves checking if \(x \) satisfies (2). Let \(H = \varphi(S) \). This check can be accomplished by using a \(D(n) = O(n) \) time weighted selection algorithm [7, Exercise 9-2] to compute the smallest index \(t \) and the hyperplanes \(H_1^t, \ldots, H_t^z \) such that \(\sum_{i=1}^t w(\varphi(H_i^z)) \geq k \). Once this is done we need only check (2) which, in the weighted setting, becomes

\[
x \geq \left(\sum_{i=1}^{k-1} \frac{1}{k} (x \downarrow H_i^z) \times w(\varphi(H_i^z)) \right) + \frac{1}{k} (x \downarrow H_t^z) \times \left(k - \sum_{i=1}^{t-1} w(\varphi(H_i^z)) \right).
\]

To satisfy condition 2 of Theorem 1 we make use of cuttings [16, Section 6.5]. In particular, we use the fact that, in \(O(n) \) time, it is possible to partition \(\mathbb{R}^d \) into \(r = O(1) \) simplices \(\Delta_1, \ldots, \Delta_r \) such that the interior of each simplex is intersected by at most \(n/2 \) of the hyperplanes in \(\varphi(S) \). For each simplex \(\Delta_i \) we create a subproblem \((S_i, w_i)\) as follows: Let \(C_i \subseteq S \) contain every point \(p \in S \) such that \(\varphi(p) \) is above the interior of \(\Delta_i \). We first construct the pair \((T_i, w_i)\) by contracting \((S, w)\) by \(C_i \). Next, we obtain \(S_i \) by removing from \(T_i \) every point \(p \) such that \(\varphi(p) \) is below the interior of \(\Delta_i \). The subproblems \((S_i, w_i)\) for \(1 \leq i \leq r \) that we obtain in this manner are each of size at most \(n/2 + 2 \).

It follows from Lemma 1 (the contraction step) and the definition of \(Z_k(S, w) \) (the deletion step) that \(Z_k(S_i, w_i) \subseteq Z_k(S, w) \). In the dual, this means that \(A_k(S_i, w_i) \supseteq A_k(S, w) \). To satisfy condition 2 of Theorem 1 we must show that \(\bigcap_{i=1}^r A_k(S_i, w_i) = A_k(S, w) \). To do this, consider any point \(x \) on the boundary of \(A_k(S, w) \). It is sufficient to show that \(x \) is also on the boundary of at least one region \(A_k(S_i, w_i) \) for \(1 \leq i \leq r \). The point \(x \) is defined by \([k] \) hyperplanes \(h_1, \ldots, h_{[k]} \in \varphi(S^w) \) in the sense that

\[
x_d = \left(\sum_{i=1}^k \frac{1}{k} (x \downarrow h_i) \right) + \left(1 - \frac{k}{k} \right) (x \downarrow h_{[k]}).
\]
Let q be the vertical projection of x onto $h_{[k]}$. There is some simplex Δ_i that contains q. Observe that each of $h_1, \ldots, h_{[k]-1}$ is either completely above the interior of Δ_i or intersects Δ_i. Furthermore, any hyperplane in $\varphi(S)$ that is completely above Δ_i is one of $h_1, \ldots, h_{[k]-1}$. Therefore, the subproblem (S_i, w_i) is obtained from (S, w) by contracting $C_i \subseteq \{\varphi(h_1), \ldots, \varphi(h_{[k]-1})\}$ and then deleting some subset of $S \setminus \{\varphi(h_1), \ldots, \varphi(h_{[k]-1})\}$. Let $I = \varphi(S_i^{w_i})$. Then, every point x in $A_k(S_i, w_i)$ must satisfy

$$x_d \geq \left(\frac{\lfloor k \rfloor}{k} \left(x \downarrow I_1 \right) + \left(1 - \frac{k}{k} \right) \left(x \downarrow I_{[k]} \right) \right) = \left(\frac{\lfloor k \rfloor}{k} \left(x \downarrow h_i \right) + \left(1 - \frac{k}{k} \right) \left(x \downarrow h_{[k]} \right) \right).$$

This last equality follows from the fact that the contraction operation that creates (S_i, w_i) simply takes the weighted mean of $k' \leq k$ hyperplanes $h_1, \ldots, h_{k'} = \varphi(S')$ and replaces these with k' copies $I_{[k]}^1, \ldots, I_{[k]}^k = \varphi(S_i^{w_i})$ of the mean. Thus x is on the boundary of $A_k(S_i, w_i)$, as required. We have now satisfied all three conditions necessary to apply Theorem 1, completing the proof. □

5. The optimization algorithm

In the previous section we showed, given p, S and k, how to answer the question: Is $p \in Z_k(S)$? In this section we consider the optimization problem, given p and S: What is the maximum value of k such that $p \in Z_k(S)$? For this problem, we apply Theorem 1 again, this time on a problem in \mathbb{R}^{d+1}. To do this, we use the $(d+1)^{st}$ coordinate of our space to represent the value k, so that we consider the polytope whose cross-sections are the k-zonoids for all $1 \leq k \leq n$.

