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ABSTRACT

Reinforcement Learning (RL) is an elegant approach to tackle sequential decision-making

problems. In the standard setting, the task designer curates a reward function and the RL

agent’s objective is to take actions in the environment such that the long-term cumulative

reward is maximized. Deep RL algorithms—that combine RL principles with deep neural

networks—have been successfully used to learn behaviors in complex environments but are

generally quite sensitive to the nature of the reward function. For a given RL problem, the

environmental rewards could be sparse, delayed, misspecified, or unavailable (i.e., impossible

to define mathematically for the required behavior). These scenarios exacerbate the challenge

of training a stable deep-RL agent in a sample-efficient manner.

In this thesis, we study methods that go beyond a direct reliance on the environmental

rewards by generating additional information signals that the RL agent could incorporate

for learning the desired skills. We start by investigating the performance bottlenecks in

delayed reward environments and propose to address these by learning surrogate rewards.

We include two methods to compute the surrogate rewards using the agent-environment

interaction data. Then, we consider the imitation-learning (IL) setting where we don’t have

access to any rewards, but instead, are provided with a dataset of expert demonstrations

that the RL agent must learn to reliably reproduce. We propose IL algorithms for partially

observable environments and situations with discrepancies between the transition dynamics

of the expert and the imitator. Next, we consider the benefits of learning an ensemble of RL

agents with explicit diversity pressure. We show that diversity encourages exploration and

facilitates the discovery of sparse environmental rewards. Finally, we analyze the concept of

sharing knowledge between RL agents operating in different but related environments and

show that the information transfer can accelerate learning.
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CHAPTER 1: THESIS OVERVIEW

In the Reinforcement Learning (RL) framework (Sutton & Barto, 2018), an agent se-

quentially interacts with an external environment in discrete timesteps, with the objective

of learning a sequence of decisions or actions that lead to accumulation of the maximum

amount of rewards from the environment. The RL framework is applicable to a wide array

of decision-making problems in domains such as robotics (Peng et al., 2020), healthcare (Yu

et al., 2019), industrial process control (Hein et al., 2017), hardware design (Khadka et al.,

2020), and recommendation systems (Afsar et al., 2021), among others. Recent years have

witnessed significant progress in the development of RL algorithms and their application to

complex environments (Mnih et al., 2015; Lillicrap et al., 2015; Silver et al., 2017,; Dabney

et al., 2018; Vinyals et al., 2019). This has largely been driven by the advancements in

design and understanding of deep neural networks, that are used in the Deep-RL algorithms

as function approximators for feature extraction, value estimation, and action selection.

Different from the supervised learning setup, an RL agent collects the training data via

an online closed-loop interaction with the environment. The environmental reward provides

the supervision to guide the agent towards learning the preferred long-term task behavior.

The reward function is the most concise definition of a task (Abbeel & Ng, 2004). From

a learning perspective, it is desirable that every action of the agent from a given state be

quantifiable under the reward function. However, such dense rewards are seldom available

for the environments of interest, since distilling the desired behavior for a task into a robust

mathematical function is an extremely complicated proposition. Realistically, environmental

rewards could be sparse, delayed, misspecified (deceptive), or even completely missing. This

scarcity of supervision often renders deep-RL algorithms unstable and sample-inefficient.

The central theme of this thesis is to study alternate sources of supervision,

beyond the environmental rewards, that could accelerate deep-RL algorithms.

1.1 MAIN CONTRIBUTIONS

In this thesis, we analyze four different sources of auxiliary supervision. These are surro-

gate (proxy) rewards, expert demonstrations, diversity pressure, and knowledge sharing.

1.1.1 Supervision via Surrogate Rewards

We consider delayed-reward environments which are characterized by a finite delay between

the time the agent takes an action and when the corresponding reward from the environment
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is provided to it (Bacchus et al., 1996). Deep-RL algorithms struggle to learn with delayed

rewards due to the fundamental issue of long-term temporal credit assignment (Minsky,

1961; Sutton, 1984). Credit assignment refers to the ability of the agent to attribute actions

to consequences that may occur after a long time interval. Several approaches have been

proposed to improve learning under reward delays, including multi-step backups for fast

reward propagation (Kozuno et al., 2021), gradient-free policy search methods (Salimans

et al., 2017), and learning surrogate rewards (Singh et al., 2009; Sheikh et al., 2020; Zheng

et al., 2020). When the environmental rewards are not conducive for direct use in the policy-

gradient or the value-estimation objectives, surrogate (or intrinsic) reward functions that are

discovered from the agent-environment interaction data are an appealing alternative.

We contribute two methods to learn dense surrogate rewards that boost the performance

of a deep-RL agent (Gangwani et al., 2018, 2020). In our first approach, we train a paramet-

ric reward generator by building on the idea of self-imitation learning. The reward network

and the policy are trained iteratively in a saddle point optimization similar to GANs. In

the second method, we compute non-parametric rewards from the agent-environment data.

We highlight that the non-parametric rewards could be intuitively interpreted as a uni-

form return redistribution mechanism, and learning with them is equivalent to optimizing a

modified form of the RL objective with smoothing in the trajectory space.

1.1.2 Supervision via Expert Demonstrations

Humans learn by observation and imitation. It is, therefore, prudent to study the imitation-

learning (IL) paradigm, where an expert illustrates how to solve the given task with some

exemplar demonstrations. IL algorithms train the agent to mimic the demonstrated behav-

ior, without access to any environmental rewards. A large volume of work has been done on

IL resulting in approaches such as Behavioral Cloning (Pomerleau, 1991; Ross et al., 2011),

that frames IL as supervised learning of expert actions, and Inverse-RL (Ng et al., 2000;

Abbeel & Ng, 2004), that attempts to recover the reward function for which the expert

demonstrations are optimal. Recent IL algorithms that build on the probabilistic maximum

entropy inverse-RL idea (Ziebart et al., 2008) have been successfully applied to locomotion

and robotic-manipulation tasks in high dimensions (Ho & Ermon, 2016; Finn et al., 2016).

The demonstrations in IL typically include observations (or states) and the corresponding

expert actions. The more practical yet challenging setting is “IL from observations only”

(abbreviated ILO), i.e., without the expert actions. ILO algorithms are compelling since

they enable imitation across environments with heterogeneity in either the action-space or

the transition dynamics, and in scenarios where expert actions are difficult to measure. We
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design two algorithms for ILO with model misspecification – where the transition dynamics

model of the learner is a perturbed version of that of the expert. In the first method (Gang-

wani & Peng, 2020), we start with the principle of maximum entropy inverse-RL and use a

variational approximation to derive a scalable algorithm. In the second approach (Gangwani

et al., 2021), we use the demonstrated expert states to produce a set of state-action pairs in

the learner’s environment, such that this generated dataset is convenient for imitation learn-

ing via distribution matching. Our third contribution in this part is an algorithm for imita-

tion in partially observable environments, where the input observations to the agent contain

imperfect information about the world (Gangwani et al., 2019). Our proposed approach

combines concepts from belief representation learning and adversarial imitation learning.

1.1.3 Supervision via Diversity Pressure

Humans possess the capability to discover different ways to solve a given task due to the

innate diversity in their behavioral preferences. In RL environments, the reward function

provided by the task-designer may permit more than one optimal policy. In such cases, it

is useful to learn a diverse collection of behaviors that achieve high environmental returns.

Some of the benefits include efficient exploration in large state spaces with sparse or deceptive

rewards (Conti et al., 2017; Hong et al., 2018), learning on downstream tasks via skill-

composition (Florensa et al., 2017), and learning of robust behaviors that transfer across

environments (Cully et al., 2015). A suitable strategy to uncover diverse behaviors is to

train an ensemble of RL agents with an explicit loss function that encourages diversity.

We contribute an algorithm for learning a population of agents where each member is

optimized to simultaneously accumulate high task-returns and exhibit behavioral diversity

vis-à-vis other members (Gangwani et al., 2020). We build on a recent kernel-based method

for training such an ensemble with Stein variational gradient descent (Liu et al., 2017).

1.1.4 Supervision via Knowledge Sharing

An RL agent need not learn a new task in isolation, from scratch. Its learning process

could be supplemented with knowledge from other agents’ learning. Information sharing

among agents could be facilitated by techniques like transfer-RL and meta-RL. The transfer-

RL method typically assumes the presence of a teacher policy network that distills useful

knowledge into a student policy network (Rusu et al., 2015; Parisotto et al., 2015). In meta-

RL, the agent is trained on a distribution over tasks, with the goal of learning to learn on a

new task from the same distribution. Training with several tasks presents the opportunity
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to share data among the tasks, thereby improving the overall sample-efficiency.

Our first contribution in this part is an algorithm for transfer-RL when the teacher and

the student environments can have arbitrarily different state- and action-spaces (Wan et al.,

2020). To handle this mismatch, we learn embeddings that can systematically extract knowl-

edge from the teacher policy and value networks, and blend it into the student networks.

Our second contribution is a trajectory-relabeling method for meta-RL that enables data

sharing between tasks during the meta-training phase (Wan et al., 2021). It is inspired by

a similar approach for the multi-task setting (Eysenbach et al., 2020). We find that sharing

the trajectory data helps with exploration and is, therefore, especially beneficial for meta-RL

on tasks with sparse rewards.

1.2 THESIS ORGANIZATION

This thesis is organized in the following three parts:

Part I: Supervision via Surrogate Rewards consists of two chapters. Chapters 2 and 3

focus on learning surrogate rewards using self-imitation and uniform return redistribution,

respectively.

Part II: Supervision via Imitation Learning consists of two chapters. Chapters 4

and 5 propose algorithms for imitation learning in partially-observable environments and

under model misspecification, respectively.

Part III: Supervision via Diversity Pressure and Knowledge Sharing consists of

three chapters. Chapter 6 considers learning an ensemble of agents with behavioral diversity.

Chapter 7 analyzes a transfer-RL approach across environments with different state- and

action-spaces. Chapter 8 includes a method for sharing the trajectory data among the

different tasks in the meta-RL paradigm.

Authorship Remarks. The content included in this thesis has either been published in

conference proceedings, or is under submission at the time of writing. Chapters 2–6 are

based on works for which this author is the primary contributor. Chapters 7–8 comprise of

works for which Michael Wan is the first author, while this author is the second (Chapter 7)

and the last (Chapter 8) author on the list.

Excluded Research. The material from Gangwani & Peng (2017) and Gangwani & Peng

(2020) is not included in this thesis but was completed during the doctoral program.

4



CHAPTER 2: SURROGATE REWARDS WITH SELF-IMITATION
LEARNING

2.1 INTRODUCTION

The success of popular algorithms for deep RL, such as policy-gradients and Q-learning,

relies heavily on the availability of informative environmental rewards at each timestep of

the sequential decision-making process. When rewards are only sparsely available during an

episode, or rewarding feedback is provided only at episode termination, these algorithms tend

to perform sub-optimally. This observation is linked to one of the fundamental challenges in

RL known as temporal credit assignment. The lack of dense supervision results in inaccurate

value estimation (Q or V function), which in turn makes credit assignment difficult. Several

real-world decision-making problem are of the form where rewards are either only sparsely

available during an episode, or the rewards are episodic, meaning that the reward feedback

is delayed till the end of the episode of interaction (Rahmandad et al., 2009; Hein et al.,

2017; Olivecrona et al., 2017). Delayed rewards could also be non-Markovian (Bacchus et al.,

1996), which further complicates the design of RL algorithms and architectures.

One class of policy search algorithms, which are particularly handy when rewards are de-

layed, is black-box stochastic-optimization; examples include CEM (Rubinstein & Kroese,

2016), ES (Salimans et al., 2017) and Deep-Neuroevolution (Such et al., 2017). They are in-

variant to delayed rewards since the trajectories are not decomposed into individual timesteps

for learning; rather zeroth-order finite-difference or gradient-free methods are used to learn

policies based only on the cumulative rewards of the entire trajectory. However, a major

disadvantage is that discarding the temporal structure of the RL problem leads to inferior

sample-efficiency when compared with policy-gradients.

We propose to improve credit-assignment by learning dense surrogate Markovian rewards

that are correlated with the environmental rewards. We observe that computing the policy-

gradient using the surrogate rewards exhibits much better sample efficiency and asymptotic

performance compared to the baseline approaches in tasks with sparse and delayed rewards.

Basing off the equivalence between the policy function and its occupancy measure (Puter-

man, 1994), we formulate policy optimization as a divergence minimization problem. We

show that with the Jensen-Shannon divergence, this reduces to a policy-gradient algorithm

with shaped surrogate rewards that are learned with a binary classification loss, given a re-

play buffer of high-return trajectories. This algorithm could be interpreted as self-imitation

learning, since the replay trajectories are self-generated by the agent during the course of

learning, rather than being provided by an external source. Our experiments are performed
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on the continuous-control MuJoCo locomotion tasks with delayed rewards. Lastly, we discuss

the shortcomings of the self-imitation algorithm and directions to mitigate them.

2.2 POLICY OPTIMIZATION WITH SELF-IMITATION

Our RL environment is modeled as an infinite-horizon, discrete-time Markov Decision

Process (MDP), where the objective is to learn a policy πθ(a|s) such that the expected dis-

counted sum of rewards, η(πθ) = Ep0,p,π
[∑∞

t=0 γ
tr(st, at)

]
, is maximized. Here, p(st+1|st, at)

is the transition dynamics, p0(s0) is the initial state distribution, and γ ∈ [0, 1) is the dis-

count factor. Although the reward function r(s, a) of the MDP is Markovian, in the scenario

of delayed rewards, the rewards perceived by the agent could be non-Markovian. The state-

action value function of π measures the expected return obtained by following π from a given

state and action, Q(st, at; π) = Ep0,p,π
[∑∞

t′=t γ
t′−tr(st′ , at′)

]
. We define the unnormalized γ-

discounted state-visitation distribution for a policy π by ρπ(s) =
∑∞

t=0 γ
tP (st = s|π), where

P (st = s|π) is the probability of being in state s at time t, when following policy π starting

from a state sampled from p0. The expected policy return η(πθ) can then be written as

Eρπ(s,a)[r(s, a)], where ρπ(s, a) = ρπ(s)π(a|s) is the state-action visitation distribution. The

policy gradient theorem (Sutton et al., 2000) provides the gradient for updating the policy

parameters, ∇θη(πθ) = Eρπ(s,a)

[
∇θ log πθ(a|s)Q(s, a; π)

]
.

Although the policy π(a|s) is parameterized as a conditional distribution, an equivalent

characterization of its behavior is provided by the corresponding state-action visitation dis-

tribution ρπ(s, a), which wraps the MDP dynamics and precisely defines the expected return

of the policy in the MDP via η(π) = Eρπ [r(s, a)] (Puterman, 1994). Therefore, distance met-

rics on a policy π could be defined with respect to the visitation distribution ρπ, and policy

search could be viewed as finding a visitation distribution ρπ that yields a high expected

return. Suppose we have access to the visitation distribution ρπ∗ corresponding to an expert

policy π∗. It is natural to consider learning a policy π such that its visitation ρπ matches

ρπ∗ . To do so, we could define a probability divergence measure D(ρπ, ρπ∗) that captures the

similarity between two distributions, and minimize this divergence for policy improvement,

i.e., minπD(ρπ, ρπ∗). Ho & Ermon (2016) popularized this idea for imitation learning from

external demonstrations. In this work, however, we do not assume access to any externally

available expert policy or demonstration data. Rather, we propose to maintain a buffer B of

high-return trajectories from the previous rollouts of the policy π, and optimize π to mini-

mize the divergence between ρπ and the empirical state-action pair distribution {(si, ai)}B:

min
π
D(ρπ, ρB) ; ρB

def
= {(si, ai)}B (2.1)
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Since the agent learns by considering its own past good (high-return) experiences as the

expert, the algorithm can be viewed as self-imitation learning from the replay buffer B.

The buffer stores the top-k trajectories generated thus far during the training process, as

measured by the trajectory return. It is modeled with a priority queue of fixed capacity,

and the priority of a trajectory is its return value. Using the trajectory return (instead

of the per-timestep reward) makes the approach invariant to the reward delays. Following

prior literature (Goodfellow et al., 2014; Ho & Ermon, 2016), we use the Jensen-Shannon

divergence as the distance measure D. It can be estimated (up to constant scaling and shift)

with the variational form:

DJS(ρπ, ρB) = max
d(s,a),dB(s,a)

Eρπ [log
d(s, a)

d(s, a) + dB(s, a)
] + EρB [log

dB(s, a)

d(s, a) + dB(s, a)
] (2.2)

where d(s, a) and dB(s, a) are learned functions. Let the policy π be parameterized with

θ, and θold be the current policy iterate. At θ = θold, denote the argmax of Equation 2.2

with d∗(s, a; θold), d∗B(s, a; θold). The gradient of DJS(ρπ, ρB) w.r.t. θ at the current iterate is

obtained as:

∇θDJS(ρπ, ρB)
∣∣∣
θ=θold

= Eρπ(s,a)

[
∇θ log πθ(a|s)Qd(s, a; π)

]
,

where Qd(st, at; π) = Eρπ(s,a)

[ ∞∑
t′=t

γt
′−t log

d∗(st′ , at′ ; θold)

d∗(st′ , at′ ; θold) + d∗B(st′ , at′ ; θold)︸ ︷︷ ︸
(negative of) surrogate reward

]
(2.3)

2.2.1 Combining Surrogate and Environmental Rewards

The gradient in Equation 2.3 bears semblance to the standard policy-gradient (Sutton

et al., 2000), but for replacing the environmental reward with a shaped per-timestep cost

(negative reward, shown with an under-brace). This enables us to conveniently interpolate

the gradient of DJS with the policy-gradient from the environmental rewards. The combined

gradient on the policy parameters is:

∇θη(πθ) = (1− ν)Eρπ(s,a)

[
∇θ log πθ(a|s)Qr(s, a)

]
− ν∇θDJS(ρπ, ρB), (2.4)

where Qr is the Q-function with the environmental rewards, and ν ∈ [0, 1]. Define rφ(s, a)
def
=

d∗(s, a; θold)/(d∗(s, a; θold) +d∗B(s, a; θold)). rφ(s, a) could be approximated by using a param-

eterized network (φ) that is trained to solve the DJS optimization (Equation 2.2) using

the current policy rollouts and B. Using Equation 2.3, the interpolated gradient could be
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Algorithm 2.1:

1 θ (policy), φ (discriminator) ∼ initial parameters
2 B ← empty replay memory

3 for each iteration do
4 Generate batch of trajectories {τ}b1 with two rewards for each transition:

r1 = r(s, a) from the environment, and r2 = − log rφ(s, a)

5 Update B with {τ}b1 (using trajectory return as the priority)

/* Update policy θ */
6 for each minibatch do
7 Calculate g1 = ∇θη

r1(πθ) with PPO using r1 as reward
8 Calculate g2 = ∇θη

r2(πθ) with PPO using r2 as reward
9 Update θ with (1− ν)g1 + νg2 using ADAM

10 end

/* Update self-imitation discriminator φ */
11 for each epoch do
12 s1 ← Sample mini-batch of (s,a) from B
13 s2 ← Sample mini-batch of (s,a) from {τ}b1
14 Update φ with log-loss objective using s1, s2 (Equation 2.2)

15 end

16 end

rearranged as:

∇θη(πθ) = Eρπ(s,a)

[
∇θ log πθ(a|s)

[
(1− ν)Qr(s, a) + νQrφ(s, a)︸ ︷︷ ︸

combined Q

]]
, (2.5)

where Qrφ(st, at) = −Ep0,p,π
[∑∞

t′=t γ
t′−t log rφ(st′ , at′)

]
is the Q-function calculated using

− log rφ(s, a) as the surrogate reward. Intuitively, the surrogate reward is high for the state-

action pairs that have a high density under the distribution of the buffer ρB (i.e., expert-

like pairs), and low otherwise. The combined Q-function in Equation 2.5 is, therefore, an

interpolation between Qr computed with the environmental rewards and Qrφ computed with

the surrogate rewards that are implicitly shaped to guide the learner towards the behavior

characterized by the (high-return) replay buffer. In environments with sparse or delayed

rewards, where the signal from Qr is weak or sub-optimal, a higher weight on Qrφ enables

successful learning by self-imitation. We show this empirically in our experiments. We

further observe that even in cases with dense environmental rewards, the two sources of

reward signal can be readily combined. Algorithm 2.1 outlines the steps of our approach.
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2.2.2 Limitations of Self-Imitation

As the replay buffer B contains a subset of the previously generated trajectories, the quality

of the data in the buffer depends on the exploration proficiency of the agent. Inadequate

exploration could lead to failure of self-imitation in a couple of ways. Consider a maze

navigation task where the robot is only rewarded when it arrives at a goal G located in a

far-off corner (zero reward for other timesteps). Unless the robot reaches G at least once,

the trajectories in B always have a return of zero. There is no preference order among the

zero-return trajectories and thus the learning signal from Qrφ is not useful. In a similar

vein, self-imitation can lead to sub-optimal policies when there are local minima in the

policy optimization landscape. For instance, assume the maze has a second goal G ′ in closer

proximity to the starting point of the agent than G, but reaching G ′ yields a lesser reward.

With näıve exploration, the agent may fill B with below-par trajectories leading to G ′, and

the reinforcement from Qrφ would drive it further to the deceptive target of G ′.
Stochasticity in the environment may also make it difficult to recover the optimal policy

simply by imitating the past top-k rollouts. Consider a 2-armed bandit problem with reward

distributions: Bernoulli−p and Bernoulli−(p + ε), with a small ε. During training, rollouts

from both the arms get conflated in B with a high probability, making it difficult to robustly

(self-)imitate the action of picking the arm with the higher expected reward. One direction

to mitigate some of the aforementioned shortcomings is to maintain sufficient diversity in

the replay buffer and have an ensemble of agents that imitate all the different behaviors of

interest, among those that exist in the buffer. We expand on this idea further in Chapter 6.

2.3 EXPERIMENTS

In this section, we quantitatively compare self-imitation with the standard policy-gradient

with environmental rewards, under different types of reward distributions. We benchmark

high-dimensional, continuous-control locomotion tasks based on the MuJoCo physics sim-

ulator (Todorov et al., 2012), by extending the OpenAI Baselines (Dhariwal et al., 2017)

framework. The policy is modeled as a multivariate Gaussian distribution with standard

deviation parameterized by a state-independent vector. We use clipped-ratio PPO algo-

rithm (Schulman et al., 2017) as our base RL algorithm.

2.3.1 Self-Imitation with Different Reward Distributions

We consider the locomotion tasks in OpenAI Gym under 3 separate reward distributions:

Dense refers to the default reward function in Gym, which provides a reward for each
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Figure 2.1: Learning curves for PPO and Self-Imitation on tasks with episodic rewards. Mean
and standard-deviation over 5 random seeds is plotted.

simulation timestep. In episodic reward setting, rather than providing r(st, at) at each

timestep of an episode, we provide
∑

t r(st, at) at the last timestep of the episode, and zero

reward at other timesteps. In the noisy reward setting, we probabilistically mask out each

out each per-timestep reward r(st, at) in an episode. Reward masking is done independently

for every new episode, and therefore, the agent receives non-zero feedback at different, albeit

only few, timesteps in different episodes. The probability of masking-out or suppressing the

rewards is denoted by pm.

In Figure 2.1, we plot the learning curves on three locomotion tasks (Walker2d, Humanoid,

Hopper) with episodic rewards. Recall that ν is the hyper-parameter controlling the weight

distribution between gradients with environment rewards and the gradients with the sur-

rogate rewards rφ (Equation 2.5). The baseline PPO agents use ν = 0, meaning that the

entire learning signal comes from the environmental rewards. We compare them with the

self-imitating (SI) agents that use a constant value ν = 0.8. The capacity of the buffer B
is fixed at 10 trajectories. We didn’t observe our method to be particularly sensitive to the

choice of ν and the capacity value; ablations are included in §2.3.2.

In Figure 2.1, we see that the PPO agents are unable to make any tangible progress

on these tasks with episodic rewards, possibly due to difficulty in credit assignment – the

lumped rewards at the end of the episode can’t be properly attributed to the individual

state-action pairs during the episode. In case of Self-Imitation, the algorithm has access to

the surrogate rewards for each timestep, derived from the high-return trajectories in B. This

makes credit-assignment easier, leading to successful learning even for very high-dimensional

control tasks such as Humanoid.

Table 2.1 summarizes the final performance, averaged over 5 runs with random seeds,

under the various reward settings. For the noisy rewards, we compare performance with

two different reward masking values - suppressing each reward r(st, at) with 90% probability

(pm = 0.9), and with 50% probability (pm = 0.5). The density of rewards increases across
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Episodic rewards Noisy rewards

Each rt suppressed w/

90% prob. (pm = 0.9)

Noisy rewards

Each rt suppressed w/

50% prob. (pm = 0.5)

Dense rewards

(Gym default)

ν = 0.8

(SI)

ν = 0

(PPO)

CEM ES ν = 0.8

(SI)

ν = 0

(PPO)

ν = 0.8

(SI)

ν = 0

(PPO)

ν = 0.8

(SI)

ν = 0

(PPO)

Walker 2996 252 205 ≈1200 2276 2047 3049 3364 3263 3401

Humanoid 3602 532 426 - 4136 1159 4296 3145 3339 4149

H-Standup (× 104) 18.1 4.4 9.6 - 14.3 11.4 16.3 9.8 17.2 10

Hopper 2618 354 97 ≈1900 2381 2264 2137 2132 2700 2252

Half-Cheetah 3686 -1572 - ≈3200 3378 1670 4574 2374 4878 2422

Swimmer 173 21 17 - 52 37 127 56 106 68

Invd.Pendulum 8668 344 86 ≈9000 8744 8826 8926 8968 8989 8694

Inv. Pendulum 977 53 - - 993 999 978 988 969 992

Table 2.1: Performance of PPO and Self-Imitation (SI) on tasks with episodic rewards, noisy
rewards with masking probability pm, and dense rewards. All runs use 5M timesteps of interaction
with the environment. ES performance at 5M timesteps is taken from (Salimans et al., 2017).
Missing entry denotes that we were unable to obtain the 5M timestep performance from the source.

the reward settings from left to right in Table 2.1. We find that SI agents (ν = 0.8) achieve

higher average score than the baseline PPO agents (ν = 0) in majority of the tasks for all the

settings. This indicates that not only does self-imitation vastly help when the environment

rewards are scant, it can readily be incorporated with the standard policy gradients via inter-

polation, for successful learning across various reward settings. For completion, we include

performance of CEM and ES as these algorithms depend only on trajectory-return and don’t

exploit the temporal structure. CEM perform poorly in most of the cases. ES, while being

able to solve the tasks, is sample-inefficient. We include ES performance from Salimans et al.

(2017) after 5M timesteps of training for a fair comparison with our algorithm.

2.3.2 Ablation Studies

We measure the sensitivity of self-imitation to ν and the buffer capacity, denoted by |B|
on the Humanoid and the Hopper tasks with episodic rewards. Table 2.2 reports the average

performance over 5 random seeds. For ablation on ν, |B| is fixed at 10; for ablation on |B|,
ν is fixed at 0.8. With episodic rewards, a higher value of ν helps boost performance since

the RL signal from the environment is weak. With ν = 0.8, there isn’t a single best choice

for |B|, though all values of |B| give better results than baseline PPO (ν = 0).
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Humanoid Hopper

ν = 0 532 354

ν = 0.2 395 481

ν = 0.5 810 645

ν = 0.8 3602 2618

ν = 1 3891 2633

Humanoid Hopper

|B| = 1 2861 1736

|B| = 5 2946 2415

|B| = 10 3602 2618

|B| = 25 2667 1624

|B| = 50 4159 2301

Table 2.2: Ablations on the parameter ν and the buffer capacity.

2.4 RELATED WORK AND CONCLUSION

In recent work, Oh et al. (2018) propose exploiting past good trajectories to drive explo-

ration. Their algorithm buffers (s, a) and the corresponding return value for each transi-

tion in generated trajectories, and reuses the data for training if the stored return value is

higher than the current state-value estimate. Our approach presents a different objective for

self-imitation based on divergence-minimization. With this view, we learn dense surrogate

rewards which are then used for policy optimization. Reusing high-return trajectories has

also been explored for program synthesis and semantic parsing tasks (Liang et al., 2016,

2018; Abolafia et al., 2018). Our approach is also related to prior works on divergence

minimization and imitation learning. We mention some of them below.

Divergence minimization for policy-search. Relative Entropy Policy Search (REPS) (Pe-

ters et al., 2010) restricts the loss of information between policy updates by constraining the

KL-divergence between the state-action distribution of old and new policy. Policy search

can also be formulated as an EM problem, leading to several interesting algorithms, such

as RWR (Peters & Schaal, 2007) and PoWER (Kober & Peters, 2009). Here the M-step

minimizes a KL-divergence between trajectory distributions, leading to an update rule which

resembles return-weighted imitation learning. Please refer to Deisenroth et al. (2013) for a

comprehensive exposition. MATL (Wulfmeier et al., 2017) uses adversarial training to bring

state occupancy from a real and simulated agent close to each other for efficient transfer

learning. In Guided Policy Search (GPS, Levine & Koltun (2013)), a parameterized policy

is trained by constraining the divergence between the current policy and a controller learnt

via trajectory optimization.

Learning from Demonstrations (LfD). The objective in LfD, or imitation learning, is

to train a control policy to produce a trajectory distribution similar to the demonstrator.
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Approaches for self-driving cars (Bojarski et al., 2016) and drone manipulation (Ross et al.,

2013) have used human-expert data, along with Behavioral Cloning algorithm to learn good

control policies. Deep Q-learning has been combined with human demonstrations to achieve

performance gains in Atari (Hester et al., 2017) and robotics tasks (Večeŕık et al., 2017;

Nair et al., 2017). Human data has also been used in the maximum entropy IRL framework

to learn cost functions under which the demonstrations are optimal (Finn et al., 2016). Ho

& Ermon (2016) use the same framework to derive an imitation-learning algorithm (GAIL)

which is motivated by minimizing the divergence between agent’s rollouts and external expert

demonstrations. Besides humans, other sources of expert supervision include planning-

based approaches such as iLQR (Levine et al., 2016) and MCTS (Silver et al., 2016). Our

algorithm departs from prior work in forgoing external supervision, and instead using the

past experiences of the learner itself as the demonstration data.

