3 research outputs found

    conwip card setting in a flow shop system with a batch production machine

    Get PDF
    A B S T R A C T This paper presents an analytical technique to determine the optimum number of cards to control material release in a CONWIP system. The work focuses on the card setting problem for a flow-shop system characterised by the presence of a batch processing machine (e.g. a kiln for long heat treatment). To control production, two different static approaches are developed: the first one is used when the bottleneck coincides with the batch processing machine and the second one is proposed when the bottleneck is another machine of the flow shop. In both contexts, by means of the appropriate model, one can optimize the performance of the flow- shop by maximizing the throughput and keeping the work in process at a minimum level. Numerical examples are also included in the paper to confirm the validity of the models and to demonstrate their practical utility

    Designing a robust production system for erratic demand environments.

    Get PDF
    Production systems must have the right type of material in the right quantities when required for production. They must minimize the work in progress while ensuring no stock-outstock-out occurs. While these twin opposing goals are achievable when demand is stable, they are difficult to realize under an erratic demand pattern. This dissertation aims to develop a production system that can meet erratic demands with minimal costs or errors. After a detailed introduction to the problem considered, we review the relevant literature. We then conduct a numerical analysis of current production systems, identify their deficiencies, and then present our solution to address these deficiencies via the ARK (Automated Replenishment System) technique. This technique is applied to a real-world problem at Methode Engineering ©. We conclude by detailing the scientific benefit of our technique and proposing ideas for future research

    Efficient buffer design algorithms for production line profit maximization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 447-465).A production line is a manufacturing system where machines are connected in series and separated by buffers. The inclusion of buffers increases the average production rate of the line by limiting the propagation of disruptions, but at the cost of additional capital investment, floor space of the line, and inventory. Production lines are also a special case of assembly/disassembly systems as well as closed-loop systems. This thesis makes contributions to production system profit maximization. The profit of a production line is the revenue associated with the production rate minus the buffer space cost and average inventory holding cost. We assume that machines have already been chosen and therefore our only decision variables are the buffer sizes and the loop population. The difficulties of the research come from evaluation and optimization. We improve evaluation of loop systems. The optimization problem is hard since both the objective function and the constraints are nonlinear. Our optimization problem, where we consider the nonlinear production rate constraint and average inventory cost, is new. We present an accurate, fast, and reliable algorithm for maximizing profits through buffer space optimization for production lines, and extend the algorithm to closed-loop systems and production lines with an additional maximum part waiting time constraint. A nonlinear programming approach is adopted to solve the optimization problem. Two necessary modifications are proposed to improve the accuracy of the existing loop evaluation method before optimization of loops is studied. An analytical formulation of the part waiting time distribution is developed for two-machine one-buffer lines. It is used in the profit maximization for production lines with both the production rate constraint and the maximum part waiting time constraint. Numerical experiments are provided to show the accuracy and efficiency of the proposed algorithms. Finally, a segmentation method and an additive property of production line optimization are studied. They enable us to optimize very long lines rapidly and accurately.by Chuan Shi.Ph.D
    corecore