Formally, consider the point set

$$Z(S) = \{ p \in \mathbb{R}^{d+1}: (p_1, \ldots, p_d) \in Z_{pd+1}(S) \}.$$

The set $Z(S)$ is a convex polytope in \mathbb{R}^{d+1}. Dualizing $Z(S)$ as before gives two regions $A(S)$ and $B(S)$. Recall that the zonoid depth of p with respect to S is

$$Z(p, S) = \sup\{ k: p \in Z_k(S) \} = \inf\{ k: p \notin Z_k(S) \}.$$

If we assume (by translation) that p is the origin, then, in the dual p becomes the hyperplane $h_0 = \{ x: x_d = 0 \}$ and $p \in Z_k(S)$ if and only if h_0 does not intersect $A_k(S)$ or $B_k(S)$. In particular, the value k we are searching for is the minimum of k_A and k_B where

$$k_A = \min \{ x_{d+1}: x \in h_0 \cap A(S) \}$$

and

$$k_B = \min \{ x_{d+1}: x \in h_0 \cap B(S) \}.$$

In words, we want the minimum value of k such that $A_k(S)$ or $B_k(S)$ intersects the hyperplane $h_0 = \{ x \in \mathbb{R}^d: x_d = 0 \}$.

Theorem 3. Given a set S of n points in \mathbb{R}^d and a point $p \in \mathbb{R}^d$, the maximum value k such that $p \in Z_k(S)$ can be found in $O(n)$ expected time.

Proof sketch. The proof is another application of Theorem 1 to find the values k_A and k_B described above. We focus only on finding k_A, as finding k_B is a symmetric problem. The details are much the same as in Theorem 2 so we only sketch them. As before we generalize $A(S)$ and $B(S)$ to the weighted setting using multisets and let $f(S, w)$ be the function that maps (S, w) on to the set of linear constraints that define $h_0 \cap A(S^w)$.

As before, S satisfies condition 0 of Theorem 1 since, for constant size subproblems we can explicitly generate the polytopes $Z(S_1, w_1), \ldots, Z(S_{d+1}, w_{d+1})$, compute their common intersection with h_0 and find a point in the intersection maximizing the objective function $g(p) = p_{d+1}$.

The decision problem we must solve to satisfy condition 1 of Theorem 1 is the problem of testing whether a point \(p \in \mathbb{R}^{d+1} \) is contained in \(h_0 \cap A(S) \). But this is simply a matter of checking that \(p \in h_0 \) and that \((p_1, \ldots, p_d) \) is in \(A_{p_d}(S) \), a problem for which we described an \(O(n) \) time algorithm in the proof of Theorem 2.

The partitioning into subproblems required to satisfy condition 2 of Theorem 1 can be done in exactly the same manner as described in the proof of Theorem 2. To see that this partitioning works in the current case we need only observe that the partitioning makes no use of the value \(k \) and the argument used to show its correctness holds for all values of \(k \). This completes the proof sketch. \(\square \)

We conclude with a few remarks about the constants in the algorithm. The use of Chan’s technique yields a simple-to-implement algorithm, but this algorithm has extremely large constants hidden in the asymptotic notation. Even using the most sophisticated forms of cuttings and fixed-dimensional linear programming, the expected running time of the algorithm is given by the recurrence

\[
T(n) = (\log r)(\text{cd})^{d/2+O(1)} \times T(n/r) + O(r^d n),
\]

where \(r \) is an integer parameter and \(c \) is a constant that occurs in Clarkson’s randomized linear programming algorithm [6]. Thus, to even obtain an expected running time of \(O(n) \), we require \(r/\log(r) > (\text{cd})^{d/2+O(1)} \). It might be possible to reduce the dependence on \(d \) somewhat by engineering a hybrid algorithm that uses Chan’s original optimization technique [3] in conjunction with the decision algorithm of Ogryczak and Tamir [20]. However, the latter algorithm already includes a factor of \(d! \) in the running time so the running time of the resulting algorithm will still have a superpolynomial dependence on \(d \).

References