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Abstract

A production line is a manufacturing system where machines are connected in series
and separated by buffers. The inclusion of buffers increases the average production
rate of the line by limiting the propagation of disruptions, but at the cost of additional
capital investment, floor space of the line, and inventory. Production lines are also
a special case of assembly/disassembly systems as well as closed-loop systems. This
thesis makes contributions to production system profit maximization.

The profit of a production line is the revenue associated with the production
rate minus the buffer space cost and average inventory holding cost. We assume
that machines have already been chosen and therefore our only decision variables
are the buffer sizes and the loop population. The difficulties of the research come
from evaluation and optimization. We improve evaluation of loop systems. The
optimization problem is hard since both the objective function and the constraints
are nonlinear. Our optimization problem, where we consider the nonlinear production
rate constraint and average inventory cost, is new.

We present an accurate, fast, and reliable algorithm for maximizing profits through
buffer space optimization for production lines, and extend the algorithm to closed-
loop systems and production lines with an additional maximum part waiting time
constraint. A nonlinear programming approach is adopted to solve the optimization
problem. Two necessary modifications are proposed to improve the accuracy of the
existing loop evaluation method before optimization of loops is studied. An analyt-
ical formulation of the part waiting time distribution is developed for two-machine
one-buffer lines. It is used in the profit maximization for production lines with both
the production rate constraint and the maximum part waiting time constraint. Nu-
merical experiments are provided to show the accuracy and efficiency of the proposed
algorithms. Finally, a segmentation method and an additive property of production
line optimization are studied. They enable us to optimize very long lines rapidly and
accurately.
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Chapter 1

Introduction

1.1 Motivation

A manufacturing system is a set of machines, transportation elements, computers,

storage buffers, and other items that are used together for manufacturing (Gershwin

1994). A production line, or flow line, or transfer line, is organized with machines

connected in series and separated by buffers. Figure 1-1, for instance, shows a six-

machine five-buffer line, where squares represent machines (or sequences of machines

without buffers) while circles represent buffers. (In the following, we treat a sequence

of machines without buffers as a single machine Mi.) Therefore, a production line

that has k machines will have k - 1 buffers, and it is called a k-machine, k - 1-buffer

line, or k-machine line for short. Material flows in the direction of the arrows, from

upstream inventory to the first machine for an operation, to the first buffer where it

waits for the second machine, to the second machine, etc. There are two quantities

associated with each buffer. Ni is the size of Buffer B and i5 is the average inventory

of Buffer Bi.

Inventory space N4 N

Average inventory 1i i2 ja -4

Figure 1-1: A production line example



Production lines are of economic importance as they are used in high volume

manufacturing, particularly automobile production. Their capital costs range from

hundreds of thousands to tens of millions of dollars. In addition, production lines

represent the simplest form of an important phenomenon: manufacturing stages in-

terfering with each other and buffers decoupling them. This is because machines are

unreliable and therefore material flow may be disrupted by machine failures. Such

failures can cause neighboring machines to be idle, and they, in turn, can create idle-

ness to their neighbors. The inclusion of buffers increases the average production rate

of the line by limiting the propagation of disruptions, but at the cost of additional

capital investment, floor space of the line, and inventory (Shi and Gershwin 2011b).

As indicated in Gershwin (1994) and Dallery (1999), the behavior of such produc-

tion line systems is complex because of the random nature of machine failures and

repairs and their effect on the whole production line due to blocking and starvation.

Therefore, the performance analysis that evaluates the production rate, the average

inventory level, as well as the profit rate is of high importance in the design and

operation of production lines.

The development of analytical methods for performance evaluation of production

lines in the past several decades enables people to understand the behavior of such

systems. Although simulation can be an alternative to analytical methods in produc-

tion line evaluation, the speed and accuracy of analytical methods allow production

line practitioners to make robust decisions in line design faster, which is especially

important for products with short life cycles or for companies in highly competitive

market environment. As a result, analytical methods have been wildly used in indus-

try. Burman et al. (1998), for example, apply analytical methods to predict capacity

and to determine the sizes and locations of buffers that would increase capacity at

the cost of a minor increase in inventory for a Hewlett-Packard (HP) production line.

HP's implementation of this work yields incremental revenue of about $280 million. A

detailed literature review about production line evaluation as well as optimization by

analytical methods is provided in Section 1.2. A summary of the research about de-

sign and operation of production lines and general manufacturing systems conducted



at MIT can be found from Gershwin (2003) and Gershwin (2005). The analytical

approach is adopted in this thesis.

Koenigsberg (1959) points out that three major problems in the design and opera-

tion of production lines are to select the number of machines in the line, the locations

of buffers, and the sizes of buffers. These three problems can be categorized into two

main phases (Borgh 2009a) in production line design: first, a small number of system

alternatives are selected among a wide range of options (Problems 1 and 2), then the

characteristics of these systems are more deeply investigated in order to find the most

suitable solution toward a specific goal of line design (Problem 3).

Among the three production line design problems of Koenigsberg (1959), we are

particularly interested in the third one, as buffer allocation is one of the most im-

portant decisions to make in production line design. As indicated previously, buffers

decouple machines and therefore increase the production rate of the line, however,

at the cost of increasing buffer space and higher work-in-process inventory levels.

Inventory is a undesirable consequence of buffers for several reasons. First, it costs

money to create or store. Second, the average lead time is proportional to the average

amount of inventory according to Little's Law (Little 1961). This means that a larger

inventory level may lead to a longer lead time. Third, inventory in a factory can

be vulnerable to damage, which projects a potential lost of investment. Finally, the

space and equipment needed for inventory costs money as well. Given these additional

costs in terms of both extra capital investment and longer lead time of products due

to inventory, it is highly desirable to find ways to optimize buffer space allocation to

make factories most efficient and most profitable.

Once the buffer allocation problem is solved, we can make use of the result to

solve problems 1 and 2 of Koenigsberg (1959). That is, for each possible setting of

the production line (with a certain number of machines and a certain configuration of

buffer locations), we solve the buffer allocation problem. After the buffer allocation

problem is solved for all line configuration candidates, we compare them and choose

one that best suits the line design objective.

In this thesis, we develop optimal buffer allocation algorithms for production line



profit maximization subject to a production rate constraint. In other words, we

want to help factories determine how to achieve the required production rate target

(which is related to the demand) at the minimum cost of buffer spaces and work-

in-process inventory. In particular, we assume that the manufacturing process and

machines have already been chosen. As a result, the decision variables are sizes of

buffer spaces N1, N2, - - -, Nk_1, or N in the vector form, for a k-machine k - 1-buffer

line. Production line cost comes from buffer space cost and average inventory cost.

The rest of this chapter is organized as follows. A detailed literature review about

production line models, production line evaluation, and production line optimization

is provided in Section 1.2. The research goal and contributions of this thesis are

summarized in Section 1.3. We outline the structure of the thesis in Section 1.4

before moving on to Chapter 2.

1.2 Literature Review

Substantial research has been conducted on production line evaluation and optimiza-

tion. See reviews by Koenigsberg (1959), Buxey et al. (1973), Buzacott and Hanifin

(1978), Dallery and Gershwin (1992), Papadopoulos and Heavey (1996), and Li et al.

(2009), as well as books by Buzacott and Shanthikumar (1993), Papadopoulos et al.

(1993), Gershwin (1994), and Altiok (1997). Production line evaluation has been done

by both the exact solutions for two-machine lines and the approximation approaches

for longer lines with more than two machines. In terms of optimization, there are

many studies focusing on maximizing the production rate but few studies concentrat-

ing on maximizing the profit. In production line optimization, there are two distinct

approaches: the simulation-based approach and the numerical evaluation approach.

It is desirable to develop numerical methods since they are much faster than sim-

ulation. For description of simulation methods, see Smunt and Perkins (1985) and

Gershwin and Schor (2000). We describe some literature on non-simulation methods.

In what follows, we introduce commonly used production line models in Section

1.2.1. Then, we provide a review of major results about production line evaluation



in Section 1.2.2. Finally, we comment on some work that deals with the production

line optimization in Section 1.2.3.

1.2.1 Production Line Models

Dallery and Gershwin (1992) discuss production line models as well as their features

in great detail. In addition, Gershwin (1994) covers three production line models.

They are the deterministic processing time and discrete material model (or deter-

ministic model for short), the exponential processing time discrete material model

(or exponential model for short), and the continuous processing time and continuous

material model (or continuous model for short). Next, we first comment on two key

features of any given production line model, and then we will brief explain the three

models.

Blocking Mechanisms. Since buffers between two adjacent machines are of

finite capacity, it is possible that a buffer gets full due to a failure of the downstream

machine and therefore the upstream machine is forced to stop even if it does not

fail. This phenomenon is called the blocking of the upstream machine. As indicated

in Dallery and Gershwin (1992), different blocking mechanisms are of interest. In

particular, they are blocking-after-service and blocking-before-service (Perros 1990).

Blocking-after-service is also referred to as type 1 blocking (Onvural and Per-

ros 1986), manufacturing blocking, production blocking, transfer blocking, and non-

immediate blocking (Gun and Makowski 1989). On the other hand, blocking-before-

service is also referred to as type 2 blocking (Onvural and Perros 1986), communication

blocking, service blocking, and immediate blocking (Gdn and Makowski 1989). The

difference between the two blocking mechanisms is whether the upstream machine

is allowed to operate when the buffer is full. The former allows operation while the

latter one does not. We assume blocking-before-service for the production line models

considered in this thesis

Failure Types. Two major types of failures have been considered in the litera-

'The effect of the difference between blocking models is no greater than the effect of changing all
buffer sizes by 1 (Gershwin 1994).



ture: operation dependent failures (ODF) and time dependent failures (TDF) (Buza-

cott and Hanifin 1978). ODFs indicate that machine may only fail when it is oper-

ating. However, TDFs are not related to the processing of parts and thus can occur

at any time, including when machine is idle. Good examples of ODFs and TDFs

are given in Dallery and Gershwin (1992), where it says ODFs are mainly due to

mechanical causes (like tool breakage or motor burnout) while TDFs are mainly due

to failures of electronic systems, such as controllers. However, ODF is the most im-

portant kind of failure in a production line (Buzacott and Hanifin 1978). We consider

ODFs in this thesis.

The Deterministic Processing Time, Discrete Material Model. This

model is also known informally as the deterministic model. The key feature of this

model is that processing times of all machines are equal, deterministic, and constant.

Therefore, time is scaled so that operations take one time unit. We further assume

that all the machines start their operations at the same instant. Transportation time

is negligible compared to the operation time.

Machines are unreliable and are parameterized by probabilities of failure and

repair. Each machine is allowed to have have only one failure mode or multiple

failure modes, and therefore we have the so called deterministic single failure mode

model (Buzacott 1967a and Gershwin 1994) and deterministic multiple failure mode

model (Tolio and Matta 1998). For the single failure mode model, the parameters of

Machine Mi are pi, the probability of a failure during a time unit while the machine

is operating; and ri, the probability of a repair during a time unit while the machine

is down. As a consequence, the times to failure and to repair are geometrically

distributed. By convention, repairs and failures occur at the beginnings of time units

and changes in the buffer levels take place at the ends of time units.

Several most influential early papers of Buzacott have been dedicated to study

the behavior of this deterministic processing time and discrete material production

line model. Because of the influence of Buzacott's work, this model is usually known

as the Buzacott model (Dallery and Gershwin 1992).

The Exponential Processing Time, Discrete Material Model. This model



is also known as the exponential model. In this model, the behavior of Machine Mi is

characterized by three exponentially distributed random variables: the service time

(with mean 1/pi), the time to fail (with mean 1/pi - abbreviated MTTF) and the

time to repair (with mean 1/ri - abbreviated MTTR). In other words, the service,

failure and repair times for Mi are assumed to be exponential random variables with

parameters pi, pi and ri. This model is more flexible than the previous one because

the machines are not all required to operate at the same speed.

In terms of the number of failure modes a machine may have, there are the expo-

nential single failure mode model (Choong and Gershwin 1987) and the exponential

multiple failure mode model (Levantesi et al. 1999b).

The Continuous Processing Tirne, Continuous Material Model. This

model is also known as the continuous model. In this model, the material that is

processed is treated as though it is a continuous fluid. The assumptions on which

this model is based are more general than those of the deterministic model in that the

machines can operate at different speeds (Gershwin 1994). In addition, the rate of

machine failure is affected by the buffer level: whether it is empty, full, or in between.

Again, machine may have single failure mode or multiple failure modes. Therefore,

we have the continuous single failure mode model (Burman 1995) and the continuous

multiple failure mode model (Levantesi et al. 2003).

The constant pi is the speed at which Machine Mi processes material while it is

operating and not constrained by the other machine or the buffer. The unreliability

of a machine is captured by exponential random variables. However, it is important

to indicate that in this model the failure probability of a machine (in a given small

time interval) is affected by buffer levels because of the different machine speeds. (See

Gershwin 1994 for details.) If Machine Mi is not affected, its failure rate is pi. The

repair rate of Machine Mi is denoted by ri, and the corresponding repair probability

is not affected by other machines or buffer levels.

In this thesis, we study three major research topics for the deterministic model

and the continuous model. We outline the connection between the research topics

and the production line models in Section 1.3.



1.2.2 Production Line Evaluation

We start the review of production line evaluation by considering two-machine lines,

for which analytical solutions exist. For good summary of the analysis of different two-

machine line models, see Buzacott and Shanthikumar (1993) and Gershwin (1994).

Buzacott (1968) discusses the evaluation of the efficiency of production systems,

including long serial lines, without internal storage buffers. For other early work about

two-machine lines without buffers, see Rao (1975), Lau (1986a), and (1986b). Here we

focus on two-machine line with buffers. Buzacott (1967a) derives the analytic formula

for the production rate for two-machine, one-buffer deterministic processing time

lines. Early work on the effect of storage buffers on the production rate of production

lines include Buzacott (1967b, 1971, 1972) and Gershwin and Berman (1981). Other

than these works, there are some major papers that introduce the analytical solutions

of different two-machine line models (i.e., the deterministic model, the exponential

model, and the continuous model) with the ODF assumption. They are summarized

in Table 1.1. (For a discussion about some analytical work of two-machine lines with

TDF, see Li et al. 2006.)

Table 1.1: Summary of analytical solutions for different two-machine line models

Line model Number of failure modes Analytical solution

Schick and Gershwin (1978)
single Buzacott and Shanthikumar (1993)

Deterministic Gershwin (1994)
multiple Tolio and Gershwin (1996)

Tolio et al. (2002)
Exponential single Gershwin and Berman (1981)

multiple Levantesi et al. (1999c)
Wijngaard (1979)

Continuous single Gershwin and Schick (1980)
Glassey and Hong (1986)

multiple Levantesi et al. (1999a)

Recently, analytical solutions of more general two-machine line models have been

developed. For example, Gershwin and Fallah-Fini (2007) propose a method to an-



alyze general deterministic processing time, discrete material production lines with

single buffer and identical processing rates. In van Vuuren and Adan (2009), they

present analytical solutions to analyze two-machine lines where machines are modeled

as reliable servers with generally distributed service times. Tan and Gershwin (2009)

and (2011) study general continuous Markovian two-machine production line systems.

Tolio (2011) analyzes continuous two-machine lines with multiple up and down states,

where machines at different up states are allowed to have different processing speeds.

In addition, Gebennini et al. (2009) and Gebennini et al. (2011) study two-machine

line evaluation with a restart policy for the first machine for the deterministic model

and the continuous model, respectively. These work mentioned above enlarge the

application scope of two-machine line evaluation.

The invention of a decomposition method with unreliable machines and finite

buffers (Gershwin 1984, 1987a) and its many extensions and modifications (Gershwin

1987b, Choong and Gershwin 1987, Dallery et al. 1988, 1989, Glassey and Hong 1993,

Burman 1995, Gershwin and Burman 2000, Dallery and Le Bihan 1995, 1999, Le Bi-

han and Dallery 2000, Tolio and Matta 1998, Levantesi et al. 1999b, and Levantesi

et al. 2003) enable the numerical evaluation of different models of production lines

having more than two machines. We briefly review the roadmap of the decomposition

approach as follows:

e Gershwin (1984), (1987a) first developed a decomposition method for the dis-

crete time discrete material long line model (i.e., the deterministic model), where

machines have the same processing time. The method is implemented by the

corresponding Dallery-David-Xie (DDX) algorithm (Dallery et al. 1988).

For a k-machine k - 1-buffer line, the decomposition method is based on a

representation of the k - 1-buffer system by k - 1 single-buffer systems, i.e.,

k-1 two-machine one-buffer building blocks (Gershwin 1994). For each building

block that contains Buffer Bi of the original line, two pseudo-machines, denoted

by M"(i) and Md(i), are constructed to represent the portion upstream of Bi

and the portion downstream of Bi of the original line, respectively (see Figure
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Figure 1-2: The decomposition method

1-2). For each pseudo-machine, there are two parameters that parameterize

the failure and repair properties of the machine. As a result, there are 4(k - 1)

unknowns. On the other hand, 4(k- 1) equations are constructed by considering

the conservation of flow, the flow rate-idle time relationship, the resumption

of flow, and the boundary conditions. The unique solutions of the 4(k - 1)

unknowns are solved by those 4(k - 1) equations, after which the production

rate of the line as well as the average inventory of each buffer are evaluated.

The analytical solution of two-machine line evaluation developed by Schick and

Gershwin (1978) and Gershwin and Schick (1983) is adopted to evaluate those

k - 1 building blocks and to solve the decomposition equations. Dallery et al.

(1989) extend the decomposition method and the DDX method to a continuous

production line model.

" The limit of the model above is that the times that parts spend being processed

at machines are equal at all machines (i.e., all machines have the same processing

speed). Therefore, Gershwin (1987b) extends the decomposition method to a

discrete time discrete material nonhomogeneous line model in which machines

are allowed to take different lengths of time performing operations on parts.

" Choong and Gershwin (1987) extend the original decomposition method to the



exponential processing time and discrete material production line model. In this

model, machines are allowed to have different processing rates. In particular,

the processing rate, the failure rate, and the repair rate of each machine are

exponentially distributed. This method makes use of the work of Gershwin and

Berman (1981) to evaluate the resulting k - 1 two-machine building blocks.

Gershwin (1989) adopts a version of the DDX algorithm to implement this

decomposition approach for exponential lines.

" Glassey and Hong (1993) develop a decomposition method based on Gershwin

(1987a) for continuous processing time and continuous material production line

models. In particular, in their model, machines are allowed to have different

deterministic processing rates. In addition, for each machine, the time to fail-

ure and the time to repair are exponentially distributed. In the decomposition,

the analysis of the two-machine line by Glassey and Hong (1986), which mod-

ifies the method of Wijngaard (1979), is used. Burman (1995) claims some

disadvantage of the work of Glassey and Hong (1993) and develops a different

set of decomposition equations for the continuous line model. The continuous

two-machine model of Gershwin and Schick (1980) is used to evaluate each of

the building blocks in the decomposition. In addition, Burman (1995) invents

an Accelerated DDX (ADDX) algorithm to solve those decomposition equa-

tions. The ADDX algorithm is demonstrated to be faster and to provide better

reliability of convergence than the DDX method.

" Dallery and Le Bihan (1995), (1999) indicate that when the reliability param-

eters (mean time to failure and mean time to repair) of the different machines

have different orders of magnitude, the original decomposition method of Gersh-

win (1987a) and the DDX algorithm (Dallery et al. 1988) provide less accurate

evaluation results. Therefore, they propose an improvement of the original de-

composition method that provides accurate results even in the above mentioned

situation. The reliability of the decomposition method is further improved by

Le Bihan and Dallery (2000).



* Finally, Tolio and Matta (1998), Levantesi et al. (1999b), and Levantesi et al.

(2003) develop three decomposition methods, based on Gershwin (1987a), for

all three production line models (i.e., the deterministic model, the exponential

model, and the continuous model). The most important feature of these meth-

ods is that they allow machines to have more than one failure mode because

of the development of the analytical solutions of two-machine line with multi-

ple failure mode machines of all those three models (Tolio and Gershwin 1996,

Levantesi et al. 1999c, and Levantesi et al. 1999a). In other words, any given

machine can fail in different ways. This makes the line models more realistic.

In particular, Tolio and Matta (1998) deal with the deterministic model and

make use of the work of Tolio and Gershwin (1996) to evaluate two-machine

building blocks. Levantesi et al. (1999b) deal with the exponential model and

adopt the analysis of Levantesi et al. (1999c) to evaluate two-machine building

blocks. Levantesi et al. (2003) deal with the continuous model and apply the

work of Levantesi et al. (1999a) for two-machine building block evaluation. We

refer to the three decomposition methods above as Tolio decomposition, while

the original work of Gershwin (1987a) as Gershwin decomposition. Then the

most important difference between Gershwin decomposition and Tolio decom-

position is that: in Gershwin decomposition, a single set of failure parameters

(i.e., failure and repair probabilities in the discrete model, and failure and re-

pair rates in the exponential and the continuous models) is determined for each

pseudo-machine to approximate the portion of the original line represented by

that pseudo-machine; while in Tolio decomposition, multiple failure modes are

determined for each pseudo-machine to approximate the portion of the original

line it represents. These multiple failure modes of a certain pseudo-machine

correspond to the real failures of all machines (of the original line) represented

by that pseudo-machine. Because of the advantage of being able to construct

pseudo-machines with multiple-failure modes, Tolio decomposition is expected

to be more accurate, yet slower, than Gershwin decomposition.

In addition to the works mentioned above, Syrowicz (1999) and Colledani et al.



(2005) extend the decomposition method to study deterministic, multiple-part-type,

multiple-failure-mode production lines. Bierbooms et al. (2011) apply the decompo-

sition method to analyze the performance of continuous production lines with finite

buffers and machines with generally distributed uptimes and downtimes. Senanayake

et al. (2011) develop an analytical method for the performance evaluation of hybrid

production lines where both manual and automated operations co-exist based on

decomposition. The decomposition approach is also extended to the evaluation for

assembly/disassembly systems (Di Mascolo et al. 1991, Gershwin 1991 and Gershwin

and Burman 2000) as well as closed-loop systems 2 (Frein et al. 1996, Werner 2001,

and Gershwin and Werner 2007) and multiple-loop systems (Zhang 2006).

Other than the decomposition methods, De Koster (1987) also proposes an ag-

gregation approach. However, in that approach, the correlations among the buffers

are not taken into account and the aggregation is only proceeded forward (Li et al.

2009). The early verision aggregation method of De Koster (1987) is further im-

proved by De Koster (1988). Also see Terracol and David (1987) for such a method.

In addition, Lim et al. (1990) develop an aggregation method. As summarized in Li

et al. (2009), the method consists of a backward and a forward aggregation. In the

backward aggregation, the last subline Mk-1 - BkI - Mk are aggregated into a single

machine represented by ML_1. Then the subline Mk-2 - Bk-2 - Mb_1 is aggregated

into Machine MA- 2 , and so on until all machines and buffers are aggregated into Mi'.

In the forward aggregation, the subline M - B 1 - M2 is aggregated into Mf. Then

M/f is aggregated with M3 and B2 to form Mf, and so on until all machines and

the intervening buffers are aggregated into Mf. The process is repeated until the

throughputs of Mi and Mf converge and are used as an estimate of the throughput

of the line.

Methods have been found for the exact numerical analysis of some small lines

with more than two machines. For instance, Gershwin and Schick (1983) derive an

analytical solution for a three-machine line with unreliable machines and small buffers.

There are also numerical methods for exact analysis of lines that are slightly longer

2We will further study single loop systems in Chapters 5 and 6.



with small buffers (Tan 2002). However, they are severely limited. In this thesis, we

use decomposition for the evaluation and optimization of much larger production line

systems.

1.2.3 Production Line Optimization

Next, we review some work that is designated to the optimization of production lines.

Park (1993) developes a two-phase heuristic algorithm to solve the total buffer space

minimization problem. But his method can not always find the optimal solutions and

does not always converge.

Seong et al. (1994) adopt the concept of concept of pseudo gradient and gradient

projection to solve the production rate maximization problem and the profit maxi-

mization problem for a specified total buffer space for continuous production lines.

Seong et al. (1995) use a gradient method to solve the production rate maximization

problem for exponential production lines.

Gershwin and Goldis (1995) employ a gradient method to solve the total buffer

space minimization problem. Their algorithm is based on the observation that if

the production rate is expanded to first order the problem may be formulated as an

integer linear program.

Schor (1995), and Gershwin and Schor (2000) present an efficient buffer allocation

algorithm that applied a primal-dual approach to minimize the total buffer space

under a production rate constraint. In their work, the primal problem is to minimize

total buffer space subject to a production rate constraint, while the dual problem is to

maximize the production rate of the line subject to total buffer space constraint. They

also study the profit maximization of a line through a nonlinear programming method

that is fast and accurate, but they do not consider the production rate constraint in

the profit maximization problem. (As we will indicate later in Section 4.3.5, their

primal problem is a special case of the our profit maximization problem for production

lines.)

More recently, Huang et al. (2002) consider a flow-shop-type production system

and apply a dynamic programming approach to maximize its production rate or min-



imize its work-in-process under a certain buffer allocation strategy. Diamantidis and

Papadopoulos (2004) also present a dynamic programming algorithm for optimizing

buffer allocation based on the aggregation method of Lim et al. (1990). Although

their dynamic programming methodology brings new approaches to production line

design, they do not attempt to maximize the profits of lines.

Chan and Ng (2002) compare four buffer allocation strategies and presente a mod-

ified one for production rate maximization. Shi and Men (2003) introduce a hybrid

algorithm based on hybrid nested partitions and a Tabu search method (Glover and

Laguna 1997) for production line optimization. However, they focus on maximizing

the production rate of the line under a total buffer space constraint, rather than the

profit of the line. Smith and Cruz (2005) solve the buffer allocation problem for gen-

eral finite buffer queueing networks in which they minimize buffer space cost under

the production rate constraint, but they do not consider the average inventory cost.

One paper that considers both buffer space cost and average inventory cost is Dol-

gui et al. (2002). Their buffer allocation problem aims at determining buffer capaci-

ties considering the production rate of the line, the buffer acquisition and installation

cost, and the inventory cost. For that problem, they propose a genetic algorithm

where tentative solutions are evaluated with an approximate method based on the

Markov-model aggregation approach. However, they do not have the production rate

constraint in their problem.

Colledani et al. (2003) minimize the total buffer space subject to a production

rate constraint for deterministic single failure mode lines. Their algorithm is baed

on an iterative scheme that, starting from the configuration of the line with minimal

capacity of each buffer, proceeds by increasing the capacity of buffers until the target

production rate is reached. Colledani and Tolio (2005) solve the same problem for

deterministic multiple failure mode lines. They use a first order Taylor expansion to

linearize the decomposition equations and therefore the production rate of the line,

so that to convert the nonlinear production rate constraint into a linear constraint.

As a result, their problem becomes a mixed integer linear problem. Tolio et al. (2009)

extend their algorithm to continuous production lines with multiple failure modes.



Some practical considerations in optimization of flow production systems are re-

ported in Tempelmeier (2003). In addition, some metaheuristic methods are adopted

to deal with the scheduling and balancing problems for production lines or assembly

lines (Jin et al. 2006 and Bautista and Pereira 2007).

The optimization problem becomes much harder if the production rate constraint

is considered in production line design because the production rate is a nonlinear

function of buffer sizes. As it will be indicated in Section 1.3, our optimization

problem includes the production rate constraint and aims at maximizing the profit

for production lines, where we consider both buffer space cost and inventory holding

cost. The average inventory of the line, and consequently the line's cost, are also

nonlinear functions of buffer sizes. Hence, we have nonlinear elements in both our

objective function and constraints.

1.3 Research Goal and Contributions

The goal of this thesis is to develop efficient buffer design algorithms for produc-

tion line profit maximization subject to a production rate constraint, and therefore

to provide valuable insight about production line design to manufacturing system

practitioners.

In this thesis, we define the profit of a k-machine k - 1-buffer line as

k-1 k-1

Profit = AP(N 1,- ,Nk_1) - bNi - cini - Z, (1.1)
i=1 i=1

where A > 0 ($/part) is the revenue coefficient associated with the production rate

P(N 1 , - - - , Nk_1) (or P(N)), bi and cj ($/part/time unit) are cost coefficients associ-

ated with the buffer space and average inventory for the ith buffer, respectively, and

Z stands for all costs other than those due to buffer sizes, average inventory, and raw

material. Since Z is independent of N, we simplify the formulation above to

k-1 k-1

J(Ni, ... , Nk- 1) = AP(N1 , ... , NA1) - S biNi - cini, (1.2)
i=1 i=1



where we refer to J(N 1 , - - - , Nk_1) as the profit of the line. In addition, the production

rate can be required to satisfy as P(N) ;> P, where P is the target production rate.

The goal is achieved by investigating three major topics. They are

1. production line profit maximization subject to a production rate constraint,

2. single closed-loop system (i.e., a special production line structure where the last

machine and the first machine are connected with a buffer) profit maximization

subject to a production rate constraint,

3. and finally, production line profit maximization subject to both a production

rate constraint and a maximum waiting time constraint of parts in a given

buffer.

In particular, we consider Topic 1 to be the primary focus from the perspective of

algorithm development. This is because, as we will show, the algorithm developed for

Topic 1 can be extended to Topics 2 and 3. However, Topics 2 and 3 have their unique

attributes that are not covered by Topic 1. In order to optimize closed-loop systems,

we have to first improve the evaluation algorithm of such systems and therefore two

necessary modifications about loop evaluation are provided (see Chapter 5). On the

other hand, in order to study the maximum part waiting time constraint in a given

buffer, the analytical formulation of the part waiting time distribution is developed for

two-machine lines and it is extended for longer lines with decomposition in Chapter 7.

For the specific problem formulation and algorithm derivation associated with each

topic, refer to individual chapters. The research motivations of Topics 2 and 3 are

also provided in those corresponding chapters.

The primary production line model considered in this thesis is the deterministic

single failure mode production line model of Gershwin (1994). However, the profit

maximization algorithm is also applied to optimize the deterministic multiple failure

mode line model of Tolio and Matta (1998) and the continuous multiple failure mode

line model of Levantesi et al. (2003) in Chapter 4. In addition, the proposed algorithm

also applies to the continuous line model of Burman (1995).



1.4 Thesis Outline

The remaining of the thesis is organized as follows:

" A discussion about the qualitative behavior of the production rate of production

lines, where the monotonicity and concavity of P(N) are proved for the deter-

ministic two-machine line model of Gershwin (1994), and that for longer lines

are discussed with numerical experiments and a literature review. (Chapter 2.)

" A discussion about the qualitative behavior of average buffer levels, where three-

machine two-buffer lines are analyzed since they present the simplest form of

inventory level behavior of one buffer caused by varying the size of another

buffer. The findings are applied to longer lines. (Chapter 3.)

" An efficient buffer allocation algorithm for production line profit maximization

subject to a production rate constraint for production lines. (Chapter 4.)

" Two modifications that enable more accurate evaluation results for closed-loop

systems. The evaluation of closed-loop systems is also extended to the case of

single open-loop systems. (Chapter 5.)

" The profit maximization algorithm for closed-loop systems. This is an extension

of the algorithm developed for production lines. (Chapter 6.)

" The analytical formulation of the part waiting time distribution for the two-

machine line model of Gershwin (1994) (which can be easily extended to the

multiple failure mode model of Tolio and Gershwin 1996 and Tolio et al. 2002),

and an optimization algorithm for production line profit maximization subject

to both the production rate constraint and the maximum part waiting time

constraint of parts in a given buffer. (Chapter 7.)

" A segmentation method for long line optimization that makes use of the al-

gorithm of Chapter 4 and significantly reduces the computer time of long line

optimization while guaranteeing the accuracy. (Chapter 8.)



* The development of an additive property in production line optimization, which

together with the segmentation method, provide useful line design insights.

(Chapter 9.)

* Summary of the thesis contributions and outline of future research directions.

(Chapter 10.)
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Chapter 2

Qualitative Behavior of the

Production Rate P(N)

We indicate in Chapter 1 that the primary goal of this research is to develop an

efficient buffer allocation algorithm that maximizes the profit of production lines

under a production rate constraint. The difficulty of achieving this goal comes from

the nonlinearity of both the production rate as well as the profit of the line, since the

profit is a function of the production rate, the buffer sizes, and the average inventory

levels of all buffers.

In this chapter and the next chapter (Chapter 3), we study the qualitative behav-

ior of the production rate P(N) (where N is the vector of buffer sizes) and average

buffer levels hi(N), respectively. Understanding them would help us better develop

the desired algorithm for production line profit maximization. In particular, the qual-

itative properties of the production rate P(N) includes its continuity, monotonicity,

and concavity. Gershwin and Schor (2000) describe these three properties as follows

and we follow their description:

o continuity: a small change in a buffer's size would lead to a small change in

the system's performance (i.e., the production rate as well as average inventory

levels of all buffers).

o monotonicity: an increase in a buffer's size (while all the other buffer sizes are



increased or held constant) increases the production rate.

e concavity: the increase in production rate due to a unit increase in buffer size

decreases as the buffer size increases.

In what follows, we first discuss the continuity of P(N) in Section 2.1. After that,

the monotonicity and concavity of P(N) for two-machine lines are proved in Section

2.2. Finally, we provide some literature review and numerical evidence to show the

monotonicity and concavity of P(N) for long lines in Section 2.3.

We want to point out clearly that the production rate of long lines is evaluated

by an approximate decomposition method (Gershwin 1987a) and therefore we do

not have rigorous proofs of the monotonicity and concavity of P(N) for long lines.

However, both the literature review and the numerical evidence discussed in Section

2.3 indicate that they are good assumptions of P(N) for long lines. On the other

hand, since we have exact analytical solutions for two-machine lines, we prove the

monotonicity and concavity of P(N) for two-machine lines.

2.1 Continuity of P(N)

In the discrete time discrete material production line model, buffer spaces are discrete

and buffer sizes are integers. However, we can take advantage of the analytical form of

the two-machine line evaluation, which enables us to treat N as a continuous variable.

This is because the formulas for the production rate and the average inventory level

of the two-machine line do not require N to be integers'. This enables us to evaluate

a two-machine line whose buffer size is not an integer. We provide an example of this.

Consider a two-machine line whose parameters are r1 = .1, p1 = .01, r2 = .2, and

P2 = .01. The production rate of the line as a function of the buffer size N is illustrated

in Figure 2-1. In particular, the curve in Figure 2-1 is generated by varying the buffer

size N as a continuous variable with a step size of .01 for drawing the curve; while

the discrete dots in Figure 2-1 are generated by restricting N to take integer values.

'We include the continuous variable version of the analytical solution of the two-machine line in
Appendix A.