2.4.1 Conclusion

We approached policy optimization for deep-RL from the perspective of Jensen–Shannon

divergence minimization between state-action distributions of a policy and its own past

high-return rollouts. This leads to a self-imitation algorithm that is invariant to reward

delays and thus improves upon standard RL from environmental rewards, especially when

the rewards are episodic and noisy. The improvement is facilitated by a policy-gradient term

that is computed using dense surrogate rewards. The surrogate rewards are parametric—

they are obtained from a discriminator trained with the binary classification loss. We observe

substantial performance gains over the baselines for high-dimensional, continuous-control

tasks under different reward distributions. Lastly, we consider some limitations of our data-

driven surrogate reward learning method and suggest using an ensemble of diverse agents to

mitigate them (Chapter 6 has further details).
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CHAPTER 3: SURROGATE REWARDS WITH UNIFORM REWARD
REDISTRIBUTION

3.1 INTRODUCTION

Prevalent algorithms for deep-RL typically need to estimate the expected future rewards

after taking an action in a particular state – Actor-critic and Q-learning involve computing

the Q-value, while policy-gradient methods tend to be more stable when using the advantage

function. The value estimation is performed using temporal difference (TD) or Monte-

Carlo (MC) learning. Although deep-RL algorithms have achieved remarkable results on

a wide array of tasks, their performance crucially depends on the meticulously designed

reward function, which provides a dense per-timestep learning signal and facilitates value

estimation. In real-world sequential decision-making problems, however, the rewards are

often sparse or delayed. Examples include, to name a few, industrial process control (Hein

et al., 2017), molecular design (Olivecrona et al., 2017), and resource allocation (Rahmandad

et al., 2009). Delayed rewards introduce high bias in TD-learning and high variance in MC-

learning (Arjona-Medina et al., 2019), leading to poor value estimates. This impedes long-

term temporal credit assignment (Minsky, 1961; Sutton, 1984), which refers to the ability of

the agent to attribute actions to consequences that may occur after a long time interval. Also,

the delayed rewards could be non-Markovian (Bacchus et al., 1996), further complicating the

design of RL algorithms and architectures. As a motivating example in a simulated domain,

Figure 3.1 shows the performance with Soft-Actor-Critic (SAC) (Haarnoja et al., 2018), an

off-policy RL method, on two MuJoCo locomotion tasks from the Gym suite. For delay=k,

the agent receives no reward for (k − 1) timesteps and is then provided the accumulated

rewards at the kth timestep. Increasing the delay leads to progressively worse performance.

Policy search algorithms based on black-box stochastic optimization, such as Evolution

Strategies (Salimans et al., 2017) and Deep-Neuroevolution (Such et al., 2017), are useful

when rewards are delayed. They are invariant to delayed rewards since the trajectories are

not decomposed into individual timesteps for learning; rather zeroth-order finite-difference

or gradient-free methods are used to learn policies based only on the trajectory returns (or

aggregated rewards). However, one downside is that discarding the temporal structure of

the RL problem leads to inferior sample-efficiency when compared with the standard RL

algorithms. Our goal in this work is to design an approach that easily integrates into the

existing RL algorithms, thus enjoying the sample-efficiency benefits, while being invariant

to delayed rewards. To achieve this, we introduce a modified RL objective that involves

smoothing in the trajectory-space and arrive at a new algorithm for learning surrogate
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Figure 3.1: Effect of delayed rewards

rewards, which we refer to as guidance rewards. The guidance rewards are computed in a

non-parametric way using only the trajectory-return values. They are Markovian and easy to

infer for a given state-action tuple. The dense supervision from the guidance rewards makes

value estimation and credit assignment easier, substantially accelerating learning when the

original environmental rewards are sparse or delayed.

We provide an intuitive understanding for the guidance rewards in terms of uniform credit

assignment – they characterize a uniform redistribution of the trajectory return to each

constituent state-action pair. A favorable property of our approach is that no additional

neural networks need to be trained to obtain the guidance rewards, unlike recent works that

also consider the delayed rewards setting (cf. Section 3.6). For quantitative evaluation, we

combine the guidance rewards with a variety of RL algorithms and environments. These

include single-agent tasks: Q-learning (Watkins & Dayan, 1992) in a discrete grid-world and

SAC on continuous control locomotion; and multi-agent tasks: TD3 (Fujimoto et al., 2018)

and Distributional-RL (Bellemare et al., 2017) in multi-particle cooperative environments.

3.2 PRELIMINARIES

Our RL environment is modeled as an infinite-horizon, discrete-time Markov Decision

Process (MDP). The MDP is characterized by the tuple (S, A, r, p, γ), where S and A are

the state- and action-space, respectively, and γ ∈ [0, 1) is the discount factor. Given an action

at, the next state is sampled from the transition dynamics distribution, st+1 ∼ p(st+1|st, at),
and a reward r(st, at) is generated using the reward function r : S × A → R. Although

this reward function is Markovian for an MDP, in the delayed-reward setting, the rewards

perceived by the agent could be non-Markovian. A stochastic policy π(at|st) defines the

state-conditioned distribution over actions. τ denotes a trajectory {s0, a0, s1, a1, . . . } and

15



R(τ) is the sum of discounted rewards over the trajectory, R(τ) =
∑∞

t=0 γ
tr(st, at). The RL

objective is to learn π that maximizes the expected R(τ), η(π) = Ep,π[R(τ)].

Actor-critic Algorithms. These methods use a critic for value function estimation and

an actor that is updated based on the information provided by the critic. The critic is trained

with TD-learning in a policy-evaluation step; then the actor is updated with an approximate

gradient in the direction of policy improvement. Under certain conditions, their repeated

application converges to an optimal policy (Sutton & Barto, 2018). We briefly outline two

model-free off-policy actor-critic RL algorithms that perform well on high-dimensional tasks

and are used in this work – TD3 and SAC. TD3 is a deterministic policy gradient algorithm

(DPG) (Silver et al., 2014). It uses a deterministic policy µθ that is updated with the policy

gradient: ∇θEs∼ρβ [Qµ(s, µθ(s))], where ρβ is the state distribution of a behavioral policy

β, and Qµ is the state-action value trained with the Bellman error. TD3 alleviates the Q-

function overestimation bias in DPG by using Clipped Double Q-learning when calculating

the Bellman target. Differently, SAC optimizes for the maximum entropy RL objective,

Eπ[
∑

t γ
t(r(st, at)+αH(π(·|st)))], whereH and α are the policy entropy and the temperature,

respectively. SAC alternates between soft policy evaluation, which estimates the soft Q-

function using a modified Bellman operator, and soft policy improvement, which updates

the actor by minimizing the Kullback-Leibler divergence between the policy distribution and

exponential form of the soft Q-function. The loss functions for the critic (Qφ), the actor (πθ)

and the temperature (α) are:

JQ(φ; r) = E(s,a,s′)∼D
a′∼πθ(·|s′)

[1
2

(
Qφ(s, a)− (r(s, a) + γ(Qφ̄(s′, a′)− α log πθ(a

′|s′)))
)2]

(3.1)

Jπ(θ) = E s∼D
a∼πθ(·|s)

[
α log(πθ(a|s))−Qφ(s, a)

]
; J(α) = E s∼D

a∼πθ(·|s)

[
−α log πθ(a|s)−αH̄

]
(3.2)

where D is the replay buffer, Qφ̄ is the target critic, and H̄ is the expected target entropy.

3.3 GUIDANCE REWARDS: DEFINITION AND INTUITION

This section begins with the definition of our modified RL objective that involves smooth-

ing in the trajectory-space, following which we make design choices that result in guidance

rewards. Given a policy πθ, the standard RL objective is: arg maxθ Eτ∼π(θ)[R(τ)]. As moti-

vated before, with delayed environmental rewards, directly optimizing this objective hinders

learning due to difficulty in temporal credit assignment caused by value estimation errors.

Objective function smoothing has long been studied in the stochastic optimization literature.
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In the context of RL, Salimans et al. (2017) proposed Evolution Strategies (ES) for policy

search. ES creates a smoothed version of the standard RL objective using parameter-level

smoothing (usually Gaussian blurring):

ηES(πθ) = Eε∼N (0,I)Eτ∼π(θ+σ·ε)[R(τ)] (3.3)

where σ controls the level of smoothing. Although ES is invariant to delayed rewards,

eschewing the temporal structure of the RL problem often results in low sample efficiency.

Following the broad principle of using a smoothed objective to obtain effective gradient

signals, we consider explicit smoothing in the trajectory-space, rather than the parameter-

space. We define our maximization objective as:

ηsmooth(πθ) = Eτ̂∼π(θ)

[
Eτ∼Mτ̂

[R(τ)]
]

(3.4)

where Mτ̂ (τ) is the smoothing distribution over trajectories τ that is parameterized by the

reference trajectory τ̂ . When M is a delta distribution, i.e., Mτ̂ (τ) = δ(τ = τ̂), the original

RL objective is recovered. We wish to design a smoothing distribution M that helps with

credit assignment. Let β(a|s) denote a behavioral policy and the trajectory distribution

induced by β in the MDP be pβ(τ) = p(s0)
∏∞

t=0 p(st+1|st, at)β(at|st). Further, we introduce

pβ(τ ; s, a) as the distribution over the β-induced trajectories which include the state-action

pair (s, a):

pβ(τ ; s, a)
def
=

pβ(τ)1[(s, a) ∈ τ ]∫
τ
pβ(τ)1[(s, a) ∈ τ ] dτ

(3.5)

where 1 is the indicator function. For consistency, we require that the normalization constant

be positive ∀(s, a). Let {ŝt, ât} be the reference state-action pairs in the reference trajectory

τ̂ . We propose the following infinite mixture model for the smoothing distribution Mτ̂ (τ):

Mτ̂ ,β(τ) = (1− γ)
∞∑
t=0

γtpβ(τ ; ŝt, ât) (3.6)

Given a reference trajectory τ̂ , this distribution samples trajectories from the behavioral

policy β that intersect or overlap with the reference trajectory, with intersections at later

timesteps discounted exponentially with the factor γ. Inserting this in Equation 3.4, rear-

ranging and ignoring constants, the smoothed objective to maximize becomes:

ηsmooth(πθ) = Eτ̂∼π(θ)

[ ∞∑
t=0

γt
∫
τ

pβ(τ ; ŝt, ât)R(τ) dτ︸ ︷︷ ︸
rg(ŝt,ât)

]
(3.7)
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Figure 3.2: MDP with 4 states and 4 actions

This is equivalent to the standard RL objective, albeit with a different reward function than

the environmental reward. We define this as the guidance reward function, rg(s, a; β) =

Eτ∼pβ(τ ;s,a)[R(τ)]. The guidance reward apportioned to each state-action pair is the expected

value (under pβ) of the returns of the trajectories which include that state-action pair.

Useful features of rg are that it provides a dense reward signal, and is invariant to delays

in the environmental rewards since it depends on the trajectory return. Thus, it potentially

promotes better value estimation and credit assignment.

3.3.1 Interpretation as Uniform Credit Assignment

Temporal Credit assignment deals with the question: “given a final outcome (e.g. trajec-

tory returns), how relevant was each state-action pair in that trajectory towards achieving the

return?”. Prior work has proposed learning estimators that explicitly model the relevance of

an action to future returns, or using contribution analysis methods to redistribute rewards

to the individual timesteps (cf. Section 3.6). Our method could be viewed as performing a

simple redistribution – it uniformly distributes the trajectory return among the state-action

pairs in that trajectory. 1 This non-committal or maximum entropy credit assignment is nat-

ural to consider in the absence of any prior structure or information. The guidance reward

for each state-action pair is then obtained as the expected value (under pβ) of the uniform

credit it receives from the different trajectory returns. For clarity of exposition, the next

subsection demonstrates the guidance rewards using some elementary MDPs and pβ.

3.3.2 Illustration of Guidance Rewards with Simple MDP and pβ

Consider the MDP in Figure 3.2 with the states {s1, s2, s3, s4}, s1 is the start state, {s3, s4}
are the terminal states. {a1, a2} are the possible actions from s1; {a3, a4} are the possible

1In Equation 3.7, we excluded the constant (1 − γ) from the smoothing distribution Mτ̂ (τ) to reduce
clutter. Since 1/(1 − γ) is the effective horizon, (1 − γ)R(τ) represents a uniform redistribution of the
trajectory return to each constituent state-action pair.
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actions from s2. There are 4 possible trajectories. Let the return associated with each

trajectory be the following:

• τ1 : {s1a1s2a3};R(τ1) = 1

• τ2 : {s1a1s2a4};R(τ2) = 3

• τ3 : {s1a2s2a3};R(τ3) = 1

• τ4 : {s1a2s2a4};R(τ4) = 1

The guidance reward is given by:

rg(s, a; β) = Eτ∼pβ(τ ;s,a)[R(τ)] , pβ(τ ; s, a)
def
=

pβ(τ)1[(s, a) ∈ τ ]∫
τ
pβ(τ)1[(s, a) ∈ τ ] dτ

(3.8)

We compute the guidance rewards for the above MDP for two different pβ distributions -

uniform and exponential.

With Uniform pβ

If pβ is uniform, pβ(τ1) = pβ(τ2) = pβ(τ3) = pβ(τ4) = 0.25. From this, we obtain:

• pβ(τ ; s1, a1) = 1
2
δ(τ = τ1) + 1

2
δ(τ = τ2); rg(s1, a1; β) = 2

• pβ(τ ; s1, a2) = 1
2
δ(τ = τ3) + 1

2
δ(τ = τ4); rg(s1, a2; β) = 1

• pβ(τ ; s2, a3) = 1
2
δ(τ = τ1) + 1

2
δ(τ = τ3); rg(s2, a3; β) = 1

• pβ(τ ; s2, a4) = 1
2
δ(τ = τ2) + 1

2
δ(τ = τ4); rg(s2, a4; β) = 2

With Exponential pβ

If pβ is exponential, i.e. pβ(τ) ∝ exp(R(τ)), pβ(τ1) = pβ(τ3) = pβ(τ4) = 0.1; pβ(τ2) = 0.7

(rounded off to 1 decimal). From this, we obtain:

• pβ(τ ; s1, a1) = 1
8
δ(τ = τ1) + 7

8
δ(τ = τ2); rg(s1, a1; β) = 2.75

• pβ(τ ; s1, a2) = 1
2
δ(τ = τ3) + 1

2
δ(τ = τ4); rg(s1, a2; β) = 1

• pβ(τ ; s2, a3) = 1
2
δ(τ = τ1) + 1

2
δ(τ = τ3); rg(s2, a3; β) = 1

• pβ(τ ; s2, a4) = 7
8
δ(τ = τ2) + 1

8
δ(τ = τ4); rg(s2, a4; β) = 2.75
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(a) Quiver plots during training
(b) Performance with
guidance rewards

Figure 3.3: We consider a 50×50 grid with the start and goal locations marked in the image. The
rewards are episodic – a non-zero reward is only provided at the end of the episode (horizon=150
steps) and is equal to the negative of the distance of the final position to the goal. We run for
15k episodes. The three quiver plots (left to right) are taken after 100 episodes, 2k episodes and
15k episodes, respectively. In each quiver plot, an arrow in a state represents the guidance reward:
the direction denotes the action with maximum guidance reward, i.e., arg maxa rg(s, a), and the
length denotes its magnitude in [0, 1]. A state with no arrow mean that the guidance reward is 0
for all actions in that state. For ease of exposition, we have colored all arrows pointing up/right
with red and all arrows pointing down/left with blue. We note that over time, reasonable guidance
rewards emerge along the diagonal path from the start location to the goal. Although the guidance
rewards in the top-left and bottom-right regions of the grid are imprecise, they are not critical for
learning the optimal policy to achieve the task. Figure (right) compares tabular Q-learning with
environmental rewards and our guidance rewards. Quiver plots best viewed when digitally zoomed.

3.3.3 Monte-Carlo Estimate of the Guidance Rewards

Without access to the true reward function of the MDP, it is infeasible to solve for the

guidance rewards exactly. We resort to a Monte-Carlo (MC) estimation for the expectation,

rg(s, a; β) = Eτ∼pβ(τ ;s,a)[R(τ)]. Let ρπ(s, a) denote the unnormalized discounted state-action

visitation distribution for π. The smoothed RL objective (Equation 3.7) can be written as:

ηsmooth(πθ) = E(s,a)∼ρπEτ∼pβ(τ ;s,a)[R(τ)] (3.9)

Plugging in the definition of pβ(τ ; s, a) and using linearity of expectations:

ηsmooth(πθ) = Eτ∼pβ(τ)E(s,a)∼ρπ

[
R(τ)1[(s, a) ∈ τ ]∫

τ
pβ(τ)1[(s, a) ∈ τ ] dτ

]
(3.10)

Let Γ denote a set of N trajectories generated in the MDP using β, and N(s, a) be the count

of the trajectories in Γ which include the tuple (s, a). The MC estimate of ηsmooth(πθ) is:

20



Algorithm 3.1: Tabular Q-learning with IRCR

1 Initialize Q(s,a) ← 0
2 Rmax ← −∞; Rmin ←∞ . Maximum/Minimum return thus far

3 B(s, a)← ∅ ∀ (s, a) . Buffer that stores for each (s, a), a list of returns of trajectories that
include that (s, a)

4 Function GetGuidanceReward(s, a):
/* Get normalized returns; return 0 if B(s, a) = ∅ */

5 return ERi∼B(s,a)[
Ri−Rmin
Rmax−Rmin

]

6 for each episode do
7 Re ← 0 . Accumulates rewards for current episode

8 τe ← ∅ . Stores state-action pairs for current episode

9 for each step in {1, . . . , T} do
10 Choose a from s using policy derived from Q (ε-greedy)
11 Take action a and observe r, s′ . Sample transition from the environment

12 τe ← τe ∪ {(s,a)}; Re ← Re + r
13 rg(s,a)← GetGuidanceReward(s,a)
14 Q(s,a) ← Q(s,a) + α [rg(s,a) + γ maxa′ Q(s′,a′) - Q(s,a)]

15 end

16 for each (s,a) in τe do
17 B(s, a)← B(s, a) ∪ {Re} . Update B for (s, a) along the collected trajectory

18 end

19 Rmax ← max(Rmax, Re); Rmin ← min(Rmin, Re) . Update Rmax, Rmin

20 end

η̂smooth(πθ) =
1

N

∑
τ∈Γ

E(s,a)∼ρπ

[
R(τ)1[(s, a) ∈ τ ]

N(s, a)/N

]
= E(s,a)∼ρπ

∑
τ∈Γ

[
R(τ)1[(s, a) ∈ τ ]

N(s, a)

]
︸ ︷︷ ︸

rg(s,a)

(3.11)

The MC estimate of the guidance rewards is: rg(s, a) , (1/N(s, a))
∑

τ∈Γ

[
R(τ)1[(s, a) ∈ τ ]

]
.

We further define rg(s, a) = 0 if N(s, a) = 0.

3.4 INTEGRATING GUIDANCE REWARDS WITH DEEP-RL

It is possible to deploy an exploratory behavioral policy β to obtain the trajectory set Γ

in a pre-training phase. Following that, the stationary guidance rewards computed from Γ

could be used to learn a new policy with any of the standard RL methods. One issue with

this sequential approach is that it is challenging to design β such that it achieves adequate
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state-action-space coverage in high dimensions. Perhaps more importantly, it is typically

unnecessary to have good estimates for the guidance rewards for the entire state-action-

space. For instance, in a grid-world, if the goal location is always to the right of the starting

position of the agent, it is acceptable to have an imprecise guidance reward in the left half

of the grid, as long as the agent is discouraged from venturing to the left. Therefore, we

propose an iterative approach where the experience gathered thus far by the agent is used to

build the guidance rewards, i.e., rg(s, a) is the expected value of the uniform credit received

by (s, a) from the trajectories already rolled out in the MDP. Simultaneously, a policy π (or

Q-function) is learned using these non-stationary rewards. With this procedure, β could be

thought of as being implicitly defined as a mixture of current and past policies π. The scale

of the credit apportioned to a state-action pair from a trajectory depends on the scale of its

return value. For the guidance rewards to be effective, it is sufficient that the relative values

of the rewards be properly aligned to solve the task. Therefore, when assigning credits, we

normalize the trajectory returns to the range [0, 1] using min-max normalization. We refer to

our approach for producing guidance rewards as Iterative Relative Credit Refinement

(IRCR). The guidance rewards are adapted over time as the average credit assigned to each

state-action pair is refined by the information (return value) from newly sampled trajectories.

Any standard RL algorithm could be modified by replacing the environmental rewards

with the guidance rewards. In Algorithm 3.1, we outline this for tabular Q-learning with

small state and action spaces. The notable change from the standard Q-learning is the

use of rg in Line 14, instead of the environmental reward. To compute rg, we maintain

a buffer B(s, a) for each state-action pair that stores the returns of the past trajectories

which include that state-action pair (Line 17). The guidance rewards evolve over time since

the average credit allotted to a state-action pair changes as more experience is gathered in

the MDP. To illustrate this, we run Algorithm 3.1 in a 50 × 50 grid-world with episodic

environmental rewards. Figure 3.3a provides some insights on the structure of the guidance

rewards assigned to the different regions of the grid as training progresses; the description

of the episodic rewards and the arrows in the quiver plots is provided in the figure caption.

In Figure 3.3b, we show the performance gains compared with tabular Q-learning using

environmental rewards.

3.4.1 Scaling to High-dimensional Continuous Spaces

Actor-critic algorithms that scale to more complex environments (e.g. TD3, SAC) main-

tain an experience replay buffer (Lin, 1992) that stores {s, a, s′, r} tuples. These algorithms

can be readily tailored to use guidance rewards. In Algorithm 3.2, we summarize SAC with
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Algorithm 3.2: Soft Actor-Critic with IRCR

1 Initialize φ, φ̄, θ . Policy and critic parameters

2 Rmax ← −∞; Rmin ←∞ . Maximum/Minimum return thus far

3 D ← ∅ . Empty replay buffer

4 for each episode do
5 Re ← 0 . Accumulates rewards for current episode

6 De ← ∅ . Stores transitions for current episode

7 for each step in {1, . . . , T} do
8 a ∼ πθ(a|s)
9 Take action a and observe r, s′ . Sample transition from the environment

10 De ← De ∪ {(s,a, s′)}; Re ← Re + r

11 end

12 for each (s, a, s′) ∈ De do
13 D ← D ∪ {(s, a, s′, Re)} . Append each transition with Re and add to replay buffer

14 end

15 Rmax ← max(Rmax, Re); Rmin ← min(Rmin, Re) . Update Rmax, Rmin

16 for each gradient step do

17 {s(k), a(k), s′(k), R(k)}k∈N+ ∼ D . Sample batch

18 r
(k)
g ← R(k)−Rmin

Rmax−Rmin
. Get guidance reward by normalizing return

19 φ← φ− λ∇φJQ(φ; rg) . Update Q-function using guidance rewards, (Equation 3.1)

20 θ ← θ − λ∇θJπ(θ); α← α− λ∇αJ(α) . Update policy and temperature, (Equation 3.2)

21 end

22 end

IRCR. The environmental reward in the experience replay tuple is replaced with the return

of the trajectory which produced that tuple (Line 13). When computing the soft Bellman

error for learning the soft Q-function, the guidance reward is calculated by normalizing this

return value (Lines 18-19). Mathematically, this is equivalent to the MC estimation of the

guidance reward using a single trajectory, rather than the expected credit from a trajectory

distribution. This is not an issue in practice if the soft Q-function, which is learned with

these guidance rewards, is parameterized by a deep neural network that tends to generalize

well in the vicinity of the input data. Indeed, as our experiments will show, Algorithm 3.2

achieves reliable performance in high-dimensional tasks. Other actor-critic algorithms could

be modified analogously to incorporate the guidance rewards.

3.4.2 Discussion on Convergence

Some comments are in order concerning the convergence of our iterative approach. We pro-

vide a qualitative analysis by drawing an analogy with the Cross Entropy (CE) method (Ru-

23



binstein & Kroese, 2013; Mannor et al., 2003). For policy search, CE uses a multivariate

Gaussian distribution to represent a population of policies. In each iteration, individuals

πk are drawn from this distribution, their fitness, Eτ∼πk [R(τ)], is evaluated, and a fixed

number of fittest individuals determine the new mean and variance of the population. This

fitness-based selection ensures steady policy improvement. In IRCR, the trajectories gener-

ated by a mixture of the current and past policies (π0:i) are used to compute the guidance

rewards (rg); πi+1 is then obtained by a policy optimization step with these rewards. Since

rg is positively correlated with the environmental returns R(τ), maximizing for a discounted

sum of rg tends to seek out a policy that attains higher R(τ) compared to π0:i, on average.

Consequently, this optimization step facilitates policy improvement in the same spirit as the

CE method. The next section provides empirical evidence that the policy behavior improves

over iterations of IRCR. We consider the theoretical study of convergence as an important

future work.

3.4.3 Limitations of IRCR and the Role of Exploration

Exploration and credit assignment are two distinct fundamental problems in RL. The

former deals with the discovery of new useful information, the latter is about efficiently

incorporating this information for learning a robust policy. In hard exploration problems,

an agent typically obtains zero rewards in each episode unless an exploration impetus is

given, whereas in our setting, a reward signal is readily provided to the agent at the end

of every episode. The focus of this work, therefore, is to train effectively from this delayed

feedback and improve upon the credit assignment.

Since the reward that the agent optimizes for is different from the original task reward

and is coupled to a behavioral policy β, for a given MDP, it might be possible to design an

adversarial β such that optimizing for the resultant guidance rewards leads to unintended

behaviors (as per the task rewards). Although not visible in our empirical evaluation, a

limitation of IRCR is that a careful adaptation of β could be crucial in some domains to

avoid this. For instance, if β gets stuck in some region of the state-action-space, the learning

agent may also get trapped in a local optimum due to deceptive guidance rewards. Combining

IRCR with methods that explicitly incentivize exploration is a promising approach.

3.5 EXPERIMENTS

This section evaluates our approach on various single-agent and multi-agent RL tasks to

quantify the benefits of using the guidance rewards in place of the environmental rewards,
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when the latter are sparse or delayed.

3.5.1 Single-agent Environments and Baselines

We benchmark high-dimensional, continuous-control locomotion tasks based on the Mu-

JoCo physics simulator, provided in OpenAI Gym (Brockman et al., 2016). We compare

SAC (IRCR) outlined in Algorithm 3.2 with the following baselines:

• SAC with environmental rewards. It uses the same hyperparameters as SAC (IRCR).

• Generative Adversarial Self-imitation Learning (GASIL), which represents the method

proposed in Guo et al. (2018); Gangwani et al. (2018). A buffer stores the top-k tra-

jectories according to the return. A discriminator network, which is a binary classifier

that distinguishes the buffer data from data generated by the current policy, acts as a

source of the guidance rewards.

• Reward Regression, which typifies the approaches presented in Arjona-Medina et al.

(2019); Liu et al. (2019). They formulate a regression task that predicts the return given

the entire trajectory. A network trained with this regression loss helps to decompose the

trajectory return back to the constituent state-action pairs, and provides the guidance

rewards. We include the results from Liu et al. (2019) using the Transformer architecture

(data obtained from authors).

We modify the reward function in Gym to design tasks with episodic rewards – the agent

collects a zero reward for all timesteps except the last one, at which the accumulated original

reward is given. With reference to Figure 3.1 in the Introduction, this expresses the maximum

possible delay in rewards. Figure 3.4 plots the learning curves for all the algorithms with

episodic rewards. We observe SAC (IRCR) to be the most sample-efficient across all tasks.

SAC (original) is unable to learn any useful behavior since the value estimation errors due

to delayed environmental rewards impede temporal credit assignment. GASIL and Reward-

regression 2 are invariant to delayed rewards, but the learning is much more sluggish than our

approach, possibly due to the instability in training the additional neural network for reward

function estimation (discriminator for GASIL and Transformer for Reward-regression). In

contrast, IRCR does not require any auxiliary networks and simply defines the guidance

rewards as the expected value of the credit apportioned to (s, a) from past trajectories.

2We were unable to obtain the data for InvertedDoublePendulum, Ant and Half-Cheetah for Reward-
regression from the authors of Liu et al. (2019) since they do not evaluate on these three tasks.
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Figure 3.4: Learning curves for the MuJoCo locomotion tasks with episodic rewards. The mean
and standard deviation over 5 random seeds are plotted. Reward-regression baseline has some
missing data2.

3.5.2 Multi-agent Environments and Baselines

We evaluate IRCR in a sparse-reward cooperative multi-agent RL (MARL) environment.

This setting involves multiple agents that execute actions that jointly influence the environ-

ment; the agents receive local observations and a shared (sparse) reward. We adopt the Rover

Domain from Rahmattalabi et al. (2016) in which agents navigate in a two-dimensional world

with continuous states and actions. There are N rovers (agents) and K Points-of-interests

(POIs). A global reward is achieved when any POI is harvested. For harvesting a POI,

a certain minimum number of rovers—determined by a Coupling parameter—need to be

simultaneously within a small observation radius around that POI; higher couplings require

greater coordination. Figure 3.5b illustrates a scenario with coupling=2. Each rover has

sensors to detect other rovers and POI around it using a mechanism similar to a LIDAR. A

rover within the observation radius of an un-harvested POI receives a small local reward.

