413,310 research outputs found

    Towards Scalable Network Delay Minimization

    Full text link
    Reduction of end-to-end network delays is an optimization task with applications in multiple domains. Low delays enable improved information flow in social networks, quick spread of ideas in collaboration networks, low travel times for vehicles on road networks and increased rate of packets in the case of communication networks. Delay reduction can be achieved by both improving the propagation capabilities of individual nodes and adding additional edges in the network. One of the main challenges in such design problems is that the effects of local changes are not independent, and as a consequence, there is a combinatorial search-space of possible improvements. Thus, minimizing the cumulative propagation delay requires novel scalable and data-driven approaches. In this paper, we consider the problem of network delay minimization via node upgrades. Although the problem is NP-hard, we show that probabilistic approximation for a restricted version can be obtained. We design scalable and high-quality techniques for the general setting based on sampling and targeted to different models of delay distribution. Our methods scale almost linearly with the graph size and consistently outperform competitors in quality

    The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    Get PDF
    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator

    Implementation of Local Area Network for Optimization of Data Processing (Study at Bank of East Java Small Medium Enterprise in Surabaya)

    Full text link
    The objectives in this research are to describe implementation of LAN (Local Area Network) for optimization of data processing and To know the LAN (Local Area Network) be used optimally in data processing. The research used descriptive qualitative research approach to the analysis developed by Miles and Huberman data collection, data reduction, and conclusion. Collecting data using observation, interview employee Bank UMKM Jatim Surabaya. The results of this research are according to sources, the use of LAN in the processing of customer data is said to be optimal. However, the observation that researchers do, there are some shortcomings and problems that led to the conclusion that the use of the LAN for the processing of customer data Bank of East Java Small Medium Enterprise in Surabaya used LAN with IP and router in each computer, used of LAN is optimal, but still has some problem that occur, and the weakness is data leakage often occurs. Keywoard: computer network, local area network, optimization, data processing

    ShallowForest: Optimizing All-to-All Data Transmission in WANs

    Get PDF
    All-to-all data transmission is a typical data transmission pattern in both consensus protocols and blockchain systems. Developing an optimization scheme that provides high throughput and low latency data transmission can significantly benefit the performance of those systems. This thesis investigates the problem of optimizing all-to-all data transmission in a wide area network (WAN) using overlay multicast. I first prove that in a congestion-free core network model, using shallow tree overlays with height up to two is sufficient for all-to-all data transmission to achieve the optimal throughput allowed by the available network resources. Based on this finding, I build ShallowForest, a data plane optimization for consensus protocols and blockchain systems. The goal of ShallowForest is to improve consensus protocols' resilience to skewed client load distribution. Experiments with skewed client load across replicas in the Amazon cloud demonstrate that ShallowForest can improve the commit throughput of the EPaxos consensus protocol by up to 100% with up to 60% reduction in commit latenc
    corecore