7 research outputs found

    Concept Development Of Biomimetic Centipede Robot StriRus

    Get PDF
    In this paper, we introduce a modification for legged locomotion and methods for biomimetic centipede robot design. Biomimetic centipede robots can be well-suited to a number of applications, including search-and-rescue around demolished rubble, logistics in rocky and hazardous areas, and more. The design space for such robots is quite large, with numerous open possibilities for body and leg shapes, configurations, and numbers of components. In contrast to similar robotic platforms proposed prototype can move in any direction. Moreover, proposed design allows robot to operate in either omni-direction or conven- tional states without changing components. It was shown that new design provides better cross-country passability. Structural synthesis of Biomimetic Centipede Robot StriRus was made using evolutionary algorithm and simulation, which includes optimization the number of legs and angles between neighbor legs. Crosschecked angle optimization was done using kinematics

    Soft Scalable Self-Reconfigurable Modular Cellbot

    Get PDF
    Hazardous environments such as disaster affected areas, outer space, and radiation affected areas are dangerous for humans. Autonomous systems which can navigate through these environments would reduce risk of life. The terrains in these applications are diverse and unknown, hence there is a requirement for a robot which can self-adapt its morphology and use suitable control to optimally move in the desired manner. Although there exist monolithic robots for some of these applications, such as the Curiosity rover for Mars exploration, a modular robot containing multiple simple units could increase the fault tolerance. A modular design also enables scaling up or down of the robot based on the current task, for example, scaling up by connecting multiple units to cover a wider area or scaling down to pass through a tight space.Taking bio-inspiration from cells, where – based on environmental conditions – cells come together to form different structures to carry out different tasks, a soft modular robot called Cellbot was developed which was composed of multiple units called ‘cells’. Tests were conducted to understand the cellbot movement over different frictional surfaces for different actuation functions, the number of cells connected in a line (1D), and the shapes formed by connecting cells in 2D. A simulation model was developed to test a large range of frictional values and actuation functions for different friction coefficients. Based on the obtained results, cells could be designed using a material with frictional properties lying in the optimal locomotion range. In other cases, where the application has diverse terrains, the number of connected units can be changed to optimise the robot locomotion. Initial tests were conducted using a ‘ball robot’, where the cellbot was designed using balls which touch ground to exploit friction and actuators to provide force to move the robot. The model was extended to develop, a ‘bellow robot’ which was fabricated using hyper-elastic bellows and employed pneumatic actuation. The amount of inflation of a cell and its neighbouring cells determined if the cell would touch the ground or be lifted up. This was used to change cell behaviour where a cell could be touching ground to provide anchoring friction, or lifted to push or pull the cells and thereby move the robot. The cells were connected by magnets which could be disconnected and reconnected by morphing the robot body. The cellbot can thus reconfigure by changing the number of connected units or its shape. The easy detachment can be used to remove and replace damaged cells. Complex cellbot movements can be achieved by either switching between different robot morphologies or by changing actuation control.Future cellbots will be controlled remotely to change their morphology, control, and number of connected cells, making them suitable for missions which require fault tolerance and autonomous shape adaptation. The proposed cellbot platform has the potential to reduce the energy, time and costs in comparison to traditional robots and has potential for applications such as exploration missions for outer space, search and rescue missions for disaster affected areas, internal medical procedures, and nuclear decommissioning.<br/

    Advances in Bio-Inspired Robots

    Get PDF
    This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced

    Investigation on the mobile robot navigation in an unknown environment

    Get PDF
    Mobile robots could be used to search, find, and relocate objects in many types of manufacturing operations and environments. In this scenario, the target objects might reside with equal probability at any location in the environment and, therefore, the robot must navigate and search the whole area autonomously, and be equipped with specific sensors to detect objects. Novel challenges exist in developing a control system, which helps a mobile robot achieve such tasks, including constructing enhanced systems for navigation, and vision-based object recognition. The latter is important for undertaking the exploration task that requires an optimal object recognition technique. In this thesis, these challenges, for an indoor environment, were divided into three sub-problems. In the first, the navigation task involved discovering an appropriate exploration path for the entire environment, with minimal sensing requirements. The Bug algorithm strategies were adapted for modelling the environment and implementing the exploration path. The second was a visual-search process, which consisted of employing appropriate image-processing techniques, and choosing a suitable viewpoint field for the camera. This study placed more emphasis on colour segmentation, template matching and Speeded-Up Robust Features (SURF) for object detection. The third problem was the relocating process, which involved using a robot’s gripper to grasp the detected, desired object and then move it to the assigned, final location. This also included approaching both the target and the delivery site, using a visual tracking technique. All codes were developed using C++ and C programming, and some libraries that included OpenCV and OpenSURF were utilized for image processing. Each control system function was tested both separately, and then in combination as a whole control program. The system performance was evaluated using two types of mobile robots: legged and wheeled. In this study, it was necessary to develop a wheeled search robot with a high performance processor. The experimental results demonstrated that the methodology used for the search robots was highly efficient provided the processor was adequate. It was concluded that it is possible to implement a navigation system within a minimum number of sensors if they are located and used effectively on the robot’s body. The main challenge within a visual-search process is that the environmental conditions are difficult to control, because the search robot executes its tasks in dynamic environments. The additional challenges of scaling these small robots up to useful industrial capabilities were also explored