The smooth curve of P(N) indicates that when the restriction N E Z+ is relaxed

to N E R+, the production rate of two-machine lines P(N) becomes a continuous

function. There is no unexpected bump or discontinuity when N is considered as a

continuous variable.
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Figure 2-1: P(N) vs. non-integer N, two-machine one-buffer line

On the other hand, the average inventory level of the two-machine line mentioned

above is also illustrated in Figure 2-2. Similarly, the curve in Figure 2-2 is generated

by varying the buffer size N as a continuous variable; while the discrete dots in

Figure 2-2 are generated by restricting N to take integer values. The smooth curve of

ft(N) indicates that when the restriction N E Z+ is relaxed to N E R+, the average

inventory level h(N) also becomes a continuous function. There is no unexpected

bump or discontinuity.
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Figure 2-2: h(N) vs. non-integer N, two-machine one-buffer line

From these results, it appears that for two-machine lines, the buffer size N can be



considered as a continuous variable, and therefore P(N) and A(N) can be considered

as continuously differentiable functions. Moreover, since we use the decomposition

method (Gershwin 1987a), which makes use of the two-machine line evaluation, to

evaluate long lines, all the buffer sizes Ni, i = 1, - - - , k - 1 can be treated as contin-

uous variables. As a consequence, for discrete time discrete material long lines, the

production rate P(N) and the average inventory levels fij(N), i = 1, -.. , k - 1 can

all be considered as continuous differentiable functions of buffer size N. We illustrate

this with a numerical example.

Consider a three-machine two-buffer discrete material line whose parameters are

r1 = .1, pi = .01, r 2 = .2, P2 = .03, r 3 = .4, and P3 = .01. The production rate

of the line as N1 and N2 vary is illustrated in Figure 2-3. The surface in Figure

2-1 is generated by varying the buffer size N as a continuous variable with a step

size of .5 and evaluating the line using the approximate decomposition method. The

smooth surface of P(N, N2) indicates that when the restriction N E Z+ is relaxed to

N E R+, the production rate of three-machine two-buffer lines becomes a continuous

function2 . There is no unexpected bump or discontinuity. The continuity of Ai(N)

and hi(N) is shown in Figure 2-4.
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Figure 2-3: P(N) vs. non-integer N, three-machine two-buffer line

2 Note that the production rate also appears to be a concave function of Ni and N2 in Figure
2-1. We will revisit this point when we discuss the concavity of P(N) for long lines in Section 2.3.
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2.2 The Monotonicity and Concavity of P(N) in

Two-Machine Lines

Gershwin (1994) develops sets of analytical solutions for different two-machine one-

buffer line models. As mentioned in Chapter 1, by following the naming methods

there, they are the deterministic model, the exponential model, and the continuous

model. In particular, we study the deterministic model (i.e., deterministic processing

time and discrete material model) here. The analytical solution of this model is

summarized in Appendix A. In what follows, we show the monotonicity and concavity

of the production rate of two-machine lines.

For a deterministic processing time and discrete material two-machine line, each

Machine Mi is parameterized by the repair probability ri and the failure probability

pi. The size of the buffer between Machines M1 and M 2 is N. The production rate

of the line is P(N). In addition, according to Gershwin (1994), ej is defined to be

the isolated production rate of Mi. It is what the production rate of Mi would be if

it were never impeded by the other machine or the buffer. It is given by

ej = (2.1)
ri + pi

and it represents the fraction of time that Mi is operational. The actual production

rate of Mi is less because of blocking or starvation. Since we use P to represent the

production rate in the thesis, in what follows, we use P instead of ej to represent the



isolated production rate of Machine Mi.

There are two possible cases for a two-machine line: the two machines have the

same isolated production rate and the two machines have different isolated production

rates. We analyze the two cases separately.

2.2.1 The Isolated Production Rates of the Two Machines

are Different

According to Gershwin (1994), the production rate of a two-machine line can be

calculated by

P(N) = P1(1 - pb)

- p1 1 CXN-1r1 r2 - 12 P1r2 (2.2)
p1r2

ri 1 - CXN-1 r1 + r 2 - r1 2 - P1r 2

T1 +p1 p1T2

where P1 is the isolated production rate of the upstream machine M1 assuming no

blocking or starvation, Pb is the probability of blocking of the upstream machine, C

is a normalizing constant, and

r1 + r 2 - r1 r 2 - r1p2
Y = .(2.3)

P1 + P2 ~ P1P2 - p1r2

Y2 = (2.4)
P1 + P2- PiP2 - r1P2

X = -. (2.5)
Y1

On the other hand, the production rate can also be computed by



P(N) = P2 (1-ps)

= P2 (1 CXr1 +r2 -r)2 (2.6)

r 2  1 - CX0 ri + r 2 - rr 2 - r1P2
T2 +P2 T 1P2

where P2 is the isolated production rate of the downstream machine M2 assuming no

blocking or starvation, p, is the probability of starvation of the downstream machine.

Rewriting equation (2.2) gives

P(N)r1 + p1 + CXN-11 I+ r 2 - rIr2 - p 1 r 2  (2.7)
T1 p1 r 2

Similarly, rewriting equation (2.6) gives

P(N)r2+P2 + CX r 2 -rr2- I =1. (2.8)
r2  rip2

Note that when Pi = P2, then X = 1 according to Equations (2.3), (2.4), and

(2.5). Therefore, Equations (2.7) and (2.8) are identical and we cannot find the

expressions for the production rate P(N) and the normalizing constant C by solving

them'. However, when P1 # P2, X 4 1 and Equations (2.7) and (2.8) are different.

Therefore, we are able to solve them together to find P(N) and C because there are

two equations and two unknowns. Thus, solving them together yields an analytical

expression for the production rate P(N) of the two-machine line,

X N-1 r1 + r2 - r Pr2  pir2  X r1 + r 2 - r1 r 2 - r 1P2

P(N) = p1 r 2  r1p2  (2.9)
T2 +P2XN-1 ri + r 2 - r 1r 2 - p1r2 _ r1 +P1 X1 + r 2 - r1r 2 - r 1p2 '

r2 P1r2  r1  r 1P2

3We study this case with a different approach in Section 2.2.2.



and an analytical expression for the normalizing constant C,

r2 +P 2  r1 +p1

C =2 r 0 (2.10)r2 + P2 X N-1 r1 + r2 - r1r2- P1r2 _r1 + P1 X r1 + r2 - r1r2 - r1P2

r2 pir2  r1  r1P2

We would like to emphasize that the expressions for P(N) and C derived above

are not meaningful when Pi = P2 since in that case Equations (2.7) and (2.8) are

identical and we cannot solve two unknowns from one equation.

To show the monotonicity and concavity of P(N), we first derive the first order

and the second order derivatives of P(N) with respect to N. If we can show that

dP/dN > 0 and d2 P/dN2 < 0, then the monotonicity and concavity of P(N) follow.

Next, we will show the desired properties. First, we need to derive dP/dN > 0. It can

be computed from (2.9). We realize that both the numerator and the denominator in

(2.9) have the decision variable N. Then dP/dN can be computed according to the

quotient rule of calculus (Larson et al. 2005) and the derivative of non natural base

exponential function (Berresford and Rockett 2008),

ABInX XN
d P P 2 P1 )(.1
d N Ax - -B X)2

P2 P1

where

A r1 + r 2 - rir2 - p1r2
pir2

and

B = + r 2 - rr 2 - rip2
r1P2

It is easy to see that the denominator of (2.11) is positive. In addition, with the

assumption that 0 < pi < 1 and 0 < r < 1, A, B, and X are positive. Moreover, if

P1 > P2, then X > 1; while if P1 < P2, then 0 < X < 1. Therefore, it can be seen that

(1/P 2 - 1/P1 ) and ln X always have the same sign. Therefore, the numerator of (2.11)

is also positive. Therefore, dP/dN > 0. This shows that P(N) is a monotonically



increasing function of N.

Next, we consider d2P/dN2 , which can be computed from dP/dN according to

the quotient rule again. Therefore, we have

A 3B(In X) 2  1 - X 3N-2+ AB3 (In X) 2  1 XN+2
d 2PP2 P2 P1 )p12 P2 P1)2 P.(2.12)
dN 2  AXN1 B

(P2 P1

It is easy to see that the denominator of (2.12) is positive. To study the sign of the

numerator of (2.12), we consider the two cases (P1 > P2 and P1 < P2) separately.

First, assume that Pi > P2. In this case, X > 1. In addition, it easy to see that

P > P2 implies that pir2 < P2 r1 and therefore A > B(> 0). In addition, according

to the convention of the deterministic processing time and discrete material model of

Gershwin (1994), we have N > 4. As a result 3N-2 > N+2 and X3N-2 > XN+ 2 > 0.

(Note that 3N - 2 > N + 2 does not require N > 4. In fact, it requires N > 2. The

analytical solution in Gershwin 1994 does not apply to the case where N = 2 or

3, although it appears that our version of the analytical solution (see Appendix A)

works when N = 2 and 3. We choose to follow the practice of Gershwin 1994 and let

N > 4.) Since A > B and P1 > P2, we know that

A3B(ln X)2  1 1 AB 3(ln X)2 ( 1)>0
a o(p 2 p 1

and therefore the numerator of (2.12) satisfies



A3B(InX)2  1

P2
2  P2

AB 3 (ln X) 2 (

p2 \P 2

AB3 (In X)2

p2

P1/b
1 \ 1(P2 P1

X3N-2 AB 3 (In X) 2

p12

X3N-2 +AB 3 (In X)2

p2

XN+2 +AB 3 (In X) 2

P1
2

I-IXN+2
\P 2 P1 /

(1 - 1XN+2
\P2 P1 )

S
P1 1 N+2

\P2 P1)

= 0.

Consequently, from the derivation above, we see that the numerator of (2.12) is

negative when Pi > P2. Recall that the denominator of (2.12) is positive. Therefore,

d2P/dN2 < 0.

On the other hand, assume that P1 < P2. In this case, 0 < X < 1. It easy to

see that P1 < P2 implies that pir2 > p2r1 and therefore B > A(> 0). Again, since

N > 4, 3N - 2 > N + 2 and 0 < X3N-2 < XN+2. Since A < B and P1 < P2, we

know that

A3B(In X) 2

0>
S1 

1 \

and therefore the numerator of (2.12) satisfies

A3B(ln X)2

P2
2

A3B(ln X)2

P2

A3B(In X) 2

P2
2

P2
X3N-2

1 
1)(P2 P1

( - 3N-2P2 P1)

AB 3 (in X)2

P1
2

X3N-2 A3B(In X) 2

P 22

A3 B(ln X)2

P 22

( ! 1 XN+2

P2 P1)

- 1XN+2

P2 XP1

1-1X3N-2
\P2 P1 )

= 0.

AB 3 (In X) 2

> p2 1)



Consequently, from the derivation above, we see that the numerator of (2.12)

is also negative when P1 < P2 . Recall that the denominator of (2.12) is positive.

Therefore, d2P/dN2 < 0.

According to the analysis above, we see that no matter if Pi > P2 or P1 < P2 ,

d2P/dN2 is always negative, which indicates the concavity of P(N) when P $ P2.

2.2.2 The Isolated Production Rates of the Two Machines

are the Same

Let us consider the case where P1 = P2 now. In this case, we cannot solve for the

production rate P(N) and the normalizing constant C by (2.7) and (2.8). Therefore,

in this case, we find C by realizing that all steady state probabilities must sum to 1,

CAeX + CX + CXY 2 + CBeX + CXN-1 + CXN-1Y+ CDeXN- +CEeXN-1

C(N - 3)(1 + Y1 )(1+ Y2 ) = 1

(2.13)

where

Ae - ri + r2 - rir 2 - riP 2

rip 2

Be - r +r2 - rjr2 - 2 1
P1 + P2 - P1P2 - r 1p 2 P2

De - r1 + r2 - r1 r2 - p1 r2 1
P1 + P2 - P1P2 - pir2 P1

Ee = ri + r2 - rir2 -pir 2

p 1r2

We modify (2.13) and get



C (Ae+1+Y2 + Be)X + (1 + Y + De + Ee)XN-1 + (N - 3)(1 + Y)(1 +

For simplicity, let

Me = 1+Y 2 +Ae+Be>0,

Re = 1+Y+De+Ee>0,

Qe = (1+Y1)(1+Y 2)>0,

then Equation (2.14) becomes

C [MeX + ReXN-1 + Qe(N - 3)] = 1,

MeX + ReXN- + Qe(N - 3)

(2.19)

Me +Re +Qe(N - 3)

because X = 1. Therefore, the production rate P(N) can be computed by

P(N) = P2(1-P s)

P2Ae
Me + Re+Qe(N - 3)

The first order and the second order derivatives of P(N) with respect to N are

dP Me_

dN (Me

P 2AeQe

+ Re + Qe(N
2 > 0, (2.21)

- 3))

< 0. (2.22)

Y2)] = 1.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.20)

and
d2P
dN 2

-2P 2 AeQ2

Re + Qe(N -
( Me +



According to Equations (2.21) and (2.22), we conclude that P(N) is also mono-

tonically increasing and concave in this case. Sections 2.2.1 and 2.2.2 indicate the

monotonicity and the concavity of P(N) for two-machine lines.

2.3 The Monotonicity and Concavity of P(N) in

Longer Lines

2.3.1 Literature Review

A common intuition in the line design field is the concavity (as well as the mono-

tonicity) of P(N), though there is no analytical result that conclusively shows that

the lines (with more than two machines) we study in this thesis exhibit the concavity

property. However, some research in similar systems indicates that this is a reasonable

assumption.

Okamura and Yamashina (1977) demonstrate the monotonicity and concavity of

the throughput of two-machine one-buffer transfer lines with geometric machines and

finite buffers. They classify a two-machine line into three types according to the

magnitudes of the failure and repair probabilities of machines. However, no matter

to which type a given line belongs, its production rate is a monotonically increasing

and concave function of the size of the buffer between the two machines.

Shanthikumar and Yao (1989a) point out the monotonicity and concavity prop-

erties in cyclic queueing networks with finite buffers and exponential servers. They

use the evolution equations of a sample path approach (Muth 1979, Dallery and

Gershwin 1992) to prove the results. Dallery and Gershwin (1992) point out that

although the monotonicity property was established in the context of closed systems

in Shanthikumar and Yao (1989a), it is readily applicable to the case of transfer lines.

Shanthikumar and Yao (1989b) establish the monotonicity and concavity of the

throughput in a multicell system. Each cell processes a given part family. According

to the flow pattern of jobs, the cells are categorized into two types. A Type 1 cell is

modeled as a Jackson network; a Type 2 cell is modeled as an ordered-entry system



with heterogeneous servers. Both models have finite waiting room due to the buffer

capacity allocated to the cells. They show that the production rate of each cell of

either type is an increasing and concave function of its buffer allocation.

Anantharam and Tsoucas (1990) prove the stochastic concavity of throughput in

a series of -/M/1/B queues. The notation means that the ith queue has on server

with independent and identically distributed (i.i.d.) exponential service times and a

waiting room of size Bi.

Meester and Shanthikumar (1990) study the throughput in tandem queueing sys-

tems with m stages and finite intermediate buffer storage spaces. Each stage has a

single server and the service times are independent and exponentially. They show

that for this system the number of customers departing from each of the k stages

during time interval [0, t] for any t > 0 is strongly stochastically increasing and con-

cave in the buffer storage capacities. Consequently, the through put of this tandem

queueing system is an increasing and concave function of the buffer storage capaci-

ties. Hillier and So (1995) make use of the concavity of throughput result of Meester

and Shanthikumar (1990) for optimal design of tandem queuing systems with finite

buffers. Dallery et al. (1994) generalize the work of Meester and Shanthikumar (1990)

and present the concavity properties in Fork/Join queueing networks with blocking

(FJQN/B). The FJQN/B is first introduced by Ammar and Gershwin (1989).

Glasserman and Yao (1996) show the monotonicity and concavity of the through-

put as a function of of buffer parameters in serial lines with general blocking and

synchronized service. In this research, a production line is modeled as a generalized

semi-Markov process. Schor (1995) explains that even though Glasserman and Yao

(1996) assume reliable servers, this result is applicable to our system where machines

are unreliable. This is because any system with unreliable machines may be trans-

formed into a system of reliable machines by changing the distribution of the service

time. As an example, Altiok and Stidham (1983) show that a machine with exponen-

tial service, failure and repair times can be represented as a reliable machine with a

coxian server (Cox 1955). Therefore, the differences between flow lines with reliable

machines and flow lines with unreliable machines has more to do with how the system



is described than how the system performs (Schor 1995).

Rajan and Agrawal (1998) demonstrate the concavity of the throughput of a large

class of queueing systems with i.i.d. new-better-than-used (Marshall and Shaked 1986)

service times. Xie (2002) show the concavity of the throughput of 2-stage continuous

transfer lines subject to time-dependent failures. Kwon (2006) studies the optimal

buffer allocation problem of a flexible manufacturing system of Sung and Kwon (1994)

and indicates that in both the first-level and the second-level queue-alone subsystems,

the throughputs are monotonically increasing and concave functions of their buffer

sizes, respectively.

In addition, some work based on the concavity of the production rate for the same

or similar systems has been published. Seong et al. (1995) develop two heuristic al-

gorithms for buffer allocation in a production line with unreliable machines with the

concavity assumption of the throughput. In particular, they study how to maximize

the production rate of the line given fixed total buffer space. Park (1993) assumes

the concavity of the production rate over both a buffer and a vector of buffers in his

study of buffer size optimization. Gershwin and Schor (2000) establish a primal-dual

algorithm for buffer space allocation in production lines basing on the assumption of

concave P(N). Levantesi et al. (2001) presents another algorithm for buffer allocation

in production lines with the same assumption. Jeong and Kim (2000) applies that

property to assembly systems. So (1997) also mentions the concavity of the produc-

tion rate in his study on optimal buffer allocation strategy for unpaced production

lines.

Moreover, Colledani and Tolio (2005) develop a buffer allocation algorithm that

minimizes the total buffer space subject to a production rate constraint for production

lines with finite buffers and machines that are allowed to have multiple geometric

failure modes. In their approach, they make use of the monotonicity and concavity

of the production rate to assure the convergence of the proposed gradient methods.

Colledani et al. (2003) and Tolio et al. (2009) also assume the monotonicity and

concavity of the production rate in their algorithms for minimization of total buffer

space.



Other than the literature mentioned above, Schor (1995) provides a detailed sur-

vey on the monotonicity property of the production rate. We make use of the mono-

tonicity and concavity of P(N) assumption when we derive the production line profit

maximization algorithm in Chapter 4.

2.3.2 Numerical Evidence

The production rate of a given three-machine two-buffer line as a function of buffer

sizes (N 1, N2) is plotted in Figure 2-3 when we discuss the continuity of P(N) in

Section 2.1. The figure also illustrates that P(N) appears to be a monotonically

increasing and concave function of of N. Numerical experiments reveal that the shape

of the P(N) surface for three machine lines remain the same qualitatively regardless

of the machine parameters (see Figure 2-5).

Table 2.1: Machine parameters of the five experiments

In Figure 2-5, we plot the production rate P(N) for five three-machine two-buffer

lines with different parameters. The iso-production rate curves are also projected on

the N1 - N2 plane. Machine parameters of these five lines are listed in Table 2.1. As it

will be discussed in Chapter 3, the five lines under consideration can be classified into

five different types of three-machine two-buffer lines according to the classification

method (with respect to the relative speeds of different parts of the line divided by

one of the two buffers) presented in Section 3.2.1. (Any given three-machine line will

belong to one of the five types.) Both the shape of the P(N) surfaces and the concave

iso-throughput curves in Figure 2-5 suggest that the production rates of the five lines

are all concave functions no matter which type a line is. These numerical experiments

case Line 1 Line 2 Line 3 Line 4 Line 5

r1  .1 .8 .7 .1 .12
Pi .1 .096 .01 .01 .009
r2  .09 .1 .12 .1 .15
P2 .01 .01 .008 .01 .009
r3  .11 .1 .12 .8 .07
P3 .01 .01 .008 .096 .01
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Figure 2-5: P(N) vs. N, five experiments

support the conjecture that P(N) is a monotonically increasing and concave function

of of N.

2.4 Summary

In this chapter, some qualitative properties of the production rate P(N), including the

continuity, the monotonicity, and the concavity, are studied. The continuity enables



us to treat P(N) as a continuous function of N even when the deterministic line model

is used. This facilitates us to apply a gradient method as part of the proposed profit

maximization algorithm in Chapter 4. In addition, the monotonicity and concavity

assumption of P(N) are also used in deriving the optimization algorithm.



Chapter 3

Qualitative Behavior of Average

Buffer Levels

3.1 Motivation

We indicate in Chapter 1 that the profit of a production line is a function of buffer

sizes, the average inventory levels of all buffers, and the production rate of the line.

In addition, some qualitative properties, including continuity, monotonicity, and con-

cavity, of the production rate as a function of buffer sizes are discussed in Chapter

2. Therefore, in this chapter, we study the qualitative behavior of average inven-

tory levels as functions of buffer sizes based on observations made from numerical

experiments, and extend the scope of the study to the profit of production lines. In

particular, we study three-machine two-buffer lines because

1. They represent the simplest example of interaction between buffers. Therefore,

it enables us to understand how the average inventory of a buffer changes as we

vary the size of the buffer as well as the other buffer.

2. Understanding three-machine two-buffer lines gives insight into longer lines.

This is because for any two buffers Bi and By in a k-machine k - 1-buffer

line, they divide the line into three segments: M 1 - B 1 - - - - - Bi_1 - Mi,

Mj+ 1- Bi+1 - - - - - Bj_1 - M5, and Mj+1 - Bj+1 - -- - B_1 - Mk (see Figure



3-1). Therefore, the original k-machine k - 1-buffer line can be viewed as a

three-machine two-buffer line. We show this extension in Section 3.5.

Ml Bi M 2  Bi- M Bi M ALBi Bj_ M_ B. Mk_B+ B 1 1 Mk

L --- ---- -- r-- ----

Figure 3-1: A three-machine two-buffer line representative of a k-machine k -1-buffer
line

Visualizing these quantities of a three-machine two-buffer line as a function of

N1 and/or N2 can help us gain some important insights about the behavior of long

lines. Moreover, we make further use of these insights to derive the optimal buffer

allocation algorithm for production line profit maximization in Chapter 4.

3.2 Three-Machine Two-Buffer Line Classification

3.2.1 Motivation of Classification

A three-machine two-buffer line has buffers B1 and B2. The average inventory of a

given buffer not only varies as the size of that buffer changes, but also varies with

the size of the other. In other words, h1 is a function of both N1 and N2, and

the same is true for A2. If we want to study Ai (as a function of N1 and N2) in a

three-machine two-buffer line, we can view it as a two-machine one-buffer line, with

Machine M1 being the upstream machine, Buffer B1 as the buffer, and a downstream

pseudo-machine M{2,3} that represents M2, B2, and M3 as a whole in the original line

(see Figure 3-2(a)). (Note that we are not using decomposition here to approximate

M2 - B 2 - M 3 and therefore M 2 ,3} is exactly M2 - B 2 - M3.)

In Figure 3-2(a), in order to study the qualitative behavior of 51, we consider the

original three-machine two-buffer line as a two-machine one-buffer line with respect



EHM={2,3}M{,}3

(a) Two-machine one-buffer line w.r.t. B1  (b) Two-machine one-buffer line w.r.t. B2

Figure 3-2: Two-machine line representations of the original three-machine line

to Buffer B 1, or M1 - B 1 - M{2,3}. Given certain machine parameters of M1 , M2 and

M3 , there are three cases:

1. No matter what value N2 takes, M is always faster than M{2,31 . This is to say

that the isolated production rate of M1 is always higher than that of M{2 ,3}-

For convenience, let P1 denote the production rate of M1, while P 2 ,3}(N 2 )

denotes the production rate of M12 ,3} as a function of N2. Then we have Pi >

P{2,3 }(N2), VN2 > 0, or equivalently, P1 ;> P 2,3}(oo)-

2. No matter what value N2 takes, M1 is always slower than M{2,3}. This is

to say that the production rate of M1 is always smaller than that of M{2,3}-

With the same notation, we have Pi < P 2,3} (N 2), VN2 > 0, or equivalently,

P1  ; P 2,3}(0).

3. For some values of N2, M is faster than M{2 ,3}, while for other values of N2 ,

Mi is slower than M{2,31. In other words, the production rate of M1 is smaller

for some values of N2 but higher for other values of N2 than that of M 2 ,3}-

Therefore, P 2,3}(0) < P1 < P 2,3}(oo)-

In these three cases, ni exhibits different behaviors. Studying them separately

would help us better understand the qualitative behavior of the average inventory of

Buffer B 1. Similarly, there are three cases for A2 . Therefore, there are totally 3 x 3 =

nine possible types of behavior for a three-machine two-buffer line.



3.2.2 Nine Types

To sum up, the nine types are listed in Table 3.1. However, as we show shortly,

not all of these nine types are feasible, because the case for i and the case for f52

are not independent. We will study the nine types individually and summarize their

feasibilities accordingly.

Table 3.1: Feasibility of nine types, to be determined

P1 2 P{2,3} (C) P{2,3 (0) < P 1 < P{2,3 (00) P1  P2,3(0)

P3  P{1,21 (00)
P{1,2}(0) < P3 < P{ 1 ,21 (00)

P3 P 1,2 (0)

3.3 Feasibility Analysis of Nine Types

3.3.1 Feasibility Analysis

In this section, we analyze the feasibility of each of those nine types. For the conve-

nience in the analysis below, it is helpful to point out that

r1 + P1

r2 + P2

T 3 + P3

P{i, 2} (0)

P{i, 2} (oo)

1 2

~Pi P2
1 - -

1

+
P1 P2

= min ri r2 = min(P1, P2),
(ri+pi r2 +P2)



11
P2 P3  1 1

1+ -+- - + 1
r2 r3 P2 P3

P{2 ,3}(oo) = min r2 r = min(P2, P3 )-
(r2 +P2 r3 +P3)

Type 1: P 3 > P{1, 2}(oo) and P1 > P 2 ,3}(oo)

It is easy to see that P3 > P{1, 2}(oo) requires

r3  > minl
r 3 +P3

while P1 > P 2,3}(oo) requires

71 > min ,2 r3

ri1 + P1 r (2 + p2' r3 + P3

Combining these two conditions, we know that Type 1 is feasible if and only if,

r3 > min ri r2n and > min r2 r3
r3+P3 ~ +P1\r1+pi r2 +p 2 ' r3 +P3

An example of Type 1 is:

r1 =.1 Pi =.01 P 1 =.909

r2 = .09 P2 = .01 P2 = .9

r3 = -11 P3 = -01 P3 = .917

Type 2: P3 > P{1, 2}(oo) and P 2,31(0) < P1 < P{2,3}(oo)

P3 > P 1,2}(oo) means that

r3 > min r 1

r3 + P3 r1 + Pi'
r2

r2 + P2)

P{2,3} (0)

( r1 r2
r1 + Pi'r2 +P2



while P 2,3}(0) < Pi < P{2,3}(oo) indicates that

1 
r1 <

+ P+ r+p1
r 2 r3

min
(r2 +P2' r3 +P3/

Combining these two conditions reveals that Machine M1 has to be the slowest

one of the line and if P 2,3 }(0) < Pi < P 2 ,31 is satisfied, then P3 2 P1,2 }(oo) is

satisfied automatically. Therefore, Type 2 is feasible. An example of Type 2 is:

r1 = .8 pi = .09 6 P 1 = .893

r 2 = -1 P2 = .0 1 P2 = .909

r3 = -1 P3 = .01 P3 = .909

1
P2 P3
r2 r3

Type 3: P3 > P 1,2}(oo) and P1 < P 2,3}(0)

P3 > P{1,2}(oo) requires

r3 > min
r3 + P 3

1
.01 .01 = .833

.11 .11

(r1 + Pi

r2
7*2 + P2)

while P1  5 P 2,3}(0) requires

r1  1 2 P

ri +p1 1+ P2+P
r 2  r3

Therefore, Type 3 is feasible if and only if

r1 1

ri+p + P2 +P
r2  r3

74



which implies P3 2 P{1,2}(oo). Thus, Type 3 is feasible. An example of Type 3 is:

ri = .07 pi= .01

r2= .12 P2 = .008

r3 = .12 p3 = .008

1

P2  
P3

12 +r+

P1 = .875

P2 = .938

P3 = .938

1
.008 .008 = .882

1 .12 .12

Type 4: P{1,2}(0) < P3 < P{1, 2}(oo) and P1  P{2,3}(oo)

P{1,2}(0) < P3 < P{1, 2}(oo) requires

1 -< r3 < min r1 r2

1+--+P2 r 3 + P3  xr1+P1'r2+P2)
r1  r 2

while P1 > P 2,3}(oo) requires

r1 > min 'r2 ra

'r1 + P1 ~ (r2 + P2' r3 + P3

According to these two conditions, we know that Machine M3 has to be the slowest

one and if P 1,2}(0) < P3 < P{1,2}(oo) is satisfied, then P1  P{2,3 }(oo) is satisfied

automatically. Thus, Type 4 is feasible. In addition, it can be seen that Type 4 lines

are reverses of Type 2 lines. An example of Type 4 is:

r1 = .1

r2 = -1

ra = .8

pi = .01

P2 = .01

P3 = .096

P1 = .909

P2 = .909

P3 = .893

1 1
P~ .01 .01 = .833

1 + 2 .1 .1rl r2.1 .1



Type 5: P3 < P{1,2}(0) and P1 > P 2,3}(oo)

P3 < P{1,2} (0) requires

r3+P3 1+ +P2
r1 r2

while P1 2 P{2,3} (oo) requires

ri > min r2

r1 +P1 - r2 +P2'

r3
r3 + P)J

Therefore, Type 3 is feasible if and only if

'r3 1

r3+P3 1+ +P2
r1  r2

which implies P1 2 P 2 ,3} (oo). Thus, Type 5 is feasible. In addition, Type 5 lines are

reverses of Type 3 lines. An example of Type 5 is:

r1 = .12 pi =.009 P1 = .930

r 2 = .15 p2 = .009 P2 = .943

r3 = .07 P3 = .01 P3 = .875

Pi P2
r1 r2

1 .009 .009 .881
.12 .15

Type 6: P 1,2}(0) < P3 < P{1, 2}(oo) and P 2,3}(0) < Pi < P{2,31(oo)

P11,2)(0) < P3 < P{, 2}(oo) requires

1 r3 <

+ + P2 r3+P3
r1 r 2

M. r1
mmr, 

while P 2,3}(0) < P1 < P 2 ,3}(oo) requires

1 r1___1 < r
+2+P r1 +P1

r2 r3

<M r2 r3

(r2 +P2' r3 +P3)

r2

r2 +P2)



Condition 1 implies that M 3 should be the slowest machine. However, condition

2 indicates that M1 should be the slowest one. Since they contradict to each other,

Type 6 is infeasible.

Type 7: P 1,2}(0) < P3 < P{1, 2}(oo) and P1 5 P 2 ,3}(0)

P{1,2}(0) < P3 < P{1, 2}(oo) requires

1+ + r3+P \r1 +p1' r2 +P2/

r1+p1 1+ P2+P
r2  r3

Condition 1 implies that Machine M3 should be the slowest one, while condition

2 implies that Machine M1 should be the slowest one. Therefore, Type 7 is infeasible.

Type 8: P3 5 P 1,2}(0) and P 2,3}(0) < P1 < P{2,3}(oo)

P3 5 P{1,2}(0) requires
r3 1

r1 +P3 1+PI+P2
r1  r2

while P 2,3}(0) < Pi < P{2 ,3}(oo) requires

1 < _r1 < min )
1+ + ri+pi r2 +P 2'r 3 +P 3

r2  r3

Condition 1 implies that M3 should be the slowest one, while condition 2 implies

that M1 should be the slowest one. Therefore, Type 8 is infeasible.



Type 9: P3 < P{1,2}(0) and P1 < P 2,3}(0)

P3 < P{1,21(0) requires
r

3  <

ri + P3 12+ +
r1  r2

while Pi P 2,3} (0) requires

r11

ri+ - 1+P2 P3
r2  r3

Condition 1 implies that Machine M3 should be the slowest one, while condition 2

indicates that Machine M1 should be the slowest one. Therefore, Type 9 is infeasible.

3.3.2 Feasibility Summary

According to the analysis above, we see that Types 1, 2, 3, 4, and 5 are feasible, while

other four types are infeasible. The feasibilities of all types are summarized in Table

3.2. Moreover, the five feasible types are summarized in Table 3.3.

Table 3.2: Feasibility of nine types

P1 > Pf2,31(co) P{2,31(0) < P1 < P12,31() P1 <P 2,3}(0)
P3 > P 1,2}(oo) feasible feasible feasible

P{1,21(0) < P3 < P{1, 2}(oo) feasible infeasible infeasible
P3 < P 1,2 (0) feasible infeasible infeasible

3.4 Qualitative Behavior of Five Feasible Types

In this section, we further study those five feasible types. In particular, for each type,

we will study the behavior of the production rate (P(N 1 , N2)), average inventory

of Buffer B 1 (ni), average inventory of Buffer B2 (i2), and the profit of the three-

machine two-buffer line as functions of N1 and N2 respectively. In other words, we

will fix N1 or N2 and vary the other one. In addition, when N1 is used as the decision



Table 3.3: Five feasible types

variable, we will consider three fixed values of N2. Similarly, when N2 is used as the

decision variable, we will consider three fixed values of N1. The profit J(N, N2 ) ($

per time unit) of a three-machine two-buffer line is computed as

J(N1, N2 ) = 1000P(N 1 , N2 ) - N1 - N2 - i - h2

In the analysis below, we will make frequent use of two-machine one-buffer line

representations of the original three-machine two-buffer line. This facilitates our

analysis of the qualitative behaviors of the four quantities under consideration. In

particular, for B1 in the original three-machine two-buffer line, we can view Machine

M1 as its upstream machine, but consider a downstream pseudo-machine M 2,3} that

represents M 2, B 2, and M 3. Similarly, for B 2, we can view Machine M 3 as its down-

stream machine, but consider an upstream pseudo-machine M 1,21 that represents

M 1, B 1, and M 2 . To summarize, the two two-machine one-buffer lines that we will

study frequently are M1- B 1 - M{2,3} and M 1 ,2} - B 2 - M3 . As introduced in Section

3.2.1, we use P1 and P3 to represent the production rates of Machines M1 and M3 ,

respectively. The isolated production rate of M 2 ,3 1 as a function of N2 is denoted

by P{2,3}(N2). The isolated production rate of M 1,2} as a function of N1 is denoted

properties parameter conditions

Type > min (r, pir 2 p) and

Tpe 1 PP{i, 2}(oo) and r3+P3
P1  2 P{ 2,3}(oo) > m i r r3 _)

____+_pi Tr2r+P2 ra'\

Tye 2 P 2 P1,2}(oo) and 1 < <mi
P{ 2,3 }(0) < Pi < P{2,3}(oo) P ri+p, (r 2 +p 2 'r 3 ±P 3

r2 r3

Tpe3 P3  P{1,2}(oo) and <
P1 5 P{2,3}(0)

r2 r3

Type 4 P{1,2}(0) < P3 < P1,2(oo)<m
and Pi 2 P{2 ,3}(oo) ±- r3+P3 (r, -plr2+P2

ri r2

Type 5 P3 P{1,21(0) and <

Pi >{min(ri)r2 andTyp 5 , >Pf ,31(00r3 +P3 riP p r2+P

r-pI ~~ r2P'r p



by P{1,2}(N 1 ). Note that, we use the notation P to denote the production rate of the

entire three-machine two-buffer line, but E to denote the isolated production rate of

a portion of the line.