Our baseline algorithm is MA-TD3, a multi-agent extension of TD3 with the critic network

shared among all agents. This is compared with two methods that employ guidance rewards

– MA-TD3 (IRCR), which replaces the environmental rewards with the guidance rewards

(similar to Algorithm 3.2), but uses the same underlying update rules; and MA-C51 (IRCR),

which replaces the Clipped Double Q-learning in MA-TD3 with the C51 distributional-

RL algorithm (Bellemare et al., 2017). Our C51 variant includes other minor alternations

detailed in the next subsection. We experiment with different values for N,K, and the
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(a) Learning curves (b) Rover Domain

Figure 3.5: (a) Learning curves for the Rover domain with different coupling factors. The mean
and standard deviation over 5 random seeds are plotted.; (b) Rover Domain (illustrated with
coupling=2).

coupling factor. Figure 3.5a plots, for coupling factors 1 to 4, the percentage of the POIs

that are harvested at the end of an episode vs. the number of training timesteps. We note

that MA-TD3 (IRCR) is more sample-efficient and achieves higher scores compared to MA-

TD3 with environmental rewards, that are sparse since the agent collects a zero reward if

it is outside the observation radius of every POI. Finally, the good performance of MA-C51

(IRCR) suggests that guidance rewards can be effectively used with distributional-RL also.

3.5.3 C51 Distributional-RL with Guidance Rewards

Background. Distributional-RL models the full distribution of the returns, the expecta-

tion of which is the Q-function. We use the C51 algorithm introduced by Bellemare et al.

(2017) which represents the return distribution with learned probabilities on a fixed support;

several other representation methods have also been proposed. Let Zπ(s, a) be the random

variable denoting the sum of discounted rewards along a trajectory starting with the state-

action pair (s, a). The value function is Qπ(s, a) = EZπ(s, a). Zπ(s, a) is obtained by the

repeated application of the distributional Bellman operator T π defined as:

T πZ(s, a)
D
= R(s, a) + γZ(s′, a′) s′ ∼ p(·|s, a), a′ ∼ π(·|s′) (3.12)

C51 models the value distribution with a discrete distribution on a fixed support {zi}Ni=1,

referred to as a set of atoms. The atom probabilities are given by a learned parametric model

fθ : S ×A → RN :

Zθ(s, a) = zi w.p. piθ(s, a) = softmax(fθ(s, a))i (3.13)
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Atom Support and Guidance Rewards in Log-space. In Bellemare et al. (2017),

the support of the atoms ranges from Vmin to Vmax, which are environment-specific variables

defining the limits of the returns possible in that environment. To make the support range

environment-agnostic, we define it in the log-space: wi = {1/N, 2/N, . . . , 1} and zi = logwi.

Thus, the Q-function is written as Qθ(s, a) =
∑

i p
i
θ(s, a) logwi.

We further define guidance rewards modified with a log function, rLg(s, a) = log rg(s, a).

Recall that rg ∈ [0, 1] due to the min-max normalization; hence the application of log

is proper (expect at 0 where a small ε should be added). Although this transformation

changes the magnitude, the relative ordering of the guidance rewards is preserved due to

the monotonicity of the log. The parametric model fθ is optimized with TD-learning. With

the distributional Bellman equation, this is equivalent to a distribution matching problem.

Given a training tuple (s, a, rLg, s
′) from the replay buffer, the discrete target distribution is:

rLg + γzi w.p. piθ = softmax(fθ(s
′, a′))i (3.14)

Using the log-space atom support and definition of rLg, we can rewrite this as:

log
[
rg.wi

γ
]

w.p. piθ = softmax(fθ(s
′, a′))i (3.15)

Similarly, the discrete source distribution is:

logwi w.p. piθ = softmax(fθ(s, a))i (3.16)

The source and the target distributions have a support interval (-∞, 0]. In principle, any f -

divergence metric on them could be minimized. An alternative is to induce a transformation

before the divergence minimization. This is justified by the following theorem from Qiao

& Minematsu (2010): “The f-divergence between two distributions is invariant under dif-

ferentiable and invertible transformation”. With an exponential transformation, we get the

following distributions that are now shaped to have a support interval (0,1]:

rg.wi
γ w.p. piθ = softmax(fθ(s

′, a′))i

wi w.p. piθ = softmax(fθ(s, a))i
(3.17)

Following (Bellemare et al., 2017), we minimize the KL-divergence between these distri-

butions using a projection step to account for the mismatch in the atom positions between

the source and the target.
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3.5.4 Robotic Manipulator Arm Environment

Figure 3.6 shows the robotic arm that models a 7 degree-of-freedom Sawyer robot, inspired

by Chen et al. (2018). The task is to insert a cylindrical peg (held in the end-effector attached

to the arm) into a hole some distance away on the table. A non-zero reward is provided

only at the end of every episode and is equal to exponential of negative L2 distance between

the final position of the peg and the hole. In Table 3.1, we compare the final performance

of the SAC algorithm with environmental and guidance rewards, and note that the latter is

considerably better.

Figure 3.6: MuJoCo model of a 7
DoF arm based on the Sawyer robot.

SAC

(env. rewards)

SAC

(IRCR)

Random

Policy

104±4 160±7 90±11

Table 3.1: SAC performance on the peg-insertion
task with environmental and guidance rewards.
Mean and standard deviation over 5 random seeds
are reported.

3.6 RELATED WORK AND CONCLUSION

Reward shaping. Designing reward functions that modify or substitute the original re-

wards is a popular method for improving the learning efficiency of RL agents. Ng et al.

(1999) developed potential-based shaping functions that guarantee the preservation of the

optimal policy. Providing bonus rewards inspired by intrinsic motivation ideas such as cu-

riosity (Schmidhuber, 1991, 1999) has been shown to aid exploration. The optimal reward

problem (ORP) (Singh et al., 2009, 2010) introduces the idea that the original reward (that

captures the designer’s intent) could be decoupled from the rewards used by the agent in

the RL algorithm (guidance rewards), even though the agent is finally evaluated on the

designer’s intent. Using the guidance rewards in place of the original rewards can substan-

tially accelerate learning, especially if the agent is bounded by computational or knowledge

constraints (Sorg et al., 2010, 2011). IRCR could be interpreted as an instance of ORP. It

provides dense guidance rewards that improve value estimation when the original environ-

mental rewards are sparse or delayed, thus enabling faster learning.

Credit Assignment. A variety of methods have been proposed to improve temporal credit

assignment. Hindsight Credit Assignment (Harutyunyan et al., 2019) learns a model that

quantifies the relevance of an action to a future outcome, such as the total return following
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that action. An interesting feature of the model is that the Q-function estimate for all

the actions could be improved using the returns sampled from a certain starting action.

Temporal Value Transport (Hung et al., 2019) uses an attention-based memory module that

links past events (at time t′) to the present time t. The state-value at t is then “transported”

to t′, to be used as an additional bootstrap (or fictitious reward) in the TD error at t′. This

helps in efficiently propagating credit backward in time. Neural Episodic Control (Pritzel

et al., 2017) and Episodic Backward Update (Lee et al., 2019) enable faster propagation of

sparse or delayed rewards from the entire episode through all the transitions of the episode.

In RUDDER (Arjona-Medina et al., 2019), an LSTM network is trained to predict the

trajectory return at every time-step. The guidance reward is then obtained as the difference

of consecutive predictions. Liu et al. (2019) use a Transformer with masked multi-head self-

attention as the learned reward function. It is trained by regressing on the trajectory-return

and helps to decompose the return back to each time-step in the trajectory. Adversarial

self-imitation approaches (Guo et al., 2018; Gangwani et al., 2018) use a min-max objective

to train a discriminator and a policy iteratively. The discriminator is learned with a binary

classification loss and provides guidance rewards for policy optimization. In contrast with

these, our computation of the guidance rewards does not require training auxiliary networks

and could be viewed as a simple uniform return decomposition.

3.6.1 Conclusion

In this work, we introduce a surrogate RL objective with smoothing in the trajectory-space.

We show that our choice of the smoothing distribution makes this objective equivalent to

standard RL, albeit with the guidance reward function instead of the environmental reward.

The guidance rewards are easily measurable for any state-action pair as the expected return

of the past trajectories which include that pair. The dense supervision afforded by them

makes value estimation and temporal credit assignment easier. Our method is invariant

to delayed rewards, does not require training auxiliary networks, and integrates well with

existing RL algorithms. Experimental results across a variety of RL algorithms with single-

and multi-agent tasks highlight the contribution of the guidance rewards in improving the

sample-efficiency, especially when the environmental rewards are sparse or delayed.
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CHAPTER 4: BELIEF REPRESENTATIONS FOR IMITATION LEARNING
IN POMDPS

4.1 INTRODUCTION

Recent advances in RL have found successful applications in solving complex problems,

including robotics, games, dialogue systems, and recommendation systems, among others.

Despite such notable success, the application of RL is still quite limited to problems where

the observation-space is rich in information and data generation is inexpensive. On the other

hand, the environments in real-world problems, such as autonomous driving and robotics,

are typically stochastic, complex and partially observable. To achieve robust and practi-

cal performance, RL algorithms should adapt to situations where the agent is being fed

noisy and incomplete sensory information. To model these types of environments, partially

observable Markov decision processes (POMDPs; Aström (1965)) have been proposed and

widely studied. In a POMDP, since the current observation alone is insufficient for choosing

optimal actions, the agent’s history (its past observations and actions) is encoded into a

belief state, which is defined as the distribution (representing the agent’s beliefs) over the

current latent state. Although belief states can be used to derive optimal policies (Kael-

bling et al., 1998; Hauskrecht, 2000), maintaining and updating them requires knowledge

of the transition and observation models of the POMDP, and is prohibitively expensive for

high-dimensional spaces. To overcome this difficulty, several algorithms have been proposed

that perform approximate inference of the belief state representation from raw observations,

using recurrent neural networks (Guo et al., 2018), variational autoencoders (Igl et al., 2018;

Gregor et al., 2018), and Predictive State Representations (Venkatraman et al., 2017). After

the belief model has been learned, a policy optimization algorithm is then applied to the

belief representation to optimize a predefined reward signal.

As an alternative to RL from predefined rewards, imitation learning often provides a

fast and efficient way for training an agent to complete tasks. Expert demonstrations are

provided to guide a learner agent to mimic the actions of the expert without the need to

specify a reward function. A large volume of work has been done over the past decades

on imitation learning for fully observable MDPs, including the seminal work on generative

adversarial imitation learning (GAIL, Ho & Ermon (2016)), but there has been little focus

on applying these ideas to partially observable environments.

In this work, we study the problem of imitation learning for POMDPs. Specifically, we

introduce a new belief representation learning approach for generative adversarial imitation

learning in POMDPs. Different from previous approaches, where the belief state represen-
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tation and the policy are trained in a decoupled manner, we learn the belief module jointly

with the policy, using a task-aware imitation loss which helps to align the belief repre-

sentation with the policy’s objective. To avoid potential belief degeneration, we introduce

several informative belief regularization techniques, including auxiliary losses of predicting

multi-step past/future observations and action-sequences, which improve the robustness of

the belief representation. Evaluated on various partially observable continuous-control lo-

comotion tasks built from MuJoCo, our belief-module imitation learning approach (BMIL)

substantially outperforms several baselines, including the original GAIL algorithm and the

task-agnostic belief learning algorithm. Extensive ablation analysis indicates the effective-

ness of task-aware belief learning and belief regularization.

4.1.1 Background and Notations

RL in POMDPs. We consider the RL setting where the environment is modeled as a

partially-observable Markov decision process (POMDP). A POMDP is characterized by the

tuple (S, A, O, R, T , U , , p(s0), γ), where S is the state-space, A is the action-space, and

O is the observation-space. The true environment states st ∈ S are latent or unobserved

to the agent. Given an action at ∈ A, the next state is governed by the transition dynam-

ics st+1 ∼ T (st+1|st, at), an observation is generated as ot+1 ∼ U(ot+1|st+1), and reward is

computed as rt = R(rt|st, at). The RL objective involves maximization of the expected dis-

counted sum of rewards, η(πθ) = Ep0,T ,π
[∑∞

t=0 γ
tr(st, at)

]
, where γ ∈ [0, 1) is the discount

factor, and p(s0) is the initial state distribution. The action-value function is Qπ(st, at) =

Ep0,T ,π
[∑∞

t′=t γ
t′−tr(st′ , at′)

]
. We define the unnormalized γ-discounted state-visitation dis-

tribution for a policy π by ρπ(s) =
∑∞

t=0 γ
tP (st=s|π), where P (st=s|π) is the probability of

being in state s at time t, when following policy π and starting state s0 ∼ p0. The expected

policy return η(πθ) can then be written as Eρπ(s,a)[r(s, a)], where ρπ(s, a) = ρπ(s)π(a|s) is

the state-action visitation distribution (also referred to as the occupancy measure). For any

policy π, there is a one-to-one correspondence between π and its occupancy measure (Put-

erman, 1994). Using the policy gradient theorem (Sutton et al., 2000), the gradient of the

RL objective can be obtained as ∇θη(πθ) = Eρπ(s,a)

[
∇θ log πθ(a|s)Qπ(s, a)

]
.

Imitation Learning. Learning in popular RL algorithms (such as policy-gradients and

Q-learning) is sensitive to the quality of the reward function. In many practical scenarios,

the rewards are either unavailable or extremely sparse, leading to difficulty in temporal credit

assignment (Sutton, 1984). In the absence of explicit environmental rewards, a promising

approach is to leverage demonstrations of the completed task by experts, and learn to imitate
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their behavior. Behavioral cloning (BC; Pomerleau (1991)) poses imitation as a supervised-

learning problem, and learns a policy by maximizing the likelihood of expert-actions in the

states visited by the expert. The policies produced with BC are generally not very robust

due to the issue of compounding errors; several approaches have been proposed to remedy

this (Ross et al., 2011; Ross & Bagnell, 2014). Inverse Reinforcement Learning (IRL) presents

a more principled approach to imitation by attempting to recover the cost function under

which the expert demonstrations are optimal (Ng et al., 2000; Ziebart et al., 2008). Most IRL

algorithms, however, are difficult to scale up computationally because they require solving an

RL problem in their inner loop. Recently, Ho & Ermon (2016) proposed framing imitation

learning as an occupancy-measure matching (or divergence minimization) problem. Their

architecture (GAIL) forgoes learning the optimal cost function in order to achieve compu-

tational tractability and sample-efficiency (in terms of the number of expert demonstrations

needed). In detail, if ρπ(s, a) and ρE(s, a) represent the state-action visitation distributions

of the policy and the expert, respectively, then minimizing the Jenson-Shanon divergence

minπDJS[ρπ(s, a) || ρE(s, a)] helps to recover a policy with a similar trajectory distribution

as the expert. GAIL iteratively trains a policy (πθ) and a discriminator (Dω) to optimize

the min-max objective:

min
θ

max
ω

E(s,a)∼π,T
[

log(1−Dω(s, a))
]

+ E(s,a)∼ME

[
logDω(s, a)

]
(4.1)

where Dω : S × A → (0, 1), ME is the buffer with expert demonstrations, and T is the

transition dynamics.

4.2 THE POLICY AND BELIEF MODULES

In a POMDP, the observations are by definition non-Markovian. A policy π(at|ot) that

chooses actions based on current observations performs sub-optimally, since ot does not

contain sufficient information about the true state of the world. It is useful to infer a

distribution on the true states based on the experiences thus far. This is referred to as the

belief state, and is formally defined as the filtering distribution: p(st|o≤t, a<t). It combines

the memory of past experiences with uncertainty about unobserved aspects of the world. Let

ht := (o≤t, a<t) denote the observation-action history, and bt := φ(ht) be a function of ht. If

bt is learned such that it forms the sufficient statistics of the filtering posterior over states,

i.e., p(st|o≤t, a<t) ≈ p(st|bt), then bt could be used as a surrogate code (or representation) for

the belief state, and be used to train agents in POMDPs. Henceforth, with slight abuse of

notation, we would refer to bt as the belief, although it is a high-dimensional representation
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rather than an explicit distribution over states.

An intuitive way to obtain this belief is by combining the observation-action history using

aggregator functions such as recurrent or convolution networks. For instance, the inter-

mediate hidden states in a recurrent network could represent bt. In the RL setting with

environmental rewards, the representation could be trained by conditioning the policy on it,

and back-propagating the RL (e.g. policy gradient) loss. However, the RL signal is generally

too weak to learn a rich representation bt that provides sufficient statistics for the filtering

posterior over states. Moreno et al. (2018) provide empirical evidence of this claim by train-

ing oracle models where representation learning is supervised with privileged information

in form of the (unknown) environment states, and comparing them with learning solely

using the RL loss. The problem is only exacerbated when the environmental rewards are

extremely sparse. In our imitation learning setup, the belief update is incorporated into the

mini-max objective for adversarial imitation of expert trajectories, and hence the representa-

tion is learned with a potentially stronger signal (Section 4.2.2). Prior work has shown that

representations can be improved by using auxiliary losses such as reward-prediction (Jader-

berg et al., 2016), depth-prediction (Mirowski et al., 2016), and prediction of future sensory

data (Dosovitskiy & Koltun, 2016; Oh et al., 2015). Inspired by this, in Section 4.3, we

regularize the representation with various prediction losses.

Recently, Ha & Schmidhuber (2018) proposed an architecture (World-Models) that de-

couples model-learning from policy-optimization. In the model-learning phase, a variational

auto-encoder compresses the raw observations to latent-space vectors, which are then tem-

porally integrated using an RNN, combined with a mixture density network. In the policy-

optimization phase, a policy conditioned on the RNN hidden-states is learned to maximize

the rewards. We follow a similar separation-of-concerns principle, and divide the architecture

into two modules: 1) a policy module πθ(at|bt) which learns a distribution over actions,

conditioned on the belief; and 2) a belief module Bφ which learns a good representation of

the belief bt := Bφ(ht), from the history of observations and actions, ht := (o≤t, a<t). While

the policy module is trained with imitation learning, the belief module can be trained in a

task-agnostic manner (like in World-Models), or in a task-aware manner.

4.2.1 Policy Module

The goal of our agent is to learn a policy by imitating a few expert demonstration tra-

jectories of the form {oi, ai}|τ |i=0. Similar to the objective in GAIL, we hope to minimize the

Jenson-Shanon divergence between the state-action visitation distributions of the policy and

the expert: minπDJS[ρπ(s, a) || ρE(s, a)]. However, since the true environment state st is
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Figure 4.1: Stochastic computation graph for the expectation: Ẽ(b,a)∼π,T
[

log(1−D∗(b, a))
]
. Both

the policy (θ) and belief module (φ) parameters influence the generation of observation-action
sequences, (ht, at) := {o≤t, a≤t} through environment interaction. b = Bφ(h) is the belief. Circles
represent stochastic nodes; rectangles are deterministic nodes.

unobserved in POMDPs, we modify the objective to involve the belief representation bt in-

stead, since it characterizes the posterior over st via the generative process p(st|bt). Defining

the belief-visitation distribution ρπ(b) for a policy analogously to the state-visitation distri-

bution, the data processing inequality for f -divergences provides that: DJS[ρπ(s) || ρE(s)] ≤
DJS[ρπ(b) || ρE(b)]. The objective minπDJS[ρπ(b) || ρE(b)] thus minimizes an upper bound

on the DJS between the state-visitation distributions of the expert and the policy. Further

relaxation of this objective allows us to explicitly include the belief-conditioned policy π(a|b)
into the divergence minimization objective: DJS[ρπ(b) || ρE(b)] ≤ DJS[ρπ(b, a) || ρE(b, a)],

where ρπ(b, a) = ρπ(b)π(a|b) is the belief-action visitation.

Minimizing DJS[ρπ(b, a) || ρE(b, a)]. Although explicitly formulating these visitation dis-

tributions is difficult, it is possible to obtain an empirical distribution of ρπ(b, a) by rolling

out trajectories (o1, a1, . . . ) from π, and using our belief module to produce samples of

belief-action tuples (bt, at), where bt := Bφ(ht), ht := (o≤t, a<t). Similarly, the expert demon-

strations bufferME contains observation-actions sequences, and can be used as an estimate

of ρE(b, a). To reduce clutter, we shorthand DJS[ρπ(b, a) || ρE(b, a)] with just DJS for the

remainder of this chapter. DJS can be approximated (up to a constant scale and shift) with

a binary classification problem as exploited in GANs (Goodfellow et al., 2014):

DJS(θ;φ) ≈ max
ω

Ẽ(b,a)∼ME

[
logDω(b, a)

]
+ Ẽ(b,a)∼π,T

[
log(1−Dω(b, a))

]
(4.2)

where θ are the parameters for the policy πθ(a|b), Dω is the discriminator, and T is the tran-

sition dynamics. It should be noted that DJS is a function of the belief module parameters φ

through its dependence on the belief states. The imitation learning objective for optimizing

the policy is then obtained as:

min
θ
DJS(θ;φ) ≈ min

θ
max
ω

Ẽ(b,a)∼ME

[
logDω(b, a)

]
+ Ẽ(b,a)∼π,T

[
log(1−Dω(b, a))

]
(4.3)
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In Equation 4.2, denoting the functional maximum over Dω by D∗, the gradient for pol-

icy optimization is: ∇θDJS(θ;φ) ≈ ∇θẼ(b,a)∼π,T
[

log(1 − D∗(b, a))
]
. Figure 4.1 shows the

stochastic computation graph (Schulman et al., 2015) for this expectation term, where the

stochastic nodes are represented by circles, deterministic nodes by rectangles, and we have

written belief as a function of the history. Given fixed belief module parameters (φ), the

gradient w.r.t. θ is obtained using the policy gradient theorem (Sutton et al., 2000):

∇θDJS(θ;φ) ≈ ∇θẼ(b,a)∼π,T
[

log(1−D∗(b, a))
]

= Ẽ(b,a)∼π,T
[
∇θ log πθ(a|b)Q̂π(b, a)

]
where, Q̂π(bt, at) = Ẽ(b,a)∼π,T

[ ∞∑
t′=t

γt
′−t log(1−D∗(bt′ , at′))

]
(4.4)

Therefore, updating the policy to minimize DJS is approximately the same as applying the

standard policy-gradient using the rewards obtained from a learned discriminator, r(b, a) =

− log(1−D∗(b, a)). As is standard practice, we do not train the discriminator to optimality,

but rather jointly train the policy and discriminator using iterative gradient updates. The

discriminator is updated using the gradient from Equation 4.2, while the policy is updated

with gradient from Equation 4.4. We now detail the update rule for φ.

4.2.2 Belief Module

This module transforms the history (o≤t, a<t) into a belief representation. Various ap-

proaches could be used to aggregate historical context, such as RNNs, masked convolu-

tions (Gehring et al., 2017) and attention-based methods (Vaswani et al., 2017). In our im-

plementation, we model the belief module Bφ with an RNN, such that bt = Bφ(bt−1, ot, at−1).

We use GRUs (Cho et al., 2014) as they have been demonstrated to have good empirical

performance. We denote by R, a replay-buffer which stores observation-action sequences

(current and past) from the agent. As stated before, the belief module could be learnt in a

task-agnostic manner (similar to Ha & Schmidhuber (2018)), or with task-awareness.

Task-agnostic learning (separately from policy). An unsupervised approach to learn-

ing φ without accounting for the agent’s objective, is to maximize the joint likelihood of the

observation sequence, conditioned on the actions, log p(o≤T |a<T ). This decomposes autore-

gressively as
∑

t log p(ot|o<t, a<t). The objective can be optimized by conditioning a gener-

ative model for ot on the RNN hidden state bφt−1 and action at−1, and using MLE. Using a

unimodal Gaussian generative model (learned function g for the mean, and fixed variance),
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the autoregressive loss to minimize is:

LAR(φ) = ER||ot − g(bφt−1, at−1)||22 (4.5)

Task-aware learning (jointly with policy). Since the policy is conditioned on the

belief, an intuitive way to improve the agent’s performance is to learn the belief with an

objective more aligned with policy-learning. Since the agent minimizes DJS(θ, φ), as defined

in Equation 4.2, the same imitation learning objective naturally can also be used for learning

φ:

LIM(φ) := DJS(θ, φ) ≈ Ẽ(h,a)∼ME

[
logD∗(Bφ(h), a)

]
+ Ẽ (h,a)∼

πθ(a|Bφ(h)),T

[
log(1−D∗(Bφ(h), a))

]
(4.6)

which is the same as Equation 4.2 except for the use of the optimal discriminator (D∗), and

that we have written the belief in terms of history b := Bφ(h) to explicitly bring out the

dependence on φ. The gradient of the first expectation term w.r.t. φ is straightforward; the

gradient of the second expectation term w.r.t. φ (for given fixed parameters θ) comprises of

a policy-gradient term and a pathwise-derivative term (Figure 4.1). Therefore, ∇φDJS(θ;φ)

can be approximated with:

Ẽ(h,a)∼ME

[
∇φ logD∗(Bφ(h), a)

]
+ Ẽ(h,a)∼πθ(a|Bφ(h)),T

[
∇φ log πθ(a|Bφ(h))Q̂π

]︸ ︷︷ ︸
policy-gradient term

+ Ẽ(h,a)∼πθ(a|Bφ(h)),T
[
∇φ log(1−D∗(Bφ(h), a))

]︸ ︷︷ ︸
pathwise-derivate term

(4.7)

where Q̂ is as defined in Equation 4.4. The overall min-max objective for jointly training

the policy, belief and discriminator is:

min
φ,θ

max
ω

Ẽ(b,a)∼ME

[
logDω(b, a)

]
+ Ẽ(b,a)∼π,T

[
log(1−Dω(b, a))

]
(4.8)

4.3 BELIEF REGULARIZATION

With the min-max objective (Equation 4.8), it may be possible that the belief parameters

(φ) are driven towards a degenerate solution that ignores the history (o≤t, a<t), thereby

producing constant (or similar) beliefs for policy and expert trajectories. Indeed, if we

omit the actions (a) in the discriminator Dω(b, a), a constant belief output is an optimal

solution for Equation 4.8. To learn a belief representation that captures relevant historical
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context and is useful for deriving optimal policies, we add forward-, inverse- and action-

regularization to the belief module. We define and motivate them from the perspective of

mutual information maximization.

Notation. For two continuous random variables X, Y , mutual information is defined as

I(X;Y ) := H(X)−H(X|Y ), where H denotes the differential entropy. Intuitively, I(X;Y )

measures the dependence between X and Y . Conditional mutual information is defined

as I(X;Y |Z) := Ez[(I(X;Y )|z]. Given Y , if X and Z are independent (X ⊥ Z|Y ), then

X, Y, Z form a Markov Chain (X � Y � Z), and the data processing inequality for mutual

information states that I(X;Z) ≤ I(X;Y ).

Forward regularization. As discussed in Section 4.2, an ideal belief representation com-

pletely characterizes the posterior over the true environment states p(st|bt). Therefore, it

ought to be correlated with future true states (st+k), conditioned on the intervening future

actions (at:t+k−1). We frame this objective as maximization of the following conditional

mutual information: I(bt; st+k|at:t+k−1). Since ot+k ⊥ bt|st+k because of the observation gen-

eration process in a POMDP, we get the following after using the data processing inequality

for mutual information:

I(bt; st+k|at:t+k−1) ≥ I(bt; ot+k|at:t+k−1)

= Eat:t+k−1

[
H(ot+k|at:t+k−1)−H(ot+k|bt; at:t+k−1)

]
≥ Eat:t+k−1

[
H(ot+k|at:t+k−1)Eot+k,bt

[
log q(ot+k|bt; at:t+k−1)

]] (4.9)

where the final inequality follows because we can lower bound the mutual information using

a variational approximation q, similar to the variational information maximization algo-

rithm (Agakov & Barber, 2004). Therefore, we maximize a lower bound to the mutual

information I(bt; st+k|at:t+k−1) with the surrogate objective:

max
φ,q

E ot+k,bt,
at:t+k−1

[
log q(ot+k|bφt ; at:t+k−1)

]
(4.10)

With the choice of a unimodal Gaussian (learned function g for the mean, and fixed variance)

for the variational distribution q, the loss function for forward regularization of the belief

module is:

Lf (φ) = ER||ot+k − g(bφt , at:t+k−1)||22 (4.11)

where the expectation is over trajectories (o1, a1, . . . ) sampled from the replay buffer R.
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Inverse regularization. It is desirable that the belief at time t is correlated with the

past true states (st−k), conditioned on the intervening past actions (at−k:t−1). This should

improve the belief representation by helping to capture long-range dependencies. Proceeding

in a manner similar to above, the conditional mutual information between these signals,

I(st−k; bt|at−k:t−1), can be lower bounded by I(ot−k; bt|at−k:t−1) using the data processing

inequality. As before, this can be further lower bounded using a variational distribution q

for generating past observation ot−k. A unimodal Gaussian (mean function g) for q yields

the following loss, that is optimized using trajectories from the replay R:

Li(φ) = ER||ot−k − g(bφt , at−k:t−1)||22 (4.12)

Action regularization. We maximize I(at:t+k−1; st+k | bt) for the reason that, conditioned

on the current belief bt, a sequence of k subsequent actions (at:t+k−1) should provide infor-

mation about the resulting true future state (st+k). Similar lower bounding and use of a

variational distribution with mean function g for generating action-sequences gives the loss:

La(φ) = ER||(at:t+k−1)− g(bφt , ot+k)||22 (4.13)

The complete loss function for training the belief module results from a weighted combination

of the imitation-loss and regularization terms. Imitation-loss uses on-policy data and expert

demonstrations (ME), while the regularization losses are computed with on-policy and off-

policy data, as well as ME.

L(φ) = LIM + λ1Lf + λ2Li + λ3La (4.14)

We derive our final expressions for (Lf ,Li,La) by modeling the respective variational dis-

tributions (q) as fixed-variance, unimodal Gaussians. We later show that using this simple

model results in appreciable performance benefits for imitation learning. Other expressive

model classes, such as mixture density networks and flow-based models (Rezende & Mo-

hamed, 2015), can be readily used as well, to learn complex and multi-modal distributions

over the future observations (ot+k), past observations (ot−k) and action-sequences (at:t+k−1).

4.4 OVERALL ARCHITECTURE AND ALGORITHM

Figure 4.2 shows the schematic diagram of our complete architecture, including an overview

of implemented neural networks. In Algorithm 4.1, we outline the major steps of the train-
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Figure 4.2: Schematic diagram of our complete architecture. The belief module Bφ is a
recurrent network with GRU cells, and encodes trajectories (o1, a1, . . . ) from agent (on-policy
data), replay buffer R (off-policy data) and expert demonstrations memory ME into belief
representations (bt). Bφ is updated with imitation-loss (Equation 4.6) computed from the
current policy and discriminator networks. It is further regularized with forward-, inverse-
and action-regularization using MLPs (colored in blue in the figure). Convolution layers
(colored in red) encode the past actions (at−k:t−1) and future actions (at:t+k−1) into compact
representations, which are then fed into the MLPs. The policy πθ(at|bφt ) is conditioned on the
belief, and updated using imitation learning (Equation 4.4). The discriminator Dω(bφt , at) is a
binary classifier trained on tuples from the agent and expert demonstrations (Equation 4.2).

ing procedure. In each iteration, we run the policy for a few steps and obtain shaped

rewards from the current discriminator (Line 6). The policy parameters are then updated

using A2C, which is the synchronous adaptation of asynchronous advantage actor-critic

(A3C; Mnih et al. (2016)), as the policy-gradient algorithm (Line 10). Other RL algorithms,

such as those based on trust-regions methods (Schulman et al., 2015) could also be readily

used. Similar to the policy (actor), the baseline (critic) used for reducing variance of the

stochastic gradient-estimation is also conditioned on the belief. To further reduce variance,

Generalized Advantage Estimation (GAE; Schulman et al. (2015)) is used to compute the

advantage. Apart from the policy-gradient, on-policy data also enables computing the gra-

dient for the discriminator network (Line 13) and the belief module (Line 14). The belief

is further refined by minimizing the regularization losses on off-policy data from the replay

buffer R (Line 15).

The regularization losses (Lf ,Li,La) described in Section 4.3 include a hyperparameter k

that controls the temporal offset of the predictions. For instance, for Li(φ; k), the larger the

k, the farther back in time the observation predictions are made, conditioned on the cur-
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Algorithm 4.1: Belief-module Imitation Learning (BMIL)

1 for each iteration do

2 dπ = {}, dE = {}
/* Rollout c steps from policy */

3 repeat
4 Get observation ot from environment
5 at ∼ πθ(at|bt), where bt = Bφ(o≤t, a<t)
6 rt = − log(1−Dω(bt, at))
7 dπ ← dπ ∪ (bt, at, rt)

8 If ot is terminal, add rollout {oi, ai}|τ |i=0 to R
9 until |dπ| == c;

/* Update Policy */

10 Update θ with policy-gradient (Equation 4.4)

/* Update discriminator ω */

11 Fetch (ot, at, . . . ) of length c from ME

12 Generate belief-action tuples dE = {(bi, ai)}t+c−1
i=t

13 Update ω with log-loss objective using dπ and dE

/* Update Belief Module φ */

14 Update φ with ∇φL(φ) using dπ and dE (Equation 4.14)

/* Off-policy Updates */

15 for few update steps do
16 Fetch (ot, at, . . . ) of length c from R
17 Update φ with ∇φ(λ1Lf + λ2Li + λ3La)
18 end

19 end

rent belief and past actions. The temporal abstractions provided by multi-step predictions

(k>1) should help to extract more global information from the input stream into the be-

lief representation. Our ablations (Section 4.5.3) show the performance benefit of including

multi-step losses. Various strategies for selecting k are possible, such as uniform sampling

from a range (Guo et al., 2018) and adaptive selection based on a curriculum (Oh et al.,

2015). For simplicity, we choose fixed values, and leave the exploration of the more sophisti-

cated approaches to future work. Hence, our total regularization loss comprises of single-step

(k=1) and multi-step (k=5) forward-, inverse-, and action-prediction losses. For encoding a

sequence of past or future actions into a compact representation, we use multi-layer convo-

lution networks (Figure 4.2).
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4.5 EXPERIMENTS

The goal in this section is to evaluate and analyze the performance of our proposed

architecture for imitation learning in partially-observable environments, given some expert

demonstrations. Herein, we describe our environments, provide comparisons with GAIL,

and perform ablations to study the importance of the design decisions that motivate our

architecture.

Partially-observable locomotion tasks. We benchmark high-dimensional, continuous-

control locomotion environments based on the MuJoCo physics simulator, available in Ope-

nAI Gym (Brockman et al., 2016). The standard Gym MuJoCo library of tasks, however,

consists of MDPs (and not POMDPs), since observations in such tasks contain sufficient

state-information to learn an optimal policy conditioned on only the current observation.

As such, it has been extensively used to evaluate performance of reinforcement-learning and

imitation-learning algorithms in the MDP setting (Schulman et al., 2017; Ho & Ermon,

2016). To transform these tasks into POMDPs, we follow an approach similar to Duan et al.

(2016), and redact some sensory data from the observations. Specifically, from the default

observations, we remove measurements for the translation and angular velocities of the torso,

and also the velocities for all the link joints. We denote the original (MDP) observations by

s ∈ S, and the curtailed (POMDP) observations by o ∈ O.

For all experiments, we assume access to 50 expert demonstrations of the type {oi, ai}|τ |i=0,

for each of the tasks. The policy and discriminator networks are feed-forward MLPs with

two 64-unit layers. The policy network outputs include the action mean and per-action

variances (i.e. actions are assumed to have an independent Gaussian distribution). In the

belief module, the dimension of the GRU cell is 256, while the MLPs used for regularization

have two 64-unit feed-forward layers.

4.5.1 Comparison to GAIL

Our first baseline is modeled after the architecture used in the original GAIL approach (Ho

& Ermon, 2016). It consists of feed-forward policy and discriminator networks, without the

recurrent belief module. The policy is conditioned on ot, and the discriminator performs

binary classification on (ot, at) tuples. The update rules for the policy and discriminator

are obtained in similar way as Equation 4.4 and Equation 4.2, respectively, by replacing

the belief bt with observation ot. The next baseline, referred to as GAIL+Obs. stack,

augments GAIL by concatenating 3 previous observations to each ot, and feeding the entire
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stack as input to the policy and discriminator networks. This approach has been found to

extract useful historical context for a better state-representation (Mnih et al., 2015). We

abbreviate our complete proposed architecture (Figure 4.2) by BMIL, short for Belief-Module

Imitation Learning. BMIL jointly trains the policy, belief and discriminator networks using

a mini-max objective (Equation 4.8), and additionally regularizes the belief with multi-step

predictions. Table 4.1 compares the performance of different designs on POMDP MuJoCo.

We shows the mean episode-returns, averaged over 5 runs with random seeds, after 10M

timesteps of interaction with the environment. We observe that GAIL—both with and

without observation stacking—is unable to successfully imitate the expert behavior. Since

the observation ot alone does not contain adequate information, the policy conditioned on it

performs sub-optimally. Also, the discriminator trained on (ot, at) tuples does not provide

robust shaped rewards. Using the full state st instead of ot in our experiments leads to

successful imitation with GAIL, suggesting that the performance drop in Table 4.1 is due to

partial observability, rather than other artifacts such as insufficient network capacity, or lack

of algorithmic or hyperparameter tuning. Further, we see that techniques such as stacking

past observations provide only a marginal improvement in some of the tasks. In contrast,

in BMIL, the belief module curates a belief representation from the history (o≤t, a<t), which

is used both for discriminator training, and to condition the action-distribution (policy).

BMIL achieves scores very close to those of the expert.

GAIL GAIL +
Obs. stack

BMIL
(Ours)

Expert
(≈ Avg.)

Inv.DoublePend. 109 1351 9104 9300
Hopper 157 517 2665 3200

Ant 895 1056 1832 2400
Walker 357 562 4038 4500

Humanoid 1686 1284 4382 4800
Half-cheetah 205 -948 5860 6500

Table 4.1: Mean episode-returns after 10M timesteps in POMDP MuJoCo.

4.5.2 Comparison to GAIL with Recurrent Networks

For our next two baselines, we replace the feed-forward networks in GAIL with GRUs.

GAIL-RF uses a recurrent policy and a feed-forward discriminator, while in GAIL-RR,

both the policy and the discriminator are recurrent. In both these baselines, the belief is

created internally in the recurrent policy module. Importantly, unlike BMIL, the belief is not

shared between the policy and the discriminator. The average final performance of GAIL-
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Figure 4.3: Mean episode-returns vs. timesteps of environment interaction. BMIL is our proposed
architecture (Figure 4.2); GAIL-RF uses a recurrent policy and a feed-forward discriminator, while
in GAIL-RR, both the policy and the discriminator are recurrent.

Figure 4.4: Mean episode-returns vs. timesteps of environment interaction. BMIL is our proposed
architecture (Figure 4.2); BMIL w/o Reg excludes the various regularization terms (Section 4.3)
from this design; Task-Agnostic learns the belief module separately from the policy using a task-
agnostic loss (LAR, Section 4.2.2).

RF and GAIL-RR in our POMDP environments is shown in Table 4.2. We observe that

GAIL-RR does not perform well on most of the tasks. A plausible explanation for this is

that using the adversarial binary classification loss for training the discriminator parameters

does not induce a sufficient representation of the belief state in its recurrent network. The

other baseline, GAIL-RF, avoids this issue with a feed-forward discriminator trained on

(ot, at) tuples from the expert and the policy. This leads to much better performance.

However, BMIL consistently outperforms GAIL-RF, most significantly in Humanoid (1.6×
higher score), indicating the effectiveness of the decoupled architecture and other design

decisions that motivate BMIL. Figure 4.3 plots the learning curves for these experiments.

4.5.3 Ablation Studies

How crucial is belief regularization? We compare the performance of our architecture

with and without belief regularization (BMIL vs. BMIL w/o Reg.). Figure 4.4 plots the

mean episode-returns vs. timesteps of environment interaction. We observe that including
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GAIL-RR GAIL-RF BMIL
(Ours)

Inv.DoublePend. 8965 9103 9104
Hopper 955 2164 2665

Ant -533 1612 1832
Walker 400 3188 4038

Humanoid 3829 2761 4382
Half-cheetah -922 5011 5860

Table 4.2: Mean episode-returns after 10M timesteps in POMDP MuJoCo.

regularization leads to better episode-returns and sample-complexity for most of the tasks

considered, indicating that it is useful for shaping the belief representations.

Task-aware vs. Task-agnostic belief learning. Next, we compare with a design in

which the belief module is trained separately from the policy, using a task-agnostic loss

(LAR, Section 4.2.2). This echos the philosophy used in World-Models (Ha & Schmidhuber,

2018). As Figure 4.4 shows, this results in mixed success for imitation in POMDPs. While

the agent achieves good scores in tasks such as Ant and HalfCheetah, the performance in

Walker and Hopper is unsatisfactory. In contrast, BMIL, which uses a task-aware imitation-

loss for the belief module, is consistently better.

Are all of Lf ,Li,La useful? We introduced 3 different regularization terms for the belief

module – forward (Lf ), inverse (Li) and action (La). To assess their benefit individually,

in Figure 4.5a, we plot learning curves for two tasks, with each of the regularizations ap-

plied in isolation. We compare them with BMIL, which includes all of them, and BMIL

w/o Reg., which excludes all of them (no regularization). For the Ant task, we notice that

each of {Lf ,Li,La} provides performance improvement over the no-regularization base-

line, and combining them (BMIL) performs the best. With the Walker task, we see better

mean episode-returns at the end of training with each of {Lf ,Li,La}, compared to no-

regularization; BMIL attains the best sample-complexity.

Are multi-step predictions useful? As argued before, making coarse-scale, multi-step

(k>1) predictions for forward, inverse observations and action-sequences could improve rep-

resentations by providing temporal abstractions. In Figure 4.5b, we plot BMIL, which uses

single- and multi-step losses k={1, 5}, and compare it with two versions: first that uses a

different temporal offset k={1, 10}, and second that predicts only at the single-step gran-

ularity k={1}. For both tasks, we get better sample-complexity and higher final average

returns with multi-step, suggesting its positive contribution to representation learning.
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(a) Ablation on components of belief regular-
ization. Forward-, Inverse-, Action-only corre-
spond to using Lf , Li, La, respectively, in iso-
lation, without the other two.

(b) Ablation on hyperparameter k in the regu-
larization terms. Multi-step design builds over
single-step by adding predictions at different
temporal offsets, k=5 and k=10.

Figure 4.5: Ablation studies.

4.6 RELATED WORK AND CONCLUSION

While we cannot do full justice to the extensive literature on RL-algorithms for POMDPs,

we here mention some recent related work. Most prior algorithms for POMDPs assume

access to a predefined reward function. These include approaches based on Q-learning

(DRQN; Hausknecht & Stone (2015)), policy-gradients (Igl et al., 2018), partially observed

guided policy search (Zhang et al., 2016), and planning methods (Silver & Veness, 2010; Ross

et al., 2008; Pineau et al., 2003). In contrast, we propose to adapt ideas from generative

adversarial imitation learning to learn policies in POMDPs without environmental rewards.

Learning belief states from history (o≤t, a<t) was recently explored in Guo et al. (2018).

The authors show that training the belief representation with a Contrastive Predictive Cod-

ing (CPC, Oord et al. (2018)) loss on future observations, conditioned on future actions, helps

to infer knowledge about the underlying state of the environment. Predictive State Repre-

sentations (PSRs) offer another approach to modeling the belief state in terms of observable

data (Littman & Sutton, 2002). The assumption in PSRs is that the filtering distribution

can be approximated with a distribution over the k future observations, conditioned on fu-

ture actions, p(st|o≤t, a<t) ≈ p(ot+1:t+k|o≤t, a<t+k). PSRs combined with RNNs have been

shown to improve representations by predicting future observations (Venkatraman et al.,

2017; Hefny et al., 2018). While we also make future predictions, a key difference compared

to aforementioned methods is that our belief representation is additionally regularized by

predictions in the past, and in action-space, which we later show benefits our approach.

State-space models (SSMs; Fraccaro et al. (2016); Goyal et al. (2017); Buesing et al.

(2018)), which represent the unobserved environment states with latent variables, have also
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been used to obtain belief states. Igl et al. (2018) use a particle-filtering method to train a

VAE, and represent the belief state with a weighted collection of particles. The model is also

updated with the RL-loss using a belief-conditioned policy. Gregor et al. (2018) proposed

TD-VAE, which explicitly connects belief distributions at two distant timesteps, and enforces

consistency between them using a transition distribution and smoothing posterior. Although

we use a deterministic model for our belief module (Bφ), our methods apply straightforwardly

to SSMs as well.

4.6.1 Conclusion

In this work, we study imitation learning for POMDPs, which has been considerably less

explored compared to imitation learning for MDPs, and learning in POMDPs with predefined

reward functions. We introduce a framework comprised of a belief module, and policy

and discriminator networks conditioned on the generated belief. Crucially, all networks are

trained jointly with a min-max objective for adversarial imitation of expert trajectories.

Within this flexible setup, many instantiations are possible, depending on the choice of

networks. Both feed-forward and recurrent networks can be used for the policy and the

discriminator, while for the belief module there is an expansive set of options based on the

rich literature on representation learning, such as CPC (Guo et al., 2018) and using auxiliary

tasks (Jaderberg et al., 2016). Many more methods based on state-space latent-variable

models are also applicable. In our instantiation of the belief module, we use the task-based

imitation loss (Equation 4.6), and improve robustness of representations by regularizing

with multi-step prediction of past/future observations and action-sequences. One benefit of

our proposed framework is that in future work, it would be straightforward to substitute

other methods for learning belief representations for the one we arrived at in our work.

Similarly, recent advancements in GAN and RL literature could guide the development of

better discriminator and policy networks for imitation learning in POMDPs. Exploring these

ranges, as well as their interplay, are important directions.
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CHAPTER 5: IMITATION LEARNING FROM OBSERVATIONS UNDER
TRANSITION MODEL DISPARITY

5.1 INTRODUCTION

Imitation Learning (IL) is a framework that trains an agent to perform desired skills by

leveraging expert demonstrations of those skills. Compared to the standard Reinforcement

Learning (RL) approach, IL offers the benefit of not requiring a reward function, that can

be difficult to specify for complicated objectives. Recent IL methods that integrate effi-

ciency with deep-RL and are performant in high-dimensional state-action spaces include

behavioral-cloning-based algorithms (Ross et al., 2011; Brantley et al., 2019), and adver-

sarial IL algorithms inspired by maximum entropy inverse-RL (Ho & Ermon, 2016; Finn

et al., 2016). Imitation Learning from Observations (ILO) refers to the setting where the

expert demonstrations consist of only observations (or states), while the expert actions are

unavailable. ILO is beneficial when the measurement of the expert action is difficult, e.g.,

in kinesthetic teaching in robotics or when learning with motion capture datasets.

Adversarial IL methods frame the problem as the minimization of an f-divergence be-

tween the state-action visitation distributions of the expert and the learner (Ke et al., 2019).

Since expert actions are absent in ILO, the analogous methodology here is to minimize the

f-divergence between the state-transition distributions of the expert and the learner (Aru-

mugam et al., 2020). A state-transition distribution for a policy is the joint distribution

over the current state and the next state, and is defined formally in Section 5.2. Choosing

the f-divergence to be the Jensen–Shannon (JS) divergence has enabled successful imitation

using algorithms such as GAIL (Ho & Ermon, 2016) and GAIfO (Torabi et al., 2018), for IL

and ILO, respectively.

The transition dynamics model of an environment governs the distribution over the next

state, given the current state and action. In this work, we focus on ILO in the scenario

of a transition dynamics mismatch between the expert and the learner environments. Such

discrepancy could manifest in real-world applications of imitation learning when there are

subtle differences in the physical attributes of the system used to collect the demonstrations

and the system where the learner policy is run. Adversarial ILO methods such as GAIfO,

that attempt to train the learner by matching its state-transition distribution with that of

the expert, perform very well when the expert and learner operate in a shared environment,

under the same dynamics. When the dynamics differ, however, matching the state-transition

distributions becomes challenging since the state transitions provided in the expert demon-

strations could be infeasible under the dynamics in the learner’s environment. To form some
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intuition, consider ILO in a 2D grid with discrete states, where the path demonstrated by

the expert follows the main diagonal from the bottom-left grid-cell to the top-right grid-

cell. Suppose that the transition dynamics for the learner environment are such that only

horizontal and vertical moves are permitted on the grid, i.e., no diagonal motion for the

learner. In this case, an optimal learner’s movement is still in the same general direction as

the expert, and it covers all the expert states (along with some adjacent states). However,

matching the state-transition distributions is an ineffective strategy since the learner cannot

reproduce the (one-step) state transitions of the expert.

To alleviate the challenges of ILO under dynamics mismatch, we propose an algorithm that

trains an intermediary policy in the learner environment, and hope to use it as a surrogate

expert for training the learner (imitator). We refer to this policy as the advisor. For the

advisor to be effective, the state transitions generated by it in the learner environment should

be as close as possible to the state transitions in the expert dataset. We formalize this concept

in terms of the cross-entropy distance between state-conditional next-state distributions of

the expert and the advisor. To convert this into a practical and scalable algorithm for

training the advisor, we incorporate ideas from distribution support estimation (Wang et al.,

2019). Simultaneous to the advisor training, the learner agent is updated to imitate the

advisor. Crucially, the advisor operates in the same environment as the learner, making the

distribution-matching IL objective amenable.

We evaluate the efficacy of our ILO algorithm using five locomotion control tasks from

OpenAI Gym where we introduce a mismatch between the dynamics of the expert and the

learner by changing different configuration parameters. We demonstrate that our approach

compares favorably to the baseline ILO algorithms in many of the considered scenarios.

5.2 PRELIMINARIES

We model the RL environment as a discounted, infinite horizon Markov Decision Process

(MDP). At every discrete timestep, the agent observes a state (s ∈ S), generates an action

(a ∈ A) from a stochastic policy π(a|s), receives a scalar reward r(s, a), and transitions to

the next state (s′) sampled from the transition dynamics model p(s′|s, a). In the infinite

horizon setting, the future rewards are discounted by a factor of γ ∈ [0, 1). Let dtπ(s)

denote the distribution induced by π over the state-space at a particular timestep t. The

stationary discounted state distribution of π is then defined as ρπ(s) = (1−γ)
∑∞

t=0 γ
tdtπ(s).

The RL objective of maximizing the cumulative discounted sum of rewards can be framed

as maxπ Eρπ(s,a)[r(s, a)], where ρπ(s, a) = ρπ(s)π(a|s) is the state-action distribution (also

known as the occupancy measure). Lastly, we define the state-transition distribution for a
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policy as ρπ(s, s′) =
∑

a p(s
′|s, a)ρπ(s, a) 1.

5.2.1 GAIL and GAIfO

Generative Adversarial Imitation Learning (Ho & Ermon, 2016) is a widely popular model-

free IL method that builds on the Maximum Causal Entropy Inverse-RL (MaxEnt-IRL)

framework (Ziebart, 2010). MaxEnt-IRL models the expert behavior with a policy that

maximizes its γ-discounted causal entropy, H(π) = Eπ[− log π(a|s)], while satisfying a fea-

ture matching constraint. GAIL considers a regularized version of the dual to this primal

problem. It shows that RL with the reward function recovered as the solution of the regular-

ized dual is equivalent to directly learning a policy whose state-action distribution is similar

to that of the expert. For a specific choice of the regularizer, this similarity is quantified

by the JS divergence between the two state-action distributions, DJS[ρπ(s, a) || ρπe(s, a)].

Based on these ideas, GAIL seeks to learn a policy with the objective:

min
π

max
D

Eρπ
[

logD(s, a)
]

+ Eρπe
[

log(1−D(s, a))
]
− λH(π) (5.1)

where D : S × A → (0, 1) is the discriminator that provides the rewards for training

the learner policy π, and the inner maximization over D approximates DJS(·) similar to

GANs (Goodfellow et al., 2014). To empirically estimate the expectation under ρπe(s, a),

state-action pairs are sampled from the available expert demonstrations. In the ILO setting,

however, expert actions are not included in the demonstrations. To mitigate this chal-

lenge, Torabi et al. (2018) propose GAIfO, which adapts to ILO by modifying the GAIL

objective to match the state-transition distributions of the expert and the learner, i.e.,

DJS[ρπ(s, s′) || ρπe(s, s′)]. Correspondingly, the discriminator in GAIfO is a function of the

state transitions D(s, s′).

5.2.2 Support Estimation via RED

We summarize a recently proposed method for estimating the support of a distribution

in high dimensions (RED; Wang et al. (2019)), since it forms a core ingredient of our final

algorithm. Let X denote a set and p be a probability distribution on X . Denote by supp(p) =

{x ∈ X | p(x) 6= 0}, the support of the distribution p. Given any x ∈ X , the task is to

know if x ∈ supp(p). Towards this goal, Wang et al. (2019) combine ideas from kernel-based

1With slight abuse of notation, we use the symbol ρπ for state, state-action, and state-transition distri-
butions of a policy π. We would provide context around their usage to avoid any confusion.
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support estimation (De Vito et al., 2014) and RND (Burda et al., 2018), and consider the

following objective:

θ∗ = arg min
θ

Ex∼p(x)‖fθ(x)− fθ̃(x)‖2
2 (5.2)

where fθ : X → RK is a trainable function parameterized by θ, while fθ̃ is a fixed function

with randomly initialized parameters θ̃. Define the score function as (with constant positive

scalar λ):

rRED(x) = exp(−λ‖fθ∗(x)− fθ̃(x)‖2
2) (5.3)

Wang et al. (2019) conclude that the score rRED(x) is high if x ∈ supp(p), and is low

otherwise. With neural network function approximators, we thus obtain a smooth metric

whose value decreases (increases) as we move farther from (closer to) the support of the

distribution p.

5.3 ADVISOR-AUGMENTED IMITATION LEARNING FROM OBSERVATIONS

We begin by defining some notations for our setup. We denote the MDP in which the

expert policy (πe) operates as the e-MDP, while the learner (or imitator) policy is run in the

l-MDP. The two MDPs share all the attributes, except for the transition dynamics function,

which we symbolize with pe(s
′|s, a) and pl(s

′|s, a), for the e-MDP and l-MDP, respectively.

ρe(s), ρe(s, a), and ρe(s, s
′) are the state, state-action, and state-transition distribution for

the expert policy. These distributions depend on the e-MDP dynamics pe(s
′|s, a). The

corresponding distributions for the learner are denoted by ρπ(·) and they depend on the

l-MDP dynamics pl(s
′|s, a).

Adversarial ILO methods, such as GAIfO, that learn the imitator policy by matching the

state-transition distributions of the expert and learner aim to solve the following primal

problem:

max
π
H(π) s.t. ρe(s, s

′) = ρπ(s, s′) ∀ (s, s′) ∈ S × S (5.4)

If the expert and the learner operate under different transition dynamics, depending on the

extent of the mismatch, it is possible that some (or all) of the one-step state transitions of

the expert are infeasible under the dynamics function in l-MDP. Said differently, given a

(se, s
′
e) pair sampled from the expert demonstrations, there could be no action in the l-MDP

from the state se that results in s′e as the next state, as per the dynamics pl(s
′|s, a). This

renders the state-transition matching objective hard to optimize in practice. For instance,

in the practical implementation of GAIfO, the rewards for the imitator policy are computed

from a discriminator that is trained with binary classification on (s, s′) pairs from the expert
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(a) State transitions
(b) Comparison between GAIfO (left) and our approach
(right)

Figure 5.1: (a) A sequence of states si from the expert dataset. The states s̃i are reached
by sampling an action from the advisor policy πa from every expert state. State ŝ2 is less
desirable than s̃2 since the latter is closer to the expert state s2. The squiggly lines show the
path that a learner, that is optimized to match the state-action distribution of the advisor,
may take. (b) A high-level overview of our approach. While GAIfO directly matches the
state-transition distributions of the expert and the learner, we learn an intermediary policy
(advisor) in the l-MDP that acts as the surrogate expert for the learner. D is used to denote
the corresponding distance metric.

and the learner. If the expert transitions can’t be generated in l-MDP by the learner,

then a high-capacity discriminator could achieve perfect accuracy and thus fail to provide

informative rewards for imitation.

Consider a sequence of states {s1, s2, . . . } generated by the expert policy in the e-MDP,

as shown in Figure 5.1a. Given an expert state si, it may not be possible to reach si+1 in a

single timestep in the l-MDP. Instead, we would like to find an alternative state s̃i+1 that is

reachable from si in one step (i.e., feasible under the dynamics pl) and is close to the desired

destination si+1. For instance, in Figure 5.1a, starting from the expert state s1, s̃2 is a more

desirable next state compared to ŝ2.

5.3.1 Guidance via an Advisor Policy

To discover such feasible states s̃i, we introduce an advisor policy πa that operates in the

l-MDP. πa is invoked only for action selection on the expert states, rather than being run

in a closed feedback loop in the learner environment. In this way, πa is akin to a contextual

bandit policy. The goal with πa is to produce an action ai ∼ πa(·|si) from the expert state

si such that the next state in the l-MDP, s̃i+1 ∼ pl(·|si, ai), is close to the next state si+1

in the e-MDP under the expert policy. We expand on the measure of closeness and the

methodology to train the advisor in the next subsection.

When the expert and learner dynamics are the same, the optimal advisor would take the

same actions as the expert policy. In the presence of a dynamics mismatch, however, the
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advisor actions provide reasonably good guidance on how to stay close to the expert’s state

trajectory (Figure 5.1a). Therefore, the advisor πa could act as a surrogate expert for the

learner and the learner’s imitation learning objective could be suitably modified. The main

advantage of the learner and the advisor operating in the same l-MDP is that we could

now attempt to match their visitation distributions, which is much more structured than

matching distributions across dynamics (Equation 5.4). We consider the IL objective:

max
π
H(π) s.t. ρπa(s, a) = ρπ(s, a) ∀ (s, a) ∈ S ×A (5.5)

where ρπa(s, a) is the state-action distribution of πa. Since the advisor is invoked only on

the expert states, effectively, ρπa(s, a) = ρe(s)πa(a|s). We can convert the above objective

to an unconstrained optimization by using a parametric function fω(s, a) as the Lagrange

multiplier:

min
ω

max
π
J (π, ω) := H(π) + Eρe(s)πa(a|s)[fω(s, a)]− Eρπ(s,a)[fω(s, a)] (5.6)

We note that this objective bears resemblance to entropy-regularized apprenticeship learn-

ing (Abbeel & Ng, 2004; Syed et al., 2008; Syed & Schapire, 2008), modulo the use of an

advisor policy that contributes the favorable actions, instead of the expert policy.

5.3.2 Training the Advisor

The advisor policy generates an action (deterministic πa), or a distribution over actions

(stochastic πa), given an expert state sampled from the demonstration data. One suitable

objective for training the advisor is to minimize the dissimilarity between the destination

state achieved with the expert policy in e-MDP and that achieved with the advisor in l-

MDP. For instance, consider the scenario where the dynamics functions are deterministic

and known, denoted by fe and fl for the e-MDP and l-MDP, respectively. Also, the policies

πe and πa are deterministic. Then, the advisor could be optimized with the following loss:

min
πa
J (πa) := Es∼ρe(s)

[
D
[
fe(s, πe(s)), fl(s, πa(s))

]]
(5.7)

where D is a distance measure, e.g., the L2-norm in the state space. However, we are

interested in the setup with stochastic, unknown dynamics functions and stochastic policies.

To compute a distance metric in this setting, we first define the state-conditional next-state
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distributions for the expert and the advisor, by marginalizing over the actions:

pe,πe(s
′|s) =

∑
a

pe(s
′|s, a)πe(a|s) ; pl,πa(s

′|s) =
∑
a

pl(s
′|s, a)πa(a|s) (5.8)

We then use the cross-entropy distance (H) between these distributions as a measure of

closeness between the expert and the advisor:

π∗a = arg min
πa

J (πa) := Es∼ρe(s)
[
H
[
pl,πa(s

′|s), pe,πe(s′|s)
]]

= arg max
πa

J (πa) := Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)

[
log pe,πe(s

′|s)
]

= arg max
πa

J (πa) := Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)

[
log ρe(s, s

′)
] (5.9)

where, in the last equation, we have multiplied the term inside the log with ρe(s), a quantity

independent of πa. Figure 5.1b provides a high-level overview of our approach.

5.3.3 An Approximation Based on RED

The objective in Equation 5.9 presents a couple of challenges. Firstly, it is infeasible

to evaluate the density of any state transition (s, s′) under the expert’s state-transition

distribution ρe(s, s
′), since this distribution is unknown and only a few samples from this

distribution are available to us in the form of the expert demonstrations. Secondly, and

more importantly, note that the state transition that ought to be evaluated under ρe(s, s
′)

is generated by the advisor policy in the l-MDP. If no advisor policy can replicate the state

transition behavior of the expert, as is likely when there is a dynamics mismatch, then the

objective becomes degenerate with an optimal value of −∞.

Our approach to mitigate these issues is to replace the log-density term in Equation 5.9

with an estimated value that quantifies the proximity of a given state transition (s, s′) to the

manifold of the expert’s support in this space, i.e., ρe(s, s
′). To get this value, we leverage

RED (Wang et al., 2019), which pre-trains a deep neural network using data samples from

the distribution of interest. Then, given a test sample, the network outputs a continuous

value that provides an estimate of how far the test sample is from the distribution’s support.

Section 5.2.2 provides a short background on RED.

In our instantiation, we pre-train a RED network rφRED(s, s′) with state transitions from

the expert demonstrations. The network is then frozen and utilized in the objective to train

the advisor:

max
πa
J (πa) := Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)

[
rφRED(s, s′)

]
(5.10)
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y Increasing
noise

Walker2d HalfCheetah

N/S = 0 0.93 0.96
N/S = 0.2 0.80 0.71
N/S = 0.5 0.44 0.23
N/S = 1 0.12 0.04
N/S = 2 0.01 0.001

Table 5.1: Averaged rφRED(s, s′) values for different noise levels.

For any advisor-generated state transition, rφRED(s, s′) provides a smooth metric in the range

(0, 1], whose value increases (decreases) as the transition moves closer to (farther from) the

support of the distribution ρe(s, s
′). Thus, training πa to maximize this value yields an

advisor that provides guidance on how to stay close to the expert’s state trajectory when

operating in l-MDP (Figure 5.1b).

To provide further intuition on the use of RED, Table 5.1 shows the rφRED(s, s′) values

obtained from a trained RED network in two environments—Walker2d and HalfCheetah.

The RED network is trained with 50 state transitions {se, s′e} sampled from ρe(s, s
′) and then

evaluated under several noisy transitions {se, s′e + η}, where η denotes zero-mean Gaussian

noise. We show the rφRED values averaged across the transitions for different settings of

the noise-to-signal ratio (N/S), i.e., the ratio of the standard deviation of the noise to

the standard deviation of the states. We observe that rφRED(s, s′) is close to 1.0 when the

transitions are on the support of the expert, and it gradually decreases as the transitions

drift away from the support as a result of a larger amount of added noise.

5.3.4 Illustration of the Advisor and the Learner in Grid-world

We discuss the differences between the advisor policy πa and the learner policy with the

help of an illustration in the deterministic grid-world environment (Figure 5.2). The leftmost

plot shows the demonstrated expert states {s1, s2, s3, s4, s5}. The e-MDP and the l-MDP

are the same grid-world but with the following transition dynamics mismatch – while the

e-MDP allows diagonal hops such that the shown expert transitions are consecutive, in the

l-MDP, the agent is restricted to only horizontal and vertical movements to the nearby cells.

As discussed in Section 5.3.2, we seek to train an advisor such that the dissimilarity

between the destination state achieved with the expert policy in e-MDP and that achieved

with the advisor in l-MDP is minimized. The middle plot in Figure 5.2 shows the actions
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Figure 5.2: Illustration of the expert states, the actions by the advisor policy, and the path
taken by the learner policy in a grid-world environment.

(marked with red arrows) that an optimal deterministic advisor may take. The advisor is

trained only on the expert states to optimize for the next state; it is not trained for long-term

behavior and thus struggles with decision-making on the non-expert states. At the state s3,

the green states are the favorable states (minimum distance to s4), while the red states are

the unfavorable states (maximum distance to s4). In the l-MDP, the dataset {si, πa(si)} is

then used to train a learner that runs in a closed feedback loop with the environment.

The learner is trained to match its stationary discounted state-action distribution with that

of the generated dataset {si, πa(si)} in the l-MDP. With the visitation distribution matching,

the learner reproduces the demonstrated action at the demonstrated state, while also being

trained to navigate back to the manifold of the demonstrated states when it encounters

non-demonstrated states, thus enabling long-horizon imitation. The advisor, that is trained

to optimize just the immediate action at each expert state (similar in principle to behavior

cloning), is incapable of long-horizon imitation. The rightmost plot in Figure 5.2 shows the

trajectory that an optimal learner may produce.

5.3.5 Algorithm and Implementation

It is possible to use a two-stage training procedure for the overall algorithm—first, learn

the advisor in l-MDP with Equation 5.10, and then use it in the IL objective laid out in

Equation 5.6 to optimize for the reward network fω and the learner policy π. In the first stage

of advisor learning, although the RED network is trained offline, computing the gradients

for optimizing πa still requires environment interaction. More importantly, since the advisor
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is only trained on the expert states, the objective in Equation 5.10 requires the capability

to reset the environment to the expert states in the l-MDP.

To alleviate this problem, we propose to train the advisor (πa), the reward network (fω)

and the learner (π) jointly, in an iterative manner, and reuse the environment interaction data

generated with π for training πa as well, using the importance sampling trick. Specifically,

let β denote the parameters of πa. Then the gradient of the objective J (πa) is:

∇ = ∇β

(
Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)

[
rφRED(s, s′)

])
= Es∼ρe(s)Ea∼πa(a|s)

(
Es′∼pl(s′|s,a)[r

φ
RED(s, s′)].∇β log πa(a|s)

)
= Eρπ(s,a)

ρe(s)

ρπ(s)

πa(a|s)
π(a|s)︸ ︷︷ ︸

IS ratios

(
Es′∼pl(s′|s,a)[r

φ
RED(s, s′)].∇β log πa(a|s)

) (5.11)

where the second equation uses the score function estimator (Kleijnen & Rubinstein, 1996),

and the third employs two importance sampling ratios. Crucially, since the gradient is now

computed with state-action data from ρπ(s, a), we no longer require environment resets. Fur-

ther, we observe that approximating the inner expectation with a single sample is sufficient

for our tasks.

Estimation of the importance sampling factor. In Equation 5.11, the importance

sampling factor to be estimated is ρe(s)
ρπ(s)

πa(a|s)
π(a|s) , which is a product of two ratios. The second

ratio πa(a|s)
π(a|s) is easily computable since we have both the advisor policy (πa) and the learner

policy (π) as parameterized Gaussian distributions. The first ratio ρe(s)
ρπ(s)

can be approximated

by training a binary classifier to distinguish the states sampled from the distributions ρe(s)

and ρπ(s). Concretely, consider the objective:

D′ = arg max
D:S→(0,1)

Eρe(s)
[

logD(s)
]

+ Eρπ(s)

[
log(1−D(s))

]
(5.12)

Then, we can estimate the ratio of the state distributions as ρe(s)
ρπ(s)

≈ D′(s)
1−D′(s) .

We abbreviate our method as AILO, short for Advisor-augmented Imitation Learning from

Observations. Algorithm 5.1 provides an outline. We start with the offline pre-training of

the RED network using a dataset of expert state transitions collected in the e-MDP. Then,

we perform iterative optimization in the l-MDP where each iteration involves generating

trajectories with the current learner π, followed by gradient updates to the reward network

fω, and to the advisor and learner policies. Following Equation 5.6, the learner policy is
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Algorithm 5.1: AILO (Advisor-augmented Imitation Learning from Observations)

Input: A dataset of expert state transitions De = {se, s′e} collected in e-MDP

/* initialization and offline pre-training */

1 Initialize: advisor πa, learner π, reward network fω(s, a), RED network rφRED(s, s′)

2 Pre-train rφRED(s, s′) with De using the algorithm in Wang et al. (2019)

3 for iter in {1, . . . , N} do

/* data collection */

4 Roll out trajectories τ using π

5 Update reward network fω using τ , πa and De (Equation 5.6)

/* update learner */

6 Compute reward fω(s, a) for each transition in τ . Use τ to update π with
MaxEnt RL

/* update advisor */

7 Compute reward rφRED(s, s′) for each transition in τ . Use τ to update πa with
Equation 5.11

8 end

trained with a MaxEnt RL algorithm with per-timestep entropy-regularized reward given by

fω(st, at)− α log π(at|st), where α is the entropy coefficient. In our experiments, we use the

clipped-ratio PPO algorithm (Schulman et al., 2017) and adaptively tune α as suggested in

prior work (Haarnoja et al., 2018).

5.4 EXPERIMENTS

We evaluate the efficacy of AILO using continuous-control locomotion environments from

OpenAI Gym (Brockman et al., 2016), modeled using the MuJoCo physics simulator (Todorov

et al., 2012). We include a description of the tasks, the baselines, and the learning curves.

Environments. We consider five tasks - {Half-Cheetah, Walker, Hopper, Ant, Humanoid}.
To create a discrepancy between the expert and the learner transition dynamics, we modify

one physical property in the learner environment from the set - {density, gravity, joint-

friction}. Specifically, for a task T from the task-set, we denote:

• T (heavy) � learner agent has 2× the mass of the expert agent

• T (light) � gravity in the learner’s environment is half the value in the expert’s
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• T (drag) � friction coefficient for all the joints in the learner is 2× the value in the expert

Baselines. We contrast AILO with two baselines – a.) GAIfO strives to minimize the JS

divergence between the state-transition distributions and is briefly described in §5.2.1; b.)

VAIL (Peng et al., 2018) applies the concept of variational information bottleneck (Alemi

et al., 2016) to the GAIL discriminator for improved regularization and has been successfully

used for ILO with motion-capture data. To limit the effect of confounding factors during

comparison, we share modules across AILO and the two baselines to the best of our ability.

Concretely, all discriminator/reward networks use the same architecture and the gradient-

penalty regularization (Mescheder et al., 2018) and thus exhibit the same reward biases.

Furthermore, the MaxEnt-RL PPO module is the same for all algorithms.

Performance. Figures 5.3a–5.3c plot the learning curves for all the algorithms across the

different tasks (heavy, drag, light). We show the average episodic returns achieved by the

learner in the l-MDP, normalized to the returns achieved by the expert in e-MDP. The plots

include the mean and the standard deviation of returns over 6 runs with random seeds.

We observe that AILO provides a noticeable improvement in learning efficiency in several

situations, such as Half-Cheetah (heavy, drag, light), Walker (heavy), Hopper (heavy), Ant

(drag), Humanoid (drag, light); while being comparable to the best baseline in other cases.

For GAIfO, we find that it does not learn any useful skill for Walker (heavy) and exhibits

training instability for Half-Cheetah (heavy, drag). We attribute this to the difficulty of

matching the state-transition distributions across different dynamics. VAIL, which matches

state distributions, instead of state-transition distributions, is a stronger baseline and works

well in several cases. Lastly, we highlight a few failure modes of AILO – in Ant (light) and

Humanoid (heavy), we note that AILO (and baselines) do not make much progress towards

imitating the demonstrated behavior within our time budget, motivating the need for future

enhancements to enable efficient skill transfer in these challenging setups.

Ablation on the degree of dynamics mismatch. For the empirical results in Fig-

ure 5.3, the variation in mass, gravity, or friction, between the e-MDP and the l-MDP was

kept at a constant factor. In Figure 5.4, we consider the Walker task and plot the sys-

tematic degradation in the performance of AILO and the baseline GAIfO, as the l-MDP

parameters drift further from the e-MDP parameters. We show the final average episodic

returns achieved by the learner in the l-MDP, normalized to the returns achieved by the

expert in e-MDP, as a function of the degree of dynamics mismatch. In the plots, the expert

parameters (mass, friction) are kept fixed and the learner parameters are varied such that

...
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(a) Performance on T (heavy) environments

(b) Performance on T (drag) environments

(c) Performance on T (light) environments

Figure 5.3: Learning curves for AILO and the baselines for different environments with
discrepancy in dynamics
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Figure 5.4: Results with different amount
of dynamics mismatch

AILO-advisor AILO-learner

HalfCheetah

(H) 0.19 0.57

(D) 0.27 0.82

(L) 0.18 0.63

Walker

(H) 0.07 0.50

(D) 0.14 0.78

(L) 0.17 0.81

Hopper

(H) 0.53 0.67

(D) 0.48 0.77

(L) 0.66 0.84

Table 5.2: Normalized average episodic
returns achieved by the advisor and the
learner in the l-MDP.

the ratio increases from a starting value of 1 (no mismatch). We observe that although

imitation naturally becomes more challenging as the dynamics become more different, the

degradation with AILO is more graceful compared to GAIfO.

5.4.1 Comparing the Advisor and the Learner Performance

In Table 5.2, we report the average episodic returns achieved by the advisor and the learner

in the l-MDP at the end of the training, normalized to the returns achieved by the expert

in e-MDP. We show data for three environments and all the types of transition dynamics

mismatch considered in the work – Heavy (H), Drag (D), Light (L). We note that the learner

outperforms the advisor by a substantial margin for all the scenarios. This is because, unlike

the learner, the advisor is not optimized for long-horizon performance.

5.5 RELATED WORK AND CONCLUSION

There is a vast amount of literature on IL since it is a powerful framework to train agents

to perform complex behaviors without a reward specification. ILO, where no expert action

labels are available, presents several benefits as well as some unique challenges, and thus,

has garnered significant attention from the community in recent times (Torabi et al., 2018,;

Liu et al., 2018; Edwards et al., 2019; Sun et al., 2019; Yang et al., 2019; Zhu et al., 2021).

ILO methods adapted from GAIL have been proposed for one-shot imitation of diverse

behaviors (Wang et al., 2017), training policies to generate human-like movement patterns

using motion-capture data (Peng et al., 2018; Merel et al., 2017), and for locomotion control
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from raw visual data (Torabi et al., 2018). Arumugam et al. (2020) introduce a framework

that casts adversarial ILO as f -divergence minimization and provide insights on the design

decisions that impact performance.

Several approaches have been proposed to handle the differences between the expert and

the learner environments in terms of viewpoints, visual appearances, presence of distractors,

and morphology changes (Stadie et al., 2017; Gupta et al., 2017; Liu et al., 2018; Sermanet

et al., 2018). They typically proceed by learning a domain-invariant representation and

matching features in that space. Learning such a representation is not required in our setup

since the state-space is shared between the l-MDP and the e-MDP. Methods for robustness

to shifts in the action-space and the dynamics model have also been researched. Zolna

et al. (2019) propose to match state-pair distributions of the expert and the learner, where

the states in a pair are sampled with random time gaps, rather than being consecutive. Liu

et al. (2019) learn an inverse action model to predict deterministic actions in the l-MDP that

could generate expert-like state transitions and use it to regularize policy updates. Gangwani

& Peng (2020) filter the trajectories generated in l-MDP based on their similarity to the

states in the expert dataset and perform (self-) imitation on these. The key methodological

difference between these methods and our work is that we learn an intermediary stochastic

policy (advisor) in the l-MDP by bringing its state-conditional next-state distribution closer

to that of the expert, and propose an instantiation of this idea using an approximation based

on support estimation.

5.5.1 Conclusion

In this work, we present AILO, our algorithm for imitation learning from observations

under transition model disparity between the expert and the learner environments. Rather

than directly matching the state-transition distributions across environments, we train an

intermediary policy (advisor) in the learner environment and use it as a surrogate expert for

the learner. Towards learning an advisor that acts as an effective surrogate, we propose to

minimize the cross-entropy distance between the state-conditional next-state distributions

of the advisor and the expert. To realize this idea into a scalable ILO algorithm, we leverage

prior work on support estimation (RED). Our experiments on five MuJoCo locomotion tasks

with different types of dynamics discrepancies show that AILO compares favorably to the

baseline ILO methods in many cases.
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CHAPTER 6: LEARNING AGENTS WITH QUALITY AND DIVERSITY

6.1 INTRODUCTION

The goal in Reinforcement Learning (RL) is to learn agents that maximize long-term en-

vironmental rewards. Deep RL, which uses deep neural networks as function approximators

for the policy and value-functions, has achieved outstanding results on a wide variety of

sequential decision making problems, with the barometer of success usually being the to-

tal returns accumulated by the final policy. Due to the intrinsic nature of direct reward

maximization, seldom is the focus on how the behavioral characteristics of the trained agent

compare with the other possible behaviors in the solution space. For instance, consider the

robotic manipulator arm in Figure 6.1a and the peg-insertion task. Though the task descrip-

tion is simple, for a sufficiently flexible arm, there are numerous ways (positions of the joints

and the end-effector) to insert the peg in the hole (Figure 6.1b). For reasons argued below,

it is beneficial to learn these varied behaviors rather than aiming for the single most efficient

solution dictated by the reward function. Quality-Diversity (QD) algorithms (Pugh et al.,

2016; Cully & Demiris, 2017) are prominent in the Neuroevolution literature as a means to

generate many diverse behavioral niches, while ensuring that each niche is populated with

individuals of the highest possible quality for that niche. When applied to RL, QD offers a

principled approach for learning policies that are diverse, yet achieve high returns (Mouret

& Clune, 2015; Conti et al., 2017).

Prior works have examined the benefits of uncovering diversity in how the task can be

solved (Hong et al., 2018; Eysenbach et al., 2018; Liu et al., 2017). In these, an explicit

diversity-maximization objective is incorporated into the RL algorithm to facilitate the

learning of diverse skills. There are several important benefits of training a population

of agents with diverse skills. Firstly, this is an efficient exploration strategy in sparse-reward

environments as the agents can collectively achieve much wider coverage of the state-space,

while reducing the susceptibility of RL to local optimal solutions caused by deceptive re-

wards (Conti et al., 2017; Gangwani et al., 2018). Secondly, the acquired skills could be

leveraged for accelerated learning in downstream tasks, for example, by composing the skills

to solve long-horizon tasks via hierarchical RL (Florensa et al., 2017; Eysenbach et al., 2018).

Diversity also helps in the transfer learning of RL policies across environments that may have

discrepancies such as system dynamics mismatch. Having a repertoire of skills is useful when

knowledege transfer is done to a target environment that has constraints on the set of feasible

behaviors (Cully et al., 2015).
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A policy π is characterized by its occupancy measure ρπ (Puterman, 1994), which is the

stationary distribution over the state-action pairs that π encounters when navigating the

environment. Given two policies π, β, the ratio of their stationary distributions ζ = ρπ/ρβ

is a well-studied quantity in RL. Estimates of the distribution ratio are useful for off-policy

evaluation (Precup, 2000; Thomas & Brunskill, 2016) (where the goal is to evaluate the per-

formance of π using fixed data generated from β), policy optimization (Sutton et al., 2016;

Liu et al., 2019) and off-policy imitation learning (Kostrikov et al., 2019). In this work, we

examine the use of distribution ratio estimators for learning a diverse policy ensemble with

high returns (a QD ensemble). We build on the approach introduced by Liu et al. (2017). Us-

ing Stein variational gradient descent (SVGD) (Liu & Wang, 2016) as the inference method,

the authors construct an update rule that includes the policy-gradient on the environmental

rewards (for high quality) and a kernel-induced repulsive force gradient (for high diversity).

This kernel-based algorithm is naturally impacted by the choice of the kernel. We begin

with generalizing the Stein variational policy gradient (SVPG) objective (Liu et al., 2017)

by using as kernels the negative exponents of an f -divergence between the stationary dis-

tributions of two policies, and discuss key properties such as positive-definiteness of kernels.

For kernels based on the Jenson-Shannon and Symmetric Kullback-Leibler divergences, we

show how the complete SVPG gradient can be recast in terms of the ratio of the stationary

distributions (ζ) between policies. Then, to estimate these ratios, and hence the SVPG gra-

dient, we study three recently proposed distribution ratio estimators for off-policy evaluation

and imitation learning. These are DualDICE (Nachum et al., 2019), ValueDICE (Kostrikov

et al., 2019) and GenDICE (Zhang et al., 2020). Additionally, we describe a fourth estimator

based on Noise-Constrastive Estimation (Gutmann & Hyvärinen, 2010).

We perform experiments on various tasks to get a measure of the effectiveness of our

proposed approach in generating diverse behaviors with high returns. We also evaluate

on tasks with deceptive rewards and those which lack an external reward signal to further

illuminate the benefits of QD.

6.2 VARIATIONAL INFERENCE FOR THE QD OBJECTIVE

6.2.1 Notations

The environment is modeled as an infinite-horizon, discrete-time Markov Decision Process

(MDP), represented by the tuple (S, A, µ0, r, p, γ), where S is the state-space, A is the

action-space, γ ∈ [0, 1) is the discount factor, and µ0 denotes the initial state distribution.

Given an action at sampled from a stochastic policy πθ(at|st), the next state is sampled from
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(a) (b)

Figure 6.1: (a) MuJoCo model of a 7 DOF arm based on the Sawyer robot, inspired by Chen
et al. (2018); (b) Policies that achieve the peg-insertion task in different ways. These policies
are sampled from a single ensemble trained with the algorithm QD-DualDICE-JS (explained
in Section 6.4).

the transition dynamics distribution, st+1 ∼ p(st+1|st, at), and the agent receives a reward

r(st, at) determined by the reward function r : S×A → R. The RL objective is to maximize

the expected discounted sum of rewards, η(π) = (1− γ)Eµ0,p,π
[∑∞

t=0 γ
tr(st, at)

]
.

Distribution Ratio (ζ). The occupancy measure (Puterman, 1994), or the stationary

discounted state-action visitation distribution of the policy π is defined as ρπ(s, a) = (1 −
γ)π(a|s)

∑∞
t=0 γ

tP(st=s|π), where P(st=s|π) is the probability of being in state s at time

t, when starting in state s0 ∼ µ0 and using π thereafter. The stationary distribution 1

affords a convenient rewriting of the expected policy return as η(π) = Eρπ [r(s, a)], and

the gradient is provided by the policy gradient theorem (Sutton et al., 2000) as ∇θη(π) =

Eρπ
[
∇θ log πθ(a|s)Qπ(s, a)

]
, where Qπ is the state-action value function. For two policies πi

and πj, we denote the ratio of their stationary distributions by ζij(s, a) = ρπi(s, a)/ρπj(s, a).

This ratio is widely applicable for off-policy evaluation as it enables estimating the expected

returns of πi using a fixed dataset D of transitions generated from a different behavioral

policy πj, since η(πi) = E(s,a)∼D[ζij(s, a)r(s, a)], where D is an empirical estimate of ρπj .

6.2.2 Policy Search with SVGD

QD when applied to policy search entails learning multiple policies that all accumulate high

environmental rewards during an episode, but the agents accomplish this using diversified

strategies, such as navigating dissimilar regions of the state-action space. Formally, policy

1Throughout, stationary discounted distribution is shorthanded with stationary distribution for brevity
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Name of f -divergence Formula Df (P, Q) Generator f(u) with f(1) = 0
Is the kernel

e−Df (P,Q)/T PD?

Jenson-Shannon
∫
x
p(x)

2
log 2p(x)

p(x)+q(x)
+ q(x)

2
log 2q(x)

p(x)+q(x)
dx u

2
log u− (1+u)

2
log 1+u

2
Yes

Triangular Discrimination
∫
x

(p(x)−q(x))2

p(x)+q(x)
dx (u−1)2

u+1
Yes

Squared Hellinger
∫
x
(
√
p(x)−

√
q(x))2dx (

√
u− 1)2 Yes

Total Variation 1
2

∫
x
|p(x)− q(x)|dx 1

2
|u− 1| Yes

Kullback-Leibler
∫
x
p(x) log p(x)

q(x)
dx − log u No

Reverse Kullback-Leibler
∫
x
q(x) log q(x)

p(x)
dx u log u No

Symmetric Kullback-Leibler
∫
x
p(x) log p(x)

q(x)
+ q(x) log q(x)

p(x)
dx (u− 1) log u No

Table 6.1: f -divergences and positive-definiteness of the negative exponential kernels.

search with QD could be defined as learning a distribution over the policy parameters (θ)

that maximizes the RL-objective in expectation, while maintaining a high-entropy (H) in

the parameter-space:

max
q

Eθ∼q[η(θ)] +H(q) ; H(q) = Eθ∼q[− log q(θ)] (6.1)

Solving the objective in Equation 6.1 analytically yields the following energy-based optimal

parameter distribution: q∗(θ) = exp(η(θ))/Zq∗ , where Zq∗ is the normalization constant. Let

p(θ) define a trainable distribution over the policy parameters that we seek to optimize to

be close (w.r.t. the KL-divergence) to the target distribution q∗. Representing p(θ) with a

mixture of delta distributions, the variational objective is:

min
p
DKL

[
p || exp(η(θ))/Zq∗

]
; p(θ) =

1

n

n∑
i=1

δ(θ = θi) (6.2)

Here {θi}n1 denotes a policy ensemble with n discrete policies that constitute the p distribu-

tion. Stein variational gradient descent (SVGD; Liu & Wang (2016)) provides an efficient

solution to obtain an approximate gradient on the p distribution. Suppose we perturb each

policy θi with ∆θi such that the induced KL between p and q is reduced. The optimal

perturbation direction, in the unit ball of a reproducing kernel Hilbert space associated with

a kernel function k, that maximally decreases the KL is given by (Liu & Wang, 2016):

∆θ = Eθ′∼p
[
∇θ′ log q∗(θ′)k(θ′, θ) +∇θ′k(θ′, θ)

]
(6.3)

Using this result and the energy-based form of the target distribution q∗, SVPG (Liu et al.,

2017) iteratively updates the policies with the following rule to learn a policy ensemble with
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QD behavior:

θi ← θi + ε∆θi, ∆θi =
1

n

n∑
j=1

[
∇θjη(πθj)k(θj, θi)︸ ︷︷ ︸

Quality-enforcing

+ ∇θjk(θj, θi)︸ ︷︷ ︸
Diversity-enforcing

]
(6.4)

6.2.3 Negative Exponents of f -divergences as Kernels

The positive definite (PD) kernel function k in Equation 6.4 is an algorithmic design choice.

There are two considerations. It should be possible to efficiently compute k(θj, θi) for any

two policies (πθj , πθi) as well as its gradient w.r.t. the policy parameters; and the function

should be sufficiently expressive to capture the complex interactions between policy behav-

iors. Liu et al. (2017) employ a Gaussian RBF kernel k(θj, θi) = exp(−‖θj − θi‖2
2/h), with a

dynamically adapted bandwidth h. Gangwani et al. (2018) suggest replacing the Euclidean

distance in the parameter space with a statistical distance in the stationary distribution

space, and use k(θj, θi) = exp(−DJS(ρπθj , ρπθi )/T ), where DJS is the Jenson-Shannon diver-

gence and T is the temperature. DJS is a member of a broader class of divergences known

as Ali-Silvey distances or f -divergences (Ali & Silvey, 1966). Given two distributions with

continuous densities p(x) and q(x) over the support X , the f -divergence between them is

defined as:

Df (p || q) =

∫
X
q(x)f(

p(x)

q(x)
)dx (6.5)

where f : R+ → R is a convex, lower-semicontinuous function such that f(1) = 0. Different

choices for the function f recover the well-known divergences. Although generalizing the

kernel function as kf (θj, θi) = exp(−Df (ρπθj , ρπθi )/T ) may seem like a natural extension,

for some f -divergences, kf (θj, θi) is not PD, and hence not a proper kernel from a theoretical

standpoint. For instance, while kJS is PD, kernels with other divergences commonly used

for policy learning (KL, Reverse-KL) are not. Table 6.1 provides details on the various

divergences that define PD and non-PD kernels after negative exponentiation. The first four

divergences in Table 6.1 are squared metrics (i.e.
√
Df is a true metric) and the proof of

positive-definiteness of the corresponding kernels kf is provided in Hein & Bousquet (2004).

Inserting kf (θj, θi) in Equation 6.4, the SVPG gradient becomes:

∆θi =
1

n

n∑
j=1

exp(−Df (ρπθj , ρπθi )︸ ︷︷ ︸
Divergence value

/T )
[
∇θjη(πθj)︸ ︷︷ ︸

Policy gradient

− 1

T
∇θjDf (ρπθj , ρπθi )︸ ︷︷ ︸

Divergence gradient

]
(6.6)

This provides a general framework to evaluate the SVPG gradient for learning a QD
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policy ensemble. Depending on the f -divergence and the method for estimating its value

and gradient, several approaches are possible, a few of which we will discuss. We use the

shorthand notation ρi for the stationary distribution of the policy πθi . Then ζij(s, a) =

ρi(s, a)/ρj(s, a) is the distribution ratio for two given policies, and would be the pivotal

quantity in the exposition that follows. Next, we rewrite two kernels (and their gradient

w.r.t. the policy parameters) in terms of ζ, before elucidating several methods to estimate

ζ for use in a practical RL algorithm to generate a QD policy ensemble.

The kJS and kKLS kernels. While kJS is a PD kernel, kKLS is not since
√
DKLS is not

a metric as it does not satisfy the triangle inequality. Although positive-definiteness is

desirable, non-PD kernels may yet achieve good performance in practice, as shown in Moreno

et al. (2004), where SVM classification with a non-PD kernel leads to better accuracy than

provably PD kernels. Both kJS and kKLS afford the benefit that the divergence value and

gradient (in Equation 6.6) can be evaluated in terms of the distribution ratio ζij. Using the

definitions from Table 6.1, we express DJS and DKLS as:

DJS(ρi, ρj) =
1

2
Eρi(s,a) log

ζij(s, a)

1 + ζij(s, a)
+

1

2
Eρj(s,a) log

1

1 + ζij(s, a)
+ log 2

DKLS(ρi, ρj) = Eρi(s,a) log ζij(s, a)− Eρj(s,a) log ζij(s, a)

(6.7)

The SVPG gradient involves the gradient of the f -divergence w.r.t. the policy parameters

(θ). For DJS and DKLS, the gradient can be written using ζ as follows:

∇θjDJS = ∇θjEρj −(1/2) log[1 + ζij(s, a)]︸ ︷︷ ︸
r(s,a)

; ∇θjDKLS = ∇θjEρj [−ζij(s, a)− log ζij(s, a)]︸ ︷︷ ︸
r(s,a)

(6.8)

In practice, we can estimate these gradients with the policy-gradient theorem (Sutton et al.,

2000), using the appropriate term as the reward function (noted as r(s, a) above). It is thus

evident that a reasonable estimation of the distribution ratio yields a good approximation

of the SVPG gradient (Equation 6.6), which could then be applied to the policy parameters

to learn a QD ensemble. We now discuss methods to estimate ζ efficiently from samples.

6.3 ESTIMATING DISTRIBUTION RATIOS

We start with Noise-Constrastive Estimation (NCE) (Gutmann & Hyvärinen, 2010) which

has found wide applicability in representation learning, natural language processing and

image synthesis, among others. We then examine three distribution ratio estimators –
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DualDICE (Nachum et al., 2019) and GenDICE (Zhang et al., 2020) were recently proposed

for behavior-agnostic off-policy evaluation, and ValueDICE (Kostrikov et al., 2019) enables

imitating expert trajectories without requiring additional policy rollouts in the environment.

NCE. It provides a method to learn an estimator ρ̃i(s, a;ω) for the stationary distribution

of any policy πi in the ensemble. NCE uses a noise distribution pN(s, a) and frames the

following binary classification objective:

max
ω

Eρi log
ρ̃i(s, a;ω)

ρ̃i(s, a;ω) + pN(s, a)
+ EpN log

pN(s, a)

ρ̃i(s, a;ω) + pN(s, a)
(6.9)

Gutmann & Hyvärinen (2010) show that under mild assumption on the noise distribution,

ρ̃i(·;ω) converges to the true density ρi in the limit of infinite amount of samples. They

further note that for practical efficiency, it is desirable to select a noise distribution that is

easy to sample from, and that is not too far from the true unknown data distribution ρi.

Consequently, for learning the estimator for policy i, we use a uniform mixture of stationary

distributions of the remaining (n− 1) policies in the ensemble as the constrastive noise, i.e.,

pN(s, a) = (1/(n− 1))
∑

j 6=i ρj(s, a). The distribution ratio for a pair of policies can then be

computed as ζij(s, a) = ρ̃i(s, a)/ρ̃j(s, a).

DualDICE. Nachum et al. (2019) propose a convex optimization problem that gives the

distribution ratio as its optimal solution:

ζij = arg min
x:S×A→R

1

2
E(s,a)∼ρj [x(s, a)2]− E(s,a)∼ρi [x(s, a)] (6.10)

The expression is then simplified with the following change-of-variables trick. Define a

variable ν(s, a) and the operator Bπiν(s, a) = γEs′∼p(·|s,a),a′∼πi(s′)[ν(s′, a′)]. Using x(s, a) =

ν(s, a) − Bπiν(s, a), the second expectation in Equation 6.10 telescopes and conveniently

reduces into an expectation over the initial states. The transformed objective is:

min
ν:S×A→R

1

2
E(s,a)∼ρj [(ν − Bπiν)(s, a)2]− (1− γ)E s0∼µ0

a0∼πi(s0)
[ν(s0, a0)] (6.11)

Given an optimal solution ν∗ for this equation, the distribution ratio is recovered with

ζij(s, a) = (ν∗−Bπiν∗)(s, a). Further, to alleviate the bias in the sample-based Monte-Carlo

estimate of the gradient, Nachum et al. (2019) suggest the use of Fenchel conjugates.

Fenchel duality provides that 1
2
x2 = maxg gx − 1

2
g2 for a scalar g ∈ R. Nachum et al.

(2019) rewrite the quadratic (first) term in the objective using this maximization and use
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the interchangeability principle (Shapiro et al., 2014) to replace the inner max over scalar g

to a max over functions g : S ×A → R. Given the definition of the Bπi operator, this yields

the min-max objective:

min
ν

max
g
J(ν, g) = E(s,a)∼ρj ,s′∼p(·|s,a)

a′∼πi(s′)

[(
ν(s, a)− γν(s′, a′)

)
g(s, a)− g(s, a)2

2

]
− (1− γ)E s0∼µ0

a0∼πi(s0)
[ν(s0, a0)]

(6.12)

The distribution ratio is obtained from the saddle-point solution (ν∗, g∗) using the following

equivalence, ζij(s, a) = g∗(s, a) = (ν∗ − Bπiν∗)(s, a).

ValueDICE. The Donsker-Varadhan representation (Donsker & Varadhan, 1983) of the

KL-divergence is given by:

DKL(ρi||ρj) = sup
x:S×A→R

E(s,a)∼ρi [x(s, a)]− logE(s,a)∼ρj [e
x(s,a)] (6.13)

In ValueDICE (Kostrikov et al., 2019), the authors use the fact that the optimality in the

above equation is achieved at x∗(s, a) = log ζij(s, a)+C, for some constant C ∈ R. Therefore,

a method to obtain ζij is to first solve for x∗ (written as a minimization):

x∗ = arg min
x:S×A→R

logE(s,a)∼ρj [e
x(s,a)]− E(s,a)∼ρi [x(s, a)] (6.14)

With the same change-of-variables trick from DualDICE, x(s, a) = ν(s, a) − Bπiν(s, a), the

second expectation over ρi(s, a) is transformed into an expectation over the initial states:

min
ν:S×A→R

logE(s,a)∼ρj [e
ν(s,a)−Bπiν(s,a)]− (1− γ)E s0∼µ0

a0∼πi(s0)
[ν(s0, a0)] (6.15)

Different from DualDICE, ValueDICE avoids the min-max saddle-point optimization by

eschewing the use of Fenchel conjugates to remove the bias in the sample-based gradient.

The log distribution ratio is calculated (up to a constant shift) from ν∗ as, log ζij(s, a) =

ν∗(s, a)− Bπiν∗(s, a).

GenDICE. It is known that the stationary distribution for a policy πi satisfies the fol-

lowing Bellman flow constraint:

ρi(s
′, a′) = (1− γ)µ0(s′)πi(a

′|s′) + γ

∫
πi(a

′|s′)p(s′|s, a)ρi(s, a)dsda; ∀(s′, a′) ∈ S ×A
(6.16)
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This could be re-written using the distribution ratio ζij as:

ρj(s
′, a′)ζij(s

′, a′) = (1− γ)µ0(s′)πi(a
′|s′) + γ

∫
πi(a

′|s′)p(s′|s, a)ζij(s, a)ρj(s, a)dsda︸ ︷︷ ︸
T(πi,ρj)◦ζij

(6.17)

Zhang et al. (2020) parameterize ζθ and suggest to estimate it by minimizing the f -divergence

between the distributions (with support on S×A) on the two sides of Equation 6.17, namely

ρj.ζθ and T(πi,ρj)◦ζθ, where the notation T(πi,ρj) denotes the distribution operator on the RHS

in Equation 6.17. The objective, which further includes a penalty regularizer on ζθ to prevent

degenerate solutions, is:

ζij = arg min
θ

Df

(
T(πi,ρj) ◦ ζθ || ρj.ζθ

)
+
λ

2
(Eρj [ζθ]− 1)2 (6.18)

Similar to DualDICE, Fenchel conjugates are used to obtain unbiased gradient estimates,

resulting in a min-max saddle-point optimization. Let g : S × A → R be a function. The

f -divergence could be substituted with its variational representation (Nguyen et al., 2010)

which involves the Fenchel conjugate (f ∗) of the f function in Df :

Df

(
T(πi,ρj) ◦ ζθ || ρj.ζθ

)
= max

g
ET(πi,ρj)◦ζθ [g(s, a)]− Eρj .ζθ [f

∗(g(s, a))] (6.19)

This expression can be simplified by using the definition of the T(πi,ρj) operator. Furthermore,

since Fenchel duality provides that 1
2
x2 = maxu ux− 1

2
u2, the quadratic penalty regularization

can also be written in form of a max over a scalar variable u ∈ R. This yields the min-max

objective:

min
θ

max
g,u

J(θ, g, u) = (1− γ)Eµ0(s)πi(a|s)[g(s, a)] + γE(s,a)∼ρj ,s′∼p(·|s,a)
a′∼πi(s′)

[ζθ(s, a)g(s′, a′)]

− E(s,a)∼ρj [ζθ(s, a)f ∗(g(s, a))] + λ
(
Eρj [uζθ(s, a)− u]− u2

2

) (6.20)

For a practical instantiation, Zhang et al. (2020) suggest the χ2 divergence, which is an

f -divergence with f(x) = (x− 1)2 and f ∗(x) = x+ x2

4
.

Overall Algorithm. We summarize our complete approach for training a QD policy en-

semble in Algorithm 6.1. In each iteration, we sample transitions in the environment using

the policies in the ensemble and update the networks that facilitate estimation of the distri-
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Algorithm 6.1: Pseudo code for learning a QD ensemble

1 Initialize policy ensemble {πi}n1
2 Initialize networks to estimate ζij . Parameterization depends on the method (Section 6.3)

3 for each iteration do
4 Sample rollouts with πi ∀i
5 Update all ζij estimation networks . Objective depends on the method (Section 6.3)

6 Use ζij to compute the divergence value and divergence gradient . (DJS or DKLS)

7 Update each πi with the corresponding SVPG gradient . (Equation 6.6)

8 end

bution ratios ζij. The type of network(s) and the update rule is determined by the estimator

choice. To form the SVPG gradient (Equation 6.6), the current value of ζ is used to compute

the divergence value and the divergence gradient. The latter, as shown by Equation 6.8, is

equivalent to the policy gradient with a distinctive reward function. We use the clipped

PPO algorithm (Schulman et al., 2017) for the policy gradient, although other on-policy

and off-policy RL methods are also applicable.

6.4 EXPERIMENTS

In this section, we train policy ensembles in various environments with continuous state-

and action-space. We evaluate the different distribution ratio estimators and divergence

metrics from the previous section. For ease of exposition, the algorithms are abbreviated as

QD-{ratio-estimator}-{divergence}, hence QD-NCE-JS, for instance, is Algorithm 6.1

instantiated with exp(−DJS(ρj, ρi)/T ) as the kernel for SVPG, and NCE as the estimator for

ζ. Our goal is to gauge the effectiveness of our approach in producing diverse, high-quality

behaviors and suitably handling tasks with deceptive rewards. We also compare the NCE

and DICE-based estimators on a quantitative metric correlated with behavioral diversity.

Qualitative Assessment of QD Behavior. We visualize the diversity of the learned

skills in two environments – a robotic manipulator arm (Chen et al., 2018) and a 2D maze

goal navigation task. The robotic arm models a 7 DOF Sawyer robot and is implemented

in MuJoCo. For the peg-insertion task, we train a QD ensemble of 10 policies using the

exponential of the negative Euclidean distance between the peg and the hole as the per-step

reward for RL (the quality measure). Figure 6.1b shows some of the policies from a single

ensemble trained with QD-DualDICE-JS. We find that while all the policies insert the peg in

the hole, the final positions of the joints (marked with white rings) and the end-effector are
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(a) (b) Standard
RL

(c)
QD-NCE-JS

(d)
QD-NCE-KLS

(e) QD-
GenDICE-JS

(f) QD-
GenDICE-

KLS

Figure 6.2: 2D Maze navigation task along with trajectories (state-visitations) for several
methods.

(a) (b)

Figure 6.3: (a) Modified Half-Cheetah task that introduces multi-modality due to deceptive
rewards; (b) Contrasting performance of standard RL (no diversity) with QD method in
Algorithm 6.1.

markedly different. The resultant behaviors have dissimilar torque demands on the various

joints, which is advantageous in scenarios such as transfer learning to a robot with system

dynamics discrepancies. Figure 6.2a depicts a 2D navigation task with the start position

(green ball at center bottom) and the goal location (small grey circle in the center of the

maze). The per-step RL reward is the exponential of the negative Euclidean distance to the

goal. We train an ensemble of 10 policies and plot final trajectories from some of them (each

policy colored differently). Figure 6.2b shows results with the standard RL method, i.e,

no diversity enforcement; the trajectories achieve the best possible cumulative returns but

exhibit identical behavior. Figure 6.2c- 6.2f plots the paths for policies learned with the QD

algorithm (specific instantiation mentioned in the caption). Though the cumulative returns

now are lower than those with standard RL, the policies are noticeably more exploratory

and cover large portions of the state-space.

Multi-modal Locomotion with Deceptive Rewards. One of the crucial benefits of

learning a QD ensemble is that it potentially avoids the local optimum trap in the policy-

search landscape due to deceptive rewards – if one policy gets stuck, the explicit diversity

enforcement prevents other policies in the ensemble from the same fate. We evaluate this
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hypothesis with the Half-Cheetah locomotion task from OpenAI Gym (Brockman et al.,

2016). We modify the task such that the forward velocity reward is only given to the agent

once the center-of-mass of the bot is beyond a certain threshold distance (d). Concretely,

rt = velx(t)∗1(posx(t) >= d)−0.1∗‖at‖2
2, where the second term penalizes large actions and is

the default from Gym. Figure 6.3a is a rendering of the task. This change introduces multi-

modality for policy optimization with a locally optimal solution to stand still at the starting

location to avoid any action penalty. We compare the performance of the QD ensembles

with a baseline standard-RL ensemble. The standard-RL ensemble has the same size as

others but the constituent policies do not have any interactions; they apply independently

computed gradients. For all baseline and QD ensembles, we select the policy with the

highest cumulative returns after training and plot its learning curve in Figure 6.3b. We

observe that the baseline RL (no diversity) latches onto the deceptive reward of minimizing

the action penalty and gets stuck, achieving a cumulative return close to zero. In contrast,

the diversity enforcing mechanism in the QD* ensemble enables at-least one member to reach

the alternative mode where high forward velocity rewards are attained. This is evident in

the final score accumulated by the member selected from each ensemble.

Hist. Variance ↑
Method Walker-2d Hopper

QD-DD-JS 1.36 0.45
QD-VD-JS 1.33 0.50
QD-GD-JS 0.63 0.14

QD-NCE-JS 0.13 0.11
QD-DD-KLS 0.10 0.10
QD-VD-KLS 0.24 0.45
QD-GD-KLS 0.07 0.40

QD-NCE-KLS 0.14 0.28
Gangwani et al. (2018) 0.10 0.08

DIAYN (Eysenbach et al., 2018) 0.22 0.11

Table 6.2: Diversity metric (histogram variance) with different estimators. Higher is better.
Mnemonic: DD=DualDICE, VD=ValueDICE, GD=GenDICE

Quantitative Comparison of the Estimators. While the previous experiment exhibits

that the NCE and DICE-based estimators can provide adequate diversity impetus, it does not

provide insights about the comparative efficiency of the estimators in generating behavioral

diversity in the trained ensemble. This is because the forward velocity reward is a quality

metric, which is usually not aligned with the measure of diversity. For instance, an estimator

may produce a policy that makes the Half-Cheetah run backwards—this is much desired

from the diversity perspective but would perform badly on the quality metric that rewards

forward motion. To evaluate the efficacy of our estimators for producing diverse behaviors,
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and also for meaningful comparison with prior work (Eysenbach et al., 2018; Gangwani

et al., 2018), we define a diversity metric as follows. For two locomotion tasks from Gym

(Hopper and Walker-2d), we train policy ensembles without any environmental rewards.

Thus, the gradient from the quality-enforcing component in Equation 6.4 is absent and

the QD ensemble is trained only to maximize diversity. Post-training, we generate a few

trajectories with all the constituent policies and plot a histogram with the velocity of the

center-of-mass of the bot on the x-axis and the respective counts on the y-axis. We define

the diversity metric to be the variance of this histogram. Intuitively, higher variance in

the velocity of the bot is indicative of stronger behavioral diversity in the trained ensemble.

Table 6.2 evaluates the various estimator on this diversity metric. We note that DICE-based

estimators generally outperform NCE. Our intuition for this observation is that since NCE

is an on-policy estimator (in contrast with the DICE-based estimators, which are off-policy),

the availability of limited on-policy data in each iteration of Algorithm 6.1 has an impact

on the efficiency of NCE. Lastly, many of the QD* methods compare favorably to the prior

methods for learning diverse skills without environmental rewards (Eysenbach et al., 2018;

Gangwani et al., 2018).

Diversity helps in the absence of environmental rewards. Designing a task-relevant

reward function is typically laborious and error-prone. In the absence of an external reward

signal, the diversity objective alone has been previously demonstrated to lead to useful

skills (Eysenbach et al., 2018). We test the efficacy of our method in this setting using the

Hopper and Walker tasks from Gym (Figures 6.4a- 6.4b) but modify the code to return a

zero reward for each timestep. Thus, the gradient from the quality-enforcing component in

Equation 6.4 is absent and the QD ensemble is trained only to maximize diversity. After

training, we generate a few trajectories with the constituent policies and plot histograms with

the velocity of the center-of-mass of the bot on the x-axis and the respective counts on the

y-axis (Figures 6.4c- 6.4d). Both tasks are learned with QD-GenDICE-JS and each policy

is colored differently. We note that the hopping (respectively walking) behavior emerges

even in the absence of Gym rewards, suggesting that diversity is a strong signal for learning

interesting skills.

6.5 RELATED WORK AND CONCLUSION

Neuroevolution methods inspired by Quality-Diversity (Pugh et al., 2016) have been pro-

posed to efficiently manage the exploration-exploitation trade-off in RL. Conti et al. (2017)

augment evolution strategies (Salimans et al., 2017) such that the fitness of a particle is
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(a) (b) (c) (d)

Figure 6.4: (a)-(b) Rendering of the Hopper and Walker tasks, respectively; (c)-(d) Center-
of-mass velocity histograms for Hopper and Walker, respectively, when trained with QD-
GenDICE-JS. Arrows point to the emergence of locomotion in one of the policies from the
ensemble.

computed by a weighted combination of the performance and novelty components. The

novelty is determined based on a chosen behavior characterization (BC) metric. In MAP-

Elites (Mouret & Clune, 2015), the entire behavior space is divided into a discrete grid,

where each grid-dimension represents a BC. The algorithm then fills each grid cell with

the highest quality solution possible for that cell. Recent methods integrate RL gradients

with concepts from evolutionary computation (e.g. random mutations) to learn diverse ex-

ploratory agents (Khadka et al., 2019; Liu et al., 2019) or to discover coordination strategies

for multi-agent RL (Khadka et al., 2019).

Diversity Maximization in RL. To aid exploration in sparse-reward tasks, Hong et al.

(2018) encourage the current policy to be diverse compared to an archive of past policies,

by maximizing a distance metric in the action space. Expanding on this idea, Doan et al.

(2019) ensure sufficient diversity in a population by using operators for attraction and re-

pulsion between agents. Towards learning diverse skills even in the absence of an external

reward signal, maximization of the mutual information between the latent skill and the

state-visitation of the skill-conditioned policy has been proposed (Florensa et al., 2017; Ey-

senbach et al., 2018). This is achieved by training a neural network to estimate the latent

skill posterior, which provides proxy rewards for the policy. Zahavy et al. (2021) learn a

diverse ensemble by using an explicit reward signal estimated by minimizing the correlation

between the Successor-Features (Barreto et al., 2016) of the policies in the ensemble. Our

work aims to broaden the SVPG algorithm (Liu et al., 2017) for learning a QD policy en-

semble. We substitute the parameter-space RBF kernel used in their method with negative

exponents of f -divergences, and employ distribution ratio estimation techniques to approxi-

mate the ensuing gradient on the policy parameters. Gangwani et al. (2018) avail SVPG to
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improve self-imitation learning. Their procedure bears some resemblance to our NCE-based

ratio estimation, though, in contrast to them, we use a mixture of stationary distributions

as the contrastive noise.

6.5.1 Conclusion

In this work, we study methods to learn diverse and high-return policies. We extend the

kernel-based SVPG algorithm with kernels based on f -divergence between the stationary dis-

tributions of policies. For kernels based on DJS and DKLS, we show that the problem reduces

to that of efficient estimation of the ratio of the stationary distributions between policies.

To compute these ratios, and consequently the SVPG gradient, we harness noise-contrastive

estimation and several distribution ratio estimators widely used for off-policy evaluation

and imitation learning. Experimental evaluation with continuous state- and action-space

environments demonstrates that the approach is capable of generating diverse high-quality

skills, assists in multi-modal environments with deceptive rewards, and provides a construc-

tive learning signal when the external rewards are absent. Our algorithmic framework is

general enough to accommodate any distribution ratio estimator. Utilizing future research

on these estimators for improving the efficiency of QD training is an interesting direction,

along with investigating which other f -divergences or integral probability metrics (IPMs

such as the Wasserstein distance and the Maximum Mean Discrepancy) between stationary

distributions could be incorporated into the framework.
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CHAPTER 7: KNOWLEDGE TRANSFER UNDER STATE-ACTION
DIMENSION MISMATCH

7.1 INTRODUCTION

Deep reinforcement learning (RL), which combines the rigor of RL algorithms with the

flexibility of universal function approximators such as deep neural networks, has demon-

strated a plethora of success stories in recent times. These include computer and board

games (Mnih et al., 2015; Silver et al., 2016), continuous control (Lillicrap et al., 2015), and

robotics (Rajeswaran et al., 2017), to name a few. Crucially though, these methods have been

shown to be performant in the regime where an agent can accumulate vast amounts of expe-

rience in the environment, usually modeled with a simulator. For real-world environments

such as autonomous navigation and industrial processes, data generation is an expensive

(and sometimes risky) procedure. To make deep RL algorithms more sample-efficient, there

is great interest in designing techniques for knowledge transfer, which enables accelerating

agent learning by leveraging either existing trained policies (referred to as teachers), or us-

ing task demonstrations for imitation learning (Abbeel & Ng, 2004). One promising idea

for knowledge transfer in RL is policy distillation (Rusu et al., 2015; Parisotto et al., 2015;

Hinton et al., 2015), where information from the teacher policy network is transferred to a

student policy network to improve the learning process.

Prior work has incorporated policy distillation in a variety of settings (Czarnecki et al.,

2019). Some examples include the transfer of knowledge from simple to complex agents while

following a curriculum over agents (Czarnecki et al., 2018), learning a centralized policy that

captures shared behavior across tasks for multi-task RL (Teh et al., 2017), distilling informa-

tion from parent policies into a child policy for a genetically-inspired RL algorithm (Gang-

wani & Peng, 2017), and speeding-up large-scale population-based training using multiple

teachers (Schmitt et al., 2018). A common motif in these approaches is the use of Kullback-

Leibler (KL) divergence between the state-conditional action distributions of the teacher

and student networks, as the minimization objective for knowledge transfer. While simple

and intuitive, this restricts learning from teachers that have the same output (action) space

as the student, since KL divergence is only defined for distribution over a common space.

An alternative to knowledge sharing in the action-space is information transfer through the

embedding-space formed via the different layers of a deep neural network. (Liu et al., 2019)

provides an example of this; it utilizes learned lateral connections between intermediate lay-

ers of the teacher and student networks. Although the action-spaces can now be different,

the state-space is still required to be identical between the teacher and the student, since
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the same input observation is fed to both the networks (Liu et al., 2019).

In our work, we present a transfer learning approach to accelerate the training of the

student policy, by leveraging teacher policies trained in an environment with different state-

and action-space. Arguably, there is a huge potential for data-efficient student learning by

tapping into teachers trained on dissimilar, but related tasks. For instance, consider an

available teacher policy for locomotion of a quadruped robot, where the (97-dimensional)

state-space is the set of joint-angles and joint-velocities and the (10-dimensional) action-

space is the torques to the joints. If we wish to learn locomotion for a hexapod robot (state-

dimension 139, action-dimension 16), we conjecture that the learning could be kick-started

by harnessing the information stored in the trained neural network for the quadruped, since

both the tasks are locomotion for legged robots and therefore share an inherent structure.

However, the dissimilar state- and action-space preclude the use of the knowledge transfer

mechanisms proposed in prior work.

Our approach deals with the mismatch in the state- and action-space of the teacher and

student in the following manner. To handle disparate actions, rather than using divergence

minimization in the action-space, we transfer knowledge by augmenting representations in

the layers of the student network with representations from the layers of the teacher network.

This is similar to the knowledge flow in (Liu et al., 2019) using lateral connections, but with

the important difference that we do not employ learnable matrices to transform the teacher

representation. The mismatch in the observation- or state-space has not been considered in

prior literature, to the best of our knowledge. We manage this by learning an embedding

space which can be used to extract the necessary information from the available teacher

policy network. These embeddings are trained to adhere to two properties. Firstly, they must

be task-aligned. Our RL objective is the maximization of cumulative discounted rewards

in the student environment, and therefore, the embeddings must be aligned to serve that

goal. Secondly, we would like the embeddings to be correlated with the states encountered

by the student policy. The embeddings are used to deterministically draw out knowledge

from the teacher network. Therefore, a high correlation ensures that the most suitable

teacher guidance is derived for each student state. We achieve this by maximizing the

mutual information between the embeddings and student states. We evaluate our method

on a set of challenging robotic locomotion tasks modeled using the MuJoCo simulator. We

demonstrate the successful transfer of knowledge from trained teachers to students, in the

scenario of mismatched state- and action-space. This leads to appreciable gains in sample-

efficiency, compared to RL from scratch using only the environmental rewards.
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7.1.1 Background and Notations

We consider the RL setting where the environment is modeled as an infinite-horizon

discrete-time Markov Decision Process (MDP). The MDP is characterized by the tuple

(S, A, R, T , γ, p0), where S and A are the continuous state- and action-space, respec-

tively, γ ∈ [0, 1) is the discount factor, and p0 is the initial state distribution. Given

an action at ∈ A, the next state is sampled from the transition dynamics distribution,

st+1 ∼ T (st+1|st, at), and the agent receives a scalar reward r(st, at) determined by the re-

ward function R. A policy πθ(at|st) defines the state-conditioned distribution over actions.

The RL objective is to learn the policy parameters (θ) to maximize the expected discounted

sum of rewards, η(πθ) = Ep0,T ,π
[∑∞

t=0 γ
tr(st, at)

]
.

Policy-gradient algorithms are widely used to estimate the gradient of the RL objective.

Proximal policy optimization (PPO, Schulman et al. (2017)) is a model-free policy-gradient

algorithm that serves as an efficient approximation to trust-region methods (Schulman et al.,

2015). In each iteration of PPO, the rollout policy (πθold) is used to collect sample trajectories

τ and the following surrogate loss is minimized over multiple epochs:

LθPPO = −Eτ
[
min

(
rt (θ) Ât, clip (rt (θ) , 1− ε, 1 + ε) Ât

) ]
(7.1)

where rt(θ) = πθ(at|st)
πθold (at|st) is the ratio of the action probabilities under the current policy and

rollout policy, and Ât is the estimated advantage. Variance in the policy-gradient estimates

is reduced by employing the state-value function as a control variate (Mnih et al., 2016). This

is usually modeled as a neural network Vψ and updated using temporal difference learning:

LψPPO = Eτ
[ (
Vψ (st)− V targ (st)

)2
]

(7.2)

where V targ (st) is the bootstrapped target value obtained with TD(λ). To further reduce

variance, Generalized Advantage Estimation (GAE, Schulman et al. (2015)) is used when

estimating advantage. The overall PPO minimization objective then is:

LPPO(θ, ψ) = LθPPO + LψPPO (7.3)

7.2 MUTUAL INFORMATION-BASED KNOWLEDGE TRANSFER

In this section, we outline our method for distilling knowledge from a pre-trained teacher

policy to a student policy, in the hope that such knowledge sharing improves the sample-

efficiency of the student learning process. Our problem setting is as follows. We assume
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that the teacher and the student policies operate in two different MDPs. All the MDP

properties (S, A, R, T , γ, p0) could be different, provided that some high-level structural

commonality exists between the MDPs, such as the example of transfer from a quadruped

robot to hexapod robot introduced in Section 7.1. Henceforth, for notational convenience,

we refer to the MDP of the teacher as the source MDP, and that of the student as the target

MDP. We assume the availability of a teacher policy network pre-trained in the source MDP.

Crucially though, we do not assume access to the source MDP for any further exploration,

or for obtaining demonstration trajectories that could be used for training in the target

MDP using cross-domain imitation-learning techniques. We instead focus on extracting

representations from the teacher policy network which are useful for learning in the target

MDP.

In this work, we address knowledge transfer when Ssrc 6= Starg, where Ssrc and Starg denote

the state-space of the source and target MDPs, respectively. To handle the mismatch,

we introduce a learned embedding-space parameterized by an encoder function φ(·), and

defined as Semb := {φ(s) | s ∈ Starg}. Data points from this embedding space are used to

extract useful information from the teacher policy network. Therefore, we further enforce

that the dimension of the embedding space matches the dimension of the state-space in the

source MDP, i.e., |Semb| = |Ssrc|. Note that this does not necessitate that any embedding

vector s ∈ Semb be a feasible input state in the source MDP. To learn the encoder function

φ(·), we consider the following two desiderata. Firstly, the embeddings must be learned to

facilitate our objective of maximizing the cumulative discount rewards in the target MDP.

In subsection 7.2.1, we show how to achieve this by utilizing the policy gradient to update

embedding parameters. Secondly, we wish for a high correlation between the input states

of the target MDP and the embedding vectors produced from them. The embeddings are

used to deterministically derive representations from the teacher network, and hence a high

correlation helps to obtain the most appropriate teacher guidance for each of the states

encountered by the target policy. To this end, we propose a mutual information maximization

objective; this is detailed in subsection 7.2.2.

7.2.1 Task-aligned Embedding Space

This section describes our approach for training the encoder parameters (φ) such that

the generated embeddings are aligned with the RL objective. We begin by detailing the

architecture that we use for transfer of knowledge from a teacher, pre-trained in source

MDP, to a student policy in the target MDP with different state- and action-space. Inspired

by the concept of knowledge-flow used in (Liu et al., 2019), we employ lateral connections
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between the student and teacher networks, which augment the representations in the layers

of the student with useful representations from the layers of the teacher. A crucial benefit

of this approach is that since information sharing happens through the hidden layers, the

output (action) space of the source and target MDPs can be disparate, as is the scenario

in our experiments. It is also quite straightforward to include multiple teachers in this

architecture to distill diverse knowledge into a student; we leave this to future work.

We draw out knowledge from both the teacher policy and state-value networks. We denote

the teacher policy and value network with πθ′ and Vψ′ , respectively, where the parameters

(θ′, ψ′) are held fixed throughout the training. Analogously, (θ, ψ) are the trainable param-

eters for the student policy and value networks. Let Nπ denote the number of hidden layers

in the teacher (and student) policy network, and NV be the number of hidden layers in the

teacher (and student) value network. In general, the teacher and student networks could

have a different number of layers, but we assume them to be the same for ease of exposition.

In the target MDP, the student policy observes a state starg ∈ Starg, which is fed to the

encoder to produce the embedding φ(starg) ∈ Semb. Since |Semb| = |Ssrc|, this embedding can

be readily passed through the teacher networks to extract {zjθ′ , 1 ≤ j ≤ Nπ}, representing the

pre-activation outputs of the Nπ hidden layers of the teacher policy network, and {zjψ′ , 1 ≤
j ≤ NV }, representing the pre-activation outputs of the NV hidden layers of the teacher value

function network. To obtain the pre-activation representations in the student networks, we

feed in the state starg and perform a weighted linear combination of the appropriate outputs

with the corresponding pre-activations from the teacher networks. Concretely, to obtain the

hidden layer outputs hjπθ and hjVψ at layer j in the student networks, we have the following:

hjπθ = σ
(
pjθz

j
θ + (1− pjθ)z

j

θ′

)
hjVψ = σ

(
pjψz

j
ψ + (1− pjψ)zj

ψ′

)
(7.4)

where σ is the activation function, and pjθ, p
j
ψ ∈ [0, 1] are layer-specific learnable parameters

denoting the mixing weights. In the target MDP, the student network is optimized for the

RL objective LPPO(θ, ψ), mentioned in Equation 7.3. The outputs of the student policy

and value networks, and hence LPPO, depend on the encoder parameters (φ) through the

representation sharing (Equation 7.4) enabled by the lateral connections stemming from the

pre-trained teacher network. Therefore, an intuitive objective for shaping the embeddings

such that they become task-aligned is to optimize them using the original RL loss gradient:

φ← φ− α∇φLPPO(θ, ψ, φ, θ′, ψ′). Note that LPPO(·) now also depends on the fixed teacher

parameters (θ′, ψ′).

The learnable mixing weights pjθ, p
j
ψ ∈ [0, 1] control the influence of the teacher’s repre-

sentation on the student outputs – higher the value, lesser the impact. We argue that a
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low value for these coefficients helps in the early phases of the training process by providing

necessary information to kick-start learning. At the end of the training, however, we desire

that the student becomes completely independent of the teacher, since this helps in faster

test-time deployment of the agent. To encourage this, we introduce additional coupling-loss

terms that drive pjθ, p
j
ψ towards 1 as the training progresses:

Lcoupling = − 1

Nπ

Nπ∑
j=1

log
(
pjθ
)
− 1

NV

NV∑
j=1

log
(
pjψ
)

(7.5)

Experimentally, we observe that although the student becomes independent in the final

stages of training, it is able to achieve the same level of performance that it would if it could

still rely on the teacher.

7.2.2 Enriched Embeddings with Mutual Information Maximization

As outlined in the previous section, at each timestep of the discrete-time target MDP, the

representation distilled from the teacher networks is a fixed function f of the embedding

vector generated from the current input state: f(θ′, ψ′, φ(starg)), where (θ′, ψ′) are fixed. It

is desirable to have a high degree of correlation between starg and f(θ′, ψ′, φ(starg)) because,

intuitively, the teacher representation that is the most useful for the student should be

different at different input states. To aid with this, we utilize a surrogate objective that

instead maximizes the correlation between starg and the embeddings φ(starg), defined using

the principle of mutual information (MI). If we view starg as a stochastic input s, the encoder

output is then also a random variable e, and the mutual information between the two is

defined as:

I(s; e) = H(s)−H(s|e) (7.6)

where H denotes the differential entropy. Direct maximizing of the MI is intractable due to

the unknown conditional densities. However, it is possible to obtain a lower bound to the MI

using a variational distribution qω(s|e) that approximates the true conditional distribution

p(s|e) as follows:

I(s; e) = H(s)−H(s|e)

= H(s) + Es,e[log p(s|e)]

= H(s) + Es,e[log qω(s|e)] + Ee
[
DKL(p(s|e)||qω(s|e))

]
≥ H(s) + Es,e[log qω(s|e)]

(7.7)
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Figure 7.1: Schematic diagram of our complete architecture (best viewed in color). The en-
coder parameters φ (blue) receive gradients from three sources: the policy-gradient loss LθPPO,
the value function loss LψPPO, and the mutual information loss LMI. The teacher networks
(yellow) remain fixed throughout training and do not receive any gradients. In the student
networks (green), the pre-activation representations are linearly combined (using learnt mix-
ing weights) with the corresponding representations from the teacher (Equation 7.4). This
knowledge-flow occurs at all layers, although we show it only once for clarity of exposition.

where the last inequality is due to the non-negativity of the KL divergence. This is known as

the variational information maximization algorithm (Agakov & Barber, 2004). Re-writing

in terms of target-MDP states and the encoder parameters, the surrogate objective jointly

optimizes over the variational and encoder parameters:

max
ω,φ

Estarg [log qω(starg|φ(starg))] (7.8)

where H(s) is omitted since it is a constant w.r.t. the concerned parameters. In terms of

the loss function to minimize, we can succinctly write:

LMI(φ, ω) = −Es∼ρπθ [log qω(s|φ(s))] (7.9)

where ρπθ is the state-visitation distribution of the student policy in the target MDP. In our

experiments, we use a multivariate Gaussian distribution (with a learned diagonal covariance

matrix) to model the variational distribution qω. Although this simple model yields good
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Algorithm 7.1: Mutual Information based Knowledge Transfer (MIKT)

Input : θ′, ψ′ fixed teacher policy and value networks
θ, ψ: student policy and value networks
{p}: set of coupling parameters for policy and value networks
φ: encoder parameters
ω: variational distribution parameters

for each iteration do
1 Run πθ in target MDP and collect few trajectories τ

2 for each minibatch m ∈ τ do
3 Update θ, ψ with ∇θ,ψLPPO(θ, ψ, φ, θ′, ψ′)

4 Update φ with ∇φ

[
LMI(φ, ω) + LPPO(θ, ψ, φ, θ′, ψ′)

]
5 Update ω with ∇ωLMI(φ, ω)
6 Update {p} using [Lcoupling + LPPO]

7 end

8 end

performance, more expressive model classes, such as mixture density networks and flow-

based models (Rezende & Mohamed, 2015) could be readily incorporated as well, to learn

complex and multi-modal distributions.

7.2.3 Algorithm and Architecture

Figure 7.1 shows the schematic diagram of our complete architecture and gradient flows,

along with a description of the implemented neural networks. We refer to our algorithm

as MIKT, for Mutual Information based Knowledge Transfer. Algorithm 7.1 outlines the

main steps of the training procedure. In each iteration, we run the policy in the target

MDP and collect a batch of trajectories. This experience is then used to compute the RL

loss (Equation 7.3) and the mutual information loss (Equation 7.9), enabling the calculation

of gradients for the different parameters (Lines 3–6). Using both the losses to update the

encoder (φ) helps us to satisfy the desiderata on the embeddings – that they should be

task-aligned and correlated with the states in the target MDP. The coupling parameters

{pj}, used for the weighted combination of the representations in the teacher and student

networks, are updated with the coupling-loss (Equation 7.5) along with the RL loss. In

each iteration of the algorithm, the PPO update ensures that the state-action visitation

distribution of the policy πθ is modified by only a small amount. This is because of the

clipping on the importance-sampling ratio when computing the PPO gradient. In addition

to this, we experimentally found that enforcing an explicit KL-regularization on the policy
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Figure 7.2: Our MuJoCo locomotion environments. From left to right: CentipedeFour, Cen-
tipedeSix, CentipedeEight, CpCentipedeSix, CpCentipedeEight, Ant. The centipede agents
are configured using the details in Wang et al. (2018), while the Ant task is from OpenAI
Gym. Cp denotes that the centipede is crippled (some legs disabled).

further stabilizes learning. Let πθ, πθold denote the current and the rollout policy, respectively.

The loss is then formalized as:

LKL(θ, θold) = Es∼ρπθold
[
DKL(πθ(·|s)||πθold(·|s))

]
(7.10)

7.3 EXPERIMENTS

In this section, we perform experiments to quantify the efficacy of our algorithm, MIKT,

for transfer learning in RL. We address the following questions: a) Can we do successful

knowledge transfer between a teacher and a student with different state- and action-space?

b) Are both the losses {LPPO, LMI} important for learning useful embeddings φ? c) How

does task-similarity affect the benefits that can be reaped from MIKT?

Environment State Dimension Action Dimension

CentipedeFour 97 10
CentipedeSix 139 16

CentipedeEight 181 22
CpCentipedeSix 139 12

CpCentipedeEight 181 18
Ant 111 8

Table 7.1: MuJoCo locomotion environments.

Environments. We evaluate using locomotion tasks for legged robots, modeled in OpenAI

Gym (Brockman et al., 2016) using the MuJoCo physics simulator. Specifically, we use the

environments provided by Wang et al. (2018), where the agent structure resembles that of

a centipede – it consists of repetitive torso bodies, each having two legs. Figure 7.2 shows

an illustration of the different centipede agents. The agent is rewarded for running fast in

a particular direction. Table 7.1 includes the state and action dimensions of all the agents.

Centipede-x refers to a centipede with x legs; we use x ∈ {4, 6, 8}. We use additional
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environments where the centipede is crippled (some legs disabled) and denote these by

CpCentipede-x. Finally, we include the standard Ant task from the MuJoCo suite. Note

that all robots have different state and action dimensions. Nevertheless, these locomotion

tasks share an inherent structure that could be exploited for transfer learning between the

centipedes of various types. We now demonstrate that MIKT achieves this successfully.

Baselines. We compare MIKT with two baselines: a) Vanilla Policy Gradient (VPG),

which learns the task in the target MDP from scratch using only the environmental rewards.

Any transfer learning algorithm which effectively leverages the available teacher networks

should be able to outperform this baseline that does not receive any prior knowledge it can

use. We use the standard PPO (Schulman et al., 2017) algorithm for this baseline. b) MLP

Pre-trained (MLPP) In our setting, the teacher and the student networks have dissimilar

input and output dimensions (because the MDPs have different state- and action-spaces).

A natural transfer learning strategy is to remove the input and output layers from the

pre-trained teacher and replace them with new learnable layers that match the dimensions

required of the student policy (analogously value) network. The middle stack of the deep

neural network is then fine-tuned with the RL loss. Prior work has shown that such a transfer

is effective in certain computer vision tasks.

7.3.1 Results

Figure 7.3 plots the learning curves for MIKT and our two baselines in different transfer

learning experiments. Each plot is titled “x to y”, where x is the source (teacher) MDP and

y is the target (student) MDP. We run each experiment with 5 different random seeds and

plot the average episodic returns (mean and standard deviation) on the y-axis, against the

number of timesteps of environment interaction (2 million total) on the x-axis. VPG does

not use utilize the pre-trained teachers. We observe that its performance improves with the

training iterations, albeit at a sluggish pace. MLPP uses the middle stack of the pre-trained

teacher network as an initialization and trains the input and output layers from scratch. It

only performs on par with VPG, potentially due to the non-constructive interaction between

the pre-trained and randomly initialized parameters of the student networks. This indicates

that the MLPP strategy is not productive for transfer learning across the RL locomotion

tasks considered. Finally, we note that our algorithm (MIKT) vastly outperforms the two

baselines, both achieving higher returns in earlier stages of training and reaching much higher

final performance. This proves that firstly, these tasks do have a structural commonality such

that a teacher policy trained in one task could be used advantageously to accelerate learning

in a different task; and secondly, that MIKT is a successful approach for achieving such a
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Figure 7.3: Performance of our transfer learning algorithm (MIKT) and the baselines (VPG and
MLPP) on the MuJoCo locomotion tasks. Each plot is titled “x to y”, where x is the source
(teacher) MDP and y is the target (student) MDP. (a) CentipedeFour to CentipedeEight, (b)
CentipedeSix to CentipedeEight, (c) CentipedeFour to CpCentipedeSix, (d) CentipedeSix to Cp-
CentipedeEight, (e) CentipedeFour to Ant, (f) CentipedeSix to Ant.

knowledge transfer. This works even when the teacher and student MDPs have different

state- and action-spaces, and is realized by learning embeddings that are task-aligned and

are optimized with a mutual information loss (Algorithm 7.1).

7.3.2 Ablation Studies

Are gradients from both {LPPO, LMI} to the encoder beneficial? To quantify this,

we experiment with two variants of our algorithm, each of which removes one of the compo-

nents: MIKT w/o MI, which does not update φ with the mutual information loss proposed

in Section 7.2.2, and MIKT w/o RL gradients, which omits using the policy-gradient and

the value function TD-error gradient for the encoder. Figure 7.4 plots the performance of

these variants and compares it to MIKT (which includes both the losses). We note that

MIKT w/o MI generally struggles to learn in the early stages of training; see for instance

Figure 7.4 (c), (d). MIKT w/o RL gradients does comparatively better early on in training,

but it is evident that MIKT is the most performant, both in terms of early training efficiency

and the average episodic returns of the final policy. This supports our design choice of using
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Figure 7.4: Ablation on the importance of each of {LPPO, LMI} for training the encoder φ. MIKT
(blue) is compared with two variants: MIKT w/o MI (LMI not used) and MIKT w/o RL gradients
(LPPO not used).

both {LPPO, LMI} to update the encoder φ.

How sensitive is MIKT to the task-similarity? It stands to reason that the benefits

of transfer learning depend on the task-similarity between the teacher and the student. To

better understand this in the context of MIKT, we consider learning in the CentipedeEight

environment using different types of teachers – CentipedeFour, CentipedeSix, and Hopper.

In Figure 7.5a, we note that the influence of the Centipede-{Four,Six} teachers is much more

significant than the Hopper teacher. This is likely because the motions of the centipedes

share strong similarity, while the Hopper (that is trained to hop) is a dissimilar task and

thus less useful for transfer learning. Figure 7.5b plots the value of the weight on the student

representation that is used for the weighted linear combination with the teacher (cf. §7.2.1).

With the Hopper teacher, quite early in the training, the student learns to trust its own

learned representations rather than incorporate knowledge from the dissimilar teacher.

7.4 RELATED WORK AND CONCLUSION

The concepts of knowledge transfer and information sharing between deep neural networks
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Figure 7.5: Training on CentipedeEight with different teachers. (a) Transfer from a dissimilar
teacher (Hopper) is less effective compared to using Centipede teachers. (b) Value of the weight on
the student representation in the weighed linear combination. With the Hopper teacher, the value
rises sharply in the early stages, indicating a low teacher contribution.

have been extensively researched for a wide variety of tasks in machine learning. In the

context of reinforcement learning, the popular paradigms for knowledge transfer include

imitation-learning, meta-RL, and policy distillation; each of these being applicable under

different settings and assumptions. Imitation learning algorithms (Ng et al., 2000; Ziebart

et al., 2008) utilize teacher demonstrations to extract useful information (such as the teacher

reward function in inverse-RL methods) and use that to accelerate student learning. Meta-

RL considers a distribution over tasks that share some structural similarity, and the objective

is to discover this generalizable knowledge for accelerating the process of learning on a

new task. Our work is most closely related to policy distillation methods (Rusu et al.,

2015; Parisotto et al., 2015; Czarnecki et al., 2019), where pre-trained teacher networks are

available and can expedite learning in dissimilar (but related) student tasks. Prior work

has considered teachers in various capacities. Rusu et al. (2016) and Liu et al. (2019) utilize

learned cross-connections between intermediate layers of teacher networks—that have been

pre-trained on various source tasks—and a student network to effectively transfer knowledge

and enable more efficient learning on a target task. Ahn et al. (2019) use an objective based

on the mutual information between the corresponding layers of teacher and student networks,

and show gains in image classification tasks. In Hinton et al. (2015), information from a

large model (teacher) is compressed into a smaller model (student) using a distillation process

that uses the temperature-regulated softmax outputs from the teacher as targets to train

the student. Schmitt et al. (2018) propose a large-scale population-based training pipeline

that allows a student policy to leverage multiple teachers specialized in different tasks. The

aforementioned methods assume that the teacher and student share the input observation
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space. Different from these, our approach handles the mismatch in the state-space by training

an embedding space which is utilized for efficient knowledge transfer. Rozantsev et al. (2018)

employ layer-wise weight regularization and evaluate on (un-)supervised tasks where the

input distributions for source and target domains have semantic similarity and are static.

For RL tasks, the input distributions change dynamically as the student policy is updated; it

is unclear if enforcing similarity between the networks for all inputs by coupling the weights

is ideal. Gamrian & Goldberg (2018) use GANs to learn a mapping from target states to

source states. In addition to requiring that the source and the target domains have the same

action-space, their method also relies on the exploratory samples collected in the source

MDP for training the GAN. In contrast, we handle the action-space mismatch and do not

assume access to the source MDP for exploration.

Our work also has connections to policy distillation methods that use implicit teachers,

rather than external pre-trained models. In Czarnecki et al. (2018), the authors recommend

a curriculum over agents, rather than the usual curriculum over tasks. Such a curriculum

trains simple agents first, the knowledge of which is then distilled into more complex agents

over time. Akkaya et al. (2019) iterate on policy architectures by utilizing behavior-cloning

with DAgger; the new architecture (student) is trained using the old architecture (teacher).

Distillation has been used in multi-task RL (Teh et al., 2017) to learn a centralized policy

that captures generalizable information from policies trained on individual tasks. (Gangwani

& Peng, 2017) combine ideas from the genetic-algorithms literature and distillation to train

offspring policies that inherit the best traits of both the parent policies. Since all these

approaches transfer information in the action-space by minimizing the KL-divergence be-

tween state-conditional action distributions, they share the limitation that the student can

only leverage a teacher with the same output (action) space. Our approach avoids this by

using the representations in the different layers of the neural network for knowledge sharing,

enabling transfer-learning in many diverse scenarios as shown in our experiments.

7.4.1 Conclusion

In this work, we proposed an algorithm for transfer learning in RL where the teacher

(source) and the student (task) agents can have arbitrarily different state- and action-spaces.

We achieve this by learning an encoder to produce embeddings that draw out useful rep-

resentations from the teacher networks. We argue that training the encoder with both the

RL-loss and the mutual information-loss yields rich representations; we provide empirical val-

idation for this as well. Our experiments on a set of challenging locomotion tasks involving

many-legged centipedes show that MIKT is a successful approach for achieving knowledge

transfer when the teacher and student MDPs have mismatched state- and action-space.
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CHAPTER 8: DATA-SHARING IN META REINFORCEMENT LEARNING

8.1 INTRODUCTION

Deep Reinforcement Learning (RL) has achieved success on a wide variety of tasks, ranging

from computer games to robotics. However, RL agents are typically trained on a single

task and are extremely sample-inefficient, often requiring millions of samples to learn a

good policy for just that one task. Ideally, RL agents should be able to utilize their prior

knowledge and adapt to tasks quickly, just as humans do. Meta-learning, or learning to

learn, has achieved promising results in this regard, allowing agents to exploit the shared

structure between tasks in order to adapt to new tasks quickly during meta-test time.

Although meta-learned policies can adapt quickly during meta-test time, training these

meta-learned policies could still require a large amount of data. Several popular meta-RL

methods (Duan et al., 2016; Wang et al., 2016; Finn et al., 2017; Mishra et al., 2017; Rothfuss

et al., 2018) utilize on-policy data during meta-training to better align with the setup at

meta-test time, where the agent must generate on-policy data for an unseen task and use

it for adapting to the task. Recent works (Rakelly et al., 2019; Fakoor et al., 2019) have

sought to incorporate off-policy RL (Haarnoja et al., 2018; Fujimoto et al., 2018) into meta-

RL to improve sample efficiency. The combination of off-policy RL and data relabeling,

in which experience is shared across tasks, has been utilized in the multi-task RL setting

where the agent learns to solve multiple different yet related tasks. Experience collected

for one task may be insignificant for training a policy to learn that task, but could be

extremely informative in training a policy to learn a different task (Andrychowicz et al.,

2017; Eysenbach et al., 2020). For example, an agent trying to shoot a hockey puck into a

net might miss to the right. This experience could easily be used to train an agent to shoot

a puck into a net positioned further to the right.

Both meta-RL and multi-task RL involve training on a distribution of tasks, so it follows

that we can also combine relabeling techniques with meta-RL algorithms in order to boost

both sample efficiency and asymptotic performance. In meta-RL, an agent learns to explore

sufficiently to identify the task it is supposed to be solving, and then uses that knowledge

to achieve high task returns. The agent collects exploratory pre-adaptation data, then un-

dergoes some adaptation process using that pre-adaptation data. Finally, after adaptation,

the agent attempts to solve the task. Meta-RL algorithms typically have a meta-training

phase followed by a meta-test phase. The goal during meta-training is to train the meta-

parameters such that they could be quickly adapted to solve any task from the meta-train
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task distribution, given a small amount of data from that task. At meta-test time, given

a new unseen task, the goal is to rapidly adapt the learned meta-parameters for this task,

using a small amount of task-specific data. The focus in this work is to improve the sample

efficiency of the meta-training phase via data sharing.

Using concepts from maximum entropy RL (MaxEnt RL), we introduce a relabeling

scheme for the meta-RL setting. Prior relabeling methods for multi-task RL have used

the total reward of the trajectory under different tasks to guide the relabeling (Eysenbach

et al., 2020; Li et al., 2020). Direct application of this type of relabeling to the meta-RL set-

ting is potentially sub-optimal since the multi-task RL and meta-RL objectives are distinct

(learning to perform many tasks vs. learning to learn a new task). Towards developing an

approach more suited to meta-RL, we define the notion of the utility of a trajectory under

the different tasks, where the utility captures the usefulness of the trajectory for efficient

adaptation under those tasks.

We call our method Hindsight Foresight Relabeling (HFR) – we use hindsight in replaying

the experience using reward functions from different tasks, and we use foresight in computing

the utility of trajectories under different tasks and constructing a relabeling distribution over

tasks using these utilities. We demonstrate the efficacy of our method on a variety of robotic

manipulation and locomotion tasks. Notably, we show that our method, as the first meta-RL

relabeling technique (applied during meta-training) that we are aware of, leads to improved

performance compared to prior relabeling schemes designed for multi-task RL.

8.2 PRELIMINARIES

In reinforcement learning (RL), the environment is modeled as a Markov Decision Process

(MDP) M = (S,A, r, p, γ, p1), where S is the state-space, A is the action-space, r is the

reward function, p is the transition dynamics, γ ∈ [0, 1) is the discount factor, and p1 is

the initial state distribution. At timestep t, the agent πθ, parameterized by parameters θ,

observes the state st ∈ S, takes an action at ∼ πθ (at|st), and observes the next state st+1 ∼
p(st+1|st, at) and the reward r (st, at). The goal is to maximize the expected cumulative

discounted rewards: maxθ Est,at∼πθ [
∑∞

t=1 γ
t−1r (st, at)].

8.2.1 Meta-Reinforcement Learning

In the general meta-reinforcement learning (meta-RL) setting, there is a family of tasks

that is characterized by a distribution p (ψ), where each task ψ is represented by an MDP

Mψ = (S,A, rψ, pψ, γ, p1). The tasks share the components (S,A, γ, p1), but can differ in

93



the reward function rψ (e.g. navigating to different goal locations) and/or the transition

dynamics pψ (e.g. locomotion on different terrains). In this work, we consider the setting

where the tasks share the same transition dynamics (i.e., pψ = p), but differ in the reward

function. The goal in meta-learning is to learn a set of meta-parameters such that given a

new task from p (ψ) and small amount of data for the new task, the meta-parameters can be

efficiently adapted to solve the new task. In the context of meta-RL, given new task ψ, the

agent collects some initial trajectories {τpre}, each being a sequence {s1, a1, s2, a2, . . . }, and

then undergoes some adaptation procedure fφ (πθ, τpre, rψ) (e.g., a gradient update (Finn

et al., 2017) or a forward pass through an RNN (Duan et al., 2016)). The adaptation

procedure returns a new policy π′. With this post-adaptation policy, the agent ought to

maximize the cumulative discounted rewards it achieves. Overall, the meta-RL objective is:

max
θ,φ

Eψ∼p(ψ),(st,at)∼π′(θ,φ)

[
∞∑
t=1

γt−1rψ (st, at)

]
; π′(θ, φ) = fφ (πθ, τpre, rψ) (8.1)

where θ, φ are the meta-parameters that are learned in the meta-training phase. A meta-

RL agent must learn a good adaptation procedure fφ that is proficient in extracting salient

information about the task at hand, using few pre-adaptation trajectories τpre. At the same

time, it should learn the policy meta-parameters θ such that it can achieve high returns after

the adaptation process, i.e., while following the policy π′ = fφ (πθ, τpre, rψ).

8.2.2 PEARL

In this work, we use PEARL (Rakelly et al., 2019) as our base meta-RL algorithm since

it uses off-policy RL and provides structured exploration via posterior sampling. PEARL is

built on top of Soft Actor-Critic (Haarnoja et al., 2018) and trains an encoder network qφ (z|c)
that takes in the “context” c, which consists of a batch of (st, at, rt, st+1) transitions, and

produces the latent embedding z. The intent is to learn the encoder such that embedding

z encodes some salient information about the task. The adaptation step fφ in PEARL

corresponds to generating this latent z and then conditioning the policy and the value

function networks on it. The policy πθ (a|s, z) is trained using loss Lactor :

Lactor = Es∼B,a∼πθ,z∼qφ(z|c)

[
DKL

(
πθ (a|s, z) ||exp (Qθ (s, a, z))

Zθ (s)

)]
(8.2)

where B is the replay buffer. The critic Qθ (s, a, z) and the encoder qφ (z|c) are trained with

temporal difference learning:
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Figure 8.1: An illustration of the differences between multi-task RL and meta-RL. In multi-
task RL (blue) the agent simply maximizes its returns given a task ψ, while in meta-RL
(orange) the agent must first quickly identify the task with a limited number of exploratory
trajectories (first two orange stacks in the figure), before adapting to the task and maximizing
returns. Because of these differences, existing multi-task relabeling methods may be sub-
optimal for meta-RL.

Lcritic = E(s,a,r,s′)∼B,z∼qφ(z|c)

[(
Qθ (s, a, z)−

(
r + V̄ (s′, z̄)

))2
]

(8.3)

where V̄ is the target state value and z̄ denotes that the gradient does not flow back through

the latent.

8.3 HINDSIGHT FORESIGHT RELABELING

The objective in this section is to derive a formalism for data-sharing amongst the tasks

during the meta-training phase. This is achieved via trajectory-relabeling, wherein a tra-

jectory collected for a training task ψi is reused or re-purposed for training a different task

ψj. Reward-based trajectory-relabeling has received a lot of attention in recent works on

multi-task RL and goal-conditioned RL (Andrychowicz et al., 2017; Eysenbach et al., 2020;

Li et al., 2020). The intuition is that if a trajectory τ collected while solving for the task ψi

achieves high returns under the reward definition for another task ψj (i.e.,
∑

t rψj(st, at) is

large), then τ can be readily used for policy-optimization for the task ψj as well. The meta-

RL setting presents the following subtlety – for any given task, the meta-RL agent generates

trajectories with the aim of utilizing them in the adaptation procedure and subsequently

seeks to maximize the post-adaptation returns (cf. §8.2.1). To improve the efficiency of the

meta-training stage, we would like to share these pre-adaptation trajectories amongst the

different tasks, accounting for the fact that the metric of interest with these trajectories is

their usefulness for task-identification, rather than the returns (as in multi-task RL). This

difference is illustrated in Figure 8.1. Hence, when deciding if a trajectory τ collected for

task ψi is appropriate to be reused for task ψj, it is sub-optimal to consider the return value
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(a) Schematic diagram (b) Success-rate on Four-Corners

Figure 8.2: The Four-Corners environment

of this trajectory under ψj. Instead, we argue that this reuse compatibility should be deter-

mined based on the performance on the task ψj, after the agent has undergone adaptation

using τ . Concretely, we define a function to measure the utility of the trajectory τ for a task

ψj:

Uψj (τ) = Est,at∼π′
[
∞∑
t=1

γt−1rψj (st, at)

]
(8.4)

where π′ = fφ
(
πθ, τ, rψj

)
denotes the policy after using τ for adaptation. The trajectory-

relabeling mechanism during meta-training now incorporates this function Uψj , which we

refer to as the utility function, rather than the return Rψj . Broadly, a trajectory τ collected

for task ψi can be relabeled for use in another task ψj if Uψj (τ) is high. Subsection §8.3.1

makes this more precise by deriving a relabeling distribution q(ψ|τ) that informs us of the

tasks for which τ should be reused. Figure 8.3, and the caption therein, describe a high-level

overview of our approach, HFR.

Comparison to HIPI (Eysenbach et al., 2020) with a didactic example. We con-

sider a toy environment to further motivate that return-value based data sharing and tra-

jectory relabeling (as proposed by HIPI) is potentially sub-optimal for meta-RL. The Four-

Corners environment consists of a point robot placed at the center of a square where each

corner of the square represents a goal location, as shown in Figure 8.2a. For each goal (task),

there is a section of the space in the corresponding quadrant in which the robot receives a

large negative reward. Consider a trajectory τ that hovers over the blue square in top-right

quadrant. Note that τ could have been generated by the agent while collecting data for any

of the four tasks. We examine if τ can be reused for the blue task. Since Rblue(τ) is highly

negative, the relabeling strategy in HIPI does not reuse τ for meta-training on the blue
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task. It is clearly evident, however, that τ carries a significant amount of signal pertaining

to task-identification on the blue task, making it a useful pre-adaptation trajectory. HFR

reuses τ for the blue task since the utility Ublue(τ) is high.