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Reinforcement learning with supervision beyond environmental rewards

    Get PDF
    Reinforcement Learning (RL) is an elegant approach to tackle sequential decision-making problems. In the standard setting, the task designer curates a reward function and the RL agent's objective is to take actions in the environment such that the long-term cumulative reward is maximized. Deep RL algorithms---that combine RL principles with deep neural networks---have been successfully used to learn behaviors in complex environments but are generally quite sensitive to the nature of the reward function. For a given RL problem, the environmental rewards could be sparse, delayed, misspecified, or unavailable (i.e., impossible to define mathematically for the required behavior). These scenarios exacerbate the challenge of training a stable deep-RL agent in a sample-efficient manner. In this thesis, we study methods that go beyond a direct reliance on the environmental rewards by generating additional information signals that the RL agent could incorporate for learning the desired skills. We start by investigating the performance bottlenecks in delayed reward environments and propose to address these by learning surrogate rewards. We include two methods to compute the surrogate rewards using the agent-environment interaction data. Then, we consider the imitation-learning (IL) setting where we don't have access to any rewards, but instead, are provided with a dataset of expert demonstrations that the RL agent must learn to reliably reproduce. We propose IL algorithms for partially observable environments and situations with discrepancies between the transition dynamics of the expert and the imitator. Next, we consider the benefits of learning an ensemble of RL agents with explicit diversity pressure. We show that diversity encourages exploration and facilitates the discovery of sparse environmental rewards. Finally, we analyze the concept of sharing knowledge between RL agents operating in different but related environments and show that the information transfer can accelerate learning

    A Bio-inspired architecture for adaptive quadruped locomotion over irregular terrain