3.4.1 Type 1

Recall that Type 1 means that P3 > P{1,2}(oo) and P1 2 P 2,3}(oo). Consider the

example shown in Table 3.4. We first vary N1. The three values of N2 we consider

are 30, 100, and 500. The four quantities being considered are shown in Figure 3-3.

We explain them as follows.

Table 3.4: An example of Type 1

machine M1  M2  M3

ri .1 .09 .11
p .01 .01 .01
Pi .909 .9 .917

* Figure 3-3(a) shows the production rate P(N), which appears to be a con-

cave function of N1. This is consistent with our assumption and argument

about the concavity of the production rate in Chapter 2. Since in this type

PI P{2,3}(oo), the production rate of the entire line is upper bounded by

the isolated production rate of M 2 - B 2 - M3, or P 2,3}(N 2), when N1 is large

enough. Therefore, as N1 increases, the production rate of the line approaches

to P{2,31 (N2). The production rate asymptotes for these three cases (in terms

of the value of N2) are P 2,3}(30), P 2 ,3}(100), and P{2 ,3 }(500) respectively, and

P{2,3}(30) < P{2,3}(100) < P{2,3}(500).

" Figure 3-3(b) shows ni(N1 ). Because P1  P 2,3}(oo) (> P 2,3 }(N2 )), in the

two-machine one-buffer line M1 - B 1 - M 2 ,3}, M1 is always faster than M 2,3}-

Therefore, as N1 increases, the average inventory ii increases without a limit.

ni appears to be a convex function of N1 in Type 1.
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Figure 3-3: Four quantities vs. N1, Type 1

" Figure 3-3(c) shows h2(N1 ). Because P3  P{1,2}(oo) (> P{1 ,2}(N 1)), in the two-

machine one-buffer line M 1,2} - B 2 - M3, M3 is always faster than the upstream

M{1,21 . As N1 increases, the P{1,21(N1 ) increases (but it is always less than P3).

So, the average inventory of B2 increases up to an asymptote. h2 appears to be

a concave function of N1 in Type 1.

" Figure 3-3(d) shows the profit J(N), which appears to be a concave function of

N1. To further study this observation, we compute the second order derivative



of the profit with respect to N1 . Recall that we indicate in Chapter 2 that buffer

sizes N can be treated as continuous variables and the profit of the line J(N)

can be considered as a continuously differentiable function. However, since we

use the decomposition method of Gershwin (1987a) to evaluate long lines, we

do not have analytical solutions of the profit of the line. Therefore, we compute

d2J/dN? < 0 according to a forward difference formula,

d2 JdN2 = dJ(N1 + 5N 1)/dN - dJ(N1)/dN (3.1)
6N1

where SN1 = .01 is the step size, while dJ(N1 + 6N 1)/dN and dJ(N1 )/dN are

the first order derivatives which are also computed by the forward difference

method. We observe that d2 J/dN2 < 0. This is consistent with the observation

of the concavity of J(N 1 ). For all three values of N2, there is a unique optimal

value of N1 between 0 and 50 that maximizes the profit of the three-machine

two-buffer line.

Next, we vary N2 and consider three values of N1. They are 30, 100, and 500.

The four quantities being considered are shown in Figure 3-4.

" Figure 3-4(a) shows P(N 2), which appears to be a concave function of N2 .

Since in this type P3 > P 1,21 (oo), the production rate of the entire line is upper

bounded by P 1,2}(N 1 ), when N2 is large enough. Therefore, as N2 increases,

the production rate of the line approaches to P 1,2}(N 1 ). The production rate

asymptotes for these three cases (in terms of the value of N1 ) are P 1,2}(30),

P{1,2 }(100), and P 1,2}(500) respectively.

" Figure 3-4(b) shows hi(N2). Because P ;; P 2,3}(oo) (> P 2,3}(N2)), in the

two-machine one-buffer line M1 - B1 - M 2,3}, M 1 is always faster than M{2,3}-

When N2 is small, P 2,3}(N 2 ) is small and B1 tends to be full. As N2 increases,

P{2 ,3} (N2) increases but it is always less than P1. The average inventory level h1

becomes smaller and finally reaches an asymptote. hi appears to be a convex

function of N2.
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Figure 3-4: Four quantities vs. N2, Type 1

" Figure 3-4(c) shows A2 (N2). Because P3 > P{1, 2}(oo) (> P{11,2}(N1 )), in the two-

machine one-buffer line M 1,2} - B 2 - M3 , M3 is always faster than the upstream

M{1 ,2}. As N2 increases, h 2 increases up to an asymptote. It appears that A2 is

a concave function of N2.

" Figure 3-4(d) shows the profit J(N 2), which appears to be a concave function

of N2. However, a checking of d2J/dN2 indicates that d2J/dN2 is negative

for some values of N2 while positive for others, in all three cases (see Figure



3-5). Note from Figure 3-5 that the magnitude of positive d2 J/dN2 is very

small. Therefore, the non-concavity of J(N 2) is hard to be observe in Figure

3-4(d). In addition, since we evaluate long lines by means of decomposition, it

is not clear if the tiny positive d2 J/dN2 is a property of J(N 2) or is due to the

approximation made in the decomposition method. If it is indeed a property of

J(N 2), then the profit of the line is neither a concave nor a convex function of

N2. For all three values of N1, there is a unique optimal value of N2 around 50

that maximizes the profit of the three-machine two-buffer line.
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3.4.2 Type 2

Recall that Type 2 means that P3 > P{1,2} (oo) and P 2,3}(0) < P1 < P 2,3}(oo). These

require

1 r1 < min r2 r3
1+- + r+p1 \r2 +P2' r3P+P3

r 2  r3

Consider the example shown in Table 3.5. We first vary N 1. The three values of

N2 we consider are 30, 100, and 500. The four quantities being considered are shown

in Figures 3-6.

Table 3.5: An example of Type 2

machine M1  M2  M3

ri .8 .1 .1
p .096 .01 .01
Pi .893 .909 .909

" Figure 3-6(a) shows the production rate P(N1 ). In this type P 2 ,3}(0) < Pi <

P{2,3}(oo). Thus, for small N2, P1 > P{2 ,3}(N2) and the production rate of the

line is upper bounded by P 2,3}(N2). However, for large N2, P < P 2,3}(N2)

and the production rate is upper bounded by P1. For instance, when N2 = 500,

the production rate is upper bounded by P1 = .893. However, when N2 = 30,

the production rate is upper bounded by P 2,3 }(30) that is less than .893. The

production rate appears to be a concave function of N1.

" Figure 3-6(b) shows i1(Ni). For small N2, Pi > P 2 ,3} (N2) therefore M1 is faster

than M 2,3}. In this case, as N1 increases, ni increases without a limit. However,

for large N2, Pi < P 2,3}(N2) therefore M is slower than M{2,3}. In this case,

as N1 increases, fit increases up to an asymptote. Therefore hi appears to be

either a concave or a convex function of N1, depending on N2.

* Figure 3-6(c) illustrates h2(N1). Since P3  > P{1,2}(oo) (> P{1 ,2}(N 1 )), in the

two-machine one-buffer line M 1,2} - B 2 - M 3, M3 is always faster than the
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upstream M 1,2}. As N1 increases, P1,2}(N1 ) increases (but it is always less

than P3 ). So, 6i2 increases up to an asymptote. It appears that 'h2 to be a

concave function of N1.

Figure 3-6(d) shows the profit J(N). J(N) appears to be a concave function

of N1 when N2 is small, while it is neither a concave nor a convex function of

N1 when N2 is large (although this is hard to see in the figure). We further

confirm these observations by studying d2 J/dN2 and find that d2 J/dN2 < 0

I I
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when N2 = 30, while when N2 = 100 and 500, d2 J/dNy is positive for some

values of N1 but negative for others (see Figure 3-7). Because of the large

inventory cost of B1 when Ni is large but N2 is small, the solid curve (i.e., the

N2 = 30 case) eventually crosses the other two curves. For all three values of

N2, there is a unique optimal value of N1 that maximizes the profit.
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Figure 3-7: d2 J/dN 2 vs. N1, Type 2

Next, we vary N2 and consider three values of N1. They are 100, 500, and 1000.

The four quantities being considered are shown in Figure 3-8.

9 Figure 3-8(a) shows P(N 2), which appears to be a concave function of N2 .

In this type P 2,3 1(0) < P1 < P{2,3 }(oo). For N1 that is large enough (e.g.,

N1 = 500 or 1000), the production rate of the line is approximately P{2,3}(N2 )

when N2 is small and increases as N2 increases. However, when N2 is large, the

production rate is bounded by P 1. This explains why when N 2 is larger than a

certain value (say N2), the production rate turns to a constant value (P) for

all N2 ;> N2' instead of keeping increasing up to an asymptote.
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* Figure 3-8(b) shows hi(N2). Let us consider the case where N1 = 1000. It shows

the most dramatic behavior of h1. Recall that P{2,3} (0) < P1 < P{2,3} (oo). Thus,

when N2 is small, P1 > P{2 ,3} (N2). In other words, in M1 - B1 - M 2,3}, M1 is

faster than M 2,3} and Buffer B1 tends to be full. So, i is close to N = 1000

when N2 is small. However, when N2 is large, P1 < P{2 ,3}(N 2 ). In this case, M1

is slower than M{ 2,3} and Buffer B1 tends to be empty. Thus, h1 is very small

when N2 is large. There is a dramatic drop of h1 as N2 increases from 50 to

100. This is because when N2 is small, M1 is faster; while when N2 is large,



M{2,3} is faster. The dramatic drop of hi is due to the shift of the faster machine

in Mi - B 1 - M2,3}. When N2 is somewhere around 70, P1 = P 2,3 }(N 2 ) and

i= 0.5N1 = 500. A similar but less drastic drop in n1 can be seen when

N1 = 500. However, when Ni is small, the dramatic drop cannot be observed.

i is neither a concave nor a convex function of N2.

" Figure 3-8(c) shows n2 (N2). Because P3 > P{1, 2}(oo) (> P{1,2 }(N)), in the two-

machine one-buffer line M 1,2} - B 2 - M 3, M 3 is always faster than M{1,2}. As

we increase N2 , h 2 increases up to an asymptote. In addition, f12 is neither a

concave nor a convex function of N2 when N is large (although this is hard to

see in the figure).

" Figure 3-8(d) shows the profit J(N 2). J(N 2) appears to be a concave function

of N2 for small N1. However, when N1 is large, J(N 2) is neither a concave nor

a convex function of N2. This is clear in the figure for Ni = 500 and 1000.

For Ni = 100, a study of d2J/dN2 (see Figure 3-9) shows that it can be both

positive and negative depending on N2. If this is indeed a property of J(N 2),

then it is neither a concave nor a convex function of N2 when N1 is small as

well. Otherwise, it may be due to the inaccuracy of decomposition. For all

three values of N1, there is a unique optimal value of N2 that maximizes the

profit of the three-machine two-buffer line.
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3.4.3 Type 3

Type 3 means that P3 > P{1,2}(oo) and Pi < P 2,3}(0). These conditions require

ri < 1
rjP I+ P2 +P3

r2  r3

Consider the example shown in Table 3.6. We first vary N1 . The three values of

N2 we consider are 30, 100, and 500. The four quantities being considered are shown

in Figure 3-10.

Table 3.6: An example of Type 3

machine M 1  M2  M3

ri .07 .12 .12

p .01 .008 .008
Pi .875 .938 .938

" Figure 3-10(a) illustrates the prodnction rate, which appears to be a concave

function of N 1. Since P1 P 2,3}(0) (< P 2,3}(N 2)), in M1 - B1 - Md(2), M1 is

always slower than M{2,3} and the production rate is upper bounded by P1 =

.875 for all three cases.

" Figure 3-10(b) shows f1(N 1 ). Because P1 5 P 2,3}(0) (< P 2,31(N2)), M1 is

always slower than M 2,3} regardless of N2. Therefore, as N1 increases, h1

increases up to an asymptote. hi appears to be a concave function of N1 .

" Figure 3-10(c) illustrates ft2(N1). Because P3  P 1,2}(oo) (> P 1,2 1(N1)), in

the two-machine one-buffer line M{ 1,21 - B 2 - M3, M 3 is always faster than the

M{1,2}. As N1 increases, P{1 ,2}(N 1 ) increases (but it is always less than P3). So,

h2 increases up to an asymptote. It appears that A2 is a concave function of

N1.

" Figure 3-10(d) shows that the profit J(N) appears to be a concave function

of N1. However, a checking of d2J/dN2 indicates that d2 J/dN2 is negative
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Figure 3-10: Four quantities vs. N1, Type 3

for some values of Ni while positive for others, in all three cases (see Figure

3-11). Note from Figure 3-11 that the magnitude of positive d2J/dN2 is very

small. Therefore, the non-concavity of J(N) is hardly to be observed in Figure

3-10(d). It is not clear if the tiny positive d2 J/dN2 is indeed a property of

J(N 1 ) or is due to the approximation made in the decomposition method. If it

is indeed a property of J(N), then the profit of the line is neither a concave nor

a convex function of N1. For all three values of N2, there is a unique optimal

value of N1 that maximizes the profit of the three-machine two-buffer line.
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Figure 3-11: d2 J/dN2 vs. N1, Type 3

Next, we vary N2 and consider three values of N1. They are 30, 100, and 500.

The four quantities being considered are shown in Figure 3-12.

" Figure 3-12(a) indicates that production rate appears to be a concave func-

tion of N2. Since P3  > P 1,2 }(oo), the production rate is upper bounded by

P{1, 2} (N1 ). Therefore, as N2 increases, the production rate of the line ap-

proaches to P 1,2}(N 1). When N1 is as large as 500, for instance, the production

rate approaches to P{1,2}(500) ~ P 1,2}(oo) = min(P1 , P2) = Pi = .875.

" Figure 3-12(b) shows i 1 (N2). Recall that P1  5 P 2,3 }(0) (< P 2,3 }(N 2)). Thus,

in M1 - B 1 - M{2 ,3}, M1 is always slower than M{2,3} and h1 tends to be

small compared to N 1. In addition, as N2 increases, M 2,3} becomes faster and
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therefore ii becomes even smaller. Consequently, h1 decreases monotonically

with N2 and finally reaches an asymptote. It appears that h is a convex

function of N2.

* Figure 3-12(c) shows i 2 (N1 ). Because P3 > P 1,2}(oo) (> P{1, 2}(N1)), in M{1,2}

B 2 - M 3, M 3 is always faster than the upstream M 1,21. As we increase N2 , ii 2

increases up to an asymptote. It appears that h2 is a concave function of N2.

* Figure 3-12(d) illustrates the profit J(N 2). The profit appears to be a concave
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function of N2 . However, a checking of d2 J/dN2 indicates that d2 J/dN2 is

negative for some values of N 2 while positive for others, in all three cases (see

Figure 3-13). Note from Figure 3-13 that the magnitude of positive d2 J/dN2 is

very small. Therefore, the non-concavity of J(N 2) is hardly to be observed in

Figure 3-12(d). It is not clear if the tiny positive d2 J/dN2 is indeed a property

of J(N 2) or is due to the approximation made in the decomposition method. If

it is indeed a property of J(N 2), then the profit of the line is neither a concave

nor a convex function of N2. For all three values of N1, there is a unique optimal

value of N2 that maximizes the profit of the line.
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3.4.4 Type 4

Recall that Type 4 lines are reverses of Type 2 lines. In particular, in Type 4,

P{1,2}(0) < P3 < P{1 ,2}(oo) and P1 > P{2,3}(oo). These conditions require

1 r 3  . _min r1 _ r2

1+ + r 3+p 3  r1+p1'r 2 +p 2 )
r1  r 2

Consider the example shown in Table 3.7. (Note that Type 4 with these param-

eters is a reverse case of the Type 2 example of Table 3.5 in Section 3.4.2.) We

first vary N 1. The three values of N2 we consider are 100, 500, and 1000. The four

quantities being considered are shown in Figures 3-14. (Compare this with Figure

3-8.)

Table 3.7: An example of Type 4

machine M1  M2  M3

r; .1 .1 .8
p .01 .01 .096
Pi .909 .909 .893

" Figure 3-14(a) shows the production rate, which appears to be a concave func-

tion of N1. In this type P{1,21(0) < P3 < P{1, 2}(oo). For N2 that is large

enough (e.g., N2 = 500 or 1000), the production rate of the line is approxi-

mately P 1,2}(N1 ) when N is small and increases as N increases. However,

when N1 is large, the production rate is bounded by P3. This explains why

when N1 is larger than a certain value (say N1F), the production rate turns to

a constant value (P3) for all Ni Nf instead continuing to increase up to an

asymptote.

" Figure 3-14(b) shows h1(N1). Because P1 2 P 2 ,3}(oo) (> P 2,3}(N2)), M1 is

always faster than M 2,3} regardless of N2 in M1 - B1 - M 2,3}. Therefore, as

N1 increases, h increases without a limit. i appears to be a convex function

of N 1.
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Figure 3-14: Four quantities vs. N1, Type 4

9 Figure 3-14(c) shows i 2(N1). The case where N2 = 1000 shows the most dra-

matic behavior of I2. Recall that P{1,2}(0) < P3 < P{1,2}(oo). Thus, when N1

is small, P3 > P{1 ,21(N1). In other words, in M{1,2} - B 2 - M3, M3 is faster

than M 1,2} therefore the buffer level tends to be small. So, h 2 is small when

N1 is small. However, when N1 is large, P3 < P{1,2 }(N 1 ). In this case, M3 is

slower than M 1,2} and the buffer level tends to be high. There is a dramatic

increase of h 2 as N1 increases from 50 to 100. This is because when N1 is small,

M3 is faster; while when N1 is large, M{1,21 is faster. The dramatic increase of



A 2 is due to the shift of the faster machine in M{,2 - B 2 - M 3 . When N, is

somewhere around 70, P{1, 2}(N1) = P3 and i 2 = 0.5N 2 = 500. A similar but

less dramatic increase of ii 2 can be observed when N2 = 500. However, when

N2 is small, the dramatic increase is not observed'. Therefore, h 2 is neither a

concave nor a convex function of N1.

Figure 3-14(d) shows the profit J(N1). It is helpful to point out that given

the line parameters, the profit is monotonically decreasing with N, when N2

is large. This means that, as N, increases, the increment of buffer space and

average inventory cost outweighs the increment of revenue associated with the

production rate. However, for all three values of N2, there is a unique optimal

value of N, that maximizes the profit of the line. The monotonically decreasing

curves suggest that Buffer B, is undesirable. The profit appears to be a concave

function of N, for small N2. However, a study of d2 J/dN2 (see Figure 3-15)

shows that d2J/dN,2 can be both positive and negative depending on N, when

N2 is small. It is not clear if the tiny positive value of d 2 J/dN2 is due to

the property of J(N1) or the approximate decomposition method. When N2 is

large, the profit is neither a concave nor a convex function of N1.
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Figure 3-15: d2 J/dN? vs. N1, Type 4

Next, we vary N2 and consider three values of N1. They are 30, 100, and 500.

The four quantities being considered are shown in Figure 3-16. (Compare this with

Figure 3-6.)

'Compare the analysis here with the analysis for Figure 3-8(b) of Type 2.
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Figure 3-16(a) shows that the production rate appears to be a concave function

of N2. In this type P{1 ,2}(0) < P3 < P{1,2}(oo). Thus, for small N1, P3 >

P{1,2 }(N1 ) and therefore the production rate is upper bounded by P{1,2 }(N1 ).

On the other hand, for large Nis, P3 < P 1,2} (N1 ) and therefore the production

rate is upper bounded by P3 . As we can see, for instance, when N1 = 100 or 500,

the production rate is upper bounded by P3 = .893. However, when N1 = 30,

the production rate is upper bounded by P{1,21 (30) that is less than .893.

Ni = 30

Ni = 100

Ni = 500



" Figure 3-16(b) shows h,1 (N2). In this type P1 ;> P 2,3}(o) (> P{2,3}(N 2 )). Thus,

in the two-machine one-buffer line M - B1 - M{2 ,31, M 1 is always faster than

M{2,3 1 and i tends to be close to N1. In addition, as N2 increases, M{2,31
becomes faster and therefore ii1 gets smaller. Consequently, hi decreases mono-

tonically with N2 and finally reaches an asymptote, and N 1. It appears that ni

is a convex function of N2.

" Figure 3-16(c) illustrates h 2(N2). For small N1, P3 > P 1,2}(N 1 ) therefore M3 is

faster than M{1,2}. In this case, as N2 increases, 'h2 increases up to an asymptote.

However, for large N1, P3 < P 1,2 }(N 1 ) therefore M3 is slower than M{1,21. In

this case, as N2 increases, h2 increases without a limit. It appears that 2 can

be either a concave or a convex function of N2 depending on the value of N1.

" Figure 3-16(d) shows the profit J(N 2). For all three values of N1, there is a

unique optimal value of N2 (between 0 and 50) that maximizes the profit of

the three-machine two-buffer line. In particular, the profit appears to be a

concave function of N2 for large N 1. However, when Ni is small, the profit is

neither concave nor convex (although it is hard to see from the figure). These

observations are further confirmed by studying d2J/dN2. When N1 is large,

d2J/dN2 < 0. When N1 is small (e.g., Ni = 30), d2J/dN2 is positive for some

values of N2 but negative for others (see Figure 3-17).
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3.4.5 Type 5

In Type 5, P3 < P{1 ,21(0) and P1 > P{2 ,3}(oo). These conditions require

T3 < 1

r3 +P3 1 +P2
r1  r2

Type 5 lines are reverses of Type 3 lines. Consider the example shown in Table

3.8. We first vary N 1. The three values of N2 we consider are 30, 100, and 500. The

four quantities being considered are shown in Figure 3-18. (Compare this with Figure

3-12.)

Table 3.8: An example of Type 5

machine M M2 M3

ri .12 .15 .07
pA .009 .009 .01
Pi .930 .943 .875

" Figure 3-18(a) shows the production rate, which appears to be a concave func-

tion of N1. In this type P1 > P 2,3} (00) (> P{2,3} (N2)). Therefore M1 is always

faster than M{2,31 in M1 -B 1 -M{ 2,3} and the production rate is upper bounded

by P 2,3}(N2) when N1 is sufficiently large. In addition, when N2 is large, P(N 1 )

approaches to P{2, 3}(N 2 ) ~ min{P2 , P3} = P3 = .875.

" Figure 3-18(b) shows h1 (N1 ). Because P1 ;> P 2,3 }(oo) (> P 2,3 }(N2 )), M1 is al-

ways faster than M{2,3} regardless of N2. Therefore, as N1 increases, h1 increases

without a limit. A1 appears to be a convex function of N1.

" Figure 3-18(c) illustrates T12 (N1 ). Because P3 5 P 1,2}(0) (< P 1,2}(N1)), M3 is

always slower than the upstream M{1 ,2} in M 1,2} - B 2 - M 3. As N increases,

M{1,21 becomes faster and faster. Therefore, h 2 is close to N2 (i.e., Buffer B 2

tends to be full) and reaches an asymptote. It appears that 'h2 is a concave

function of N1 .

100
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Figure 3-18: Four quantities vs. N1, Type 5

e Figure 3-18(d) shows the profit J(N). When N 2 is large, the profit is mono-

tonically decreasing with N 1, which indicates that Buffer B1 is undesirable.

However, for all three values of N2, there is a unique optimal value of N that

maximizes the profit of the line. The profit appears to be a concave function

when N2 is small while a convex function when N2 is large. However, we further

study d2 J/dN2. We see that d2 J/dN2 < 0 when N 2 is small, which is consistent

with the observation. However, when N2 is large, d2 J/dN2 is positive for some

values of N1 while negative for others (see Figure 3-19). This indicates that
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J(N) is neither a concave nor a convex function of N when N2 is large.
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Figure 3-19: d2 J/dN2 vs. N1, Type 5

Next, we vary N2 and consider three values of N1. They are 30, 100, and 500.

The four quantities being considered are shown in Figure 3-20. (Compare this with

Figure 3-10.)

e Figure 3-20(a) indicates that the production rate appears to be a concave func-

tion of N2. Since P3 5 Pi,2}(0) (< P{1,2}(N 1 )), the production rate is upper

bounded by the P3. Therefore, as N2 increases, the production rate of the line

approaches to P3 = .875.

" Figure 3-20(b) shows i(N 2). Recall that Pi > P{2,3 }(oo) (> P{2 ,3}(N 2 )). Thus,

in the two-machine one-buffer line M1 - B1 - M 2,3}, M 1 is always faster than

M{2 ,31 and ii tends to be close to N1. As N2 increases, M{2,3} becomes faster

(though it is still slower than M1 ) therefore h1 becomes smaller. Consequently,

A1 decreases a little bit with N2 (but it is still close to N1 ) and finally reaches

an asymptote. i appears to be a convex function of N2 .
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Figure 3-20: Four quantities vs. N2, Type 5

e Figure 3-20(c) illustrates f12(NV2). Because P3 < P 1 ,2 }(0) (< P{1,2}(N1)), M3 is

always slower than the upstream M{1 ,2} in M(1 ,2} - B 2 - M 3 . As we increase

N2 , A 2 increases without a limit. It appears that A2 is a convex function of N2.

e Figure 3-20(d) shows the profit J(N 2). For all three values of N1, there is a

unique optimal value of N2 that maximizes the profit of the three-machine two-

buffer line. The profit appears to be a concave function of N2. However, after

studying d2 J/dN2, we find that d2J/dN2 < 0 when Ni is large. However, when
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Ni is small (e.g., N1 = 30), d2J/dN2 is positive for some values of N2 while

negative for others (see Figure 3-21). It is not clear if this is due to the property

of J(N 2) or the decomposition.
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Figure 3-21: d2 J/dN2 vs. N2 , Type 5

3.4.6 Summary about the Qualitative Behavior of Feasible

Cases

In the previous section, the qualitative behavior of the production rate, n1, A2, and

the profit of those five feasible types are studied. The apparent concavity, convexity,

non-concavity, or non-convexity properties of these four quantities as functions of N1

and N2 in all five feasible types are summarized in Tables 3.9 and 3.10.

Table 3.9: Apparent qualitative behavior of four quantities as functions of N1

P(N1) A1 (N1) f12(N1) J(N1)
Type 1 concave convex concave concave

concave for small N2;
Type 2 concave convex for small N2; concave neither concave nor

concave for large N2  convex for large N2

Type 3 concave concave concave concave
concave for small N2; concave for small N2;

Type 4 concave convex neither concave nor neither concave nor
convex for large N2  convex for large N2

concave for small N2;
Type 5 concave convex concave neither convex nor

concave for large N2

The following conclusions can be made from these observations:
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Table 3.10: Apparent qualitative behavior of four quantities as functions of N2

P(N2) iN(N 2) ] 2_(N2) J(N2)
Type 1 concave convex concave concave

convex for small N1 ; concave for small N1; concave for small N1 ;
Type 2 concave neither concave nor neither concave nor neither concave nor

convex for large N1  convex for large N1  convex for large N1
Type 3 concave convex concave concave

concave for small N1; neither concave nor
Type 4 concave convex convex for large N 1  convex for small Ni;

concave for large N
Type 5 concave convex convex concave

" For all five feasible types, the production rate always appears to be a concave

function of N1 and N2.

" The average inventories i and h 2 may not be necessary a concave or convex

function or N1 and/or N2. The shape of the curve depends on the type of the

three-machine two-buffer line.

" The profit is not necessary a concave or convex function of N1 and/or N2.

However, for any type, we can always find a unique global maximum on the

profit curve. This implies that a gradient method can be applied to find the

global maximum. As we will develop in Chapter 4, in order to solve the profit

maximization problem with a production rate constraint, we introduce a corre-

sponding unconstrained problem, for which the gradient method is adopted to

solve it.

3.5 Qualitative Behavior of Average Buffer Levels

in Longer Lines

In this section, we discuss how understanding three-machine two-buffer lines gives

insight into longer lines. In particular, we study a nine-machine eight-buffer line,

whose parameters are listed in Table 3.11.
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Table 3.11: Parameters of the nine-machine eight-buffer line

machine M1 M2  M3  M4  M5  M6  M7  M8  M9

ri .12 .12 .12 .12 .12 .12 .16 .16 .16
p .01 .01 .01 .01 .01 .01 .01 .01 .01

buffer B1  B2  B3 B4  B5 B6 B7 B8 -

Ni 60 60 60 1000 80 50 20 20 -

First, we study how the average inventory of Buffer B 4 of the nine-machine eight-

buffer line changes as the size of B6 varies. It can be seen that Buffers B 4 and B6 break

the original night-machine eight-buffer line into three segments and therefore it can

be viewed as a three-machine two-buffer line (see Figure 3-22). In particular, we view

the sub line M1 - B1- M2- B 2 - M3- B3 - M4as Machine M(1) of the three-machine

two-buffer line. Similarly, sub lines M5 - B5 - M 6 and M7 - B7 - M -- B8 - M9

are considered as Machines M(2) and M(3) of the three-machine two-buffer line.

Note that we use notation M(i) to denote the ith machine of the three-machine two-

buffer line to distinguish Machine Mi of the original nine-machine eight-buffer line.

Moreover, the production rate of Machine M(i) is denoted by P(i). Similarly, B4 and

B of the original line are considered as Buffers B(1) and B(2) of the three-machine

two-buffer line.

----------- B4 ______ ,B 6  - - - - - - - - - - - - - - - - - - -

------ ---------------------. I-------- r---------------

L --------
r

M(1) -a M(2 B (2) M(3

Figure 3-22: Scenario 1 of the nine-machine eight-buffer line

With the decomposition method of Gershwin (1987a), we evaluate the production

rates of the three machines. They are P(1) = .8990 parts per time unit, P(2) =

.9122 parts per time unit, and P(3) = .9097 parts per time unit. In addition, the

production rate of Machines M(2) and M(3) with a zero buffer between them is

P(
2
),(3) (0) = .8614 parts per time unit, according to the analytical solution of Buzacott
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(1967a). Therefore, it can be seen that these parameters satisfy P(3) P(1),(2)(oo)

and P(2),(3)(0) < P(1) < P(2),(3)(oc). Thus, the three-machine two-buffer line with

respect to Buffers B 4 and B 6 of the original line is a Type 2 line. We vary the size of

B6 while using the values in Table 3.11 for other buffers. The curve for the average

buffer level N as a function of N6 is illustrated in Figure 3-24(a).

--------- B2 - B4-------------------------

....... I .......

M(1) M(2) --o () M(3)

Figure 3-23: Scenario 2 of the nine-machine eight-buffer line

Next, we study how the average inventory of Buffer B
4 

of the nine-machine eight-

buffer line changes as the size of Buffer B2 varies. As before, B
2 

and B
4 

break the

original nine-machine eight-buffer line into three segments and therefore it can be

viewed as a three-machine two-buffer line (see Figure 3-23). In particular, we view

the sub line M
1 

- B
1 

- M2 as Machine M(1) of the three-machine two-buffer line.

Similarly, sub lines M
3 

- B
3 

- M
4 

and M
5 

- B
5 

- M
6 

- B
6 

- M7 - B
7 

- M
8 

- B8 - M9

are considered as Machines M(2) and M(3) of the three-machine two-buffer line.

The production rates of M(1), M(2), and M(3) are P(1) = .9092 parts per time

unit, P(2) = .9092 parts per time unit, and P(3) = .9014 parts per time unit,

respectively. In addition, the production rate of Machines M(1) and M(2) with a

zero buffer between them is P(l),(
2

)(0) = .8535 parts per time unit. Therefore, these

parameters satisfy P(1) P(
2

),(3)(oo) and P(),(
2

)(0) < P(3) < P(l),(
2

)(oo). Thus, the

three-machine two-buffer line with respect to B2 and B
4 

of the original line is a Type

4 line. We vary the size of B
2 

while using the values in Table 3.11 for other buffers.

Then the curve for the average buffer level N as a function of N
2 

is illustrated in

Figure 3-24(b).

Figure 3-24 shows that f4 changes very differently as N
2 

and N
6 

vary. This

example demonstrates that when studying the average inventory level of a buffer as
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Figure 3-24: N as a function of N2 or N6 in a nine-machine eight-buffer line

a function of the size of another buffer in a long line, we can always divide the long

line into three segments and view it as a three-machine two-buffer line with respect to

those two buffers. More importantly, for a given buffer in the long line, it is possible

that its average buffer level exhibits totally different behavior as we change the sizes

of different buffers, because each resulting three-machine two-buffer line falls into a

specific type of those five feasible types discussed in Section 3.4 and different types

exhibit distinct qualitative behaviors. Therefore, understanding three-machine two-

buffer lines provides us insight into longer lines. In the following section, we further

study the profit as a function of both N1 and N2 for each feasible type.

3.6 Profit Analysis of Five Feasible Types

In the previous section, we study the profit of the line as functions of N1 and N2

individually. In this section, we study the profit again but as a function of both N1

and N2. Three dimensional graphs (with profit on the vertical axis, while N and N2

on the horizontal axes) will be provided to demonstrate the qualitative behavior of

the profit. The profit ($ per time unit) of the line is computed by

J(N 1 , N2 ) = 1000P(N 1 , N2 ) - N1 - N2 - ni - 12 -
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3.6.1 Type 1

The line with parameters listed in Table 3.4 is considered. The result is shown in

Figure 3-25. In the figure, the profit surface J(N 1, N2) is provided. In addition,

the iso-profit lines are projected on the N1 - N2 plane. It appears that the profit

surface is concave in N1 and N2. However, the inner bending iso-profit contour of

J(N, N2) = 400 indicates minor local non-concavity of the surface. However, it is

not clear if this is due to the properties of J(N 1, N2) or the decomposition method.

The red cross indicates the unique global optimal solution that maximizes the profit

of the line (without a production rate constraint).

