51 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    Calm Displays and Their Applications : Making Emissive Displays Mimic Reflective Surfaces Using Visual Psychophysics, Light Sensing and Colour Science

    Get PDF
    Ph. D. Thesis.Our environment is increasingly full of obtrusive display panels, which become illuminating surfaces when on, and void black rectangles when off. Some researchers argue that emissive displays are incompatible with Weiser and Seely Brown's vision of "calm technology", due to their inability to seamlessly blend into the background. Indeed, Mankoff has shown that for any ambient technology, the ability to move into the periphery is the most relevant factor in their usability. In this thesis, a background mode for displays is proposed based on the idea that displays can look like an ordinary piece of reflective paper showing the same content. The thesis consists of three main parts. In the first part (Chapter 4), human colour matching performance between an emissive display and reflective paper under chromatic lighting conditions is measured in a psychophysical experiment. We find that threshold discrimination ellipses vary with condition (16.0×6.0 ΔEab on average), with lower sensitivity to chroma than hue changes. Match distributions are bimodal for some conditions. In the second part (Chapter 5), an algorithm enabling emissive displays to look like reflective paper is described and evaluated, giving an average error of ΔEab = 10.2 between display and paper. A field study showed that paper-like displays are more acceptable in bedrooms and that people are more likely to keep them always on than normal displays. Finally, the third part (Chapter 6) concerns the development and four-week trial of a paper-like display application. Using the autobiographical design method, a system for sharing bedtime with a remote partner was developed. We see that once unobtrusive, display systems are desired for use even in spaces like bedrooms. Paper-like displays enable both emerging and existing devices to move into the periphery and become “invisible”, and therefore provide a new building block of calm technology that is not achievable using simple emissive displays

    High dynamic range display systems

    Get PDF
    High contrast ratio (CR) enables a display system to faithfully reproduce the real objects. However, achieving high contrast, especially high ambient contrast (ACR), is a challenging task. In this dissertation, two display systems with high CR are discussed: high ACR augmented reality (AR) display and high dynamic range (HDR) display. For an AR display, we improved its ACR by incorporating a tunable transmittance liquid crystal (LC) film. The film has high tunable transmittance range, fast response time, and is fail-safe. To reduce the weight and size of a display system, we proposed a functional reflective polarizer, which can also help people with color vision deficiency. As for the HDR display, we improved all three aspects of the hardware requirements: contrast ratio, color gamut and bit-depth. By stacking two liquid crystal display (LCD) panels together, we have achieved CR over one million to one, 14-bit depth with 5V operation voltage, and pixel-by-pixel local dimming. To widen color gamut, both photoluminescent and electroluminescent quantum dots (QDs) have been investigated. Our analysis shows that with QD approach, it is possible to achieve over 90% of the Rec. 2020 color gamut for a HDR display. Another goal of an HDR display is to achieve the 12-bit perceptual quantizer (PQ) curve covering from 0 to 10,000 nits. Our experimental results indicate that this is difficult with a single LCD panel because of the sluggish response time. To overcome this challenge, we proposed a method to drive the light emitting diode (LED) backlight and the LCD panel simultaneously. Besides relatively fast response time, this approach can also mitigate the imaging noise. Finally yet importantly, we improved the display pipeline by using a HDR gamut mapping approach to display HDR contents adaptively based on display specifications. A psychophysical experiment was conducted to determine the display requirements

    WO3 for reflective displays in color

    Get PDF
    Reflective displays, also known as electronic paper, are very attractive due to their low power consumption and great visibility under bright ambient light conditions. However, reflective displays in color are still limited on the market for two main reasons. First, their low absolute reflectivity requires the integration of a strong backlight which has the consequence of a higher power consumption and the loss of the paper-like appearance. Second, their color quality (chromaticity) is poor. Both reasons are the result of how the red, green and blue (RGB) subpixels are generated: color filters are applied on top of white surfaces. The 3 subpixels design itself, limits the reflectivity to 33% for each color, moreover the addition of color filters makes it drop to less than 30%.Plasmonic structural colors based on metal-insulator-metal Fabry-P\ue9rot cavities, on the other hand, have been proven to show great reflectivity (>90%) and chromaticity and, combined with electrochromic materials, could be used as pixels in reflective displays. In this thesis 2 types of these metasurfaces are fabricated, combined with the inorganic electrochromic material tungsten trioxide (WO3) to generate dynamic structures.The first type includes an aluminum mirror, an alumina spacer layer, and a top gold film with a nanoholes array. The thickness of the alumina spacer layer is tuned to select the reflected wavelengths via thin film interference to fabricate RGB surfaces. The nanoholes on the top layer, moreover, contribute to the chromaticity via plasmonic resonance. On top of the Fabry-P\ue9rot cavities, we deposit a layer of WO3. This electrochromic material, once placed in an electrochemical cell with an electrolyte containing lithium ions, undergo an optical change (it turns deep blue) when a voltage is applied, hence when the ions are intercalated or de-intercalated in the film. As a result, the RGB pixels can be turned on and off, completely or partially, to display all the other colors.The second type is also based on a Fabry-P\ue9rot cavity, with a platinum mirror and a top gold layer. The difference relies in the spacer layer, which is constituted by the electrochromic WO3. Here are presented 2 designs based on this, one with nanoholes in the top gold film and one with nanoholes in the bottom platinum mirror. In both designs the holes only serve as passages through the metal to the WO3 film and do not show any plasmonic resonance in the visible part of the spectra. The result is dynamic structures that can reflect several different colors due to the change in the optical constants of the spacer layer. With this design it could then be possible to move away from a 3 subpixels configuration towards a 2 or 1 subpixels configuration with higher reflectivity

    Evaluation and optimal design of spectral sensitivities for digital color imaging

    Get PDF
    The quality of an image captured by color imaging system primarily depends on three factors: sensor spectral sensitivity, illumination and scene. While illumination is very important to be known, the sensitivity characteristics is critical to the success of imaging applications, and is necessary to be optimally designed under practical constraints. The ultimate image quality is judged subjectively by human visual system. This dissertation addresses the evaluation and optimal design of spectral sensitivity functions for digital color imaging devices. Color imaging fundamentals and device characterization are discussed in the first place. For the evaluation of spectral sensitivity functions, this dissertation concentrates on the consideration of imaging noise characteristics. Both signal-independent and signal-dependent noises form an imaging noise model and noises will be propagated while signal is processed. A new colorimetric quality metric, unified measure of goodness (UMG), which addresses color accuracy and noise performance simultaneously, is introduced and compared with other available quality metrics. Through comparison, UMG is designated as a primary evaluation metric. On the optimal design of spectral sensitivity functions, three generic approaches, optimization through enumeration evaluation, optimization of parameterized functions, and optimization of additional channel, are analyzed in the case of the filter fabrication process is unknown. Otherwise a hierarchical design approach is introduced, which emphasizes the use of the primary metric but the initial optimization results are refined through the application of multiple secondary metrics. Finally the validity of UMG as a primary metric and the hierarchical approach are experimentally tested and verified

    Development of an application for quick comparison of pigments from their colorimetric coordinates

    Get PDF
    Pigments production for use in different kinds of industries (paints, cement, fertilizer, glass, etc.) is a booming sector that invoice million worldwide. So, all those applications that increase efficiency and effectiveness in daily work within the industry agree to be undertaken. Within this line, in this research, the development of an application is presented for comparing a fast and simple way of pigments based on its colour information. This application was developed for the company PROMINDSA SA and allows the user to perform a visual comparison considering the three spatial dimensions, and perform further analysis in two dimensions and one dimension for each of the components of the CIELAB colour space

    High Dynamic Range (HDR) Display Perception

    Get PDF
    Displays have undergone a huge development in the last several decades. From cathode-ray tube (CRT), liquid crystal display (LCD), to organic light-emitting diode (OLED), even Q-OLED, the new configurations of the display bring more and more functions into industry and daily life. In the recent several years, high dynamic range (HDR) displays become popular. HDR displays usually refer to that the black level of the display is darker and the peak being brighter compared with the standard dynamic range (SDR) display. Traditionally, the peak luminance level can be used as the white in characterization and calibration. However, for HDR displays, the peak luminance is higher than the traditional diffuse white level. Exploration of the perceptual diffuse white in HDR image when presented in displays is proposed, which can be beneficial to the characterizing and the optimizing the usage of the HDR display. Moreover, in addition to the ``diffuse white , 3D color gamut volume can be calculated in some specific color appearance models. Calculation and modeling of the 3D color gamut volume can be very useful for display design and better characterizing display color reproduction capability. Furthermore, the perceptional color gamut volume can be measured through psychophysical experiments. Comparison between the perceptional color gamut volume and the theoretical 3D gamut volume calculations will reveal some insights for optimizing the usage of HDR displays. Another advantage of the HDR display is its darker black compared with the SDR display. Compared with the real black object, what level of black is `perfect\u27 enough in displays? Experiments were proposed and conducted to evaluate that if the HDR display is capable of showing ``perfect black for different types of background images/patterns. A glare-based model was proposed to predict the visual ``perfect black. Additionally, the dynamic range of human vision system is very large. However, the simultaneous dynamic range of human vision system is much smaller and is important for the fine tuning usage of HDR displays. The simultaneous dynamic range was measured directly for different stimulus sizes. Also, it was found that the simultaneous dynamic range was peak luminance level dependent. A mathematical model was proposed based on the experimental data to predict the simultaneous dynamic range. Also the spatial frequency effect of the target pattern on the simultaneous dynamic range was measured and modeled. The four different assessments about HDR displays perception would provide experimental data and models for a better understanding of HDR perception and tuning of the HDR display

    A mathematical investigation into the design of prefilters that make cameras more colorimetric

    Get PDF
    By placing a color filter in front of a camera we make new spectral sensitivities. The Luther-condition optimization solves for a color filter so that the camera’s filtered sensitivities are as close to being linearly related to the XYZ color matching functions (CMFs) as possible, that is, a filter is found that makes the camera more colorimetric. Arguably, the more general Vora-Value approach solves for the filter that best matches all possible target spectral sensitivity sets (e.g., any linear combination of the XYZ CMFs). A concern that we investigate here is that the filters found by the Luther and Vora-Value optimizations are different from one another. In this paper, we unify the Luther and Vora-Value approaches to prefilter design. We prove that if the target of the Luther-condition optimization is an orthonormal basis—a special linear combination of the XYZ CMFs which are orthogonal and are in unit length—the discovered Luther-filter is also the filter that maximizes the Vora-Value. A key advantage of using the Luther-condition formulation to maximize the Vora-Value is that it is both simpler to implement and converges to its optimal answer more quickly. Experiments validate our method
    • …
    corecore