    Get PDF
    Tese de doutoramento Programa Doutoral em Engenharia Electrónica e de ComputadoresThis thesis presents a tentative advancement on walking control of small quadruped and humanoid position controlled robots, addressing the problem of walk generation by combining dynamical systems approach to motor control, insights from neuroethology research on vertebrate motor control and computational neuroscience. Legged locomotion is a complex dynamical process, despite the seemingly easy and natural behavior of the constantly present proficiency of legged animals. Research on locomotion and motor control in vertebrate animals from the last decades has brought to the attention of roboticists, the potential of the nature’s solutions to robot applications. Recent knowledge on the organization of complex motor generation and on mechanics and dynamics of locomotion has been successfully exploited to pursue agile robot locomotion. The work presented on this manuscript is part of an effort on the pursuit in devising a general, model free solution, for the generation of robust and adaptable walking behaviors. It strives to devise a practical solution applicable to real robots, such as the Sony’s quadruped AIBO and Robotis’ DARwIn- OP humanoid. The discussed solutions are inspired on the functional description of the vertebrate neural systems, especially on the concept of Central Pattern Generators (CPGs), their structure and organization, components and sensorimotor interactions. They use a dynamical systems approach for the implementation of the controller, especially on the use of nonlinear oscillators and exploitation of their properties. The main topics of this thesis are divided into three parts. The first part concerns quadruped locomotion, extending a previous CPG solution using nonlinear oscillators, and discussing an organization on three hierarchical levels of abstraction, sharing the purpose and knowledge of other works. It proposes a CPG solution which generates the walking motion for the whole-leg, which is then organized in a network for the production of quadrupedal gaits. The devised solution is able to produce goal-oriented locomotion and navigation as directed through highlevel commands from local planning methods. In this part, active balance on a standing quadruped is also addressed, proposing a method based on dynamical systems approach, exploring the integration of parallel postural mechanisms from several sensory modalities. The solutions are all successfully tested on the quadruped AIBO robot. In the second part, is addressed bipedal walking for humanoid robots. A CPG solution for biped walking based on the concept of motion primitives is proposed, loosely based on the idea of synergistic organization of vertebrate motor control. A set of motion primitives is shown to produce the basis of simple biped walking, and generalizable to goal-oriented walking. Using the proposed CPG, the inclusion of feedback mechanisms is investigated, for modulation and adaptation of walking, through phase transition control according to foot load information. The proposed solution is validated on the humanoid DARwIn-OP, and its application is evaluated within a whole-body control framework. The third part sidesteps a little from the other two topics. It discusses the CPG as having an alternative role to direct motor generation in locomotion, serving instead as a processor of sensory information for a feedback based motor generation. In this work a reflex based walking controller is devised for the compliant quadruped Oncilla robot, to serve as purely feedback based walking generation. The capabilities of the reflex network are shown in simulations, followed by a brief discussion on its limitations, and how they could be improved by the inclusion of a CPG.Esta tese apresenta uma tentativa de avanço no controlo de locomoção para pequenos robôs quadrúpedes e bipedes controlados por posição, endereçando o problema de geração motora através da combinação da abordagem de sistemas dinâmicos para o controlo motor, e perspectivas de investigação neuroetologia no controlo motor vertebrado e neurociência computacional. Andar é um processo dinâmico e complexo, apesar de parecer um comportamento fácil e natural devido à presença constante de animais proficientes em locomoção terrestre. Investigação na área da locomoção e controlo motor em animais vertebrados nas últimas decadas, trouxe à atenção dos roboticistas o potencial das soluções encontradas pela natureza aplicadas a aplicações robóticas. Conhecimento recente relativo à geração de comportamentos motores complexos e da mecânica da locomoção tem sido explorada com sucesso na procura de locomoção ágil na robótica. O trabalho apresentado neste documento é parte de um esforço no desenho de uma solução geral, e independente de modelos, para a geração robusta e adaptável de comportamentos locomotores. O foco é desenhar uma solução prática, aplicável a robôs reais, tal como o quadrúpede Sony AIBO e o humanóide DARwIn-OP. As soluções discutidas são inspiradas na descrição funcional do sistema nervoso vertebrado, especialmente no conceito de Central Pattern Generators (CPGs), a sua estrutura e organização, componentes e interacção sensorimotora. Estas soluções são implementadas usando uma abordagem em sistemas dinâmicos, focandos o uso de osciladores não lineares e a explorando as suas propriedades. Os tópicos principais desta tese estão divididos em três partes. A primeira parte explora o tema de locomoção quadrúpede, expandindo soluções prévias de CPGs usando osciladores não lineares, e discutindo uma organização em três níveis de abstracção, partilhando as ideias de outros trabalhos. Propõe uma solução de CPG que gera os movimentos locomotores para uma perna, que é depois organizado numa rede, para a produção de marcha quadrúpede. A solução concebida é capaz de produzir locomoção e navegação, comandada através de comandos de alto nível, produzidos por métodos de planeamento local. Nesta parte também endereçado o problema da manutenção do equilíbrio num robô quadrúpede parado, propondo um método baseado na abordagem em sistemas dinâmicos, explorando a integração de mecanismos posturais em paralelo, provenientes de várias modalidades sensoriais. As soluções são todas testadas com sucesso no robô quadrupede AIBO. Na segunda parte é endereçado o problema de locomoção bípede. É proposto um CPG baseado no conceito de motion primitives, baseadas na ideia de uma organização sinergética do controlo motor vertebrado. Um conjunto de motion primitives é usado para produzir a base de uma locomoção bípede simples e generalizável para navegação. Esta proposta de CPG é usada para de seguida se investigar a inclusão de mecanismos de feedback para modulação e adaptação da marcha, através do controlo de transições entre fases, de acordo com a informação de carga dos pés. A solução proposta é validada no robô humanóide DARwIn-OP, e a sua aplicação no contexto do framework de whole-body control é também avaliada. A terceira parte desvia um pouco dos outros dois tópicos. Discute o CPG como tendo um papel alternativo ao controlo motor directo, servindo em vez como um processador de informação sensorial para um mecanismo de locomoção puramente em feedback. Neste trabalho é desenhado um controlador baseado em reflexos para a geração da marcha de um quadrúpede compliant. As suas capacidades são demonstradas em simulação, seguidas por uma breve discussão nas suas limitações, e como estas podem ser ultrapassadas pela inclusão de um CPG.The presented work was possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant SFRH/BD/62047/2009
    corecore