J(N1,N2

800

600 is rofit 770
400 - iso-profit 750

iso-rofit 730200 - iso-pofit 700
0 - iso-profit 600

iso-profit 400-200 iso-profit 200
-400 - iso-profit 0

iso-profit -200
-6M - iso-profit -400

50 Optimal +

00
50

0 50 100 150 20 0 00 00

250 300 350 0 N2

N1 40 50 5000

Figure 3-25: Profit vs. Ni and N2, Type 1

3.6.2 Type 2

For Type 2, we consider the line whose parameters are listed in Table 3.5. The result

is illustrated in Figure 3-26. From the shapes of the iso-profit lines as well as the

profit surface, it is clear that the profit J(N, N2) is neither a concave nor a convex

function of N1 and N2. However, there is a unique global optimal solution (i.e., the

red cross) that maximizes the profit of this Type 2 line.
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J(N1, N2)

1000 - iso-profit 800
iso-profit 700

500 iso-profit 600
iso-profit 500

0 - iso-profit 400
iso-profit 300

-500 - iso-profit 200
iso-profit 100

-1000 - iso-profit 0
iso-profit -200

-1500 iso-profit -400
00 Optimal +

00
50

00 50000
10 0300 400 5050 

00N2

N1 0 0 700 800 9000 00 2

Figure 3-26: Profit vs. Ni and N2, Type 2

3.6.3 Type 3

Next, we study the line with parameters provided in Table 3.6 for Type 3. The

result is shown in Figure 3-27. From the shapes of the iso-profit lines as well as the

profit surface, it appears that the profit is a concave function of N1 and N2 . This is

consistent with the observation for Type 3 summarized in Tables 3.9 and 3.10. The

red cross indicates the unique global optimal solution that maximizes the profit of

the line.

J (N1, N2)

1000 -
iso-profit 790 ------

800 iso-profit 770

600 -iso-profit 750iso-profit 700
400 -iso-profit 600

20profit 500
200 -iso-profit 400

iso-profit 300
0 -iso-profit 200

-200 00 iso-profit 100
Optimal +

Figure 3-27: Profit vs. Ni and N2, Type 3
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3.6.4 Type 4

Next, we study the line with parameters listed in Table 3.7 for Type 4. The result

is demonstrated in Figure 3-28. From the shapes of the iso-profit lines as well as the

profit surface, it is clear that the profit J(N, N2) is neither a concave nor a convex

function of N1 and N2 in Type 4. However, there is a unique global optimal solution

(i.e., the red cross) that maximizes the profit of this Type 4 line.

J(N1, N2) iso-profit 750
iso-profit 650

1000 iso-profit 550

500 is rofit 450iso-profit 300
0 - isoprofit 100

iso-rofit -100
-500 - iso-profit -400

iso-profit -800
-1000 - iso-profit -1200

-1500 - iso-profit -1600 -
000 Optimial+

-2000 -
00

0 50 100 150 20 250 300 
00 

40 
00 N2

N1 5,0 450 5000

Figure 3-28: Profit vs. N1 and N2, Type 4

3.6.5 Type 5

Finally, for Type 5 we study the line of Table 3.8. The result is shown in Figure 3-29.

From the shapes of the iso-profit lines as well as the profit surface, it is clear that the

profit J(N, N2) is neither a concave nor a convex function of N1 and N2 in Type 5.

However, there is a unique global optimal solution that maximizes the profit of this

Type 5 line.

3.6.6 Summary about the Profit J(N, N2)

We make two observations about the profit of the line as a function of both N1 and

N2 from the results above:
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0 50 100 00
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Figure 3-29: Profit vs. N1 and N2, Type 5

1. The profit of the line is not necessarily a concave or convex function of buffer

spaces in all five feasible types.

2. In each of these five types, the profit has a single global maximum (and no other

local maxima).

As we will indicate in Chapter 4, to solve the profit maximization problem sub-

ject to the production rate constraint, we introduce a corresponding unconstrained

problem without the production rate constraint. We are going to adopt a gradient

method of nonlinear programming (Bertsekas 1999) to solve the unconstrained prob-

lem. For the gradient method to solve the unconstrained problem correctly, it requires

the profit function (i.e., J(N 1, N2) here, or J(N) for longer lines) being searched to

have a single global maximum. The results above on these five types satisfy this

requirement, as in each of these five types, no matter whether the profit is a con-

cave/convex function of buffer spaces or not, it appears that the profit has a single

global maximum.

To further investigate this point, we study 5000 randomly generated three-machine

two-buffer lines and study their profits. Both machine parameters and buffer cost

coefficients are randomly chosen. For each of the five types, we study 1000 cases.

In each case, we search in the (N1 , N2) space and count the number of local profit
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maxima. In all these 5000 lines studied, there is only a single global profit maximum

for each line2 . In addition, Schor (1995) encounters the same issue and shows that

J(N) has a single maximum through numerical evidence and an intuitive argument

for both two-machine lines and long lines. Schor (1995) adopts a two-step gradient

method to solve the profit maximization problem without a production rate constraint

(i.e., our unconstrained problem), and the accuracy of his algorithm based on the two-

step gradient method is verified by comparing with an exhaustive search method.

Gershwin and Schor (2000) confirms this point. The numerical evidence and the

argument of Schor (1995) indicate that assumption that J(N) has a single maximum

is reasonable.

Before we conclude this section, we want to mention that the optimal buffer

distribution that maximizes the profit of the line is bounded. To argue this, we

analyze how each of the three components in the profit expression (1.2) (i.e., the

revenue that is associated with the production rate, the buffer space cost, and the

average inventory holding cost) changes as buffer sizes go to oo.

" Due to the concavity and monotonicity of P(N), the production rate will in-

crease up to an asymptote as Ni, i = 1, - - - , k - 1 go to oo. As a result, the

revenue AP(N) is bounded and approaches to an asymptote as well.

* The average inventory level of a given buffer depends on the relative speeds of

the sub-lines upstream and downstream of the buffer. If the upstream is faster

than the downstream, then the average inventory level will not be bounded,

otherwise it will approach to an asymptote. Therefore, the average inventory

holding cost of each buffer can be either unlimited or bounded, as Ni, i =

1, ... k - 1 go to oo.

* The buffer space cost is a linear function of buffer sizes. Therefore, it is un-

bounded as Ni,i = 1,-.- ,k-1 goto oo.

According to the analysis above, we know that the positive term in the profit

expression (i.e., the revenue associated with the production rate) will be bounded.
2See Appendix G for details.
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However, at least one of the two negative cost terms is unbounded. Therefore, we

conclude that the profit goes to -oo when Ni, i = 1, - - - , k - 1 go to oo. Therefore,

the optimal buffer distribution that maximizes the profit of the line is bounded.

3.7 Summary

In this chapter, we study the qualitative behavior of the average inventory levels

of three-machine two-buffer lines in a systematic manner and extend the scope of

the research to the profit of such lines. A given three-machine two-buffer line can

be considered as two two-machine one-buffer building blocks with respect to Buffers

B1 and B 2, respectively. For each building block, there are three possible cases in

terms of the relative speeds of the upstream machine and the downstream machine.

Therefore, there are nine possible types for a three-machine two-buffer line, which are

determined by machine parameters. However, as we have shown, only five out of the

nine types are feasible, while the other four types are infeasible.

For each feasible type, the following four quantities of the line are studied as

functions of N1 and N2 individually: the production rate, the average inventory of

B 1, the average inventory of B 2, and the profit. A set of important observations about

these quantities is drawn from these results. The methodology is then extended to

study how the average inventory level of a buffer changes as the size of another buffer

varies in a longer line. It is illustrated that understanding three-machine two-buffer

lines gives insight into longer lines.

Finally, we study the profit of three-machine two-buffer lines as a function of both

N1 and N2. For each feasible type, no matter whether the profit of the line is a

concave/convex function of buffer sizes or not, the profit appears to have a single

global maximum. Further numerical evidence and literature review indicate that

assumption that J(N) has a single maximum is reasonable. Therefore, as we will

indicate in Chapter 4, a gradient method is appropriate to solve the unconstrained

profit maximization problem without the production rate constraint.
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Chapter 4

Production Line Profit

Maximization

In this chapter, we develop an efficient algorithm for production line profit maxi-

mization through buffer size optimization. We consider both buffer space cost and

average inventory cost, and we include a nonlinear production rate constraint. To

solve the problem, a corresponding unconstrained problem is introduced and a non-

linear programming approach is adopted. The material presented in this chapter is

an extension of Shi and Gershwin (2009a).

In particular, we develop the algorithm with the deterministic processing time

model of Gershwin (1987a), (1994). However, the algorithm can be applied to the

other two production line models (i.e., the deterministic multiple failure mode model

of Tolio and Matta 1998 and the continuous multiple failure mode model of Levantesi

et al. 2003) as well. Some numerical results about the algorithm on the other two

models are included in Shi and Gershwin (2009b). We provide more experiments

about this in Section 4.4.

As indicated in Chapter 1, production line profit maximization is one of the three

major topics of this thesis. The algorithm presented in this chapter will be extended

to single closed-loop systems in Chapter 6 and to lines with an additional maximum

part waiting time constraint in Chapter 7. Some valuable insights about optimal

design of long lines are discussed in Chapters 8 and 9 as well.
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The rest of this chapter is organized as follows. We present the model of the line

in Section 4.1. The algorithm is then developed in Section 4.2. Numerical results and

analysis are provided to show the accuracy and efficiency of the algorithm in Section

4.3, following by more numerical results about the algorithm on the other line models

in Section 4.4.

4.1 Problem Statement, Assumptions, and Nota-

tion

4.1.1 Model of the Line

The model described here is the deterministic processing time model of Gershwin

(1987a), (1994). We make all the assumptions and approximations of that model,

follow all his conventions, and use his notation. We outline the key features of the

model below.

In the model, we denote the ith machine by Mi and the ith buffer by Bi. The line

consisting of k machines and k-1 buffers is called a k-machine, k - 1-buffer line, or k-

machine line for short. Processing times of all machines are equal, deterministic, and

constant. Time is scaled so that operations take one time unit. We further assume

that all the machines start their operations at the same instant. Transportation time

is negligible compared to the operation time.

In addition, Ni, the size of Buffer B, Vi = 1, - , k - 1, are decision variables.

Therefore, there are k-I decision variables for a k-machine, k--buffer line. Machines

are unreliable and are parameterized by probabilities of failure and repair. Specifically,

the parameters of Machine Mi are pi, the probability of a failure during a time unit

while the machine is operating; and ri, the probability of a repair during a time unit

while the machine is down. As a consequence, the times to failure and to repair are

geometrically distributed. By convention, repairs and failures occur at the beginnings

of time units and changes in the buffer levels take place at the ends of time units.

Machine parameters are fixed.
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We define P to be the production rate of a line. Although the production rate P

is a function of machines and their reliability, we vary only buffer sizes, so we write

P = P(N 1 , - - - , N1), or P(N) for short, where N is the vector (N1 , .. - , Nkl).

P(N) is a nonlinear function of buffer sizes N, and is calculated numerically by

decomposition (Gershwin 1987a) for lines having more than two machines.

We have defined the profit of the line in Equations (1.1) and (1.2) in Chapter 1.

As a reminder, the profit of a k-machine, k - 1-buffer line is formulated as

k-1 k-1

Profit = AP(N, , Nk1) - biNi - czni - Z,
i=1 i=1

where A > 0 ($/part) is the revenue coefficient associated with the production rate

P(N), bi and ci ($/part/time unit) are cost coefficients associated with the buffer

space and average inventory for the ith buffer, respectively, and Z stands for all costs

other than those due to buffer sizes, average inventory, and raw material. Since Z is

independent of N, we simplify the formulation above and write our objective function

as
k-1 k-1

J(N1 ... , Nk_1) = AP(N 1 7 ... , Nk-1) - biNi - cini, (4.1)

i=1 i=1

where we refer to J(N1, , N-i1) as the profit of the line. To simplify terminology,

the first item on the right side of Equation (4.1) can be seen as the total revenue of

the line; while the other two items together can be interpreted as the total cost of

the line. Allowing different buffers to have different cost coefficients is realistic as we

know that, for example, the cost of buffer space in a clean room is much expensive

than elsewhere in a factory.

4.1.2 Problem Formulations

In this section, we introduce mathematical models. Our prime goal is a constrained

problem, in which we aim at maximizing profits of production lines subject to a

production rate constraint. In order to solve the constrained problem, we present

a corresponding unconstrained problem, in which we drop the production rate con-
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straint. We introduce the two problems here and leave the reason for introducing the

unconstrained problem to Section 4.2.

The constrained problem

The constrained problem is formulated as follows:

k-1 k-1

max J(N 1 ,- ,Nk_1) = AP(N1 , - 7 ,Nk_1) - biNi - ciig
i=1 i=1

subject to P(N 1 ,. -, Nk_1) > (4

Ni 2 0,Vi= 1, -. -7,k -1,

where P is the target demand rate or the required production rate. The first constraint

is the production rate constraint. Note that it is nonlinear (and see more properties

of P(N) discussed in Chapter 2). The second constraint is called the buffer size

constraint. It comes from the natural property of buffer sizes since it is not possible

to have negative buffer sizes.

However, it is necessary for us to further limit the buffer sizes. This is because

we use the decomposition to evaluate the production rate of the line, and the decom-

position is based on an analytical solution of the two-machine line (Gershwin 1994).

Therefore we follow the model convention and let Ni > 4, Vi. For a line having buffer

sizes less than 4, there are different ways to measure its performance and we do not

discuss them in this chapter. Therefore, we only focus on lines whose buffer sizes

are all > 4. In the following, let Nmia denote the minimum of the buffer size and we

re-write the constrained problem as:
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k-1 k-1

max J(N 1 ,-- , Nk_1) = AP(N 1 ,--- ,Nk1) - biNi - cini
i:=1 i=1

subject to P(N1, --- , Nk_1) (4-3)

Ni > Nmin, Y i = 1, - -. -,k - 1.

The unconstrained problem

In the unconstrained problem, we drop the production rate constraint. Thus, the

unconstrained problem is

k-1 k-1

max J(N 1 ,--- , Nk_1) = AP(N 1 , ... , Nk-1) - biNi - cii
S =1 (4.4)

subject to Ni > Nmin,V= 1, - k - 1.

This is a convenient, although not quite accurate, name since we still have the

buffer size constraint. As we show in Section 4.2, the unconstrained problem can be

solved easily by a gradient method. We will further illustrate the relationship between

the two problems and reveal how we take advantage of the unconstrained problem to

solve the constrained one.

4.2 Solution Technique

In this section, we present the algorithm for solving the constrained problem (4.3). We

realize that in (4.3), both the objective function and the production rate constraint

are nonlinear. Therefore, it is difficult to solve (4.3) directly. As a result, instead of

solving it directly, we adopt a two-step strategy in which we introduce a new variable

A'. We replace A by A' in the unconstrained problem (4.4) and solve it iteratively

for different values of A'.
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To solve the unconstrained problem (4.4), we take advantage of the analytical form

of the two-machine-line evaluation, which enables us to treat Ni as continuous vari-

ables. (A discussion about this appears in Section 2.1 and we provide the continuous

variable version of the solution of the two-machine line in Appendix A). Consequently,

though our model is a deterministic processing time discrete state model, we can still

treat Ni as continuous variables. In addition, since we evaluate P(N) by the decom-

position and the analytic two-machine-line evaluation, and treat Ni as continuous

variables, we are able to treat P(N) and J(N) as continuously differentiable func-

tions'. Therefore, we adopt a gradient method to solve the unconstrained problem.

However, we need to indicate that due to the lack of an analytical expression of the

profit of a line having more than two machines, we compute gradients according to

a forward difference formula (see Section 4.2.4). Also see Levantesi et al. (2001) for

analytical work of the derivatives.

It is important to point out that gradient methods are appropriate when the

space being searched has a single maximum. This requires our objective function of

the unconstrained problem, J(N 1, -- - , Nk_1), to have only one maximum point for

the proposed optimization method to work correctly. Schor (1995) encounters the

same issue and shows that J(N1, - - - ,Nk1) has single maximum through numerical

evidence and an intuitive argument. Schor (1995) introduces a two-step gradient

method to solve our unconstrained problem. His results are demonstrated to be

correct when compared with both exhaustive search, simulation and the optimization

method of (Seong et al. 1994). Gershwin and Schor (2000) confirm this. Moreover, the

discussion in Chapter 3 provides numerical evidence to show that no matter whether

the profit of the line is a concave/convex function of buffer sizes or not, the profit

appears to have a single global maximum. The numerical evidence and the literature

review indicate that the profit of production lines has a single global maximum is a

reasonable assumption.

'See Section 2.1 for the discussion about the continuity of P(N) and J(N).
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4.2.1 Algorithm Derivation

We solve the unconstrained problem (4.4) and let (N, ... , N_ 1) be its solution.

This yields two cases:

1. The solution (Nt,- , Ng_ 1) satisfies P(Nj, -, N,_ 1)> P. In this case, since

the production rate constraint is satisfied, the solution of the constrained prob-

lem (4.3) is (N*, --- , Nk_ 1) = (N', --- , Nk_ 1).

2. The solution (Nt, - - - , Nk_ 1) satisfies P(Nu, - - - , Nk_ 1) < P. Therefore, it is

not the solution of the constrained problem. In this case, we replace the A of

(4.4) by A' and consider the following unconstrained problem:

k-1 k-1

max J(N 1 , --, Nk-1) = A'P(N 1,-- , Nk_1) - biNi - cini
i=1 i=1

subject to Ni 2! Nmin, Vi' = 1,--, k - 1,

(4.5)

Let (N1, - - - , Nk_ 1 ) be the solution to this problem and P' = P(Nj, - - - , N{_).

Then, we claim the following.

Assertion The constrained problem

k-i k-i

max J(N1, , Nk_1) = A'P(N 1 ,. -, Nk_1) - biNi - cing
i=1 i=1

subject to P(N 1,- - , N_1) , (4.6)

Ni 2! Nmini Vi =1, - -. -7 k - 1

has the same solution for all A' in which the solution of the unconstrained problem

(4.5) has P' < P.

This is because the solution of problem (4.6) will satisfy P(N 1 , - - - , N_1) = P.

Therefore, the objective function is equivalent to A'P - Zi biNi - cin. Since

121



the first term A'P is independent of all of the Ni, it has no effect on the solution of

the problem.

We claim in the assertion that if the optimal solution of the unconstrained prob-

lem (4.4) is not the solution of the constrained problem (4.3), then the solution of the

constrained problem (4.3), (N*, - - - , Nk_ 1 ), satisfies P(N*, - - - , Nk_ 1 ) = P. There-

fore, to solve the constrained problem (4.3), we replace A by A' in (4.4) and solve

problem (4.5) for different A's. We need to find the value of A' such that the solution

to problem (4.5) satisfies P(Nj, - - - , Nk_ 1 ) = P. Then, this solution is the same as

that of the original constrained problem (4.3).

We provide an illustration of this assertion in Figure 4-1. Consider a three-machine

two-buffer line whose parameters are r1 = .1, pi = .01, r2 = -11, P2 = .01, r3 = .1,

and p3 = .009. The coefficients are bi = ci = 1, Vi. The revenue coefficient is

A = 1500. The target production rate is P = .88. The profit of the line as a

function of (N1 , N2) is drawn in Figure 4-1(a). In Figure 4-1(a), the blue region on

the profit surface is the feasible region for the problem under the production rate

constraint and the blue region is also projected on the N1 - N2 plane. The red dot

(N1 = 39.68, N2 = 42.36)2 indicates the point that maximizes the profit of the line

while satisfying the production rate constraint. Note that it is on the boundary of the

blue region, which means that the production rate constraint is satisfied with equality.

The black dot (N1 = 17.57, N2 = 20.44) is the optimal solution of the corresponding

unconstrained problem. As it is not within the blue region, it does not satisfy the

production rate constraint. Iso-profit contours are also provided in the figure.

Next, we replace A = 1500 by A' = 2500 for the line. The result is shown in Figure

4-1(b). It can be seen that the optimal solution of the unconstrained problem with

A' = 2500 (i.e., the black dot inside the 2085 iso-profit contour) still does not satisfy

the production rate constraint, as it is outside the blue region. More importantly,

we see the that optimal solution of the constrained problem with A' = 2500 (i.e.,

the red dot in Figure 4-1(b)) is exactly the same as the optimal solution of the

2 For demonstration purpose, we keep buffer sizes to be non-integer as we have argued that buffer
sizes can be treated as continuous variables.
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P boundary---

20 N2
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Figure 4-1: An example of the assertion
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original problem where A = 1500. If we further increase A' to 3500, we will make the

same observation (see Figure 4-1(c)). Finally, we find a certain value of A' (4389.88

in this example) such that the optimal solution of the unconstrained problem with

A' = 4389.88 satisfies the production rate constraint and therefore it is also the

optimal solution of the constrained problem when A' = 4389.88 (the red dot in Figure

4-1(d)). Figures 4-1(a), (b), (c), and (d) demonstrate that the optimal solution when

A' = 4389.88 is indeed the solution of the other three constrained problems where

A' = A = 1500 (original problem), A' = 2500, and A' = 3500, respectively. This

illustrates the assertion that the constrained problem (4.6) has the same solution

for all A' in which the solution of the unconstrained problem (4.5) has P' < P.

Therefore, as long as we find the value of A' such that the solution to problem (4.5)

satisfies P(Nj', - - - , Nk_ 1 ) = P, then this solution is the same as that of the original

constrained problem (4.3). In this example, A' = 4389.88 and the optimal solution of

the unconstrained problem with this A' is N1' = 39.68 and N2 = 42.36, and it satisfies

P(Nj, N2) = P. Therefore, it is also the optimal solution of the original constrained

problem where A = 1500.

Proof of Assertion

Here, we formally prove this assertion by the Karush-Kuhn-Tucker (KKT) con-

ditions of nonlinear programming (Bertsekas 1999). We first convert the constrained

problem (4.3) into the minimization form:

k-1 k-1

mn -J(N 1,- ,Nk_1) -AP(N 1,... , Nk_1) + biNi + cii
i=1 i=1

subject to P - P(N 1 , ... , Nk_ 1 ) <_ 0,

Nmin - Ni < 0, Vi = 1, -. - ,k - 1.
(4.7)

We have argued that we can treat Ni as continuous variables, and P(N) and

J(N) as continuously differentiable functions. Let us consider the KKT conditions.

A statement of the KKT conditions (Bertsekas 1999) is: Let x* be a local minimum
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of the problem

min f(x)

subject to hi(x)= 0,- h,,(x) = 0, (4.8)

gi(x) 0, - - - g(x) 0,

where f, hi, and gj are continuously differentiable functions from R" to R. Assume

that x* is regular'. Then there exist unique Lagrange multipliers A*,- , A* and

p, - , y,, satisfying the following conditions:

VxL(x*, A*, p*) = 0,

p; >! 0, j =1, -.. -- , r, (4.9)

I-,gj(x*) = 0, j = 1, r.

where L(x, A, p) = f(x) + EL Aihi(x) + E pug 3(x) is called the Lagrangian func-

tion.

Before we apply the KKT conditions to our problem, we need to point out a

necessary condition that guarantees the existence of Lagrange multipliers. One ap-

propriate for our problem is the Slater constraint qualification for convex inequalities

(Bertsekas 1999), which is: Let x* be a local minimum of the problem (4.8), where

f and gj are continuously differentiable functions from K" to R, and the functions hi

are linear. Assume that the functions gj are convex and that there exists a feasible

vector t satisfying gj (t) < 0, Vj E M(x*). Then x* satisfies the KKT conditions.

3 Let M(x) be the set of active inequality constraints, i.e., M(x) = {jlgj(x) = 0}. A feasible
vector x is regular if the equality constraint gradients Vhi (x), i = 1, --- , m, and the active inequality
constraint gradients Vgj(x), j E M(x), are linearly independent. Also x is regular in the exceptional
case where there are no equality constraints and all the inequality constraints are inactive at x
(Bertsekas 1999).
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Let us now consider our constrained problem (4.7). There are no equality con-

straints in the problem, but there are k inequality constraints:

go(N) = - P(N 1 , ... , Nk_1) < 0,

(4.10)

9;(N) = Nmin - Ni ; 0,V,= 1, - -k - 1.

Due to the concavity of P(N), go(N) is a convex function. All other 9;(N) are

linear so that they are also convex. It is not hard to find a feasible vector to make

our problem satisfy the Slater constraint qualification. Since the required production

rate, P, has to be feasible for the line, there exists sufficiently large N such that

P(N1, - , _1) > P so go(N 1,- , N-1) < 0. In addition, g9(N 1 , ... N, 1) <

0,Vi = 1, ... k - I because Nmin - Ni < 0, Vi = 1, - - - , k - 1. Hence, our constrained

problem satisfies the Slater constraint qualification 4, and there exist unique Lagrange

multipliers p4, i = 0,--- , k - 1 for (4.7) to satisfy the KKT conditions:

k-1

-VJ(N*) + p*V (P - P(N*)) + p /V (Nmin - Nf) = 0 (4.11)
i=1

or

/J(N*) OP (N*)
ON1  ON1

OJ(N*) OP(N*) 1 0 0 0

ON 2  ON 2  0 1 0 0

0 0 1 0

OJ(N*) &P(N*)

\ Nk_1 / \ONk_1/
(4.12)

4 For some discussion about the constraint qualifications for the case of inequality constraints
only, see Exercise 3.35 of Bertsekas (1999).
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and

p 0,Vi= 0,-- ,k- 1, (4.13)

p* (P - P(N*)) = 0, (4.14)

p,"(Nmin -N,*) = 0, Vi = 1, -. ,k- 1, (4.15)

where N* is the optimal solution of our constrained problem.

Next, we show that finding the Lagrange multipliers p,*, i = 0, , k - 1 and the

optimal solution N* to satisfy the KKT conditions (4.12) to (4.15) is equivalent to

solving the constrained problem (4.3) by our algorithm. Suppose that N* is an interior

solution5 . (In most of our experiments, the optimal solutions have this feature, but

we provide a set of special cases where some N,* = Nmin in Section 4.3.1.) In the

interior solution case, by condition (4.15), we know that p,* = 0, Vi = 1, - , k - 1.

Hence, we can simplify the KKT conditions (4.12) to (4.15) to

J(N*) \P(N*)

ON1  ON1

OJ(N*) OP(N*) 0
ON2  ON 2  0

(4.16)

01

OJ(N*) OP(N*)
\BN_1 / \BNk_1

p (P - P(N*)) = 0, (4.17)

where p 2 0. We know, since N* is not the optimal solution of the unconstrained

problem, that VJ(N*) $ 0. VJ(N*) / 0 means that not all OJ(N*)/ONi are equal

to 0. Thus, p* = 0 since otherwise condition (4.16) would be violated. By condition

(4.17), the optimal solution N* satisfies P(N*) = P. Since go is the only active

'An interior solution means that all N* in N* are greater than Nmin. We discuss the case in
which some Nf are on the boundary, i.e., Ni = Nmin, in Appendix B.
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inequality constraint, N* is regular. In addition, conditions (4.16) and (4.17) reveal

how we could find p* and N*. For every p*, condition (4.16) determines N* since there

are k -I equations and k -1 unknowns. Therefore, we can think of N* = N*(p"). We

search for a value of p such that P(N*(p*)) = P. As we indicate in the following,

this is exactly what our algorithm does.

Replacing p* by yo > 0 in constraint (4.16) gives

OJ(N)
ON 1

9J(N)
aN2

J(NR) IYONk 1 I

- yo

OP(N)
ON1

aP(N)
ON2

OP(N)
aNk_1

(4.18)

where N is the unique solution of (4.18).

optimization problem

min
N

-i(N) =

Note that N is the solution of the following

-J(N) + po (P - P(N))

(4.19)

subject to Nmi - Ni 0, Vi= 1, - - - , k - 1,

which is equivalent to

max
N

i(N)

subject to Nm. - Ni

= J(N) - po (P - P(N))

0 0Vi = 1, ... ,k-1,
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k-1 k-1

max J(N) = AP(N) - biNi - cn -p (/ - P(N))
i=1 i=1

subject to Nmin - Ni < 0,Vi = 1, --- , k - 1,
(4.21)

or
k-1 k-1

max J(N) = (A + po)P(N) - biN - cii

(4.22)

subject to Ni > Nmin,Vi = 1, ,k - 1,

or, finally,

k-1 k-i

max i(N) = A'P(N) - b N - c i

(4.23)

subject to Ni ; Nmin, Vi = 1, ,k - 1.

where A' = A + po. This is exactly the unconstrained problem (4.5), and N is its

optimal solution. Note that po > 0 indicates that A' > A. In addition, the KKT

condition (4.17) indicates that the optimal solution of the constrained problem, N*,

satisfies P(N*) = P. This means that, for every A' > A (or po > 0), we can find

the corresponding optimal solution N satisfying condition (4.18) by solving problem

(4.5), and, we need to find the A' such that the solution to problem (4.5), denoted

as N'(A'), satisfies P(N'(A')) = P. Then, yo = A' - A and N'(A') satisfy conditions

(4.16) and (4.17). Hence, po = A' - A is exactly the Lagrange multiplier satisfying

the KKT conditions of our constrained problem, and N* = N'(A') is the optimal

solution of our constrained problem. Consequently, solving the constrained problem

(4.3) through our algorithm is essentially finding the unique Lagrange multipliers and

optimal solution of the problem. We have proven our assertion.
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Therefore, in our algorithm, we conduct an one-dimensional search over A' > A

and stop after we find the A' such that the solution to the unconstrained problem

satisfies P(Nj, - - - , Nk_1 ) = P. We conclude that it is also the desired solution of the

constrained problem. We state the algorithm for solving (4.3) in Section 4.2.2.

4.2.2 Algorithm Statement

1. Check the feasibility of the problem. We describe this in Section 4.2.5.

2. Solve the unconstrained problem (4.4). If the solution (Nu, ... , Nu_1) satis-

fies P(N, - , Ng_1) > P stop. The solution of the constrained problem is

(N*, - - , Nk_1 ) = (Nr, - -- , N _1). This step is also the necessity check of the

algorithm as we point out in Section 4.2.5.

3. If (Ng,--- , N_ 1 ) does not satisfy the production rate constraint, do a one-

dimensional search over A' > A to find A' such that the solution of the un-

constrained problem (4.5) satisfies P(Nj, - - - , N_ 1 ) = P. Stop. The desired

solution is (N*, - -- , N_ 1 ) = (N,, --- , N_ 1 ).

4.2.3 An Example of the Algorithm

We provide an example to show the algorithm. It is a three-machine two-buffer line

with parameters r1 = .12, pi = .01, r 2 = -09, P2 = .01, r3 = .11, and p3 = .01. The

profit function is J(N 1 , N2) = 1000P(N 1, N2) - .5N 1 - N2 . Suppose first that the

required production rate, P, is .85. Solving the unconstrained problem and letting

(Nr, Ngu) be the optimal solution yield P(Nu, Ngu) = .8576. Since P(NI', Nu) > P =

.85, the solution (Ne, Ngu) is equivalent to the solution of the constrained problem

and no further search on A' > A is needed.

Next suppose that the required production rate, P, is .88. In this case, the

optimal solution of the unconstrained problem does not satisfy P(Nr, Ngu) > P.

Thus, we need to conduct the one-dimensional search over A' > A to find the op-

timal solution of the constrained problem. So, we solve the unconstrained prob-
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lem for A' = 1000, 2000, -, 6000, and the optimal solutions for distinct A' are

shown in Figure 4-2. Figure 4-2 also shows that the required production rate is

P = .88. The locus of unconstrained optima of the cost function is sketched. Let

(N,(A'), N2(A')) be the optimal solution of the unconstrained problem for a cer-

tain A'. Note that for A' =1000, 2000, and 3000, the unconstrained optima have

P(Nj(A'), N2(A')) < .88 while for A' =4000, 5000, and 6000, the unconstrained op-

tima have P(Nj(A'), N2(A')) > .88. Therefore, if the problem to be solved is to

maximize 1000P - .5N - N2 subject to P > .88, then the solution is the intersection

of P = .88 and the locus of unconstrained optima.

100

N2 90 - p 
-

80

70 Optimum -

60

50

40 - A'3000

A'-2000

30- - locus of cost optima

20 A'=1000-'

10
20 30 40 50 60 70 80 90 100

N,

Figure 4-2: An example of the algorithm

4.2.4 Detailed Description of the Algorithm

We describe in detail the algorithm we propose to solve the constrained problem

(4.3) here. The algorithm includes solving the unconstrained problem and the one-

dimensional search over A' > A, if necessary. We have explained that we can treat the

decision variables, Ni, as continuous variables, and J(N 1, - - - , Nk_1) as a continuously

differentiable function. Therefore, we adopt a gradient method that is based on the
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decomposition (Gershwin 1987a) and the DDX algorithm (Dallery et al. 1988) to

solve the unconstrained problem.

Gradient method for the unconstrained problem

We solve the unconstrained problem with a gradient method. An initial guess of buffer

distribution (Nfl, - - - , N__) is selected first. For example, NjP can be chosen as the

minimum value to satisfy P(oo, - - - , Nf, -- - , oo) > P. If this inequality is satisfied

with equality in all i, then the initial guess satisfies P(Nf, - - - , N2_1 ) P#. This is

how we choose the initial guess in our implementation of the algorithm. However, it

is helpful to indicate that our algorithm does not require that P(Nf,. -- , N_ 1)<P.

We have verified this with experiments and the initial guesses (Ne,. -- , N_ 1) such

that P(Nf, - - - , N_ 1) > P lead to the same solution.

Then, we calculate the gradient direction to move in (N 1 ,. -, Nk_1) space. A

line search is then conducted in that direction until a maximum is encountered. This

becomes the next guess. A new direction is chosen and the process continues until no

further improvement can be achieved. There is no analytical expression to compute

profits of lines having more than two machines. Consequently, to determine the search

direction, we compute the gradient, g, according to a forward difference formula,

which is

J(N 1 , Ni + N, , Nk1) - J(N1, -, Ni, Nk- ) (4.24)
gi = (4.246Ni

where gi is the gradient component of Buffer Bi, J is the profit of the line and can

be obtained by equation (4.1), and 6Nj is the increment of Buffer Bi. Since we treat

Ni as continuous variables, in the gradient calculation above, we choose 6Nj = .01,

which has proved to be a good choice in all experiments we have conducted.

Apart from acquiring the gradient direction, we still need to determine the step

size, a. We conduct a bisection search to find a such that J(Ni + agi, - - - , Nk-1 +

agk_1), or J(N+ ag), is maximized. Then, we calculate the next gradient and repeat.

This process ends when there is no improvement in profit or when all components of
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the gradient are sufficiently small. A block diagram of this gradient method appears

in Figure 4-3.

Specify initial guess
N = (N1,--, Nk-i)

Calculate gradient g

Find a such that J(N + ag) is maximized.

Define NNext = N + ag

Yes
Is J(NNext) > J(N)? Set N = NNext-

No

N is the optimal solution.
Stop.

Figure 4-3: Block diagram of the gradient method

One-dimensional search over A' > A

To find A' such that the optimal solution of the unconstrained problem (4.5) satisfies

P(N, - -*- , Nk_1 ) = P, we use the Newton Chord method (Isaacson and Keller 1994),

which is an efficient way to find t' such that f(t') = 0 for a given function f(-). Thus,

in our algorithm, for any particular value of A', we define f(A') as

f(A') = P(N'(A')) - P (4.25)

where N'(A') is the optimal buffer allocation associated with that A' and P is the

required production rate. The Newton Chord method in our algorithm consists of

the following three steps:

1. Guess A' and A'. Calculate the approximate slope

f(A 1) - f(A')
1 - (4.26)
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2. Choose A' so that

f(A') + (A' - A')s = 0, (4.27)

or

A'- f(A + A (4.28)

3. Repeat with A' = A' and A' = A'2 until If(A')I is small enough.

In our implementation, the termination criterion is If(A')| < 10-4 . The first two

values of A' are A' = A and A' = 1.5A.

4.2.5 Implementation Issues

Implementation issues about the algorithm include the feasibility and necessity of

the algorithm, the initialization of the DDX algorithm of the decomposition, and the

conversion from continuous solutions to integers.

Before running the algorithm, we should ensure that the required production rate,

P, is feasible for the line to be optimized. This means that P should satisfy

rr,
rjp< min (4.29)i ri + pi

where ri/(ri + pi) is the isolated production rate of Machine Mi. If this fails, no set

of buffers can satisfy the production rate constraint.

We also have to make sure that there is a need to conduct the one-dimensional

search over A' > A of our algorithm. This actually can be decided after we first solve

the unconstrained problem. We have indicated this in Section 4.2.1 and restate it as

the second step of the algorithm in Section 4.2.2. If the unconstrained problem (4.4)

has a solution (N,--- , N~-1 ) in which P(Nj,- , N_ 1) > P, then we do not need

to implement the one-dimensional search over A' > A and the solution is equivalent

to that of the constrained problem (4.3).

Furthermore, since we apply the DDX algorithm for the decomposition and it is

an iterative algorithm, we must initialize it whenever it is called in our algorithm.
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We use the most recent value of (N1 , - - - , Nk_1) from the last evaluation, instead of a

standard initialization, to reduce the numbers of iterations and the two-machine-line

evaluations.

Finally, it is necessary to point out that, to use the result of the algorithm in prac-

tical production line design for factories, we have to convert it back to integers. To do

this, for each component in N*, let N - [NT], the smallest integer that is larger than

NT, and NL = [N J, the largest integer that is smaller than NT. Then, we compute

the production rates and the profits for these 2k-1 combinations of (N 1, -, 1),

where Ni is equal to either Nfr or NU. Note that, since (N*, - - - , Nk) satisfies the

production rate constraint, then (N, - - - , NUL) must satisfy the production rate

constraint as well because of the monotonicity of P(N). Therefore, among all 2k-1

candidates, there must be at least one feasible combination that satisfies the pro-

duction rate constraint. Among all feasible combinations of integer buffer sizes, we

choose the one that maximizes the profit of the line as the final integer solution of

optimal buffer sizes.

4.3 Numerical Results and Analysis

Numerical results are provided to show not only the efficiency of our algorithm but

also its implementation process. Hence, taking a four-machine three-buffer line as an

example, we first explain how P(N*) changes with A'. Then, we apply the algorithm

to both short and long lines to illuminate its efficiency. Computation issues are

discussed at the end of this section. In the implementation of the algorithm, we let

Nmin be 4+ E, where E = 10-6. In addition, the algorithm is written with Matlab and

run for all experiments on a computer with a 2.4 GHz Intel Core 2 Duo CPU.
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4.3.1 Behavior of the Algorithm

We consider two four-machine three-buffer lines to study the behavior of the algo-

rithm. The parameters of the first four-machine line are summarized in Table 4.1.

All cost coefficients are set to be 1 and therefore the profit is calculated as

3 3

J(N, -- N3) = AP(N 1 ,- ,N 3) - Ni - h i. (4.30)
i=1 i=1

To study the behavior of the algorithm, we run it for this line to generate the

curve of P(N*) versus A'. We vary the A' from 0 to 1000 with a step size of 1 and

the desired curve is shown in Figure 4-4. There are four segments in the curve. The

flat segment stands for the case in which the optimal sizes of all buffers are Nmin. For

A' ranging from 0 to 257, the optimal buffer sizes for the line stay on the boundary

of the feasible region so they are (Nmin, Nmi, Nmin). The production rates associated

with those A' are identical, forming the horizontal segment in the curve. After A'

passes 257, one of the optimal buffer sizes (N2*) becomes greater than Nmin, i.e., it

turns to a non-minimal value from Nm.. From that time, the production rate begins

to monotonically increase with A'. Each time a new buffer becomes non-minimal,

the derivative of the production rate curve changes slightly, but the curve remains

continuous. Figure 4-4 suggests that P(N*) for which not all components in N*

are 4 + E increases with A' monotonically. This system behavior further verifies our

algorithm; as A' increases, P(N*) increases monotonically so we can eventually find

the A' such that P(N*) > P (for P feasible).

Table 4.1: Parameters for the system behavior, Experiment 1

Machine M1 M2 M3 M4

ri .1 .2 .13 .09
p .01 .02 .01 .01
Pi .909 .909 .929 .900

We study another four-machine three-buffer line, where we vary the target pro-

duction rate P and study Ni and J(N*). Parameters of the line are listed in table
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Figure 4-4: System behavior of the algorithm

Table 4.2: Parameters for the system behavior, Experiment 2

Machine M1  M2  M3  M4

ri .1 .16 .1 .12
p .01 .01 .01 .009
Pi .909 .941 .909 .930

Buffer B1  B2  B3
bi 1 30 1
ci 1 1 1

4.2. Note that the buffer size coefficient of B 2 is 30, which is much larger than those

of the other two buffers. The revenue coefficient A = 3000. We notice that M1 and

M 3 have the smallest isolated production rate, which is .909. Therefore, for P to be

feasible for the line, it has to be smaller than .909. Therefore, we vary P from .8 to

.9088. The results of the example6 are illustrated in Figure 4-5. Part of the results is

also listed in Table 4.3.

We observe that if we optimize the line without the production rate constraint,

then the production rate associated with the optimal solution is .8458. This means

that if the target production rate P < .8458, the optimal solutions of the line for

different P will be the same and the production rate constraint will be inactive. This

is demonstrated in both Figure 4-5 and Table 4.3. For instance, in Figure 4-5, N*,

'In this example, we keep the optimal buffer sizes as non-integers.
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Table 4.3: Optimal results of algorithm behavior, Experiment 2

P NN* N2j N i h2 h3 P(N*) J(N*)
.800 28.92 4.00 30.34 19.25 2.01 7.33 .8458 2329.51
.810 28.92 4.00 30.34 19.25 2.01 7.33 .8458 2329.51
.820 28.92 4.00 30.34 19.25 2.01 7.33 .8458 2329.51
.830 28.92 4.00 30.34 19.25 2.01 7.33 .8458 2329.51
.840 28.92 4.00 30.34 19.25 2.01 7.33 .8458 2329.51
.845 28.92 4.00 30.34 19.25 2.01 7.33 .8458 2329.51
.850 35.42 4.00 33.00 23.95 2.03 7.92 .8500 2327.69
.855 44.04 4.00 40.57 30.25 2.04 9.12 .8550 2318.85
.860 58.49 4.02 51.64 41.36 2.06 10.55 .8600 2295.17
.864 63.87 5.04 55.52 44.96 2.60 11.39 .8640 2262.48
.868 66.68 6.53 57.41 46.21 3.41 12.18 .8680 2222.46

.904 252.79 53.53 184.50 132.51 35.49 35.79 .9040 465.03

.906 325.19 68.29 227.72 156.50 47.38 39.86 .9060 -127.53

.908 514.80 100.10 322.37 205.40 75.07 44.81 .9080 -1441.55
.9088 792.88 140.14 499.81 247.51 112.45 47.10 .9088 -3177.73

Ng, N*, and J(N*) are all

graph).

constant (see the horizontal part of the corresponding

The second observation we make from these results is the cases where N2* = Nmin.

Since b2(= 30) is much larger than b1 and b3, we expect that N2 = Nmin when P is

small to avoid large buffer space cost, because otherwise N2 has to be larger than Nmin

to achieve the target production rate. Let us first check the maximum production

rate that can be achieve on the line when N 2 = Nmin = 4. It is easy to compute that

P(oo, 4, oo) = .868. Therefore, we know that for P > .868, N2* has to be larger than

Nmin. However, from Table 4.3 we notice that N2* starts deviating from Nmin when

P is .86. This is because, although it is possible to achieve P = .86 with N2 = Nmin,

the extra cost in Buffers B1 and B 3 makes the solution less profitable. We verify

this as follows. Suppose we restrict N2 to be 4. Then, the optimal values of N1 and

N3 for which P(N) = .86 are 58.85 and 51.94, respectively. The profit is 2295.01,

which is smaller than that for P = .86 in table 4.3. This is because, although the

cost of increasing the size of B 2 is high (since b2 = 30), it costs more if we increase

138



800

700

600

500

400

300

200

100

- n1 -

--- --- -

0.8 0.82 0.84 0.86 0.88 0.9

P
500

N3
ns------

400 -

300

200

150

120

0.92

100

0. 0.2 r- . 0. r----~- 9 0
O.8 0.82 0.84 0.86 0.88 0.9 0.92

0.8 0.82 0.84 0.86 0.88 0.9 0.92

P
2400

1600-

800

0

-800

-1600 -

-2400 -

-3200 ' '
0.8 0.82 0.84 0.86 0.88 0.9 0.92

P

Figure 4-5: Impact of P on NT and J(N*)

the sizes of Buffers B1 and B 3 instead B2 to achieve the target production rate. The

fact that N2* starts deviating from Nmin when P is .86 also explains why there are

two observable segments in the curves of N* and N3* for P < .86 and P > .86.
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Finally, Figure 4-5 indicates that when P goes to .909, which is the maximum

production rate the line may have, N*, N2*, and N3* will go to oo. This is because the

buffers have to be sufficiently large enough to eliminate any propagation of failures

of one machine on the others to avoid lost of production rate. As a result, the profit

of the line will go to -oc as the revenue of the line is upper bounded by AP while

the cost of the line is not bounded.

4.3.2 Experiments on Short Lines

The proposed algorithm optimizes short lines very quickly, which are shown by the fol-

lowing two experiments. We optimize a five-machine line and a six-machine line, and

compare the optimal solutions of the algorithm with solutions gained from searching

the P = P(N 1 , ... , N.-1) surface in (N 1 ,. -, Nk_1) space7.

Experiment on a five-machine four-buffer line

The machine parameters are listed in Table 4.4. The required production rate P is

.88. It is easy to check that the isolated production rate of the bottleneck of the line,

Machine M4, is greater than P, so the problem is feasible. The profit is calculated

as:
4 4

J = 2500P(N) -Z N - ni.
i=1 i=1

Table 4.4: Machine parameters of the five-machine line experiment

machine M1 M2 M3 M4 M5

ri .11 .12 .10 .09 .10

pi .008 .01 .01 .01 .01
Pi .932 .923 .909 .900 .909

To verify the optimal solution, we conduct a search on the P surface in (N1 , - - - , N 4)

space. We search on the surface around the optimal solution of our algorithm. Exper-

7 For a brief introduction about the P surface search, see Appendix F. For problems where the
production rate constraint is inactive, we search the P > P surface.
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imental results including the optimal solutions both from our algorithm and P surface

search, and the error, are listed in Table 4.5. We see that the optimal solutions from

the algorithm and from the P surface search are exactly the same. Computer time for

this experiment is 2.05 seconds. The number of the two-machine-line evaluations is

77682. (The reason we provide this number is that it is not affected by the capability

and performance of the computer that runs the algorithm.) Hence, our algorithm

offers accurate results very quickly.

Table 4.5: Results of the five-machine line experiment

The optimal solution reveals that, since Machine M 4 is the bottleneck, the optimal

size of Buffer B 3 is greater than the optimal sizes of other three buffers to absorb the

large variability of M4 . Next we change b3, the cost coefficient associated with buffer

size of B 3 , to 2. This means that the line pays more for the buffer size of B 3. Thus, we

expect the optimal solution for the new line to have a smaller size for B 3 while greater

sizes for the other three buffers to guarantee the performance of the line in terms of

achieving the target production rate. Experimental results confirm our expectation

(See Table 4.6). We see that the optimal size of B 3 is reduced from 93 to 79, and the

optimal sizes of other three buffers increase. The maximum error is 2.02% and appears

in N4*. However, the profit error is .02% which is very small. Computer time for the

revised experiment is 2.19 seconds. The number of the two-machine-line evaluations

is 72264. To further study this phenomenon, we conduct more experiments for this
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P Surface Search The algorithm error
P(N*) .8800 .8800 0%

Ni* 29 29 0%
NZ 58 58 0%
N* 93 93 0%
N* 88 88 0%

h1(N*) 19.1842 19.1842 0%
h2(N*) 34.0069 34.0069 0%
ha(N*) 48.6107 48.6107 0%
r 4(N*) 32.1166 32.1166 0%

J(N*) ($/time unit) 1798.08 1798.08 0%



line by varying the cost coefficient of B 3 from 0 to 14 with a step size of 0.2, and

report results in Figure 4-6'. Figure 4-6 indicates that as the cost coefficient of B 3

becomes larger and larger, the optimal value of B 3 becomes smaller to limit the cost

spent on it. Meanwhile the optimal values of the other three buffers get larger so the

line maintains the required production rate.

Table 4.6: Results of the modified five-machine line experiment

Experiment on a six-machine five-buffer line

The machine parameters and cost coefficients are provided in Table 4.7. The required

production rate P is still .88, and it is easy to check that it is feasible for the line.

The profit is calculated as

4 4

J = 3000P(N) - [ bjN - cini.
i=1 i=1

Experimental results are presented in Table 4.8. The optimal buffer sizes from the

algorithm and the P surface search are the same. Computer time for this experiment

is 6.83 seconds. The number of the two-machine-line evaluations is 176216.

8 Note that the optimal buffer sizes in Figure 4-6 are kept as non-integers.

142

[ Surface Search The algorithm error]

P(N*) .8800 .8800 .00%
N* 31 31 .00%
N* 65 65 .00%
N* 78 79 1.28%
N* 99 97 2.02%

h1(N*) 20.7534 20.7515 .01%

n2(N*) 39.9739 39.9653 .02%

h3(N*) 41.0795 41.7460 1.62%

h4(N*) 34.1755 33.8337 1.00%
J(N*) ($/time unit) 1713.02 1712.75 .02%
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Table 4.7: Machine parameters of the six-machine

machine

ri
pi
Pi

buffer

b

c;

|Mi
.11
.008
.932

B1
1.0
1.0

M2

.12

.01

.923

B2

2.0
1.0

M3

.10

.01

.909

B3

.5
2.0

M4

.09

.01

.900

B4

.8
1.0

Ms

.10

.01

.909

B5

1.0
1.5

line experiment

M6

.11
.009
.924

4.3.3 Experiments on Long Lines

Next we apply the algorithm to a 10-machine 9-buffer line. Machine parameters are

shown in Table 4.9. The target production rate is P = .88 for this line. In addition,

we set all cost coefficients to 1 and therefore the profit of the line is

9 9

J = 5000P(N) - Ni - hi.
i=1 i=1

Experimental results are provided in Table 4.10. We see that the optimal buffer
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Table 4.8: Results of the six-machine line experiment

P Surface Search The algorithm error

P(N*) .8800 .8800 0%
N* 33 33 0%
N2* 46 46 0%
N* 104 104 0%
N4* 113 113 0%
N* 57 57 0%

hi(N*) 22.3513 22.3513 0%
h2(N*) 26.2354 26.2354 0%
h3(N*) 51.6319 51.6319 0%
h 4(N*) 43.0599 43.0599 0%
h 5(N*) 17.6553 17.6553 0%

J(N*) ($/time unit) 2094.22 2094.22 0%

Table 4.9: Machine parameters of the 10-machine line experiment

machine M1  M 2  M3  M4  M5

ri .11 .12 .10 .09 .10
p .008 .01 .01 .01 .01
P. .932 .923 .909 .900 .909

machine M6  M7  M8  M9  Mio

ri .11 .10 .11 .12 .10
p .01 .009 .01 .009 .008
Pi .917 .917 .917 .930 .926

sizes from the algorithm and the surface search are the same. The algorithm pro-

vides accurate optimal solutions for long lines as well. (We provide more numerical

experiments on randomly generated lines in Section 4.3.6.) Computer time for this

experiment is 20.84 seconds. The number of the two-machine-line evaluations is

938944.

4.3.4 Computation Speed

In this section, we discuss the computation speed of the algorithm. Although we have

shown that the algorithm offers the optimal solution for a 10-machine 9-buffer line
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Table 4.10: Results of the 10-machine line experiment

PSurface Search The algorithm error

P(N*) .8800 .8800 0%
N* 29 29 0%
N2* 60 60 0%
N3* 98 98 0%
N* 108 108 0%
N* 84 84 0%
N* 70 70 0%
N* 62 62 0%
N* 48 48 0%
N* 35 35 0%

ni(N*) 19.1841 19.1841 0%
n2(N*) 35.5039 35.5039 0%
ns(N*) 52.8475 52.8475 0%
h4(N*) 45.6174 45.6174 0%
ns(N*) 34.4532 34.4532 0%
na(N*) 30.3590 30.3590 0%
ny(N*) 27.2247 27.2247 0%
ns(N*) 18.2801 18.2801 0%
ng(N*) 12.3082 12.3082 0%

J(N*) ($/time unit) 3530.23 3530.23 0%

within one minute, it is important to observe the computation speed of algorithm for

longer lines. Thus, we run the algorithm for a series of experiments for lines having

identical machines. We vary the length of the line from 4 machines up to 30 machines.

Machine parameters are pi = .01 and ri = .1. In all cases, we choose a feasible target

production rate P = .88, and the revenue coefficient A = 500k for the line of length

k. Furthermore, we initialize A' = A and A' = A + 1000. (Note that all these

lines require the one-dimensional search over A' to find the corresponding optimal

solution that satisfies the respective production rate constraint.) The numbers of the

two-machine-line evaluation for lines with different lengths are summarized in Table

4.11 and Figure 4-7, respectively. We fit a curve to those points in order to reveal the

relation between the length of the production line and the computation effort of our

algorithm. From those points in Figure 4-7, we guess that we can find an exponential
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curve to fit them. Using the Curve Fitting Toolbox of Matlab9 , we find

y = 1.109 x 106e".1851k,

where y denotes the number of the two-machine-line evaluations and k denotes the

length of the line. The curve is shown in Figure 4-7 as well. It can be seen, from

Table 4.11, that it takes the algorithm less than 10 minutes to find the optimal buffer

allocation for the 15-machine line, and about 20 minutes to find the optimal buffer

allocation for the 20-machine line. However, the exponential curve implies that our

algorithm needs much more time for lines with more than thirty machines. In practice,

it is possible that several machines are located adjacently in series and followed by a

buffer. Therefore, while it is not rare for a transfer line to have more than 30 machines,

the number of buffers is often much smaller. However, the exponential curve spurs

us to study how to reduce the computation time for longer lines. A segmentation

method that reduces computer time for long line optimization effectively is studied in

Chapter 8. An additive property that provides us valuable insight in long line design

is discussed in Chapter 9. We finally present the specific optimal solution for the

30-machine line. The optimal sizes of buffers are shown in Figure 4-8(a). The curve

of ini(N*)/N is illustrated in Figure 4-8(b).

9http://www.mathworks.com/products/curvefitting/.

146



Table 4.11: Numbers of the two-machine-line evaluations for lines with different
lengths

Line length P(N*) # of two-mach line eval JComputer time (sec.)
4 .8800 24864 0.972
5 .8800 60210 1.843
6 .8800 116888 3.333
7 .8800 234330 6.345
8 .8800 459264 12.089
9 .8800 896546 23.661
10 .8799 1586672 42.306
11 .8799 2494944 65.675
12 .8800 3777060 99.125
13 .8800 6779256 176.954
14 .8800 10168032 265.304
15 .8799 15253940 398.723
20 .8799 51786204 1166.694
25 .8800 121869164 3089.636
30 .8799 283117352 7008.475
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Figure 4-7: Number of the two-machine-line evaluations vs. The length of production
lines and its fitting curve
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4.3.5 Comparison with Literature

We mention that Schor (1995) and Gershwin and Schor (2000) develop an efficient

buffer allocation algorithm that applies a primal-dual approach to minimize the total

buffer space under a production rate constraint. Their primal problem is formulated

as
k-1

min Ni
N

i=1

subject to P(N 1 , - - - , Nk_1) > , (4.31)

Ni Nmin,Vi=1,-- ,k-1.

It can be seen that (4.31) is a special case of our constrained problem (4.3) where

A = 0, bi = 1, and c = 0, i = 1, - - - , k - 1. Moreover, Gershwin and Goldis (1995)

and Colledani et al. (2003) study problem (4.31) as well. Therefore, in this section,

we compare our algorithm to the results reported by Schor (1995), Gershwin and

Goldis (1995), and Colledani et al. (2003) for solving (4.31).

On the other hand, Colledani and Tolio (2005) develop a buffer allocation algo-

rithm that solves problem (4.31) for the deterministic multiple failure mode produc-

tion lines. In addition, Schor (1995) also studies our unconstrained problem (4.4)

and reports some numerical examples for the continuous time continuous material
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line model. Levantesi et al. (2001) and Tolio et al. (2009)10 develop different algo-

rithms that solve problem (4.31) for the continuous time continuous material line

model. Therefore, we compare our algorithm with Colledani and Tolio (2005) for

the deterministic multiple failure mode line model in Section 4.4.1, and with Schor

(1995), Levantesi et al. (2001), and Tolio et al. (2009) for the continuous model in

Section 4.4.2.

We first consider a balanced 10-machine linen1 with ri = .095, pi = .007, and

P = .88. The optimization results of (4.31) from our algorithm and Schor's algorithm

are shown in Table 4.12. Note that, although the two algorithms find different optimal

buffer allocations, the total numbers of buffer sizes are both 346, and both of the two

buffer allocations satisfy the production rate constraint. It happens that for the

problem under consideration, there are more than one optimal solution in terms of

the total buffer size12 . Among those feasible solutions that have the same total buffer

size, we choose the one that enables the line to have the maximum production rate

as our optimal solution.

Table 4.12: Comparison of algorithms, Experiment 1

N* N* N* N* N* N* N* N* N* N| P(N*)

Schor (1995) 27 38 42 44 44 44 42 38 27 346 .88009
our algorithm 26 39 42 44 44 44 42 39 26 346 .88010

In addition to the 10-machine line above, Schor (1995) studies an example of a

12-machine line constructed by Park (1993), which also solves problem (4.31). The

parameters of the line are listed in Table 4.13. Two target production rates are

considered for this line and they are P = .85 and P = .895, respectively. The results

of the experiment is summarized in Table 4.14.

It can be seen from Table 4.14 that the algorithm of Park (1993) fails to provide

the optimal solution when P = .895 since the total buffer size of Park (1993) is about

ioThis is a short version of Borgh (2010).
"See Section 6.2.2 of Schor (1995).
12It is helpful to point out clearly that although there are multiple solutions when buffer sizes are

restricted to integers, there is a single solution for continuous buffer sizes.
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Table 4.13: Machine parameters of the 12-machine line experiment of Park (1993)

machine M1  M2  M3  M4  M5  M 6

ri .35 .15 .40 .40 .30 .20
p .037 .015 .02 .03 .03 .01
Pi .904 .909 .952 .930 .909 .952

machine M7  M 8  M9  M10  Mn M1 2
ri .30 .30 .40 .40 .30 .25
p .02 .02 .02 .03 .03 .01
Pi .938 .938 .952 .930 .909 .962

Table 4.14: Comparison of algorithms, Experiment 2

Park (1993) Gershwin and Schor (1995) our algorithm
case Goldis (1995)

P(N*) ZNf P(N*) E Ni P(N*) ZNi P(N*) ZNf

P = .85 .8505 93 .8507 87 .8507 87 .8507 87
P = .895 .8950 390 .8950 242 .8950 243 .8950 242

1.6 times larger than the other three algorithms. For the case where P = .85, the

algorithm of Park (1993) is about 1.07 times larger than the other three algorithms.

Therefore, it provides near optimal solution in this case. The optimal solutions from

the other three algorithms are very close for both cases. Schor (1995) does not report

the specific buffer allocations for these two cases, but Park (1993) does. However,

since the solution of Park (1993) deviates from the other three algorithms, we choose

not to report his buffer allocation here. Instead, the buffer distributions for both

cases from our algorithm are summarized in Table 4.15.

Table 4.15: Optimal buffer distribution for the 12-machine line of Park (1993)

case N* N2 N* N4* Ng Ng N* Ng Ng N1* N 1

P=.85 9 9 9 10 9 8 7 7 7 8 4
P= .895 57 27 21 25 23 16 15 12 14 20 12

Colledani et al. (2003) study six 10-machine lines for problem (4.31) and compare
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their results with Gershwin and Goldis (1995). Here we apply our algorithm to those

six lines and compare the results with Colledani et al. (2003) and Gershwin and

Goldis (1995). The parameters of these six lines are listed in Table 4.16. (Note that

the first line is the same as the 10-machine line studied by Schor 1995, and Line E is

a reverse case of Line F.) The target production rate for all these lines is P = .88.

The comparison of the three algorithms on these six lines is summarized in Table

4.17, in which we refer to the algorithm of Colledani et al. (2003) as CMGT and the

algorithm of Gershwin and Goldis (1995) as GG. (Again, among all feasible solutions

that have the same total buffer size, we choose the one that enables the line to have

the maximum production rate as our optimal solution.) It can be seen that our

algorithm is accurate as compared to the other two algorithms. Note that Line E is

a reverse case of Line F. In all three algorithms, the optimal buffer distribution of

Line E is the reverse of the optimal buffer distribution of Line F because costs and

constraints are symmetric (and the average inventory i is not in the cost function).

4.3.6 More Numerical Experiments

Finally, for the deterministic single failure mode production line model, we provide

more numerical experiments for 600 randomly generated production lines. These lines

are generated according to the method of Gershwin (2011). This method allows us to

generate only the relevant and practically important cases without having to generate

and then discard any irrelevant cases. Therefore it is very efficient. In particular, we

study 200 four-machine lines, 200 six-machine lines, and 200 eight-machine lines. In

all these lines, the isolated production rate P = r2/(r + pi) of a given machine is

between .909 and .952 with r and pi generated randomly. In addition, the buffer

cost coefficients bi and ci for any buffer are also generated randomly. The target

production rate is P = .88 for the four-machine lines, and .86 for six-machine and

eight-machine lines. The revenue coefficient A is 2000 for the four-machine and six-

machine lines, and 4000 for the eight-machine lines. We compare the results from

the algorithm with P surface search and compute three types of errors. They are the

profit error, the production rate error, and the maximum buffer size error. We use
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Table 4.16: Parameters of the six lines of Colledani et al. (2003)

J I Line A Line B ILine C I Line D Line E (Line F

Pi .007 .007 .007 .007 .010 .001
r1  .095 .095 .094 .095 .092 .092

P2 .007 .008 .008 .010 .009 .002

r 2  .095 .094 .095 .090 .092 .092

P3  .007 .006 .003 .003 .008 .003
r 3  .095 .093 .045 .091 .092 .092
p4  .007 .007 .004 .005 .007 .004
r 4  .095 .094 .078 .099 .092 .092

p5  .007 .005 .006 .001 .006 .005
r 5  .095 .095 .069 .095 .092 .092

P6 .007 .006 .007 .009 .005 .006
r 6  .095 .093 .094 .092 .092 .092

P7 .007 .009 .008 .009 .004 .007
r 7  .095 .095 .095 .097 .092 .092

P8 .007 .008 .003 .003 .003 .008
r 8  .095 .094 .045 .096 .092 .092

9  .007 .007 .004 .008 .002 .009
r9  .095 .096 .078 .092 .092 .092

Pio .007 .008 .006 .007 .001 .010
rio .095 .095 .069 .094 .092 .092

subscripts alg and ss to distinguish the optimal buffer allocations associated with the

algorithm and the surface search, respectively. The three types of errors are defined

as
J(N*s) - J(N*ag)

Jerr = J(N ) x 100%,

P(N*s) - P(N*ag)
Perr = P(N) 100%,

PNs)

and, finally

Nerr = max
i=1,---,k-1

Nis(Bj) - N*alg(Bi)

Ns(B)

The three types of errors for the 200 four-machine lines are illustrated in Figure

4-9. In particular, for each type error in Figure 4-9, we rank the three types of errors

in their corresponding ascending orders respectively. (Therefore, the ith case in the
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of algorithms on 10-machine lines of Colledani et al. (2003)

Line method N* N2* N* N4* N* Ng N* N* N* EN

CMGT 27 38 42 44 44 44 42 38 27 346
A GG 26 39 42 44 44 44 42 39 26 346

our algorithm 26 39 42 44 44 44 42 39 26 346
CMGT 30 39 39 37 37 49 58 48 34 371

B GG 29 40 39 37 37 49 58 48 34 371
our algorithm 29 40 39 37 38 49 58 47 34 371

CMGT 35 48 48 52 60 58 57 41 34 433
C GG 34 49 47 53 60 59 57 40 34 433

our algorithm 35 49 47 52 60 59 58 40 33 433
CMGT 40 37 28 25 30 55 39 34 29 317

D GG 41 38 27 25 29 56 38 34 29 317
our algorithm 41 38 27 25 30 55 39 34 29 318

CMGT 73 70 56 42 31 22 14 4 1 313
E GG 73 70 56 42 31 22 13 4 4 315

our algorithm 72 71 56 42 31 22 13 4 4 315
CMGT 1 4 14 22 31 42 56 70 73 313

F GG 4 4 13 22 31 42 56 70 73 315
our algorithm 4 4 13 22 31 42 56 71 72 315

profit error graph, for instance, may not necessary be the same as the ith case in

the production rate error graph.) The average error of each type is also provided. In

particular, in 94 out of the 200 cases, the optimal buffer sizes from the algorithm and

the surface search are the same, and therefore the three types of error in these 94

cases are 0. In addition, the average profit error, the average production rate error,

and the average maximum buffer error of these 200 cases are .0077%, .0063%, and

3.02%, respectively.

The three types of errors for the 200 six-machine lines are illustrated in Figure

4-10. In particular, in 108 out of the 200 cases, the optimal buffer sizes from the

algorithm and the surface search are the same, and therefore the three types of errors

in these 108 cases are 0. In addition, the average profit error, the average production

rate error, and the average maximum buffer error of these 200 cases are .0019%,

.0053%, and 2.85%, respectively.
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Figure 4-9: Results of two hundred randomly generated deterministic single failure

mode four-machine lines

The three types of errors for the 200 eight-machine lines are illustrated in Figure

4-11. In 94 out of the 200 cases, the optimal buffer sizes from the algorithm and the

surface search are the same, and therefore the three types of errors in these 94 cases

are 0. In addition, the average profit error, the average production rate error, and

the average maximum buffer error of these 200 cases are .0006%, .0064%, and 2.35%,

respectively.

In these 600 examples, although buffer size errors can be large, the errors in J

and P are always small. These numerical results show the accuracy and reliability of

the proposed algorithm for production line profit maximization.
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4.4 Numerical Results for the Other Two Line Mod-

els

In this section, we extend the proposed algorithm for production line profit maxi-

mization to the other line models considered in this thesis. The two models are the

deterministic multiple failure mode line model of Tolio and Matta (1998) and the

continuous multiple failure mode line model of Levantesi et al. (2003).

4.4.1 The Deterministic Multiple Failure Mode Line Model

Tolio and Matta (1998) develop a decomposition method for evaluation of determinis-

tic production lines with multiple machine failure modes. This model differs from the

previous deterministic line model in that it allows machines to have more than one

failure mode. The failure and repair probabilities of the jth failure mode of Machine

Mi are denoted by pij and rij, respectively. The decomposition method makes use of

the evaluation of two-machine lines with multiple failure modes developed by Tolio

and Gershwin (1996) or a later version Tolio et al. (2002). As a reminder, we treat

N as continuous variables and conduct a gradient method to solve the unconstraint

problem (4.4). Therefore, we provide a continuous variable version of the two-machine

line evaluation in Appendix C, which enables us to evaluate the production rate and

the average inventory with non-integer buffer sizes.

For the deterministic multiple failure mode production line model of Tolio and

Matta (1998), Colledani and Tolio (2005) develop an algorithm that solves problem

(4.31). In particular, they provide a real case study to show how their algorithm is

used to support the reconfiguration of a real system that produces armature spiders

for electrical engines (see Colledani and Tolio 2005 for details). Here, we compare our

algorithm with theirs by abstracting the machine parameters from that case without

describing the specific manufacturing process. Machine parameters are listed in Table

4.18. The target production rate of the line is P = .68. The results are summarized

in Table 4.19, which indicates that both algorithms find the same optimal solution.
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Table 4.18: Machine parameters of the system of Colledani and Tolio (2005)

machine M1  M2  M3  M4  MI
ral .288 .09 .074 .079 .379

Pji .008 .003 .02 .013 .003
ri2  .225 .24 .021 .9 .06

pi2 .012 .008 .002 .114 .001

Table 4.19: Comparison of algorithms on the system of Colledani and Tolio (2005)

method N* N2 N * ' * ENI P(N*)

Colledani and Tolio (2005) 5 13 38 3 59 .6804
our algorithm 5 13 38 3 59 .6804

In addition to comparing our algorithm with Colledani and Tolio (2005), we pro-

vide numerical experiments for 200 randomly generated five-machine production lines.

These lines are generated according to the method of Gershwin (2011). In all these

lines, each machine has two failure modes, where rij/(rij + pi3) is between .909 and

.952. The target production rate is P = .8, while the revenue coefficient A is 3000.

The three types of errors for the 200 multiple failure five-machine lines are illus-

trated in Figure 4-12. Again, for each type error in Figure 4-12, we rank the three

types of errors according to their corresponding ascending orders respectively. In 81

out of the 200 cases, the optimal buffer sizes from the algorithm and the surface

search are the same, and therefore the three types of error in these 81 cases are 0.

In addition, the average profit error, the average production rate error, and the av-

erage maximum buffer size error of these 200 cases are .003%, .021%, and 2.65%,

respectively.

4.4.2 The Continuous Multiple Failure Mode Line Model

Levantesi et al. (2003) develop a decomposition method for evaluation of continuous

production lines with multiple machine failure modes. In this model, machines pro-

duce at constant rates when not under repair or idle and are allowed to have different
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Figure 4-12: Results of two hundred randomly generated deterministic multiple failure
mode five-machine lines

processing rates and more than one failure mode. In addition, the repair and failure

times of any machine are exponentially distributed. The processing rate of Machine

Mi is denoted by pi. In addition, since machines are allowed to have multiple fail-

ure mode, the failure and repair rates of the jth failure mode of Machine Mi are

denoted by psj and rij, respectively. It is helpful to point out that if Machine Mi only

has a single failure mode, then its isolated production rate P can be computed by

pir1/ (ri1 + pii).-

The decomposition method of Levantesi et al. (2003) makes use of the evaluation

of continuous two-machine lines with multiple failure modes developed by Levantesi

et al. (1999a). In particular, Levantesi et al. (1999a) discuss in detail the steps to

analyze, establish, and solve the model. They provide a general form of the probability

density functions for all internal states and also solve the steady-state probabilities

of the boundary states in the case that p, > id, where p,, and pd are the processing
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rates of the upstream and the downstream machines, respectively. However, they do

not discuss the solutions for the cases where y. < pd or pt = pd, although the case

that p, < pd can be solved easily by reversing the line in which [, > pd. In addition,

in Levantesi et al. (1999a), both the production rate and the average inventory are

given in integral forms, which cannot be used directly for programming. Therefore, we

provide the analytical solution for the case pu = pd in Appendix D. Some discussion

from the perspective of algorithm realization, including the analytical forms of the

production rate and the average inventory, is also provided. The material covered in

Appendix D is considered as a good complement of Levantesi et al. (1999a).

We provide numerical experiments for the continuous line model in this section.

As stated in Section 4.3.5, we will be able to compare our algorithm with Schor

(1995), Levantesi et al. (2001), and Tolio et al. (2009). In particular, Schor (1995)

studies the continuous line model with the ADDX algorithm of Burman (1995) that

is based on the continuous two-machine model of Gershwin and Schick (1980). On

the other hand, Levantesi et al. (2001), Tolio et al. (2009), and our algorithm apply

the decomposition of Levantesi et al. (2003) that is based on Levantesi et al. (1999a)

for the continuous line model. Therefore, we shall expect slight differences between

the solutions of Schor's algorithm and our algorithm as the two underlying analytical

approaches for the continuous line model are different.

Table 4.20: Parameters of three five-machine lines with ril = .1 and p = .01 of Schor
(1995)

line I1 p2 [A3 p p I bi, Vi ci, Vi A

1 1.03 1.01 1.02 1.00 1.04 1 1 1000
2 1.00 1.01 1.02 1.03 1.04 1 1 1000
3 1.00 1.01 1.02 1.03 1.04 0 1 1000

First, we consider three five-machine lines studied by Schor (1995) for our uncon-

strained problem (4.4). The line parameters are listed in Table 4.20. All machines

have a single failure mode. The results for these three lines from Schor (1995) and our

algorithm are summarized in Table 4.21. (Note that, although we are considering the
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continuous line model, the buffer sizes are still integers. The model differs from the

discrete model as it models parts as continuous flows.) Considering the different un-

derlying approaches for the continuous line model in Schor (1995) and our algorithm,

which result in (slightly) different evaluation results of both the production rate and

the average buffer levels for the same buffer allocation, Table 4.21 shows that both

algorithms are accurate.

Table 4.21: Result comparison of the three five-machine lines of Schor (1995)

line method N* N2* N3* N4* J(N*) I
1 Schor (1995) 4 13 15 10 737.16

our algorithm 4 13 14 10 735.04
2 Schor (1995) 6 14 15 8 740.78

our algorithm 5 13 14 9 736.52
3 Schor (1995) 16 39 47 47 813.24

our algorithm 14 38 48 47 808.31

Next, we consider four three-machine lines for problem (4.31) to compare our

algorithm with the algorithm of Tolio et al. (2009). The parameters of these lines

are listed in Table 4.22. The results are summarized in Table 4.2313. We see from

Table 4.23 that, although there is small discrepancy in the optimal solutions from the

algorithm of Tolio et al. (2009) and our algorithm, both algorithms are accurate in

terms of the total buffer size N* + N2*.

Next, we consider a three-machine line and a four-machine line for problem (4.31)

to compare our algorithm with Levantesi et al. (2001). The two lines are studied in

Levantesi et al. (2001). In addition, Levantesi et al. (2001) compare the results of

their algorithm against exhaustive research.

The parameters of the three-machine line are listed in Table 4.24. All machines

have a single failure mode. In particularly, we consider four target production rates.

The results are summarized in Table 4.25 . We see from Table 4.25 that both

13 The results of these experiments from the algorithm of Tolio et al. (2009) are provided in a
unpublished manuscript (Borgh 2009b), in which the buffer sizes are non-integers. Therefore, for
comparison, we do not convert the optimal solutions of our algorithm to integers.

"The optimal buffer sizes of these experiments in Levantesi et al. (2001) are non-integers. There-
fore, for comparison, we do not convert the optimal solutions of our algorithm to integers.
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Table 4.22: Parameters of four three-machine lines

Line 1 Line 2 Line 3 Line 4]

rn .075 .077 .3 .35
M1 Pn .007 .015 .02 .037

i 1.0 1.0 1.0 1.0
P1  .915 .837 .938 .904

r 21  .095 .95 .23 .15

M 2 P21 .008 .08 .01 .015

p2 1.0 1.0 1.0 0.9

P2  .922 .922 .958 .818

r 31  .078 .47 .78 .4

M3 P31 .004 .03 .06 .02

p 3  1.0 1.0 1.0 1.0

P3  .951 .940 .929 .952

P .89 .82 .90 .815

Table 4.23: Result comparison of four three-machine lines

line method N* N I Z Nf P(N*)

1 Tolio et al. (2009) 50.7182 31.0056 81.7237 .8900
our algorithm 52.2267 29.4690 81.6957 .8900

2 Tolio et al. (2009) 13.6483 4.5634 18.2116 .8199
our algorithm 13.0866 5.1403 18.2269 .8200

3 Tolio et al. (2009) 4.9826 5.8432 10.8257 .9000
our algorithm 4.6476 6.1650 10.8126 .9000

4 Tolio et al. (2009) 17.0466 11.3032 28.3498 .8150
our algorithm 18.0194 10.0016 28.0210 .8150

algorithms are accurate in terms of the optimal buffer allocation as well as the total

buffer size N* + N , as compared to exhaustive research.

Table 4.24: Parameters of the three-machine line of Levantesi et al. (2001)

M1  M2  M3

ri, .350 .150 .400
pi .037 .015 .020
Pi 1.0 1.0 1.0
Pi .904 .909 .952
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Table 4.25: Result comparison of the three-machine line of Levantesi et al. (2001)

case P method N* N2 E Ni P(N*)
Levantesi et al. (2001) 14.56 5.86 20.42 .8700

1 .8700 our algorithm 14.53 5.86 20.40 .8700
exhaustive research 13.97 6.50 20.47 .8700

Levantesi et al. (2001) 22.72 8.99 31.71 .8800
2 .8800 our algorithm 22.73 8.91 31.63 .8800

exhaustive research 22.44 9.20 31.64 .8800
Levantesi et al. (2001) 40.45 14.47 54.92 .8900

3 .8900 our algorithm 41.23 13.74 54.97 .8900
exhaustive research 39.69 15.30 54.99 .8900

Levantesi et al. (2001) 112.48 28.20 140.68 .9000
4 .9000 our algorithm 112.40 28.20 140.60 .9000

exhaustive research 113.41 27.29 140.70 .9000

The parameters of the four-machine line are listed in Table 4.26. Again, all ma-

chines have a single failure mode. In particularly, we consider five target production

rates. The results are sunmmarized in Table 4.27. We see from Table 4.27 that both

algorithms are accurate in terms of the optimal buffer allocation as well as the total

buffer size.

Table 4.26: Parameters of the four-machine line of Levantesi et al. (2001)

M1  M2  M3  M4

rii .091 .0526 .0833 .1429

pi .050 .006 .0454 .0454
Pi 1.0 1.0 1.0 1.0
Pi .645 .898 .647 .759

Finally, for the continuous multiple failure mode production line model, we provide

numerical experiments for 200 randomly generated five-machine production lines.

These lines are generated according to the method of Gershwin (2011). In all these

lines, each machine has two failure modes, where rij/(rij + pi3) is between .909 and

.952 and pi is between .95 and 1.05 for a given machine. The target production rate

is P = .8, while the revenue coefficient A is 3000.
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Table 4.27: Result comparison of the four-machine line of Levantesi et al. (2001)

case P method N* N* N* JZNI P(N*)
Levantesi et al. (2001) 5.81 7.51 4.71 18.03 .4953

1 .4950 our algorithm 5.74 7.47 4.69 17.90 .4950
exhaustive research 4.70 8.20 5.10 18.00 .4950

Levantesi et al. (2001) 9.91 12.11 8.31 30.33 .5301
2 .5300 our algorithm 9.79 12.07 8.35 30.21 .5300

exhaustive research 9.20 12.70 8.40 30.30 .5300
Levantesi et al. (2001) 16.61 19.41 14.14 50.16 .5651

3 .5650 our algorithm 16.41 19.37 14.20 49.98 .5650
exhaustive research 16.00 19.00 15.20 50.20 .5650

Levantesi et al. (2001) 29.91 33.01 24.68 87.60 .6000
4 .6000 our algorithm 29.26 33.13 24.91 87.30 .6000

exhaustive research 29.20 33.20 25.10 87.50 .6000
Levantesi et al. (2001) 106.10 93.61 62.77 262.48 .6400

5 .6400 our algorithm 91.32 94.36 69.40 255.08 .6400
exhaustive research 100.00 89.00 69.90 258.90 .6400

The three types of errors for the 200 continuous multiple failure five-machine lines

are illustrated in Figure 4-13. In 112 out of the 200 cases, the optimal buffer sizes

from the algorithm and the surface search are the same, and therefore the three types

of errors in these 112 cases are 0. In addition, the average profit error, the average

production rate error, and the average maximum buffer size error of these 200 cases

are .0020%, .0038%, and 1.95%, respectively.

4.5 Summary

In this chapter, we present an accurate, fast, and reliable algorithm for maximizing

profits through buffer space optimization for production lines. In the cost function,

we consider both buffer space cost and average inventory cost and assign different

cost coefficients to different buffers. In addition, we include a production rate con-

straint in our problem. A nonlinear programming approach is adopted to solve the

problem. The algorithm is proved theoretically by the KKT conditions of nonlinear

programming.
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Figure 4-13: Results of two hundred randomly generated continuous multiple failure
mode five-machine lines

The proposed algorithm can be applied to the three production line models under

consideration. They are the deterministic single failure mode line model of Gershwin

(1987a), (1994), the deterministic multiple failure mode model of Tolio and Matta

(1998), and the continuous multiple failure mode model of Levantesi et al. (2003). To

study the accuracy and efficiency of the algorithm, we provide numerical experiments

on randomly generated lines. In addition, the algorithm is compared with existing

algorithms for solving a special case (i.e., Problem (4.31)) of the constrained problem.

In particular,

e for the deterministic single failure mode model, we compare our algorithm to

Schor (1995), Gershwin and Goldis (1995), and Colledani et al. (2003) for solving

(4.31),

* for the deterministic multiple failure mode model, we compare our algorithm
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with Colledani and Tolio (2005) for solving (4.31),

* and finally, for the continuous multiple failure mode model, we compare our

algorithm with Schor (1995), Levantesi et al. (2001), and Tolio et al. (2009) for

solving (4.31).

All these numerical experiments studied in this chapter show the accuracy and

efficiency of the proposed algorithm. The algorithm will be extended to single closed-

loop systems in Chapter 6 and to production lines with an additional maximum part

waiting time constraint in Chapter 7. Some valuable insights about optimal design

of long lines are discussed in Chapters 8 and 9.
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Chapter 5

Modification of Single Loop

System Evaluation

5.1 Problem and Motivation

A closed-loop production system, or loop, is a system in which a constant amount

of material flows through a single fixed cycle of work stations and storage buffers

(Gershwin and Werner 2007). This type of system appears frequently in factories.

Manufacturing processes which utilize pallets or fixtures can be viewed as loops since

the number of pallets/fixtures that are in the system remains constant. Similarly,

control policies such as CONstant Work-In-Process, or CONWIP, (Spearman et al.

1990) and Kanban (Monden 1998) create conceptual loops by imposing a limitation

on the number of parts that can be in the system at any given time. The difference

between CONWIP and Kanban is that CONWIP pulls a job into the beginning of the

line and the job goes with a card through all workstations, while Kanban provides

tighter control over the material flow through individual workstations (Hopp and

Spearman 2000).

Figure 5-1 shows a k-machine k-buffer loop system. Assume that there are a

constant number of pallets traveling in the system. In addition, Machine M1 is the

first machine of the system, while Machine Mk is the last machine of the system.

Whenever a new part tries to enter the system at M 1, we need to check first if M is
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blocked or not. But just as importantly, we have to check if there are pallets available

in Buffer Bk. If M1 is not blocked and Bk is not empty, then a new part is allowed

to enter the system at M1 and it will travel together with the pallet assigned to it

(from Bk) through the entire system. After that part is produced by Mk, it leaves the

system while the pallet associated with it goes to Bk again waiting for future parts.

This is how such a closed-loop system differs from a traditional series transfer line.

In other words, whether a new part can enter the system or not depends on whether

there are free pallets available. If all pallets are occupied by parts being operated at

machines in the system, then Bk will be empty and no more parts will be allowed to

enter the system. This is also how such a system or a CONWIP policy controls the

total number of parts in the system. Consequently, a loop system or the CONWIP

policy are ways of reducing work-in-process inventory.

M1 B1 --- ---- k_ Mk

Figure 5-1: An example of a closed-loop system

Loop systems and CONWIP policies have many applications. Ip et al. (2007)

compare the single loop and multiple loop CONWIP production control systems for

a lamp assembly production line producing different kinds of products with discrete

distribution processing time and demand. Resano Lizaro and Luis Perez (2008) and

Resano Lzaro and Luis Perez (2009) study networks of closed loops in automobile

assembly lines. Li et al. (2010) apply multi-CONWIP in semiconductor assembly and

test factory. Rodzewicz et al. (2010) introduce the CONWIP concept to ship repair

through the completion of a discrete event simulation. In addition, the concept of

CONWIP has been applied to supply chain management as well (see Ovalle and

Marquez 2003). Takahashi et al. (2005) apply Kanban, CONWIP and synchronized

CONWIP to supply chains to determine the superior system.

Given the importance of loop systems, we want to study how the production rate
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and the average inventories of all buffers of a loop system change as functions of the

buffer sizes as well as the loop invariant (the constant number of pallets, or another

quantity such as the number of tokens or production authorization cards, allowed in

the system at any given time). However, we would like to indicate clearly that it is the

total number of parts in the system, which is upper bounded by the loop invariant,

that should be used to compute the production rate as well as average inventories.

Suppose we consider a loop system with a constant number of pallets. The number of

parts in the system may not equal the number of pallets all the time, since it is possible

for the system to have free pallets in Buffer Bk while M1 is occupied occasionally.

Therefore, we assume that the total number of pallets in the system is constant and

therefore it equals to the loop invariant1 . As a result, in what follows, we use the word

part to cover all cases (e.g., pallet, token, and card). It is desirable to find the optimal

combination of buffer allocation and the loop invariant that satisfies the production

rate target at the minimum costs in terms of buffer space and average inventory.

Therefore, we want to extend the buffer allocation optimization algorithm developed

in Chapter 4 for tandem lines to closed-loop systems. There are a number of studies

regarding the evaluation of such systems, however little work has been dedicated to

the optimization of loop systems. Evaluation results provide average production rate

as well as the average inventory level of each buffer in the system, which serve as

prerequisites of the optimization. On the other hand, optimization depends highly

on the accuracy of evaluation results given a set of machine and buffer parameters,

as well as the smoothness of the evaluation results as a result of continuous changes

in the input system parameters.

Onvural and Perros (1987) study closed cyclic queueing networks and demonstrate

that the production rate of a closed-loop system is a function of the number of parts in

the system. Tolio and Gershwin (1998) present a decomposition approach for estimat-

ing the production rate of a closed queueing network with exponential servers, finite

buffer capacity and a blocking after service discipline. Each subsystem is analyzed as

an M/M/1/Cj + 1 queue with state-dependent arrival and service rates. Frein et al.

'This is a common assumption in the evaluation of loop systems.
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(1996) propose the first approximate analytical method for evaluating the perfor-

mance of closed-loop systems with unreliable machines and finite buffers. However, it

does not treat the correlation that exists among the numbers of parts in the buffers.

As a result, the method is only accurate for large loops with populations that are

neither too large or too small. Maggio (2000) and Maggio et al. (2009) present a new

decomposition method based on Tolio decomposition (Tolio and Matta 1998). This

new decomposition method considers the correlation among the numbers of parts in

the buffers, therefore it provides more accurate results. However, due to its complex-

ity, it is not practical for systems with more than three machines. Werner (2001) and

Gershwin and Werner (2007) simplify and extend the decomposition method men-

tioned above, and developed an algorithm2 that can evaluate loops with any number

of machines efficiently and accurately. Zhang (2006) extends Werner's algorithm to

the evaluation of multiple loop systems. We will comment more on both Werner's

and Zhang's algorithms in Section 5.2. One paper that deals with the optimization

of the profit of loop systems is Helber et al. (2009). It adopts a linear programming

algorithm to evaluation closed-loop systems and then studies the profit of the system

as a function of the CONWIP level. However, it does not consider buffer spaces as

decision variables. For other works, see Akyildiz (1988), Lim and Meerkov (1993),

Bonvik et al. (1997), Bonvik et al. (2000), Balsamo et al. (2001), Kim et al. (2002),

Bozer and Hsieh (2005), Biller et al. (2009), and Mhada and Malhame (2011).

The purpose of this chapter is to discuss how to improve the evaluation accuracy

of single closed-loop systems towards the ultimate goal of optimization. We will

further extend the optimization algorithm of Chapter 4 to closed-loop systems in

Chapter 6. The rest of this chapter is organized as follows. We first comment on

Werner's algorithm for closed-loop system evaluation and briefly introduce Zhang's

algorithm for multiple loop system evaluation in Section 5.2. By providing numerical

evidence, we explain the necessity for improvement of loop evaluation for the purpose

of optimization. In Section 5.3, we extend the evaluation of closed-loop systems

to single open-loop systems, in which the total number of parts either within the

2For the rest of this chapter, we refer to this algorithm as Werner's algorithm.
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entire system or within a portion of the system is controlled by the loop invariant.

Next, two necessary modifications on the existing evaluation algorithm are analyzed

in great detail in Section 5.4, followed by numerical experiments in Section 5.5. The

improvement of loop evaluation will be demonstrated by those experiments.

5.2 Related Algorithms for Loop Evaluation and

Necessity for Improvement

5.2.1 Review of Werner's Algorithm

Gershwin and Werner (2007) and Zhang (2006) develop efficient and accurate evalua-

tion algorithms for single closed-loop systems and multiple loop systems, respectively.

However, since our ultimate goal is to extend the optimization algorithm for transfer

lines (studied in Chapter 4) to single loop systems, we care about not only the accu-

racy of evaluation, but also the smoothness of the evaluation with respect to changes

in the input parameters. As we will show later in this section, both Werner's and

Zhang's algorithms, although accurate, exhibit undesirable discontinuities of evalua-

tion results.

Figure 5-2: A closed-loop system

Figure 5-2 provides an example of the kind of closed-loop system that Werner

studied. In this example, all seven machines and seven buffers of the line are controlled

by the loop. As explained in Section 5.1, the loop invariant (denoted by I in the

remainder of this chapter) is the constant number of parts that are allowed in the

system at any given time. Therefore, we have

I = ni(t) +n 2 (t) + - -- n7 (t)
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where ni(t), i = 1, - - -, 7 is the inventory level of Buffer B at time t. The loop invari-

ant limits the total number of parts in the system, affects the behavior of blocking and

starvation, and therefore controls the production rate and buffer levels. Gershwin and

Werner (2007) developed a decomposition approach by considering the relationship

among the numbers of parts in the buffers. It provides evaluation results in terms

of the production rate of the system as well as the average inventory of each buffer

efficiently for single closed-loop systems of any size.

We provide a brief review of the decomposition approach of Werner's algorithm.

Decomposition (Gershwin 1987a, Tolio and Matta 1998, and other relevant litera-

tures in Section 1.2.2) approximates complex systems as a set of two-machine one-

buffer building blocks. Since there are analytical solutions for two-machine one-buffer

building blocks based on Markov chain models, once we find parameters for those two-

machine one-buffer building blocks, we will be able to evaluate the original system.

Different decomposition approaches for transfer lines are studied in detail in all

those relevant literatures mentioned in Section 1.2.2. Gershwin (1991) and Gershwin

and Burman (2000) applied the decomposition approach to analyze assembly and

disassembly systems. Gershwin and Werner (2007) and Zhang (2006) adopted Tolio's

decomposition (Tolio and Matta 1998) for loop system evaluation. Using Figure 5-3,

we illustrate the idea of decomposition very briefly. For details, refer to the references

mentioned above.

B:3

M1 B1 M2 M3

M"(Bj2)--_ Md(B2)

Figure 5-3: The decomposition approach of loop evaluation

Figure 5-3 shows a closed-loop system that has three machines and three buffers.
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Consider the material inflow to and outflow from Buffer B 2. We study it by imagining

that this buffer is in a two-machine one-buffer line, where M"(B 2) denotes the up-

stream pseudo-machine and Md(B 2) denotes the downstream pseudo-machine. The

key to the decomposition approach is to choose parameters for both upstream and

downstream pseudo-machines such that the material flow behavior through B 2 in the

two-machine one-buffer line is approximately the same as that in the original loop.

The upstream pseudo-machine, for instance, has one up state and several down states.

When it is up, it produces a part in each time unit if it does not fail. It can fail in

failure mode i with probability pui(B 2). If it is in down state i, it can get repaired

with probability rui(B 2) in each time unit. We need to determine all failure modes

for both upstream and downstream pseudo-machines. Gershwin and Werner (2007)

indicates that all machine failures in the original system which could cause B 2 to be

empty should be categorized as the failure modes of the upstream pseudo-machine

Mu(B 2). This is because if the upstream pseudo-machine fails for a long time, B 2

can become empty. Similarly, all machine failures in the original system which could

cause B 2 to be full are categorized as the failure modes of the downstream pseudo-

machine Md(B 2). In other words, B 2 will be starved due to the failure modes of its

upstream pseudo-machine and be blocked due to the failure modes of its downstream

pseudo-machine.

B3

M1 B1 M2

(a) N1 = N 2 =N 3 =10,1 = 10

M1 1 M2 k

(b) N1 = N 2 =N 3 =10,1= 14

Figure 5-4: Demonstration of the threshold in loop evaluation
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Consider the three-machine three-buffer closed-loop system in Figure 5-4(a), where

the sizes of the three buffers are N = NV2 = N 3 = 10 and the loop invariant I = 10.

Suppose that Machine M3 fails for a long time. As a result, parts will accumulate

at Buffer B 2 and B 2 will be full, while buffers B1 and B 3 will be empty. Therefore,

according to the analysis above, the failure of Ma3 can be considered as the failure of

the upstream pseudo-machine M"(Bi) of B 1.

However, there is difficulty in evaluating a two-machine one-buffer building block

because of the presence of buffer thresholds (Gershwin and Werner 2007 and Zhang

2006). Consider the loop system in Figure 5-4(b), where the loop invariant I = 14.

Suppose we look at the two-machine one-buffer building block Mu(B1 ) - B1 - Md(B1 )

with respect to B 1. For the discussion below, let ni be the buffer level of Bi. Consider

the two cases below:

" if ni < 4 and Md(B1 ) is down, the failure of Md(B 1 ) can be due to either

M2 or M3 . This is because, since the loop invariant I = 14 and ni 5 4, then

n 2 + n3 ;> 10. So it is possible for B 2 to be full (i.e., n 2 = N2 = 10) if M 3 fails.

A full B 2 then causes M2 to be blocked. In this case, the failure of Md(B1 )

is due to the failure of M 3. On the other hand, the failure of M2 can cause

Md(B 1 ) to be down as well. Therefore, in this case, the failure of Md(B 1 ) can

be due to either M2 or M 3 and its repair probability is either r2 or r3 .

" if ni > 4 and Md(B 1 ) is down, the failure of Md(B1 ) must be due to M 2 and

not M 3 . This is because in this case ni > 4. Since I = 14, then n2 + n3 < 10-

It is not possible for B 2 to be full if M3 fails. If it did, M 2 would not be blocked

and therefore Md(B1 ) could not be down. Therefore the failure of Md(B1 ) can

only be due to M2 and its repair probability is r2 -

According to the analysis above, we see that it is possible for the repair probability

of Md(B 1 ) to be a function of the buffer level ni. This is undesirable as it makes the

evaluation of two-machine one-buffer building blocks very complicated. Therefore, 4

(which is determined by the loop invariant and the size of each buffer in the loop)

is the threshold of B1 and we need to eliminate the thresholds for Buffer B 1 as well
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as other buffers in the system. To resolve this issue, perfectly reliable machines are

introduced in Werner's algorithm.

B3

M1 B12 M2 -

Bi B2

Legend: Perfectly reliable machine

Figure 5-5: A modified closed-loop system after elimination of buffer thresholds

For the loop shown in Figure 5-4(b), we have indicated that the failure of M3

creates threshold in B 1. With a similar analysis, it can be seen that the failures of

M1 and M2 create thresholds in buffers B2 and B 3, respectively. To eliminate these

thresholds, we break up buffers B1, B 2, and B3 by inserting a (hypothetically) per-

fectly reliable machine in each of them, and then analyze the modified loop (Figure

5-5). For instance, we replace Buffer B 1 by a upstream Buffer B 12, a perfectly reli-

able machine, and a downstream buffer Br. The size of B12 is 6(= N1 -threshold)

while the size of B11 is 4 (=threshold). B2 and B 3 are modified accordingly. After

eliminating the threshold, we have six instead of three buffers. More importantly,

any machine failure can cause a given buffer to be either full or empty, but not par-

tially full. Therefore, we will be able to find the parameters for pseudo-machines

of all buffers in the modified loop. Then the decomposition approach developed by

Tolio and Matta (1998) is adopted in Werner's algorithm to evaluate the loop. In

the decomposition, the analytical solutions developed by Tolio et al. (2002) is used

to evaluate two-machine one-buffer building blocks.
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5.2.2 Single Open-Loop Systems

One simple extension of a single closed loop system is a single open-loop system

(see Figure 5-6 for an example). Such a system allows portion of the system to be

controlled by the loop invariant. For instance, if a portion of the production line is in

a clean room environment, it is desirable to control the total inventory in that portion

of the line due to the expensive inventory holding cost as well as buffer space cost in

the clean room environment. On the other hand, if the fixtures or pallets structure

only applies to part of a transfer line, we shall also expect that part of the line to

be controlled by a constant work-in-process inventory. Therefore, as compared to a

single closed-loop system, a single open-loop system is a more general case. A single

closed-loop system can be considered as a special case of a single open-loop system

where all machines and buffers of the system are controlled by the loop invariant.

Loop-start machine

Loop-end machine

Figure 5-6: A single open-loop system

In particular, in Figure 5-6, the loop structure is formed by connecting Machines

M5 and M 2 by B7 . In this case, M is the upstream machine of the entire loop, while

M6 and M7 are the downstream machines of the entire loop. For convenience, for the

rest of this chapter, we refer to first machine involved in the loop structure as the

loop-start machine, while the last machine involved in the loop structure as the loop-

end machine. Other machines inside in the loop are called inner loop machines. In

Figure 5-6, M 2 is the loop-start machine and M5 is the loop-end machine. Machines

M 3 and M 4 are inner loop machines. The total number of parts in the buffers within

the loop must remain constant. Therefore

I = n2(t) + n3(t) + n4(t) + nr(t).
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When Werner developed his evaluation algorithm, he focused on the closed-loop

systems. As a result, his algorithm cannot be used directly to evaluate single open-

loop systems. However, we have to point out that decomposition is the key to analyze

both single closed-loop and open-loop systems. Therefore, Werner's algorithm can

be extended easily to analyze the more general system. On the other hand, Zhang

(2006) extended Werner's algorithm to production systems with multiple loop struc-

tures. Consequently, Zhang's algorithm is able to evaluate single open-loop systems.

In Zhang (2006), he introduced a complicated induction algorithm based on graph

theory to conduct blocking and starvation analysis, which is a prerequisite for the

decomposition approach. That induction algorithm is effective to deal with multiple

coupled loop structures. However, in our case where we only have one open loop,

there is no need for induction. Thus, the blocking and starvation analysis for single

open-loop systems can be significantly simplified. As a result, the resulting decom-

position algorithm after the blocking and starvation analysis can be also simplified.

We discuss the evaluation of single open-loop systems in Section 5.3.

5.2.3 The Discontinuities of Evaluation Results of Werner's

Algorithm

In this section, we provide an example to show the discontinuities of evaluation results

of Werner's algorithm. Figure 5-7 shows the evaluation result for a three-machine

three-buffer closed-loop system. The three machines are identical with parameters

pi = .01 and ri = .1, where pi and ri are the failure and repair probabilities of Mi in

each time unit, respectively. In addition, the buffer sizes are N1 = N2 = N3 = 10.

We vary the loop invariant I from 4 to 26, and study the production rate of the

system as a function of I. In Figure 5-7, the loop invariant I is on the horizontal axis,

while the production rate is on the vertical axis. We compare the evaluation result

from Werner's algorithm with simulation. The length of the simulation is 5,100,000

time steps with the first 100,000 time steps being the warm up period. We run the

simulation 20 times. The standard deviation of the production rate is about 7 x 104.
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Figure 5-7: Evaluation results of Werner's algorithm - the Batman effect

Figure 5-7 demonstrates that:

1. Werner's algorithm is very accurate because the production rate difference be-

tween simulation and the decomposition method for any given invariant I is

very small.

2. However, there are apparent discontinuities of the production rate3 as I changes

from 10 to 11, 11 to 12, 18 to 19, and 19 to 20.

From an optimization standpoint, these discontinuities are indeed undesirable as

they will lead to inaccurate optimization results, especially when the optimization

technique requires the use of gradient. These discontinuities will lead to incorrect

search directions in the optimization algorithm. Consequently, in order to optimize

single loop systems, we need to further improve the evaluation accuracy and eliminate

the Batman effect.

In what follows, we first explain how we use the decomposition approach to an-

alyze single open-loop systems in Section 5.3. Two potential problems in Werner's

algorithm (as well as Zhang's algorithm) are identified and resolved in Sections 5.4.1

and 5.4.2, respectively. We will further explain how the Batman effect occurs due to

those two problems.

3 Due to the shape of the curve, we call it the "Batman" effect.

178



5.3 Evaluation of Single Open-Loop Systems

We use the decomposition approach to analyze single open-loop systems. As explained

in Section 5.2.1, the critical step in the decomposition approach is to assign failure

modes to the upstream and downstream pseudo-machines of each two-machine one-

buffer building block. This is realized by using blocking and starvation analysis.

5.3.1 Blocking and Starvation Analysis

When we evaluate the performance of a manufacturing system by decomposition, the

blocking and starvation properties of the system provide essential information for

setting up the parameters of the pseudo-machines in a set of two-machine one-buffer

building blocks (Zhang 2006). Recall that if a machine failure can cause the buffer

to be empty, then it will be categorized as a failure mode of the upstream pseudo-

machine in the two-machine one-buffer building block that contains that buffer. On

the other hand, if a failure in the system can cause the buffer to be full, then it will

be categorized as a failure mode of the downstream pseudo-machine. Zhang (2006)

introduced a machine failure - buffer level matrix that summarizes the blocking

and starvation analysis results. We use this concept in our single open-loop system

evaluation. For instance, let us consider the system shown in Figure 5-8. It is a

five-machine production system with a loop including Machines M 2 , M3, M 4, and

Buffers B 2, B 3, B5 . The size of each buffer is Ni = 20, Vi. The loop invariant I is 27.

The machine failure - buffer level matrix is therefore

Figure 5-8: A five-machine single open-loop system
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B1 B2  B3 B4 B5

M1  0 0 7 0 20

M2  20 0 7 0 20

M3  20 20 0 0 7

M4  20 7 20 0 0

M5  20 7 20 20 0

In this matrix, buffers are placed in columns and machines are placed in rows.

For the discussion below, let Xj be the matrix element of row i and column j.

X1,1 = X 1,2 = X 1,4 = 0, for instance, indicates that when Machine M1 fails for a long

time, then buffers B1, B2 and B4 will be empty. In addition, B3 will be partially full

with a work-in-process inventory of seven parts, while B5 will be full. (As a check,

the total number of parts in buffers B2, B 3, and B5 is 27, which equals the loop

invariant.) A similar explanation applies to each of other elements of the matrix.

Furthermore, let us look at the first column, which indicates the limiting propagation

state of Buffer B 1 given failures of different machines. It says B 1 could be empty due

to failures of M1 , and it could be full due to failures of Machines M 2, M3, M 4 and

M5. Therefore, we conclude that for the two-machine one-buffer building block that

contains B1, failures of M1 are associated with the failures of its upstream pseudo-

machine, while failures of M 2 to M5 are associated with the failures of its downstream

pseudo-machine. Therefore, the machine failure - buffer level matrix provides us

essential information about how we can set up the two-machine one-buffer building

block for each buffer in the original system, and how we can identify the potential

failure modes of the upstream and downstream pseudo-machines4 . As a result, the

first requirement of the decomposition approach is to derive the machine failure -

buffer level matrix for a given single open-loop system.

4 1n Columns 2, 3 and 5 in the example, the corresponding buffers may not be totally full due to
some machine failures. For example, if M4 or M5 fails, B2 will not be full. In this case, we cannot
categorize failure modes of M4 and M5 to the building block associated with B2 without necessary
modifications. In particular, the number 7 is a threshold for B2 and therefore we need to modify
the matrix by eliminating all thresholds in all buffers. We discuss this in Section 5.3.3.
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5.3.2 Five Types of Machine Failures

In order to construct the machine failure - buffer level matrix for a given single

open-loop system, it is helpful to notice that there are (at most) five types of machine

failures: upstream machine failure, loop-start machine failure, inner loop machine

failure, loop-end machine failure, and downstream machine failure (see Figure 5-9).

In Figure 5-9, M1 is the upstream machine of the loop, M6 and M7 are the downstream

machines of the loop, M2 is the loop-start machine, M5 is the loop-end machine, and

M 3 and M 4 are inner loop machines. The failures of each type machine are considered

as each type failure. For example, the failures of the loop-start machine are called

loop-start machine failures.

B1 B2 M3 B3 B4 B5 M6 B6

loop-start machine failure loop-end machine failure

upstream machine failure inner loop machine failure downstream machine failure

Figure 5-9: Five types of machine failures

It is helpful to point out that even for a given type of machine failure, there

can be several possible scenarios of the limiting propagation state of buffers that is

determined by the specific loop invariant as well as the buffer sizes. To illustrate this

point, we construct four loop systems. Then, we discuss the five types of machine

failures separately. We go through each type of machine failure to build up the

machine failure - buffer level matrix for each of these four systems. The four loop

systems under consideration are shown in Figure 5-10.

It can be seen that the four loop systems have the identical structure, where the

total number of parts in Buffers B3, B4, B5 , and B8 equals to the loop invariant I. In

addition, all buffers in the four systems have sizes of 10 parts. The loop invariants in

these four systems are 5, 15, 25, and 35, respectively. We do not specify the machine

parameters as the limiting propagation state of buffers is independent of them.
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Loop system 1
Ni = 10,Vi; I= 5

Figure 5-10: Four single open-loop systems

1. Upstream machine failure

We first examine the case where one of the upstream machines of the loop fails.

Note that the failures of Machines M1 and M2 in each of those four systems belong

to upstream machine failures. In other words, for each system, we study the limit-

ing propagation states of buffers given that Machines M1 and M 2 fail, respectively.

Therefore, for each system, the first two rows of the machine failure - buffer level

matrix can be filled. They are provided in Figure 5-11.

We first discuss the inventory levels of buffers inside the loop (i.e., Buffers B3 ,

B 4 , B 5, and B8 ). In order to determine them, we study the status of the loop-start

machine, because it can be starved due to upstream machine failures. We realize

that the buffer upstream of the loop-start machine (i.e., B 2) is always empty given an

upstream machine failure, and therefore the loop-start machine will be starved. Since

it is starved, the loop-start machine (i.e., M3) looks to the rest of the system as if it
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Loop system 1

(1.1)

(1.2)

B1 B2 B B4 B B6 B

0 0 0 0o

Loop system 2

(2.2)

Loop system 3

(3.1)

(3.2)

Loop system 4

(4.2)

B,
0
10

B,
0
10

BI
0
10

B2 B3 B4 B5 B6 B7
0 00 50 0
0 00 50 0

B2 B3 BA B5 B6i B7
0 0 5 10 0 0
0 0 5 10 0 0

B2 B3 B4 B5 B6 B7
0 5 10 10 0 0
0 5 10 10 0 0

Figure 5-11: Upstream machine failure examples

failed. A dashed cross is used in Figure 5-11 to distinguish the starvation of M2 from

the actual failure of a upstream machine. Material flow within the loop will move

along the direction of the loop. Therefore, parts start accumulating at the buffer

upstream of the loop-start machine (i.e., B 8). Consequently, the inventory levels of

all buffers inside the loop will be determined as though the loop-start machine fails.

Moreover,

1. For Loop system 1 in Figure 5-11, the loop invariant I is smaller than the size
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of Buffer B8 . Therefore, all parts in the loop will accumulate in B8 and B8 will

be partially full. As a result, other buffers within the loop, including the buffer

upstream of the loop-end machine, will be empty. The empty buffer upstream

of the loop-end machine will starve the loop-end machine (i.e., M6). Since it is

starved, M 6 looks to the buffers downstream of the loop (i.e., B7 and B 8) as if

it failed.

2. For Loop systems 2, 3, and 4 in Figure 5-11, the loop invariant I is larger than

the size of Buffer B8 , and therefore B8 will be full. Note that B8 is the buffer

downstream of the loop-end machine. Therefore, the loop-end machine (i.e.,

M 6 ) will be blocked. Since it is blocked, M6 looks to the buffers downstream of

the loop (i.e., B7 and B 8) as if it failed.

The inventory levels of buffers outside the loop (i.e., Buffers B 1, B 2, B6 , and B7 )

are easy to determine. In particular, the buffers upstream of the failed machine will

be full, while the buffers between the failure machine and the loop-start machine will

be empty, since all remaining parts in these buffers will be processed by the loop

through the loop-start machine until it gets starved. On the other hand, because the

loop-end machine will look to all buffers downstream of the loop as if it failed, these

buffers will be empty. For example, in Scenarios (1.2), (2.2), (3.2), and (4.2) of Figure

5-11 where Machine M 2 fails, B1 is full while B 2, B6 , and B7 are empty.

The following conclusions about the limiting propagation state of buffers can be

drawn from the discussion above. Given a upstream machine failure:

" Buffers upstream of the failed machine will be full,

" Buffers between the failed machine and the loop-start machine will be empty,

" Buffers downstream of the loop will be empty,

" Inventory levels of buffers within the loop are determined by the size of each

buffer and the loop invariant as though the loop-start machine failed.
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2. Loop-start machine failure

Next, we consider the case where the loop-start machine fails. Note that the failures

of Machine M3 in each of those four systems belong to loop-start machine failures.

Therefore, for each system, the third row of the machine failure - buffer level matrix

can be filled. They are provided in Figure 5-12.

Loop system 1
N = 10,Vi;I = 5

Al, M2 B, Ml4 B4 M5 14 B, M7, B7 MA

B1 B2 B3 B4
0 0 0 0
10 0 0 0
10 10 0 0

B5 B6 B7 BS
0 0 0 5
0 0 0 5
0 0 0 5

Loop system 2 M1
N= 10,Vi; I = 15 M2

MA3
Al, Al, B3 M4, B4 AlS B, Al, B Ale A! 4

M5

M6
My
M8

B1 B 2 B3 B4 B5 B 6 B7
0 0 0 0 5 0 0
10 0 0 0 5 0 0
10 10 0 0 5 0 0

B1 B 2 B3 B4 B5 B 6 B7 B8
Loop system 3 M1  0 0 0 5 10 0 0 10
N = 10,Vi;I=25 M2  10 0 0 5 10 0 0 10

Ma3  10 10 0 5 10 0 0 10
Ml, M2, B M4  Al, B, My B, Me, A 4

M5
M6
M7

M8s

Loop system 4
N = 10,Vi;I = 35

Al, Al2 M4, Ml5 l B7 Al,

B 2 B3 B4 B5 B6 B7
0 5 10 10 0 0
0 5 10 10 0 0

10 5 10 10 0 0

Figure 5-12: Loop-start machine failure examples

Again, we first discuss the inventory levels of buffers inside the loop (i.e., Buffers

B3, B4 , B5 , and B8). In this case, the loop-start machine fails and material flow within

the loop moves along the direction of the loop. Therefore, parts start accumulating
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at upstream buffer of the loop-start machine (i.e., B 8). The inventory levels of all

buffers inside the loop will be determined as the loop-start machine fails. Moreover,

1. For Loop system 1 in Figure 5-12, the loop invariant I is smaller than the size

of B 8 . Therefore, all parts in the loop will accumulate in B8 and B8 will be

partially full. As a result, the buffer upstream of the loop-end machine will be

empty and the loop-end machine (i.e., M6) will be starved. Since it is starved,

M6 looks to the buffers downstream of the loop (i.e., B7 and B 8) as if it failed.

2. For Loop systems 2, 3, and 4 in Figure 5-12, the loop invariant I is larger

than the size of B8 , and therefore B8 will be full. Therefore, the loop-end

machine (i.e., M6) will be blocked. Since it is blocked, M6 looks to the buffers

downstream of the loop (i.e., B7 and B8) as if it failed.

The inventory levels of buffers outside the loop (i.e., buffers B 1, B 2, B6 , and B7) are

again easy to determine. In particular, all buffers upstream of the failed machine (the

loop-start machine) will be full. On the other hand, because the loop-end machine

will look to all buffers downstream of the loop as if it failed, these buffers will be

empty. For example, for all four systems in Figure 5-12, B1 and B 2 are full while B6

and B7 are empty.

The following conclusions about the limiting propagation state of buffers, given a

loop-start machine failure, can be drawn:

" Buffers upstream of the loop will be full,

" Buffers downstream of the loop will be empty,

" Inventory levels of buffers inside the loop are determined by the size of each

buffer within the loop and the loop invariant for the case where the loop-start

machine fails.

3. Inner loop machine failure

We study the case where one of the inner loop machines fails here. Note that the

failures of Machines M 4 and M5 in each of those four systems belong to inner loop
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machine failures. In other words, for each system, we study the limiting propagation

states of buffers given that Machines M4 and M5 fail, respectively. Therefore, for

each system, the fourth row and the fifth row of the machine failure - buffer level

matrix can be filled. They are provided in Figure 5-13.

Loop system 1 B1 B2 B 3 B 4 B5 B6 B7 B8
M 0 0 0 0 0 0 0 5
M2  10 0 0 0 0 0 0 5

M M2B
4 M 5 B 5  B MBM M3  10 100 00 00 5

(1.1) M4  10 10 5 0 0 0 0 0
M5  10 10 0 5 0 0 0 0

M, ~M2 B3 M4  Bs B M7 B7 M

(1.2)

Loop system 2 Bi B 2 B3 B 4 B5 B6 B7 B8Ni= 0,V; = 5M, 0 0 0 0 5 0 0 10
M 2  10 0 0 0 5 0 0 10

M, M 2  B4 MS B 5  B M BMa M 3  10 10 0 0 50 010
(2.1) M4  10 10 10 0 0 0 0 5

M 5  10 10 5 10 0 0 0 0

(2.2)

Loop system 3 B1 B2 B3 B4 B5 B6 B7 B8
Ni= 0ViI25M 0 0 0 5 10 0 0 10

M 2  10 0 0 5 10 0 0 10
M, 'M 2 , B4 MS B 6 M 7 B 7 MO M3  10 10 0 510 0 010

(3.1) M4  10 10 10 0 5 0 0 10
M5  10 10 10 10 0 0 0 5
Mt6
M7

(3.2)

Loop system 4 B1 B2 B3 B4 Bs B6 B7 B8
NiAt = 0V; 3 0 0 5 10 10 0 0 10

M2  10 0 5 10 10 0 0 10
M, M2 M& BM 7 BrM9 M3  10 10 51010 0 010

(4.1) M4  10 10 10 5 10 0 0 10
M5  10 10 10 10 5 0 0 10
M6

M7

(4.2)

Figure 5-13: Inner loop machine failure examples

We first discuss the inventory levels of buffers inside the loop (i.e., Buffers B3,

B 4, B 5 , and B 8). Material flow within the loop will move along the direction of the

loop. As a result, since a certain inner loop machine fails, parts start accumulating at
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buffer upstream of that specific machine. The inventory levels of all buffers inside the

loop will be determined by the size of each buffer inside the loop, the loop invariant,

and the position of the particular failed inner loop machine.

To determine the inventory levels of buffers outside the loop (i.e., Buffers B 1 , B 2 ,

B6 , and B7), we need to study the status of the loop-start machine and the loop-end

machine, given a inner loop machine failure. We consider the loop-start machine first.

There are two possibilities:

1. For Scenarios (1.1), (1.2), and (2.2) in Figure 5-11, the buffer upstream of the

loop-start machine (i.e., B 8) is empty. The empty B8 will starve the loop-start

machine (i.e., M3). Since it is starved, M 3 looks to the buffers upstream of the

loop (i.e., B1 and B 2) as if it failed.

2. For all other scenarios in Figure 5-11, the buffer downstream of the loop-start

machine is full. Therefore, the loop-start machine (i.e., M3) will be blocked.

Since it is blocked, M 3 looks to the buffers upstream of the loop (i.e., B1 and

B 2) as if it failed.

Similarly, for the loop-end machine, there are three possibilities:

1. For Scenarios (1.1), (1.2), (2.1), (2.2), and (3.2) in Figure 5-11, the buffer

upstream of the loop-end machine (i.e., B 5) is empty. The empty B5 will starve

the loop-end machine (i.e., M6). Since it is starved, M6 looks to the buffers

downstream of the loop (i.e., B7 and B 8) as if it failed.

2. For all other scenarios in Figure 5-11, the buffer downstream of the loop-end

machine (i.e., B8) is full. Therefore, the loop-end machine (i.e., M6 ) will be

blocked. Since it is blocked, M6 looks to the buffers downstream of the loop

(i.e., B7 and B 8) as if it failed.

According to the analysis above, we know that the loop-start and loop-end ma-

chines will look to the buffers upstream of the loop and the buffers downstream of

the loop as if they failed, respectively. As a result, all buffers upstream of the loop

will be full, while all buffers downstream of the loop will be empty. For instance, in
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all four systems of Figure 5-11, B1 and B 2 are full while B6 and B7 are empty. The

following conclusions about the limiting propagation state of buffers, given a inner

loop machine failure, can be drawn:

* Buffers upstream the loop will be full,

" Buffers downstream the loop will be empty,

" Inventory levels of buffers in the loop are determined by the size of each buffer

within the loop, the loop invariant, and the position of the particular failed

machine.

4. Loop-end machine failure

Next, we study the case where the loop-end machine fails. Note that the failures

of Machine M6 in each of those four systems belong to loop-end machine failures.

Therefore, for each system, the sixth row of the machine failure - buffer level matrix

can be filled. They are provided in Figure 5-14.

Again, we first discuss the inventory levels of buffers inside the loop (i.e., Buffers

B3, B 4, B 5 , and B8 ). In this case, the loop-end machine fails and material flow within

the loop moves along the direction of the loop. Therefore, parts start accumulating

at the upstream buffer of the loop-end machine (i.e., B6 ). The inventory levels of all

buffers inside the loop will be determined as the loop-end machine fails. Moreover,

1. For Loop systems 1, 2, and 3 in Figure 5-14, the buffer upstream of the loop-

start machine will be empty because I < N3 + N4 + N5 . As a result, the

loop-start machine (i.e., M3) will be starved. Since it is starved, M3 looks to

the buffers upstream of the loop (i.e., B 1 and B 2) as if it failed.

2. For Loop system 4 in Figure 5-14, the buffer downstream of the loop-start

machine will be full because I > N3 + N 4 + N5 . Therefore, the loop-start

machine (i.e., M 3) will be blocked. Since it is blocked, M3 looks to the buffers

upstream of the loop (i.e., B1 and B 2) as if it failed.
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B1 B2 B3 B 4 B5 B6 B7 B8Loop system 1 M1 ~ 0 0 0 0 0 0 0 5
N=10,Vi; I=5 M2  10 0 0 0 0 0 0 5

M3  10 10 0 0 0 0 0 5
S  Md2  B3 M4 B4 Md5  Ba 7 B7 MM 4  10 10 5 0 0 0 0 0

M5  10 10 0 5 0 0 0 0
M6  10 10 0 0 5 0 0 0
M7

M8

B1 B 2 B3 B4 B5 B6 B7 B8
Loopsystem2 M1 ~ 0 0 0 0 5 0 0 10
N= 10,Vi;I=15 M2  10 0 0 0 5 0 0 10

MA3  10 10 0 0 5 0 0 10
S  Md2  3 M4  Be5 BM7 Br MS M4  10 10 10 0 0 0 0 5

M5  10 10 5 10 0 0 0 0
M 6  10 10 0 5 10 0 0 0
M7
M8

B1 B2 B3 B4 B5 B6 B7 BS
Loopsystem3 M1 ~ 0 0 0 5 10 0 0 10
N=A10,Vi;I=25 M2  10 0 0 5 10 0 0 10

M3  10 10 0 5 10 0 0 10
M, ,M4, B 7 By M 4  10 10 10 0 5 0 0 10

M5  10 10 10 10 0 0 0 5
M6  10 10 5 10 10 0 0 0
M7

M8

B1 B 2 B3 B 4 Bs B6 B7 B8Loop system 4 M1  0 0 5 10 10 0 0 10
M 2  10 0 5 10 10 0 0 10
M 3  10 10 5 10 10 0 0 10

Pd 2 
4  M5  B M BMs M4  10 10 10 510 0010

Al5  10 10 10 10 5 0 0 10
M6  10 10 10 10 10 0 0 5
M7

M8 L

Figure 5-14: Loop-end machine failure examples

The inventory levels of buffers outside the loop (i.e., Buffers B1, B2, B6, and B7)

are easy to determined. In particular, all buffers downstream of the failure machine

(the loop-end machine) will be empty. On the other hand, because the loop-start

machine will look to all buffers upstream of the loop as if it failed, these buffers will

be full. For example, for all four systems in Figure 5-14, B1 and B2 are full while B6

and B7 are empty.

The following conclusions about the limiting propagation state of buffers, given a

loop-end machine failure, can be drawn:
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* Buffers upstream the loop will be full,

* Buffers downstream the loop will be empty,

" Inventory levels of buffers inside the loop are determined by the size of each

buffer within the loop and the loop invariant for the case where the loop-end

machine fails.

5. Downstream machine failure

Finally, we analyze the case where one of the machines downstream the loop fails.

Note that the failures of Machines M7 and M8 in each of those four systems belong to

downstream machine failures. In other words, for each system, we study the limiting

propagation states of buffers given that M7 and M8 fail, respectively. Therefore, for

each system, the last two rows of the machine failure - buffer level matrix can be

filled and we can finally finish building up the machine failure - buffer level matrix

for each of the four systems. They are provided in Figure 5-15.

We first discuss the inventory levels of buffers inside the loop (i.e., Buffers B 3,

B 4, B5 , and B 8). In order to determine them, we study the status of the loop-end

machine, because it can be blocked due to downstream machine failures. We realize

that the buffer downstream of the loop-end machine (i.e., B 6) is always full given

a downstream machine failure, and therefore the loop-end machine will be blocked.

Since it is blocked, the loop-end machine (i.e., M6 ) looks to the rest of the system as

if it failed. Material flow within the loop will move along the direction of the loop.

Therefore, parts start accumulating at the buffer upstream of the loop-end machine

(i.e., B 5). The inventory levels of all buffers inside the loop will be determined as

through the loop-end machine fails. Moreover,

1. For Loop systems 1, 2, and 3 in Figure 5-14, the buffer upstream of the loop-

start machine will be empty because I < Na3 + N4 + N5 . As a result, the

loop-start machine (i.e., M 3) will be starved. Since it is starved, M3 looks to

the buffers upstream of the loop (i.e., B1 and B 2) as if it failed.
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Loop system 1 B, B2 B3 B4 B5 B6 B7 B8

Ni 1, i;I 5M 1  0 0 0 0 0 0 0 5

M2  10 0 0 0 0 0 0 5
A, M4 BBM, M 3  10 100 0 00 0 5

(1.1) M 4  10 10 5 0 0 0 0 0
M 5  10 10 0 5 0 0 0 0
M6  10 10 0 0 5 0 0 0

,t V-e M 7  10 10 0 0 5 10 0 0
M8 L10 10 010

(1.2)

Loop system 2 B1 B2 B3 B4 Bs B6 B7 B8
N =10,Vi;I =15 1 7 1 M 0 0 0 0 5 0 0 10

B M2  10 0 0 0 5 0 0 10
M3  10 10 0 0 5 0 0 10

(2.1) M 4  10 10 10 0 0 0 0 5
M 5  10 10 5 10 0 0 0 0
Mt6  10 10 0 5 10 0 0 0
M 7  10 10 0 5 10 10M, 2 3 MAl M M 10 10 0 5 10 1010 0

(2.2)

Loop system 3 B, B2 B3 B4 B5 B6 B7 B8
Ni 10V i;I 2575 Mt 0 0 0 5 10 0 0 10

AtM 4 MsB I 2  10 0 0 5 10 0 0 10
BMBaAB4 B6 BAlB

M A 3  10 10 0 5 10 0 0 10
(3.1) M 4  10 10 10 0 5 0 0 10

M5  10 10 10 10 0 0 0 5
At6  10 10 5 10 10 0 0 0
AtM7  10 10 5 10 10 10

al, M2, M4, M5MM810 10 510 101010 0

(3.2)

Loop system 4 B1 B2 B3 B4 B5 B6 B7 B8N =10 ViVi; 1j 35 At 0 0 5 10 10 0 0 10

Al, Al,4 M B7 Al, At 2  10 0 5 10 10 0 0 10
M3  10 10 5 10 10 0 0 10

(4.1) M 4  10 10 10 5 10 0 0 10
M 5  10 10 10 10 5 0 0 10
M6  10 10 10 10 10 0 0 5

Al M .. S M 7  10 10 10 10 10 10 0 5
-,a M2 4AlM M8 10 10 10 10 10 10 105

(4.2)

Figure 5-15: Downstream machine failure examples

2. For Loop system 4 in Figure 5-14, the buffer downstream of the loop-start

machine will be full because I > N3 + N4 + N5. Therefore, the loop-start

machine (i.e., M3) will be blocked. Since it is blocked, M3 looks to the buffers

upstream of the loop (i.e., B 1 and B 2) as if it failed.

The inventory levels of buffers outside the loop (i.e., Buffers B 1, B 2, B6 , and B7 )

are easy to determined. In particular, the buffers downstream of the failure machine

will be empty, while the buffers between the loop-end machine and the failure machine

will be full. On the other hand, because the loop-start machine will look to all buffers
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upstream of the loop as if it failed, these buffers will be empty. For example, in

Scenarios (1.1), (2.1), (3.1), and (4.1) of Figure 5-15 where M7 fails, B 1, B2, and B6

are full while B7 is empty.

The following conclusions about the limiting propagation state of buffers can be

drawn from the discussion above. Given a downstream machine failure:

" Buffers downstream of the failed machine will be empty,

" Buffers between the loop-end machine and the failed machine will be full,

" Buffers upstream of the loop will be full,

" Inventory levels of buffers within the loop are determined by the size of each

buffer and the loop invariant as though the loop-end machine failed.

5.3.3 Thresholds

Based on the analysis in the previous section, we can derive the machine failure -

buffer level matrix for any given single open-loop system. However, in some cases, the

matrix cannot be used directly to construct two-machine one-buffer building blocks

for buffers in the system due to the presence of buffer thresholds, which are first

introduced by Maggio (2000) and then studied by Werner (2001), Gershwin and

Werner (2007), and Zhang (2006). To explain this, we consider the system shown in

Figure 5-8 again. Recall that its machine failure - buffer level matrix is

B1 B2 B3 B4 B5

M1  0 0 7 0 20

M2  20 0 7 0 20

M3  20 20 0 0 7

M4  20 7 20 0 0

M5  20 7 20 20 0

Taking B 2 as an example, Machines M4 and M5 cause B 2 to be partially full with

seven parts, but not totally full. As explained in Section 5.2.1, 7 is the threshold of
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Buffer B2. It is helpful to mention that, for single open-loop systems, the thresholds

only appear in buffers inside the loop because thresholds are a result of the loop

invariant and the sizes of buffers inside the loop. For buffers outside the loop, there

are no thresholds. In other words, they will be either full or empty due to the failure

mode of a given machine. Moreover, for a given buffer inside the loop, it is possible

for it to have more than one threshold. See examples studied in Zhang (2006).

Since thresholds are undesirable, they need to be eliminated. We have mentioned

in Section 5.2.1 that thresholds can be eliminated by inserting perfectly reliable ma-

chines (Gershwin and Werner 2007). For the system shown in Figure 5-8, we break

up buffers B2, B3, and B5 by inserting a (hypothetically) perfectly reliable machine

in each of them. After introducing the perfectly reliable machines and eliminating

the thresholds, we derive the modified loop (Figure 5-16). In particular, we replace

B2 by a upstream buffer B2 2 , a perfectly reliable machine, and a downstream buffer

B 21. The size of B22 is 13(= N2 - I) while the size of B2 1 is 7(= I). Similarly, B3

is replaced by B 3 2 , a perfectly reliable machine, and B31. B5 is replaced by B 52 , a

perfectly reliable machine, and B51. Then, for all original buffers that do not have

thresholds and those newly derived buffers in the modified loop, we apply the blocking

and starvation analysis for those five types of machine failures mentioned in Section

5.3.1 and realize that perfectly reliable machines do not fail. From this, we derived

the modified machine failure - buffer level matrix.

@

M1 B1 2 B2 B1 M B2 Bi M 4 M

Legend: perfectly reliable machine

Figure 5-16: The modified loop system of Figure 5-8
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B1 B 22 B 21 B32 B 31 B 4 B72 B71

M1  0 0 0 0 7 0 13 7

M 2  20 0 0 0 7 0 13 7

M 3  20 13 7 0 0 0 0 7

M 4  20 0 7 13 7 0 0 0

M 5  20 0 7 13 7 20 0 0

In the modified matrix, we see that there are eight buffers instead of the original

five buffers. However, the most important fact is that for all these eight buffers,

they are all either full or empty given the failure of a certain machine. In other

words, a very long failure of each machine causes each buffer to be either full or

empty. Therefore, we are able to categorize the failure modes of a given machine

to the hypothetical two-machine one-buffer building block that contains that buffer.

Since, in the modified system, there are eight buffers (rather than five buffers in the

original system), there are eight (rather than five) two-machine one-buffer building

blocks. This modified machine failure - buffer level matrix enables us to construct

two-machine one-buffer building blocks for all buffers in the modified loop system.

5.3.4 Decomposition

The purpose of all the analysis in Sections 5.3.1, 5.3.2, and 5.3.3 is to address how to

construct the upstream pseudo-machine M"(B3 ) and the downstream pseudo-machine

Md(B) of the building block that contains Buffer B3 . After we construct the two-

machine one-buffer building blocks for all buffers in the modified system, we apply

the decomposition method developed by Tolio and Matta (1998) to analyze the sin-

gle open-loop system. For more details about the decomposition algorithm, refer to

Zhang (2006). In the decomposition algorithm, the analytical solutions of Tolio et al.

(2002) are used to evaluate each of those two-machine one-buffer building blocks.

With those two-machine one-buffer building blocks, the decomposition algorithm de-

termines the parameters for all building blocks and then finds the production rate as

well as the average inventory of each buffer of the system.
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5.4 Modifications of Loop Evaluation

As mentioned in Section 5.2.3, there are two issues with Werner's algorithm that lead

to the Batman effect. We explain and resolve them in this section.

5.4.1 New Model of the Perfectly Reliable Machine without

Delay

The first issue occurs when we eliminate buffer thresholds by inserting perfectly reli-

able machines. Let us study Figure 5-16 again.

B 2  the new part

B22  B21  M3

(a) original buffer

the new part

-- > B22 B21 ->M3 -

(b) modified buffer after inserting a perfectly reliable machine

Figure 5-17: Different behavior of Buffer B 2 with and without a perfectly reliable
machine

Note that perfectly reliable machines are inserted to eliminate thresholds in buffers

B 2, B 3, and B 5 . We have to keep in mind that there are no such machines in reality.

We explain the problem resulting from the insertion of the perfectly reliable machine

by studying B 2 as an example (Figure 5-17). Consider the original buffer without a

perfectly reliable machine first (Figure 5-17(a)). Suppose that at some time Buffer

B 2 is empty and therefore both hypothetical buffers B 2 1 and B 2 2 are empty. If a part

arrives, the part goes to the hypothetical Buffer B 2 1 directly and therefore the down-

stream machine M3 will not be starved. However, in the modified buffer case (Figure

5-17(b)), if we model the newly inserted machines conventionally, the part goes to

B 22 first and stays there for one time step, after which it enters B 21. Consequently,
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M 3 will be starved during that time step and this reduces the production rate of the

system. To summarize, in reality (i.e., the original buffer without a perfectly reliable

machine), if a part arrives at Buffer B 2 , it goes directly to the hypothetical Buffer

B 21 if it is not full. It will stay at B 22 if and only if B 2 1 is full. Thus, if B 21 is empty,

B 22 must be empty and therefore B 2 is empty. However, if we modify the buffer

by inserting a perfectly reliable machine and we model the newly inserted machines

conventionally, that part will arrive at B 22 first and not go to B 21 until the next time

unit. This is because, in the two-machine one-buffer building block of B 22 in the

decomposition, it takes its downstream machine one time unit to process a part to its

downstream buffer (B 21). Therefore, it is possible that B 2 1 is empty while B 22 is not,

which should never occur. The argument above reveals that each perfectly reliable

machine (if modeled conventionally) could add a small amount of time delay because

material needs to transverse that machine. Zhang (2006) comments that the delay is

nearly negligible. From a standpoint of evaluation accuracy, the time delay is indeed

negligible. However, since our ultimate goal is the optimization of single open-loop

systems, we observe that the time delay is one of the key reasons and difficulties in

optimization that lead to the discontinuity in loop evaluation and the Batman effect.

Recall that, in the Batman effect (Figure 5-7), the production rate of the system,

derived by Werner's algorithm, when I = 11 is smaller than that when I = 10, which

differs from the simulation result. This is due to the time delay mentioned above.

When I < 10, there is no need to insert perfectly reliable machines. However, when

I > 10, perfectly reliable machines are inserted to eliminate buffer thresholds. The

time delay brought by this effect reduces the production rate of the system, and leads

to the discontinuity5 . Therefore, it is necessary to modify the evaluation algorithm

to resolve this issue.

It is important to point out that it is the the evaluation of two-machine one-buffer

building blocks in the decomposition approach that requires modifications because

of the time delay. In other words, we have to consider how to enable the upstream

'The fact that the production rate when I = 12 is less than the production rate when I = 11 is
due to another issue that we address in Section 5.4.2.
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and/or the downstream pseudo-machines to have no delay when required. Consider

Figure 5-18 that shows the the building block that contains B 2 1 of the system shown

in Figure 5-16.

MU(B 2 1) B21  Md(B 21)

Sit can fail in the failure modes
of M 3 , M 4 and M5

" it can fail in the failure modes of M1 and M 2 ;
" when it is up, it processes a part without any time delay

Figure 5-18: A two-machine one-buffer building block whose upstream machine has
the no-delay property when it is up

First, we would like to indicate clearly that although the upstream machine of

B 21 in Figure 5-16 is a perfectly reliable machine, the upstream pseudo-machine of

B 21 in Figure 5-18 is NOT perfect and has a set of failure modes. According to the

modified machine failure - buffer level matrix, machines M1 and M2 in the original

system can cause B 21 to be empty. Therefore, the upstream pseudo-machine M"(B 21 )

in Figure 5-18 can fail in the failure modes of M1 and M2. Similarly, the downstream

pseudo-machine Md(B 21) in Figure 5-18 can fail in the failure modes of M3 , M4 and

M 5 . However, the key feature for MU(B 21 ) in Figure 5-18 is that whenever it is up,

it produces a part without any time delay, because of the perfectly reliable machine

upstream of B 21 in Figure 5-16. In the following, we refer to such a upstream machine

as a no-delay machine. As a comparison, we refer to a machine that does not exhibit

the no-delay property (when it is up) as an ordinary machine. We have to modify the

existing analytical solutions of Tolio et al. (2002) to cope with the no-delay property of

the upstream machine, the downstream machine, or both machines in a two-machine

one-buffer building block when necessary, because it takes both machines one time

unit to produce a part given no failure occurs in the current model.
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Model assumptions

In order to modify the analytical solutions of Tolio et al. (2002), we make the following

assumptions about a no-delay machine:

1. If a no-delay machine is not in a failed state, blocked, or starved, it can produce

a part at any instant and without any delay during a time unit.

2. A no-delay machine can NOT produce more than one part in any time unit.

Because of these two assumptions, we only need to modify the boundary conditions

of the existing Markov chain model for two-machine one-buffer building blocks studied

in Tolio et al. (2002). The boundary states refer to the states where the inventory level

is 0, 1, N-1, or N. This is because if the inventory level n satisfies 2 < n < N-2, then

it makes no changes to the Markov chain model because of the second assumption.

The upstream machine can add at most one part to the buffer in each time unit, and

the downstream machine can remove at most one part from the buffer in each time

unit. Because 2 < n < N -2, the buffer will not be empty or full after that time unit,

and therefore the upstream machine will not be blocked and the downstream machine

will not be starved. In other words, the no-delay property brings no impact to the

buffer level, the upstream machine, or the downstream machine. However, as we will

show shortly, if the system is in a boundary state, the no-delay property of a machine

can have impact to both the buffer level and the machine states. Consequently, we

only need to modify boundary conditions.

In addition, because of the two assumptions, it makes no difference if the upstream

machine is the only no-delay machine, the downstream machine is the only no-delay

machine, or both upstream and downstream machines are no-delay machines. The

three cases above will have exactly the same boundary conditions after modification.

In what follows, we first explain intuitively how the boundary conditions change be-

cause of no-delay machines. After that, mathematical models and analytical solutions

are provided.
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Ordinary machines, full buffer case

We first study the full buffer case (i.e., the upper boundary condition) with two

ordinary machines. Assume that the buffer is full and the downstream machine is

down at the end of time unit t.

time unit t
ordinary ordinary

time unit t + 1 Lna 0
ordinary ordinary

Figure 5-19: Ordinary machine, full buffer case

According to the model convention of Tolio et al. (2002), machines change states

at the beginning of a time unit, while the buffer level changes at the end of a time

unit. Therefore, if the downstream machine gets repaired, it will become up at the

beginning of time unit t +1. Then it will work on the first part in the buffer during

time unit t + 1. The buffer level becomes N - 1 at the end of time unit t + 1, and

the upstream machine is blocked during the entire time unit t + 1.

No-delay upstream machine - ordinary downstream machine, full buffer

case

Now, assume that the upstream machine is a no-delay machine and the downstream

machine is an ordinary machine. The buffer is full and the downstream machine is

down at the end of time unit t.

If the downstream machine gets repaired, it will be up at the beginning of time unit

t+ 1. Then it will work on the first part in the buffer during time unit t+ 1. At the end

of time unit t +1, the buffer level first becomes N - 1 since the downstream machine

processes a part. However, due to its no-delay property, the upstream machine will

add a part (the solid one) to the buffer simultaneously at the end of time unit t + 1,

if it does not fail. The two effects cancel out and the buffer level remains N.
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time unit t fNhJI ri1ii;
No-delay ordinary

time unit t + 1 I-]-B
No-delay ordinary

Figure 5-20: No-delay upstream machine - ordinary downstream machine, full buffer
case

Ordinary upstream machine - no-delay downstream machine, full buffer

case

Next, assume that the downstream machine is a no-delay machine and the upstream

machine is an ordinary machine. The buffer is full and the downstream machine is

down at the end of time unit t.

time unit t [ 4j
ordinary N<>delay

time unit t + 1 j Jo
ordinary No>delay

Figure 5-21: Ordinary upstream machine - no-delay downstream machine, full buffer
case

If the downstream machine gets repaired, it will be up at the beginning of time

unit t + 1. Then it will work on the first part in the buffer and remove it from the

buffer without any delay. As a result, the buffer level goes to N - 1 at the beginning

of time unit t + 1. Therefore, the upstream machine is no longer blocked. If it does

not fail, it adds a part into the buffer at the end of time unit t +1. So, the two effects

cancel out and the buffer level remains N.
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Ordinary machines, empty buffer case

Now, let us study the empty buffer case (i.e., the lower boundary condition) with two

ordinary machines. Assume that the buffer is empty and the upstream machine is

down at the end of time unit t.

time unit t [~ j j
ordinary ordinary

time unit t + 1 ,J --- r 0
ordinary ordinary

Figure 5-22: Ordinary machine, empty buffer case

If the upstream machine gets repaired, it will become up at the beginning of time

unit t + 1. Then it will add a part to the buffer, and the buffer level becomes 1 at

the end of time unit t +1, while the downstream machine is starved during the entire

time unit t + 1.

No-delay upstream machine - ordinary downstream machine, empty buffer

case

Assume that the upstream machine is a no-delay machine and the downstream ma-

chine is an ordinary machine. The buffer is empty and the upstream machine is down

at the end of time unit t.

If the upstream machine gets repaired, it will be up at the beginning of time unit

t + 1. Then it will add a part to the buffer and the inventory level is 1 at the beginning

of time unit t + 1 due to the no-delay property of the upstream machine. As a result,

the downstream machine will not be starved. If it does not fail, it will work on and

remove that part from the buffer at the end of time unit t + 1. So, the two effects

cancel out and the buffer remains empty.
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time unit t N Ei1
No-delay ordinary

time unit t + 1

No-delay ordinary

Figure 5-23: No-delay upstream machine - ordinary downstream machine, empty
buffer case

Ordinary upstream machine - no-delay downstream machine, empty buffer

case

Next, assume that the downstream machine is a no-delay machine but the upstream

machine is an ordinary machine. The buffer is empty and the upstream machine is

down at the end of time unit t.

time unit t
ordinary

time unit t + 1

Figure 5-24: Ordinary
buffer case

No-delay

ordinary No-delay

upstream machine - no-delay downstream machine, empty

If the upstream machine gets repaired, it will be up at the beginning of time unit

t + 1. Then it will add a part to the buffer and the inventory level first becomes 1

at the end of time unit t + 1. However, due to its no-delay property, the downstream

machine processes that part immediately. So, the two effects cancel out and the buffer

remains empty.

As implied by the six examples above, we see that by introducing no-delay ma-

chines, both upper and lower boundary conditions in the two-machine one-buffer

building blocks that have such machines should be modified. In addition, the two
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no-delay full buffer cases indicate that no matter whether the upstream or the down-

stream machine is the no-delay machine, the upper boundary conditions have the

same changes. Similarly, the two no-delay empty buffer cases indicate that the lower

boundary conditions have the same changes as well regardless of which machine is a

no-delay machine. As a final reminder, we have indicated that, because of the two

model assumptions about no-delay machines, it makes no difference if the upstream

machine is the only no-delay machine, the downstream machine is the only no-delay

machine, or both upstream and downstream machines are no-delay machines. These

three cases have exactly the same boundary conditions.

Modifications to mathematical models

Here we explain how we modify the boundary conditions in the Markovian two-

machine one-buffer building block model of Tolio et al. (2002). In essence, we will

modify the transition equations that contain upper and lower boundary states. In

Tolio et al. (2002), the state of the system is defined as (n, a 1 , a 2 ), where n is the buffer

level (0 < n < N), a1 is the state of the upstream machine, and a 2 is the state of

the downstream machine. If the upstream machine is operational, ai = 1. Otherwise

ai = u; for some i = 1,... , s where ui represents the failure mode of the machine.

Similarly, a2 can assume the values 1, di, - - - , d. The steady state probability of

the system being in state (n, a 1 , a 2) is indicated by p(n, a1 , a 2). In particular, if the

upstream machine is operational, it can fail in mode ui with probability pui while

attempting to perform an operation. When the upstream machine is failed in mode

u1 , it can get repaired during a time unit with probability ru. Similarly pad and

rdj represent respectively failure and repair probabilities for the failure modes of the

downstream machine. The total failure probability PU of the upstream machine, i.e.,

the probability of failure regardless of the mode in which the machine fails, is given

by P" = E 1 pui. Similarly, the total failure probability PD of the downstream

machine is PD dy pU and PD must satisfy PU < 1 and pD < 1.

The boundary states include (0, a1 , a2), (1, ai, a 2), (N-1, ai, a 2), and (N, ai, a 2)-

We modify the Markov chain model of the two-machine one-buffer building block
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with the additional transitions among boundary states because of the new no-delay

features. Then it can be seen that states (0, 1, dj), (0, ui, dj), (N, us, 1), (N, ui, dj), i =

1,... , s, j = 1, ... , j are transient because they cannot be visited from recurrent

states. Therefore, the long term steady state probabilities of these states are 0. Next,

we derive the new steady state probabilities of other recurrent boundary states.

New steady state transition equations of lower boundary states

New transition

follows.

equations for those recurrent lower boundary states are provided as

p(0,1,1) = p(0,1,l1)(1 pU)(i _ pD) +Z p(O,ui,1)rui(1 - PD),
i=1

p(0, us, 1) =

p(1 1, 1) =

p(O, 1, 1)p' + p(0, ui, 1)(1 - rU) + p(1, 1, 1)pu(1 - PD)
t t

+ E p(1, 1, dj)p"*rdi + E p(1, us, dj)(1 - r')rda
j=1 j=1

+p(1, ui, 1)(1 - r**)(1 - PD),

t

p(1, 1, 1)(1 - pU)(1 - PD) + E p(l, 1, dj)(1 - PU)rdi
j=1

S t

+ p(1, u, dj)r'rdi + p(1, u, 1)r"'(1 - PDL
i=1 j=1 =

p(1, 1, dj) = p(0, 1,1)(1 - P)pd + p(0, us,1)rupa,
i=1

p(1, ui, d,) = p(1, 1, 1)p pi + p(1, 1, dj)p"'(1 - rdi)

+p(1, ui, di)(1 - rui)(1 - rda) + p(1, ui, 1)(1 - rui)pd,
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t

p(1, ui, 1) = p( 2 , 1,1)pu(l pD) + Z p(2,1, d)puird(

t j=1(5.6)
+ E p(2, ui, dj)(1 - r"4)rdi + p(2, u, 1) (1 - r'i - PD)

j=1

We use State (1,1,1) as an example to explain the difference between the transition

equations of the modified model and those of the original model. Equations (5.7) and

(5.3) are the transition equations for (1,1,1) in the original model and the modified

model, respectively.

S

p(1,1,1) = p(1,1,1)(1-P)(1-PD)+Zp(,ui,)rl(1 _ pD)

, d i=r (5.7)
+ p(I, dj)r'irdi + p(0, ui, 1)r" .

i=1 j=1 i=1

The first three terms on the right hand sides of both equations are the same.

However, the fourth terms are different. In the model with ordinary machines, (1,1,1)

can be reached from (O,u 1,1) with probability ru, i - 1, - - - , s if Mu is repaired and

adds a part into the buffer, while Md is starved during that time unit. However, in

the modified model with no-delay machine(s), (1,1,1) cannot be reached from (O,ui,1).

But it can be reached from state (1,1,d 3 ) with probability (1 - PU)rdi j - 1 - t.

Note that (1,1,dj) is a transient state in the original model. However, it becomes

recurrent in the modified model. Similar analysis applies to other boundary states.

We realize that Equation (5.4) is the simplified form of

p(1,1,dj) = p(0,1,1)(1 - P)pd +p(o, 1,d)(1 -PU)(1 -rd)

+ p(O, u, d)r"(1 - rdi) + p(0, ui, 1)(5.8)

because p(O, 1, dy) = p(0, ui, dj) = 0, i = 1, - -- , s, j = 1,- ,t. Therefore, the forms

of Equations (5.3), (5.5), (5.6), and (5.8) are the same as the forms of transition

equations for the internal states in Tolio et al. (2002). As a result, we conclude that
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under new lower boundary transition equations, states (1, 1,1), (1, ui, 1), (1, 1, dj),

and (1, ui, dj) can be treated as internal states. Consequently, their probabilities can

be expressed as the internal form. Thus, according to Tolio et al. (2002), we have

R

p(1, 1, 1) = ZCmXmn,
m=1

R

p(l, 1, dj) = CmXmDj,m,
m=1

(5.9)
R

p(1, ui, 1) = ZCmXmUi,n,
m=1

R

p(1, ui, dj) = CmXmU,mDj,m,
m=1

where R = s + t, Cm, m = 1, ... , R are normalization constants, and Xm, Ui,m and

Djm , s,j =, 1 ... , t,m = 1, --- , R are defined in Tolio et al. (2002). Hence,

the remaining unknown probabilities are p(O, 1, 1) and p(0, ui, 1), i = 1,--- , s. We

derive them now. Comparing (5.1) and (5.4) we have

1 1
1 p(1,1, dj) = 1 p (0, 1, 1). (5.10)

pd 1 - PD

Thus,
1-D 1 pD R(

p(0, 1,_1)D=p(1,1, dj) = _ m1 i CmXmDj,m. (5.11)

Equation (5.2) can be written as

t

r up(0,ui, 1) = p(0, 1, 1)pUi + p(1, 1,1)pi(1 - PD) + Zp(1, 1,dj)p"*rdi

j=1
t

+Z p(1,ui,dj)(1 -rui)rdi +p(lu,)(1 - rui)(1 - PD).

j=1

(5.12)
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Plugging in the expressions for the terms on the right hand side, we find

R

PD) E CXmD,m
m=1

R

+ Z CmXmpu(1 - PD)
m=1

R t t R

+pui E CmXrE DjwrnI + E ( CmXmU,mDj,mrda (- ru- )
m=1 j=1 j=1m=1

R

+ E CmXmU,m(1 - ru)(1 - PD)
m=1

P U 
1

pdj

R

PD)

m=1

CmXmDj,m + p"

R ~t

+(1 - rui) Z CmXmUm E
m=1 .j=1

Note that, according to Tolio et al. (2002),

t

Z Dj,mrd + ( -PD)
j=1

R
m=1

Dj,mrdi +

' t
CmXm E Dj,mrd-7 + 1 - PD)

.j=1

(1 PD)]

(5.13)

= .1

XmKm
(5.14)

Therefore, (5.13) becomes

ru *p(O, u1 , 1) pdtp.I
R R

- PD) CmXmDj,m + pu" R Cm

7m=1 m=1 K

R

+ (1 - ru ) m

m=1

Hence,

p"'i(1 - PD) R
p(O,u 2 ,1) =PUtpd f CmXmDj,m

M=1

R 
+t_ +

1- rut

rut
M=1

CUi-m

.Km

(5.16)

Therefore (5.11) and (5.16) are the steady state probabilities of (0, 1, 1) and

(0, ui, 1), i = 1, -.. , s. The next step in Tolio et al. (2002) is to construct a set of
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equations that can be used to find the normalization constants C1, C2, - - , CR. Since

we have modified transition equations of those lower boundary states, we implicitly

change the set of equations for C1, C2, - - , CR. Either Equation (5.1) or (5.3) can

be used to set up part of those set of equations, and they provide exactly the same

results6 . Assume that we use equation (5.1) and plug in the expressions of p(O, 1, 1)

and p(O, ui, 1), i = 1, - - - , s, then

PD + PU _ PDpU R

d CmXmDj,m
m=1

pU( _ pD) R

= CmXmD,m
m=1

s R

i=1 m1 Cm
i=1 M1K

s R

i=1 ru=)
m=1

pD R

5=CmXmD,m = PUEC + CE(l - r)Ui,m
m=1 m=1 i=1

j=1,--- ,1t.

(5.18)

Therefore, (5.18) consists of t equations for solving C1, C2, - - , CR. The s other

equations for solving them can be found from the modified transition equations of

the upper boundary states and we will address them shortly. On the other hand, if

we instead use (5.3) to find C1, C2 ,- - , CR, then

[PU+ pD - pUpD] R 1_pU R t

(PP -OmXm CmXmD,m E pdkrdk
m=1 m=1 k=1

(5.19)
R s t

+( CmXm ( ( Ui,mDk,mruirdk + ( U,mr"' (1 - PD)
m=1 ..i=1 k=1 i=1

for j = 1, 2, - - - , t. Thus, (5.19) contains t equations for solving C1, C 2 , --- , CR.

Solving C1, C2, --- , CR with either (5.18) or (5.19) giving exactly the same results.

6 We have verified this with numerical experiments.

209

Cm 'm

(5.17)



New steady state transaction equations of upper boundary states

New upper boundary transition equations are

p(N, 1, 1)

p(N, 1, dj)

= p(N,1,1)(1 PU)(1-PD)+Z p(N,1,dj)(1 -PU)rdi,
j=1

(5.20)

- p(N, 1, 1)pad + p(N, 1, dj)(1 - rdi)

+p(N - 1, 1, 1)(1 - PU)pdi + p(N - 1,1, dj)(1 - P)(1- rdi)
S S

+ p(N - 1, ui, dj)r'(1 - rdi) + p(N - 1, ui, 1)r"*pdi,
i=1 i=1

(5.21)

p(N - 1, 1, 1)
t

= p(N- 1,1,1)(1 - pU)(i _pD) +Zp(N - 1,1,dj)(1

ts

+ E p(N - 1, ui, dj)r'rdi +
i=1 j=1 i=1

- PU)rd

p(N - 1, ui, 1)r"t(1 - PD),

(5.22)

= p(N-2,1,1)(1-Pu)pj+ p(N-2,1, d)(1-Pu)(1- rd)

+ p(N - 2, ui, d3)r"'i(1 - rdb) +
i=1

p(N - 2, ui, 1)r"ipd?,
i=1

(5.23)

= p(N- 1,1,1)puipdi +p(N- 1,1,d)pu(1 -rdi)

+p(N - 1, ui, d3)(1 - ru')(1 - rda) + p(N - 1, ui, 1)(1 - ru)pdi,

(5.24)

p(N - 1, ui, 1)
t

= p(N, 1, 1)pU(1 - PD) + EZp(N, 1, dj)purdi.
j=1
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We realize that Equation (5.25) is the simplified form of

= p(N, 1, 1)pi(l pD) + p(N, 1,dj)p"*rd
j=1

+ p(N, ui, dj)(1 - ru)rd + p(N, ui, 1)(1 - ru')(1 - PD)
j=1

(5.26)

because as p(N, ui, dy) = p(N, ui, dj) = 0, i = 1, ... , s,j = 1, ... ,t. Therefore, the

forms of Equations (5.22), (5.23), (5.24), and (5.26) are the same as the forms of

transition equations for the internal states in Tolio et al. (2002). As a result, we

conclude that under new upper boundary transition equations, states (N - 1, 1, 1),

(N -1, ui, 1), (N -, 1, dj), and (N -1, ui, dj) should be considered as internal states.

So, their probabilities can be expressed as the internal form. According to Tolio et al.

(2002), we have

p(N - 1,1, 1)

p(N - 1,1,dj)

p(N - 1, ui, 1)

p(N - 1, ui, dj)

R

- CmXZ- 1,
m=1

R

- ZCmXZ-Dj,m,
m=1

R

- ZCmX2- 1 U,m,
m=1

R

= CmXZ-'Ui,mDj,m.
m=1

Hence, the remaining unknown probabilities are p(N, 1,1) and p(N, 1, dj),j =

1, ... , t. Comparing (5.20) and (5.25) we have

1- PU
p(N, 1, 1) = p(N - 1, ui, 1).

pui
(5.28)
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Thus,

p(N, 1, 1) = - ECX'2lUim.

Equation (5.21) can be written as

rda p(N, 1, dj) = p(N, 1, 1)pdj + p(N - 1, 1, 1)(1 - PU)pda

+( p(N - 1, ui, d,)rui(1 - rd3) + ( p(N - 1, ui, 1)ru'pi.

i=1 i=1

(5.30)

Plugging in the expressions for the terms on the right hand side, we find

- -(1
pUi

S U,mr"
i=1

R

+ E CmXZ-1D,m(1 - rdi)(1 - PU)
m=1

R

+(1 - rdi) E

m=1

CmXZ-'Dj,m

Note that, according to Tolio et al. (2002),

s

5 Uj,mr"' + (1-PU) =XmKm.
i=1

R

PU) E
m=1

R
+ Z CmX- 1Ui,mD,mru(1 - rdj)

i=1 m=1
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R

CmXZ- 1 Um + E CmX - p ( - PU )
m=1

R

+pda Z CmXZ-1
m=1

P d(1 PU) RCmXN-1U,m +ppa CmX~7 

m=1 m=1

Ui,mru + (1 - PU)
=s

U,mr"' + (1 - PU)

(5.31)

(5.32)

+p(N - 1, 1, dj)(1 - Pu)(1 - rdi)

rdi p (N, 1, dj}



Therefore, (5.31) becomes

_ d 3 (1 _ pU) R Cm IU~m+pd3 R K

SLCmX-U, E CmXKm
M=1 m=1

R

+(1 - rdi) E CmXZDj,mKm.
m=1

Thus,

p(N, 1, dj) =
pb(i PU) R Pd R

,rdipui Z CmXMh 1 U,m + m=1ECnX~
7U=1 =

(5.34)

1-rd3 R

+ 1dj ( C.X Dj,mKm.
m=1

As mentioned previously, we need another s equations from the modified upper

boundary transition equations to find the normalization constants C1, C2, - - - , CR. To

do this, either Equation (5.20) or (5.22) can be used, and they provide exactly the

same results7 . Assume that we use Equation (5.20) and plug in the expressions of

p(N, 1, 1) and p(N,1, dj), j = 1,... , t, then

PD + PU PDPU R

pUi E1 CmXf-
1 Ui,m

m=1

pD( - PU) R
p~t m=CmX2-

1 U,m
m=1

R

+PU E CmXf Km
m=1

t R

+((1 - rd3) E CmXZDj,mKm,
j=1 m=1

(5.35)

pU R R R t

- CmXZI 1Ui,m = PD 5 CmXZKm + E CmXZKm E Dj,m(1 - rdi )
m=1 m=1 m=1 j=1

(5S.

(5.36)

7We have verified this with numerical experiments.
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Therefore, (5.36) provides s equations for solving C1, C2, - - - , CR. Together with

t other equations from either (5.18) or (5.19), we will have s + t = R equations for R

unknowns. On the other hand, if we instead use (5.22) to find C1, C2,- -. , CR, then

R 1 pDRs
[PU + PD - pUpD CmXR 7 1  C R mXN- 1U,m (pUk rk

m=1 m=1 k=1

R "s t

+ ( CmXZ- 1 [ ( Uk,mD,mrUk rdi+
m=1 .k=1 j=1

t

(1 - PU) EDmrdi
j=1 I

(5.37)

for i = 1,2, ... , s. Thus, (5.37) provides s equations for solving C1, C2, - , CR. We

will still have s + t equations for C1, C2, - , CR.

Summary of new boundary state probabilities

The new steady state probabilities of both lower and upper boundary states are

summarized as follows. For i = 1, ... , s and j = 1, - - - , t,

p(0, 1, dj) = 0,

p(O,ui,dj) = 0,

1 -PD R

p(0, 1, 1 ) = ECmXMD.m,
m=1

p"* (1 - PD) R uR R U-'
p(0, u2 , 1) = rEs pD CmXmD,m+ C E Cm + 1 ,ui Ecm

rpd M=1 m=1 T ru m=1 KMn7

R

p(1, 1, 1) = CmXm,
m=1
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R

p(1, 1, dj) = E CmXmDj,,,
m=1

R

p(1,u , 1) = ZCmXmUi,m,
m=1

R

p(1,ui,dj) = CmXmU ,mDj,m,
m=1

p(N - 1, 1, 1)

p(N - 1, 1, dj)

p(N - 1, ui, 1)

p(N - 1, ui, d3 )

p(N, 1, 1) = p
put E=

(N d (1 - PU) R IN d. R
p( N, 1, di) =CX-U.,+ nECmXKm,rd put m=1 m m=1

1-d. R1 - ras R
+ r Z CmXgDj,mKm,

m=1

p(N, ui, 1)

p(N, ui, dj)

R

= CmX-1
m=1

= CmX -7D,m,
m=1

R

= CmX-Ui,m,
m=1

R

= CmX-lU,mDj,m,
m=1

CmX -lUi,m,

= 0,

- 0.
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Production rate of two-machine one-buffer building block with no-delay

machine(s)

In addition to the modifications to steady state probabilities of boundary states, we

need to modify the expression of the production rate as well. The no-delay properties

of no-delay machines make the upstream machine less blocked and the downstream

machine less starved. Therefore, the system has higher production rate. For the

existing Tolio two-machine one-buffer model (Tolio et al. 2002) where both upstream

and downstream machines are ordinary, the production rate of the line is calculated

according to Gershwin (1994) as

E= p(a1(t + 1) = 1, n(t) < N), (5.38)

and

E2= p(a 2 (t + 1) = 1, n(t) > 0). (5.39)

Because of the conservation of flow, E1 = E2. However, when we introduce no-

delay machine(s), extra terms have to be considered. In the following, we derive the

production rate of the system from the perspectives of the upstream machine and the

downstream machine, respectively. In other words, we will derive both E1 and E2 .

Numerical experiments are provided to verify that Ei = E2.

Modifications of E1 due to no-delay machine(s)

From a perspective of the upstream machine, the production rate can be calculated

as

E1 = p(a 1 (t + 1) = 1, n(t) < N) + p(a 1 (t + 1) = 1, a 2 (t + 1) = 1, n(t) = N). (5.40)

As compared to (5.38), the second term on the right hand side of (5.40) is an

additional term. It is due to the no-delay property of the upstream machine, the

downstream machine, or both. This is because as long as there is at least one no

delay machine, the upstream machine can keep operating even when the buffer is full
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due to the no-delay property. However, in the original model, the upstream machine

is blocked given a full buffer.

Equation (5.40) is awkward because it involves states at two different time steps.

Let us consider the two terms on the right hand side of (5.40) separately and transform

them into two statements about the state of the system at a single time step.

The first term p(a 1(t + 1) = 1, n(t) < N), denoted by FT., can be transformed

according to the Total Probability Theorem (Bertsekas and Tsitsiklis 2008),

FT. = p(a 1 (t + 1) = 1|a1(t) = 1, n(t) < N)p(a1 (t) = 1, n(t) < N)

+ p(a1(t + 1) = 1|al(t) = ui, n(t) < N)p(a1(t) = ui, n(t) < N).

(5.41)

Note that

5

p(a 1 (t + 1) = 1|a1(t) = 1, n(t) < N) = 1 - p = 1 - PU, (5.42)
i=1

and

p(a 1 (t + 1) = 1|a1(t) = ui,n(t) < N) = ru, i = 1, -.- ,s. (5.43)

Thus, (5.41) can be further simplified to

S

FTu = (1 - PU)p(a1 (t) = 1, n(t) < N) + ru*p(a1(t) = ui, n(t) < N). (5.44)
i=1

It can be shown from the Markov chain model that, for each i = 1, ... ,s

rup(al(t) = ui, n(t) < N) = pup(a1(t) = 1, n(t) < N)

+pui(1 - PD)p(ai(t) = 1, a 2 (t) = 1, n(t) = N)

t

+ Epurdip(a1(t) = 1, a 2 (t) = d, n(t) = N).
j=1

(5.45)
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The left hand side is the probability that the system leaves the set of states S. =

{a1(t) = ui and n(t) < N}. This is because the only way the system can leave S', is

for the upstream machine to get repaired from the failure mode ui. The right hand

side is the probability that the system enters Su. Substituting (5.45) into (5.44),

.S

FTu = (1 - PU)p(a1 (t) = 1, n(t) < N) + Zp"*p(al(t) = 1, n(t) < N)
i=1

+ p"(1 - PD)p(al(t) = 1, a 2 (t) = 1, n(t) = N)
i=1

st

+ Ep'rd p(a1 (t) = 1, a2(t) = dj, n(t) = N)
i=1 j=1

= p(a1(t) = 1, n(t) < N) + PU(1 - PD)p(a1 (t) = 1, a 2 (t) = 1, n(t) N)

t

+ S Purd p(a (t) = 1, a 2 (t) = dj, n(t) = N).
j=1

(5.46)

Dropping the t arguments, we finally find

N-1 t t

FTu = p(n, 1,1) + p(n, 1, dj) +Pu(l-PD)p(N, 1, 1)+E Purdip(N, 1, dj).
n=0 j=1 j=1

(5.47)

Next, let us consider the second term p(a 1 (t + 1) = 1, a2(t + 1) = 1, n (t) = N),

denoted by STu. Again, we need to convert this expression into a statement about

the state of the system at a single time step. We apply the Total Probability Theorem

again and find
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s

ST, = : p(a 1 (t + 1) = 1, a 2(t + 1) = 1|a1(t)= u, a 2(t) = 1, n(t) = N)
i=1

x p((a(t) = ui, a2(t) = 1, n(t) = N)

s t
+ E p(a1(t + 1) = 1, a 2 (t + 1) = 1|11(t) = Ui, a 2 (t) = dj, n(t) = N)

i=1 j=1

x p(a1(t) = ui, a2(t) = dj, n(t) = N)

t

+ p(al(t + 1) = 1,a 2 (t + 1) = 1|a1(t) = 1,a 2 (t) = dj,n(t) = N)
j=1

xp(ai(t) = 1, a 2 (t) = dj, n(t) = N)

+p(a1 (t + 1) = 1, a 2(t + 1) = 1lai(t) = 1, a 2 (t) = 1, n(t) = N)

x p(ai(t) = 1, a 2 (t) = 1, n(t) = N).

(5.48)

Note that, for i = 1, .- ,s andj = 1, - - t,

p(a 1(t+1) = l,a 2(t+1) = la1(t) = ui,ca2 (t) = 1,n(t) = N) = ru(1-PD), (5.49)

p(a 1 (t + 1) = 1, a 2(t + 1) = lai(t) = ui, a2(t) = d, n(t) = N) = ru'rdi, (5.50)

p(a(t+1) = 1,a 2(t+1) = la1(t) = 1,oa2 (t) = dj,n(t) = N) = (1-P)rdi, (5.51)

and

p(a1(t + 1) = 1, a 2 (t + 1) = la 1 (t) = 1, a 2 (t) = 1, n(t) = N) = (1 - pU)(1 - PD).

(5.52)
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Substituting (5.49) to (5.52) into (5.48),

STU = 3 r"'(1 - PD)p(al(t) = Ui, a 2 (t) = 1, n(t) = N)
i=1

s t
+ E rrd p(a1(t) = us, a 2 (t) = d, n(t) = N)

i=1 j=1

t

+ I(1 - PU)rdip(a1(t) = 1, a 2 (t) = dj, n(t) = N)
j=1

+(1 - PU)(1 - PD)p(ai(t) = 1, a 2 (t) = 1, n(t) = N).

Dropping the t arguments leaves

S

s u (

i=1

- PD)p(N, ui, 1)
S t

+ > r"rip(N, ui, di)
i=1 j=1

(5.54)
t

+ E(1 - PU)rdip(N, 1, dj) + (1 - pU)(i _ pD) p(N, 1, 1).
j=1

Combining (5.47) and (5.54),

E1 = p(ai(t +1) =1,n(t) <N)+p(a1(t+1) =1,a 2(t+1) = 1,n(t) =N)

t

+ p(n, 1, di) +
j=1 I

(1 - PD)p(N, 1, 1) + E rdip(N, 1, dj)
j=1

stZ rU rdi p(N, ui, d3 ).
i=1 =1

(5.55)

We can further simplify (5.55) by noticing that states (N, ui, 1), i = 1,--- , s and

(N, ui, dj), i = 1, - - , s, j = 1, - - - , j are transient. Thus their steady state probabili-

ties are zero. Thus, (5.55) can be simplified to
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STU

i=1

r"' (1 - PD) p(N, ui, 1) +

N-1 
[p n

n=0



N-1 t t

El-1= [p(n, 1, 1)+ p(n, 1, dj) +(1- _PD) p(N, 1,1) + Erd p (N, 1, dj).
n=o j=1 j=1

(5.56)

Combining (5.45) and (5.56), we see that r'D" = piE1 where D" = p(a1 =

ui, n < N), i = 1, - - - , s. This is expected as it says the repair frequency from failure

mode ui equals the failure frequency into that failure mode. This equality is proved

by Gershwin (1994).

Modifications of E2 due to no-delay machine(s)

From a perspective of the downstream machine, the production rate can be calculated

as

E2= p(a 2 (t+ 1) = l,n(t) >0) + p(a 1 (t+ 1) = 1,a 2 (t+ 1) = 1,n(t) = 0). (5.57)

As compared to (5.39), the second term on the right hand side of (5.57) is an

additional term. It is due to the no-delay property of the upstream machine, the

downstream machine, or both. As before, Equation (5.57) is awkward because it

involves states at two different time steps. Let us consider the two terms on the right

hand side of (5.57) separately and transform them into two statements about the

state of the system at a single time step.

The first term p(a 2 (t + 1) = 1, n(t) > 0), denoted by FTd, can be transformed

according to the Total Probability Theorem,

FT = p(a 2 (t + 1) = lla 2 (t) = 1, n(t) > O)p(a 2 (t) = 1, n(t) > 0)
t

+ p(a 2 (t + 1) = 1|a 2 (t) = dj, n(t) > )p(a2 (t) = dj, n(t) > 0).
j=1

(5.58)

Note that

t

p(a 2 (t + 1) = 1|a 2 (t) = 1, n(t) > 0) = 1 - jpdi = 1 - pD, (5.59)
j=1
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p(a 2(t + 1) = 1ja 2 (t) = dj, n(t) > 0) = rdi, j = 1,- ,t. (5.60)

Thus, (5.58) can be further simplified as

FT = (1 - PD)p(a2 (t) = 1, n(t) > 0) + rdip(a 2(t) = dj, n(t) > 0).
j=1

(5.61)

It can be shown that, for each j = 1,-- ,t

rdj p(a 2 (t) = dj, n(t) > 0) = pdip(a2 (t) = 1, n(t) > 0)

+pd (1 - PU)p(a1(t) = 1, a 2 (t) = 1, n(t) = 0)

+

+ E r'ipdbp(aj(t) = Ui, a 2 (t) = 1, n(t) = 0).

The left hand side is the probability that the system leaves the set

{a 2(t) = dj and n(t) > 0}. This is because the only way the system

for the downstream machine to get repaired from the failure mode dj.

side is the probability that the system enters Sd.

Substituting (5.62) into (5.61),

FT

(5.62)

of states Sd =

can leave Sd is

The righthand

= (1 - pD )p(a 2 (t) = 1, n(t) > 0) + >pdyp(a2(t) = 1, n(t) > 0)
j=1

t

+ p P (1- PU)p(al(t) = 1,a 2 (t) = 1, n(t) = 0)
j=1

t S
+E r'ipd3p(a1(t) = ui,Ca2 (t) = 1,n(t) = 0)

j=1 i=1

= p(a 2 (t) = 1, n(t) > 0) + PD( pU)p(al(t) = 1, a 2(t)= 1, n(t) = 0)

+ PDruip(a1(t) = ui, a 2 (t) = 1, n(t) = 0).
i=1

(5.63)
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Dropping the t arguments, we finally find

N 1 s

FTd = p(n, 1,1)+ E p(n, ui, 1) + PD(l - pU)p(0 1,1) + PDr*ip(O u , 1).
n=1 .i=1i=

(5.64)

Next, let us consider the second term p(a 1 (t + 1) = 1, a 2(t + 1) = 1, n(t) = 0),

denoted by STd. Again, we need to convert this expression into a statement about

the state of the system at a single time step. According to the Total Probability

Theorem,

STd = >p(a1(t+ 1) = 1,a 2 (t + 1) = lal(t) = ui,oa2 (t) = 1,n(t) = 0)
i=1

x p(a1 (t) = ui, a 2 (t) = 1, n(t) = 0)

s t
+ 5p(a(t + 1) = 1,a 2(t + 1) = la1(t) = ui, a 2(t) = dj, n(t) = 0)

i=1 j=1

x p(a1(t) = ui, a2(t) = d,, n(t) = 0)

t

+ E p(a1(t + 1) = 1, a2(t + 1) = 1|a1(t) = 1, a2(t) = dj, n(t) =0)
j=1

xp(a 1 (t) = 1, a 2(t) = d, n(t) = 0)

+p(a1(t + 1) = 1,a 2 (t + 1) = 1|a 1 (t) = 1,a 2 (t) = 1,n(t) = 0)

xp(ai(t) = 1, a 2 (t) = 1, n(t) = 0).

(5.65)

Note that, for i = 1, .- , s and j = 1, - - t,

p (a 1 (t + 1) = 1, a 2 (t + 1) = 1|ai(t) = ui, a 2 (t) = 1, n(t) = 0) = r"* (1 - PD) ,

(5.66)

p(a 1 (t + 1) = 1, a 2 (t + 1) = 1|a 1 (t) = ui, a 2 (t) = dj, n(t) = 0) = ruirda, (5.67)

p(a 1 (t+1) = 1,a 2(t+1) = 1|la1(t) = 1,a 2(t) = dj,n(t) = 0) = (1 -Pu)rda, (5.68)
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p(a1 (t + 1) = 1,a 2 (t + 1) = 1|ai(t) = 1, c 2 (t) = 1, n(t) = 0) = (1 - PU) (1

Substituting (5.66) ~ (5.69) into (5.65), we find

ST = E ru (1 - PD) P(o'1 (t) = us, a 2 (t) = 1, n(t) = 0)

S t

+ E r"rdi p(al(t) = ui, a 2 (t) =
i=1 j=1

dj,n(t) = 0)

(5.70)

+E (1 - PU) rdip(a1(t) = 1, a 2 (t) = dj, n(t) = 0)
j=1

+ (1 - PU) (1 - PD) p('i(t) = 1, a 2 (t) = 1, n(t) = 0).

Dropping the t arguments, we finally find

= Zr* ( -pD) p(0, Ui, 1)
i=1

a t

+ E r**rd p(0, ui, dj)
i=1 j=1

(5.71)

+ (1 - PU) rdip(O, 1, d3 ) + (1 - PU) (1 - PD) p(0 1,1).
j=1

Combining (5.64) and (5.71)

E2 = p(a 2(t+1)=1,n(t)>0)+p(a(t+1)=1,a 2(t+1)=1,n(t)=0)

N

= I p(n, 1,1)
n=1

S

+ p(n, u ,1) +
i=1 .7

+

t a t

+ Z(1 - PU)rds p(0, 1, dj) + E ruirdi p(0, ui, dj).
j=1 _=1 j=1

(5.72)

We further simplify (5.72) by noticing that states (0, 1,d),j = 1, ... , t and
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(0, ui, dj), i = 1, , s,j = 1, - -- , j are transient, and therefore their steady state

probabilities are zero. Thus, (5.72) can be simplified to

N [ S
E2 = p(n, 1, 1) +Ep(n,ui,) +(1- PU)p(0, 1,1)+ r"ip(O,uj, 1). (5.73)

n=1 . i=1 Ii=1

Combining (5.62) and (5.73), we see that rdiDd3 = pdiE 2 where Ddj =p(a2 =

d, n > 0),j = 1, ... , t. This is expected as it says the repair frequency from failure

mode d3 equals the failure frequency into that failure mode.

Summary of production rate of two-machine one-buffer building blocks

with no-delay machine(s)

The production rates E1 and E2 of a building block are summarized as follows:

N-1 t 1
E = p(n, 1, 1) + E p(n, 1, d,) + (1 -pD) p(N, 1, 1) + EZrd p(N, 1, dj),

n=0 j=1 j=1

Nss

E2 = pEn, 1p(n, + (n , 1) + (1 - PU) p(0, 1, 1) + r*" p(0, ui, 1).
n=1 i=1 i=1

(5.74)

Because of the conservation of flow, we expect E1 = E2. Four numerical experi-

ments are provided in Table 5.1 to show the equivalence.

Note that Case 1 is a symmetric line. