5,082 research outputs found

    Advanced Mechanism Design for Electric Vehicle Charging Scheduling in the Smart Infrastructure

    Get PDF
    Electric vehicle (EV) continues to grow rapidly due to low emission and high intelligence. This thesis considers a smart infrastructure (SI) as an EV-centered ecosystem, which is an integrated and connected multi-modal network involving interacting intelligent agents, such as EVs, charging facilities, electric power grids, distributed energy resources, etc. The system modeling paradigm is derived from distributed artificial intelligence and modelled as multi-agent systems (MAS), where the agents are self-interested and reacting strategically to maximize their own benefits. The integration, interaction, and coordination of EVs with SI components will raise various features and challenges on the transportation efficiency, power system stability, and user satisfaction, as well as opportunities provided by optimization, economics, and control theories, and other advanced technologies to engage more proactively and efficiently in allocating the limited charging resources and collaborative decision-making in a market environment. A core challenge in such an EV ecosystem is to trade-off the two objectives of the smart infrastructure, of system-wide efficiency and at the same time the social welfare and individual well-being against agents’ selfishness and collective behaviors. In light of this, scheduling EVs' charging activities is of great importance to ensure an efficient operation of the smart infrastructure and provide economical and satisfactory charging experiences to EV users under the support of two-way flow of information and energy of charging facilities. In this thesis, we develop an advanced mechanism design framework to optimize the charging resource allocation and automate the interaction process across the overall system. The key innovation is to design specific market-based mechanisms and interaction rules, integrated with concepts and principles of mechanism design, scheduling theory, optimization theory, and reinforcement learning, for charging scheduling and dynamic pricing problem in various market structures. Specifically, this research incorporates three synergistic areas: (1) Mathematical modelling for EV charging scheduling. We have developed various mixed-integer linear programs for single-charge with single station, single-charge with multiple stations, and multi-charge with multiple stations in urban or highway environments. (2) Market-based mechanism design. Based on the proposed mathematical models, we have developed particular market-based mechanisms from the resource provider’s prospective, including iterative bidding auction, incentive-compatible auction, and simultaneous multi-round auction. These proposed auctions contain bids, winner determination models, and bidding procedure, with which the designer can compute high quality schedules and preserve users’ privacy by progressively eliciting their preference information as necessary. (3) Reinforcement learning-based mechanism design. We also proposed a reinforcement mechanism design framework for dynamic pricing-based demand response, which determines the optimal charging prices over a sequence of time considering EV users’ private utility functions. The learning-based mechanism design has effectively improved the long-term revenue despite highly-uncertain requests and partially-known individual preferences of users. This Ph.D. dissertation presents a market prospective and unlocks economic opportunities for MAS optimization with applications to EV charging related problems; furthermore, applies AI techniques to facilitate the evolution from manual mechanism design to automated and data-driven mechanism design when gathering, distributing, storing, and mining data and state information in SI. The proposed advanced mechanism design framework will provide various collaboration opportunities with the research expertise of reinforcement learning with innovative collective intelligence and interaction rules in game theory and optimization tools, as well as offers research thrust to more complex interfaces in intelligent transportation system, smart grid, and smart city environments

    Minimizing the impact of EV charging on the electricity distribution network

    Full text link
    The main objective of this paper is to design electric vehicle (EV) charging policies which minimize the impact of charging on the electricity distribution network (DN). More precisely, the considered cost function results from a linear combination of two parts: a cost with memory and a memoryless cost. In this paper, the first component is identified to be the transformer ageing while the second one corresponds to distribution Joule losses. First, we formulate the problem as a non-trivial discrete-time optimal control problem with finite time horizon. It is non-trivial because of the presence of saturation constraints and a non-quadratic cost. It turns out that the system state, which is the transformer hot-spot (HS) temperature here, can be expressed as a function of the sequence of control variables; the cost function is then seen to be convex in the control for typical values for the model parameters. The problem of interest thus becomes a standard optimization problem. While the corresponding problem can be solved by using available numerical routines, three distributed charging policies are provided. The motivation is threefold: to decrease the computational complexity; to model the important scenario where the charging profile is chosen by the EV itself; to circumvent the allocation problem which arises with the proposed formulation. Remarkably, the performance loss induced by decentralization is verified to be small through simulations. Numerical results show the importance of the choice of the charging policies. For instance, the gain in terms of transformer lifetime can be very significant when implementing advanced charging policies instead of plug-and-charge policies. The impact of the accuracy of the non-EV demand forecasting is equally assessed.Comment: 6 pages, 3 figures, keywords: electric vehicle charging, electricity distribution network, optimal control, distributed policies, game theor

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid
    corecore