To quantify this effect, we include the numerical data on the returns and the utility values

for a sampled trajectory that hovers over the blue square in top-right quadrant. The values

for the returns {Rpurple(τ), Rblue(τ), Rorange(τ), Rgreen(τ)} are {−20,−58,−20,−20}, while

the utility values {Upurple(τ), Ublue(τ), Uorange(τ), Ugreen(τ)} are {−1015,−756,−935,−931}.
These (unnormalized) numbers show that the probability of relabeling this trajectory with

the blue task is low under HIPI, but high under HFR. Figure 8.2b compares HFR and HIPI

in terms of the success-rate in the Four-Corners environment, and shows the performance

benefit of using the utility function for trajectory relabeling.

8.3.1 Deriving a Meta-RL Relabeling Distribution

Our derivation in this subsection largely follows HIPI (Eysenbach et al., 2020), but differs

in that we adapt it to the meta-RL setting to promote sharing of pre-adaptation trajectories

amongst tasks, using the concept of trajectory utility. Assume a dataset D of trajectories

gathered by the meta-RL agent when solving the different tasks in the meta-train task dis-

tribution. We wish to learn a trajectory relabeling distribution q(ψ|τ) such that, given any

trajectory τ ∼ D, we could reuse τ for tasks with high density under this posterior dis-

tribution. To that end, we start by defining a variational distribution q(τ |ψ) to designate

the trajectories used for the adaptation process fφ, for a given task ψ. Using the definition

of the utility function (Equation 8.4), the meta-RL objective from Equation 8.1 could be

written as: maxθ,φ Eψ∼p(ψ)Eτ∼q(τ |ψ)[Uψ (τ)]. For fixed meta-parameters (θ, φ), a natural ap-

proach to optimize the variational distribution q(τ |ψ) is to use this same objective since it

facilitates alignment with the goals of the meta-learner. Thus, the combined objective for

the variational distributions for all the tasks, augmented with entropy regularization, is:

max
q

Eψ∼p(ψ)

[
Eτ∼q(τ |ψ)[Uψ(τ)] +Hq(τ |ψ)

]
(8.5)

where Hq(τ |ψ) denotes the causal entropy of the policy associated with q(τ |ψ). Now, it is easy

to show that the above optimization is equivalent to a reverse-KL divergence minimization

objective: minq(τ,ψ) DKL [q (τ, ψ) ||p (τ, ψ)]. In this objective, the joint distributions over the

tasks and the trajectories are defined as q (τ, ψ) = q(τ |ψ)p(ψ) and p (τ, ψ) = p(τ |ψ)p(ψ),
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where

p(τ |ψ) ,
1

Z(ψ)
p1(s1)eUψ(τ)

T∏
t=1

p(st+1|st, at) (8.6)

Our goal is to formulate the trajectory relabeling distribution q(ψ|τ). To make this explicit

in our objective, we use the trick proposed in HIPI (Eysenbach et al., 2020) and factor

q (τ, ψ) as q (ψ|τ) q (τ). This permits rewriting the reverse-KL minimization objective as:

min
q(τ,ψ)

E τ∼q(τ)
ψ∼q(ψ|τ)

[
log q (ψ|τ)+log q(τ)−log p(ψ)+logZ(ψ)−Uψ(τ)−log p1(s1)−

∑
t

log p(st+1|st, at)
]

(8.7)

Ignoring the terms independent of ψ, we can analytically solve (by differentiating and setting

to zero) for the optimal trajectory relabeling distribution for the meta-RL setting:

q (ψ|τ) ∝ p (ψ) eUψ(τ)−logZ(ψ) (8.8)

Given a trajectory τ ∼ D, the HFR algorithm uses this relabeling distribution to sample

tasks for which τ should be reused. Concretely, we compute the utility function under τ

for all the tasks, construct the distribution q(ψ|τ) using these utilities (Equation 8.8), and

sample tasks from it. Please see Figure 8.3 for details. We assume a uniform prior p (ψ) over

the tasks in our experiments.

8.3.2 Algorithm and Implementation Details

Our relabeling algorithm is summarized in Algorithm 8.1 and fits seamlessly into the meta-

training process of any of the base meta-RL algorithms. Once the meta-RL agent generates

a trajectory τ for a training task, τ is fed as input to HFR, and it returns another task

that can reuse this experience τ . We compute the utility of the input trajectory for every

training task, along with an empirical estimate of the log-partition function of the tasks.

The task to relabel the trajectory with is then sampled from a categorical distribution. For

our experiments, we build on top of the PEARL algorithm (Rakelly et al., 2019), which is

a data-efficient off-policy meta-RL method. PEARL maintains task-specific replay buffers

Bψ. If HFR returns the task ψ′, then τ is relabeled using the reward function rψ′ and added

to Bψ′ for meta-training on the task ψ′.

The adaptation procedure π′ = fφ(πθ, τ, rψ) for a task ψ corresponds to a sequence of steps:

1.) augment τ by marking each transition with a reward value computed using rψ(st, at),

2.) condition the encoder on τ to sample an embedding, z ∼ qφ (z|τ); and 3.) condition

the policy on z to obtain the post-adaptation policy, π′ = πθ(·|s, z). The calculation of
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Figure 8.3: During meta-training, after a trajectory τ is collected for task ψi, HFR uses
hindsight to relabel this trajectory using reward functions for different tasks, and then uses
foresight to compute the utility of the relabeled trajectory for the different tasks. A distri-
bution over tasks is constructed using the utilities, and a task ψk is sampled from the dis-
tribution, with tasks for which the trajectory has higher (normalized) utility having higher
probability mass. The trajectory is then relabeled using the reward function rψk and added
to the task-specific replay buffer Bψk . Finally, the meta-training update rules are applied.
This process repeats throughout the entirety of meta-training. HFR uses PEARL as the
base meta-RL algorithm and does not alter its data collection or meta-gradient computation
rules. Please see the Algorithm 8.1 box for details.

the utility function (Equation 8.4) requires generation of post-adaptation trajectories, which

could be computationally inefficient, especially if the number of tasks is large. To avoid this

cost, for each task, we sample a batch of initial states s1 ∼ p1 (s1) and the corresponding

actions from the post-adaptation policy, and compute the utility based on an estimate of

the state-action value function Qπ′

ψ (s1, a1) as:

Uψ (τ) = Es1∼p1,a1∼π′(·|s1)

[
Qπ′

ψ (s1, a1)
]

(8.9)

Since we use PEARL, we can avoid training separate task-specific value functions Qψ, and

instead get the required estimates from the task-conditioned critic Q(s, a, z) already used

by PEARL (Equation 8.3). We highlight that HFR facilitates efficient data-sharing among

the training tasks via trajectory-relabeling without altering the meta-train and test-time

adaptation rules of the base meta-RL algorithm.

8.4 EXPERIMENTS

The goal in this section is to quantitatively evaluate the benefit of sharing experience

among tasks using HFR, during the meta-train stage. We evaluate on a set of both sparse and
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Algorithm 8.1: Hindsight Foresight Relabeling (HFR)

Input : Trajectory to be relabeled (τ)
Output: Task to relabel the trajectory with

(ψ)

1 for each training task ψi do
2 Uψi (τ)← ComputeUtility(τ, ψi)
3 logZ

(
ψi
)
← GetLogPartition(ψi)

4 end
5 Return ψ ∼ softmax{Uψi(τ)− logZ(ψi)}

(Equation 8.8)
6

7 Function GetLogPartition(ψ):

8 Sample batch of trajectories
{
τ i
}N
i=1
∼ Bψ

9 for each trajectory τ i do
10 Uψ

(
τ i
)
← ComputeUtility(τ i, ψ)

11 end

12 Return logZ (ψ) ≈ log
(

1
N

∑N
i=1 e

Uψ(τ i)
)

13

14

15 Function ComputeUtility(τ, ψ):
16 for each (st, at, rt) ∈ τ do
17 Replace rt with rψ (st, at)
18 end
19 Sample embedding using encoder

z ∼ qφ (z|τ)
20 Sample a batch of initial states{

si1
}N
i=1
∼ Bψ

21

22 Sample actions for these states using the
post-adaptation policy πθ(·|s, z):{
a1 ∼ πθ

(
ai1|si1, z

)}N
i=1

23

24 Return Uψ = 1
N

∑N
i=1Qθ

(
si1, a

i
1, z
)

(Equation 8.9)
25

dense reward MuJoCo environments (Todorov et al., 2012) modeled in OpenAI Gym (Brock-

man et al., 2016). We compare HFR with two relabeling methods: Random, in which each

trajectory is relabeled with a randomly chosen task, and HIPI (Eysenbach et al., 2020),

which utilizes MaxEnt RL to devise an algorithm that relabels each transition using a distri-

bution over tasks involving the soft Q values for that transition. In contrast, HFR proposes

the concept of the utility of a trajectory for a given task. Using the utility aligns the rela-

beling methodology with the objective of the meta-RL agent (cf. section 8.3). All methods

are built on top of PEARL. Finally, we compare to PEARL with no relabeling at all, which

we refer to as None.

8.4.1 Results

Sparse Reward Environments. We first evaluate HFR on a set of sparse reward robotic

manipulation and locomotion tasks. We use five environments: a goal-reaching task involving

a quadruped Ant robot, a pushing task on the Sawyer robot, a reaching task on the Sawyer

robot, a velocity-matching task involving a bipedal Cheetah robot, and a reaching task

involving the MuJoCo Reacher where the agent learns directly from images. Figure 8.4

plots the performance (average returns or success-rate) on the held-out meta-test tasks on

the y-axis, with the total timesteps of environment interaction for meta-training on the x-

axis. We note that HFR tends to be more sample-efficient than the baselines and achieves
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Figure 8.4: Performance of our relabeling algorithm HFR (shown in blue) on sparse reward
tasks. HFR consistently outperforms baselines on both sparse reward robotic manipulation
and locomotion tasks. Visual-Reacher uses image observations, while the other environments
use proprioceptive states.

a higher asymptotic score. Meta-RL in sparse reward tasks is hard due to the challenges

of task-identification and efficient exploration. HFR is especially useful for these tasks as

the data-sharing afforded by the trajectory relabeling algorithm mitigates the need for an

elaborate exploration strategy during meta-training. This leads to the sample-efficiency

gains exhibited in Figure 8.4.

Dense Reward Environments. We next evaluate HFR on dense reward environments

(Figure 8.5). We experiment with the Cheetah-Highdim environment, in which the bipedal

robot is required to best match its state vector to a set of predefined vectors, as well as

the Cheetah-Vel and quadruped Ant-Vel environments, in which the robots are required

to run at various velocities. Note that the impact of HFR is much less pronounced for

these environments, with the exception of Cheetah-Highdim. We believe this is because

exploration is not as critical for these environments as it was for the sparse reward tasks. This

hypothesis is supported by the fact that, in these environments, PEARL with no relabeling

is competitive with the various relabeling methods, which all share similar performance,

whereas in the sparse reward environments HFR is the relabeling method that performs

best, with the two other relabeling methods also vastly outperforming vanilla PEARL. In the

case of the Cheetah-Vel and Ant-Vel environments, agents are provided with an informative

dense reward that immediately informs them as to which task they’re supposed to be solving.

Although the agent in Cheetah-Highdim is also provided with an informative dense reward,

the reward function in this task is a linear combination of an 18-dimensional state vector.

Thus, reasonably good exploration is needed to determine optimal values for each of these

18 dimensions. HFR relabeling provides improvement over the baselines for this task.

101



Figure 8.5: Performance of our relabeling algorithm HFR (shown in blue) on dense reward tasks.
With the exception of Cheetah-Highdim, relabeling in general offers no benefit in dense reward
meta-RL tasks, likely due to the highly informative nature of a dense reward function.

8.4.2 Ablation Studies

Batch Size. We investigate the impact of the batch size N used in Algorithm 8.1 for com-

puting an empirical estimate of the state-action value: 1
N

∑N
i=1 Qθ (si1, a

i
1, z). We compare

the effect of batch size across batch sizes {16, 32, 64, 128, 256}. We expect lower values of N

to lead to a higher variance estimate of the post-adaptation cumulative discounted rewards

and thus potentially a worse approximation of the optimal meta-RL relabeling distribution.

In Figure 8.6a, we see some evidence of this in the comparatively worse performance when

using N = 16 and N = 32. However, we note that even with these small batch sizes, our

method still performs well, and in general achieves high returns across all choices of N .

Partition Function. We investigate the impact of the log-partition function logZ(ψ)

in the optimal meta-RL relabeling distribution (Equation 8.8). Prior work has noted the

importance of the partition function in the multi-task RL setting when tasks may have

different reward scales (Eysenbach et al., 2020). We believe that in the meta-RL setting,

the partition function may be crucial even if the tasks share the reward scale, since some

tasks in the meta-training distribution may be easier to solve than others. We speculate

that with the omission of the partition function from our relabeling distribution, trajectories

would find high utility and thus be disproportionately labeled with the easily-solved tasks,

causing a degradation in overall performance. In our experiments, we find that the partition

function serves as an essential normalization factor; Figure 8.6b shows an example.

Reward Function. One assumption our method assumes is access to the true reward

function rψ (s, a), which we can query to get the reward for an individual transition under any

task ψ. This availability has also been utilized in existing works on relabeling for multi-task

RL (Eysenbach et al., 2020; Li et al., 2020). In many real-world applications of meta-RL, e.g.,
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(a) Batch Size (N)
(b) Partition Func-
tion

(c) Reward Func-
tion

(d) Reward Func-
tion

(e) Soft-max vs
Hard-max

(f) Soft-max vs
Hard-max

(g) Soft-max vs
Hard-max

(h) Soft-max vs
Hard-max

Figure 8.6: Ablation analyses. (a) HFR with different values for the batch size N used in approx-
imating Equation 8.9. HFR is relatively robust to choice of batch size, with some smaller choices
of N leading to slightly worse performance. (b) HFR with and without the log-partition function
(logZ (ψ)). The partition function serves as a necessary normalization factor and prevents against
simply relabeling every trajectory using the easiest task. (c), (d) HFR with true reward func-
tion (orange) and HFR with learned reward function (blue). (e), (f), (g), (h) HFR with soft-max
(orange) vs hard-max (blue) relabeling distribution

a distribution over robotic tasks, it is reasonable to assume that the task-designer outlines

a rough template for the rewards corresponding to the different tasks from the distribution.

Furthermore, several of the rewards used in our experiments are success/failure indicators,

which are simple to specify. Nevertheless, we consider the scenario where we are unable to

query the true reward function for individual transitions. In this case, we train a reward

prediction network using the experience gathered by the agent. Figures 8.6c and 8.6d show

good performance even when we use a learned reward function rather than the true reward

function to relabel the trajectories.

Soft-max vs Hard-max Relabeling Distribution. Given a trajectory τ , the relabeling

distribution derived in Section §8.3.1 samples tasks for which τ should be reused. Specifically,

tasks are sampled as: ψ ∼ softmax{Uψi(τ)− logZ(ψi)}. This raises the following question:

is it crucial to have stochasticity in the relabeling distribution, or could we deterministically

select the task for which the utility value is the highest, i.e., ψ = argmax{Uψi(τ)−logZ(ψi)}?
A minor modification to the equations in Section §8.3.1 yields the hard-max relabeling
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distribution. Concretely, we can add a term to the starting objective for the variational

distribution q that explicitly minimizes the entropy of the relabeling distribution q(ψ|τ):

max
q

Eψ∼p(ψ)

[
Eτ∼q(τ |ψ)[Uψ(τ)] +Hq(τ |ψ)

]
− (1− ε)Eτ∼q(τ)

[
Hq(ψ|τ)

]
(8.10)

where ε is a value less than 1. Proceeding with the derivation in the exact same manner as

in Section §8.3.1, we obtain the adjusted relabeling distribution:

qε (ψ|τ) ∝ e
Uψ(τ)−logZ(ψ)

ε (8.11)

In the limit when ε → 0, qε(ψ|τ) is the hard-max relabeling distribution. Figures 8.6e,

8.6f, 8.6g, and 8.6h compare the performance of HFR when sampling tasks from a soft-max

relabeling distribution (orange) vs a hard-max distribution (blue). The results indicate that

stochasticity is an important factor.

8.5 RELATED WORK AND CONCLUSION

Meta-learning, or learning to learn (Schmidhuber, 1987; Naik et al., 1992; Thrun & Pratt,

1998; Baxter, 1998), has been a topic of interest since the 1980s. Various approaches have

been developed in recent years. Prior works have attempted to represent the RL process

using a recurrent neural network (Duan et al., 2016; Wang et al., 2016; Miconi et al., 2018) -

the hidden state is maintained across episode boundaries and informs the policy as to what

task it is currently solving. Similarly, Mishra et al. (2017) also maintain the internal state

across episode boundaries while incorporating temporal convolution and attention into a re-

cursive architecture. Gradient-based meta-learning methods have also been explored (Finn

et al., 2017; Nichol & Schulman, 2018; Xu et al., 2018; Zheng et al., 2020). MAML (Finn

et al., 2017) seek to learn a good policy initialization so that only a few gradient steps are

needed to achieve good performance on unseen meta-test tasks. Stadie et al. (2018) build on

this gradient-based approach but explicitly consider the effect of the original sampling dis-

tribution on final performance. Similar to these works, our relabeling method also considers

the impact of pre-adaptation data on the post-adaptation performance. Another body of

work focuses on designing strategies for structured exploration in meta-RL such that task-

relevant information could be efficiently recovered (Rakelly et al., 2019; Zintgraf et al., 2019;

Liu et al., 2020). Rakelly et al. (2019) devise an off-policy meta-RL method called PEARL

that trains an encoder to generate a latent code (with task-relevant information) on which

the meta-RL agent is conditioned.

In the context of multi-task RL (Kaelbling, 1993; Caruana, 1997; Schaul et al., 2015),
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recent methods have proposed relabeling to improve the sample-efficiency (Andrychowicz

et al., 2017; Eysenbach et al., 2020; Li et al., 2020). HER (Andrychowicz et al., 2017)

relabels transitions using goals that the agent actually achieves. Doing so allows for learning

even with a sparse binary reward signal. However, HER is only applicable to goal-reaching

tasks and cannot be incorporated into meta-RL algorithms because the meta-RL agent is

trained on a batch of tasks sampled from a fixed task distribution. Our work is inspired by

Eysenbach et al. (2020), who construct an optimal relabeling distribution for multi-task RL

and apply this to both goal-reaching tasks and tasks with arbitrary reward functions.

Experience Relabeling in Meta-RL. Recent work has studied the scope of sharing ex-

perience among tasks in the meta-RL paradigm. Mendonca et al. (2020) propose to tackle

meta-RL via a model identification process, where context-dependent neural networks pa-

rameterize the transition dynamics and the rewards function. Their method performs expe-

rience relabeling only at the meta-test time, with the purpose of consistent adaptation to the

out-of-distribution tasks. Crucially, there is no relabeling or sharing of data amongst tasks

during the meta-train time. In contrast, the goal of the relabeling in HFR is to improve

the sample efficiency of the meta-training phase. Dorfman et al. (2020) study the offline

meta-RL problem. They propose reward relabeling as a mechanism to mitigate the “MDP

ambiguity” issue, which the authors note is specific to the offline meta-RL setting. Their re-

labeling is based on random task selection. HFR, on the other hand, operates in the online

meta-RL setting and provides a principled approach to compute a relabeling distribution

that suggests tasks for relabeling.

8.5.1 Conclusion

In this work, we introduced HFR, a trajectory relabeling method for meta-RL that enables

data sharing between tasks during meta-train. We argue that unlike the multi-task RL

setting, where the appropriateness of a trajectory for a task could be measured by the

returns under the task, for meta-RL, it is preferable to consider the future (expected) task-

returns of an agent adapted using that trajectory. We capture this notion by defining the

utility function for a trajectory-task pair and incorporate these utilities in our relabeling

mechanism. Inspired by prior work on multi-task RL, an optimal relabeling distribution is

then derived that informs us of the tasks for which a generated trajectory should be reused.

Hindsight is used to relabel trajectories with different reward functions, while foresight is

used in computing the utility of each trajectory under different tasks and constructing a

relabeling distribution. HFR is easy to implement, can be integrated into any existing meta-

RL algorithm, and yields improvement on a variety of meta-RL tasks with sparse rewards.
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APPENDIX A:

A.1 MISSING PROOFS IN CHAPTER 4

This section includes proofs for the inequalities mentioned in Section 4.2.1. We first prove

the inequality connecting DJS between the state-visitation distribution and belief-visitation

distribution of the agent and the expert:

DJS[ρπ(s) || ρE(s)] ≤ DJS[ρπ(b) || ρE(b)] (A.1)

Proof. The proof is a simple application of the data-processing inequality for f -divergences (Ali

& Silvey, 1966), of which DJS is a type.

We denote the filtering posterior distribution over states, given the belief, by p(s|b). Note

that p(s|b) is characterized by the environment, and does not depend on the policy (agent

or expert). The posterior over belief, given the state, however, is policy-dependent and

obtained using Bayes rule as: pπ(b|s) = p(s|b)ρπ(b)
ρπ(s)

. Also, ρπ(s, b) = ρπ(s)pπ(b|s) = ρπ(b)p(s|b).
Analogously definitions exist for expert E.

We write DJS[ρπ(b) || ρE(b)] in terms of the template used for f -divergences. Let f :

(0,∞) 7→ R be the following convex function with the property f(1) = 0: f(u) = −(u +

1) log 1+u
2

+ u log u. Then,

DJS[ρπ(b) || ρE(b)]

=Eb∼ρE(b)

[
f(
ρπ(b)

ρE(b)
)
]

=Es,b∼ρE(s,b)

[
f(
ρπ(s, b)

ρE(s, b)
)
]

=Es∼ρE(s)

[
Eb∼ρE(b|s)f(

ρπ(s, b)

ρE(s, b)
)
]

≥Es∼ρE(s)

[
f
(
Eb∼ρE(b|s)

ρπ(s, b)

ρE(s, b)

)]
(Jensen’s inequality)

=Es∼ρE(s)

[
f
(
Eb∼ρπ(b|s)

ρπ(s, b)ρE(b|s)
ρE(s, b)ρπ(b|s)

)]
=Es∼ρE(s)

[
f
(
Eb∼ρπ(b|s)

ρπ(s)

ρE(s)

)]
=Es∼ρE(s)

[
f(
ρπ(s)

ρE(s)
)
]

=DJS[ρπ(s) || ρE(s)]

(A.2)

QED.
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Similarity, we can prove the inequality connecting DJS between belief-visitation distribu-

tion and belief-action-visitation distribution of the agent and the expert:

DJS[ρπ(b) || ρE(b)] ≤ DJS[ρπ(b, a) || ρE(b, a)] (A.3)

Proof. Replace s 7→ b′ and b 7→ (b, a) in the previous proof. The only required condition for

that result to hold is the non-dependence of the distribution p(s|b) on the policy. Therefore,

if it holds that p(b′|b, a) is independent of the policy, then we have,

DJS[ρπ(b′) || ρE(b′)] ≤ DJS[ρπ(b, a) || ρE(b, a)] (A.4)

The independence holds under the trivial case of a deterministic mapping b′=b. This gives

us the desired inequality. QED.

A.2 MISSING PROOFS IN CHAPTER 6

A.2.1 Gradient of Divergences w.r.t. the Policy Parameters

We derive the expressions for ∇θjDJS and ∇θjDKLS mentioned in Equation 6.8. θj denotes

the parameters for πj. The distribution ratio, ζij = ρi/ρj, depends on θj through ρj. A bar

above a symbol signifies that it is a constant w.r.t. θj; for instance, while ρj depends on

θj, ρ̄j does not. The derivation uses the property that the expectation of the score function

estimator is 0.

Jenson-Shannon divergence:

DJS(ρi, ρj) =
1

2
Eρi log

ρi
ρi + ρj

+
1

2
Eρj log

ρj
ρi + ρj

+ log 2 (A.5)

Differentiating with the product rule,
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∇θj2DJS =− Eρi∇θj log[ρi + ρj] + Eρj∇θj log[ρj]︸ ︷︷ ︸
=0

Exp. score function

+∇θjEρj log[ρ̄j]

− Eρj∇θj log[ρi + ρj]−∇θjEρj log[ρi + ρ̄j]

=− Eρi+ρj∇θj log[ρi + ρj]︸ ︷︷ ︸
=0

Exp. score function

+∇θjEρj log[ρ̄j]−∇θjEρj log[ρi + ρ̄j]

∇θjDJS =− (1/2)∇θjEρj log[1 + ζ̄ij]

(A.6)

Symmetric Kullback-Leibler divergence:

DKLS(ρi, ρj) = Eρi log
ρi
ρj
− Eρj log

ρi
ρj

(A.7)

Differentiating with the product rule,

∇θjDKLS = −Eρi∇θj log[ρj]−∇θjEρj log ζ̄ij + Eρj∇θj log[ρj]︸ ︷︷ ︸
=0

Exp. score function

(A.8)

For the first term, interchanging the gradient and the expectation, we can write:

Eρi∇θj log[ρj] =
∑
(s,a)

ρi
∇θjρj

ρ̄j
=
∑
(s,a)

ζ̄ij∇θjρj = ∇θjEρj [ζ̄ij] (A.9)

Therefore,

∇θjDKLS = ∇θjEρj [−ζ̄ij − log ζ̄ij] (A.10)

A.2.2 Optimality in the Donsker-Varadhan Representation

The Donsker-Varadhan representation (Donsker & Varadhan, 1983) of the KL-divergence

is given by:

DKL(ρi||ρj) = sup
x:S×A→R

E(s,a)∼ρi [x(s, a)]− logE(s,a)∼ρj [e
x(s,a)] (A.11)

The optimality is achieved at x∗(s, a) = log ζij(s, a) + C, for some constant C ∈ R.
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Proof. We begin with a re-write of the expression inside the supremum:

E(s,a)∼ρi

(
log
[
ex(s,a).

ρi
ρj
.
ρj
ρi

])
− logE(s,a)∼ρj [e

x(s,a)]

=E(s,a)∼ρi [log
ρi
ρj

]︸ ︷︷ ︸
KL

+E(s,a)∼ρi

(
log
[ρj
ρi
.ex(s,a)

])
− logE(s,a)∼ρj [e

x(s,a)]

≤DKL(ρi||ρj) + logE(s,a)∼ρi
[ρj
ρi
.ex(s,a)

]
− logE(s,a)∼ρj [e

x(s,a)] (Jensen’s inequality)

=DKL(ρi||ρj) + logE(s,a)∼ρj [e
x(s,a)]− logE(s,a)∼ρj [e

x(s,a)]

=DKL(ρi||ρj)
(A.12)

Therefore, this expression is upper bounded by DKL(ρi||ρj). To complete the proof, we show

that this upper bound is indeed achieved when x(s, a) = log ζij(s, a) +C, for some constant

C ∈ R. Inserting this into the expression, we get:

E(s,a)∼ρi [log ζij(s, a) + C]− logE(s,a)∼ρj [e
log ζij(s,a)+C ]

=DKL(ρi||ρj) + C − log
(
eC E(s,a)∼ρj [ζij(s, a)]︸ ︷︷ ︸

=1

)
=DKL(ρi||ρj)

(A.13)

QED.
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tic programming: modeling and theory. SIAM, 2014.

[174] Hassam Sheikh, Shauharda Khadka, Santiago Miret, and Somdeb Majumdar. Learning
intrinsic symbolic rewards in reinforcement learning. arXiv preprint arXiv:2010.03694,
2020.

[175] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in
neural information processing systems, pp. 2164–2172, 2010.

[176] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. 2014.

[177] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

[178] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017.

[179] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

[180] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from.
In Proceedings of the annual conference of the cognitive science society, pp. 2601–2606.
Cognitive Science Society, 2009.

[181] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically
motivated reinforcement learning: An evolutionary perspective. IEEE Transactions
on Autonomous Mental Development, 2(2):70–82, 2010.

[182] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal rewards mitigate
agent boundedness. In Proceedings of the 27th international conference on machine
learning (ICML-10), pp. 1007–1014, 2010.

[183] Jonathan Sorg, Satinder Singh, and Richard L Lewis. Optimal rewards versus leaf-
evaluation heuristics in planning agents. In Twenty-Fifth AAAI Conference on Artifi-
cial Intelligence, 2011.

123



[184] Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation learning.
arXiv preprint arXiv:1703.01703, 2017.

[185] Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter
Abbeel, and Ilya Sutskever. Some considerations on learning to explore via meta-
reinforcement learning. arXiv preprint arXiv:1803.01118, 2018.

[186] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567, 2017.

[187] Wen Sun, Anirudh Vemula, Byron Boots, and J Andrew Bagnell. Provably efficient
imitation learning from observation alone. arXiv preprint arXiv:1905.10948, 2019.

[188] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[189] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in neural information processing systems, pp. 1057–1063, 2000.

[190] Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach
to the problem of off-policy temporal-difference learning. The Journal of Machine
Learning Research, 17(1):2603–2631, 2016.

[191] Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. 1984.

[192] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship
learning. In Advances in neural information processing systems, pp. 1449–1456, 2008.

[193] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using
linear programming. In Proceedings of the 25th international conference on Machine
learning, pp. 1032–1039, 2008.

[194] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 4496–4506, 2017.

[195] Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for
reinforcement learning. In International Conference on Machine Learning, pp. 2139–
2148, 2016.

[196] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In
Learning to learn, pp. 3–17. Springer, 1998.

[197] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 5026–5033. IEEE, 2012.

124



[198] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
arXiv preprint arXiv:1805.01954, 2018.

[199] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from
observation. arXiv preprint arXiv:1807.06158, 2018.

[200] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pp. 5998–6008, 2017.
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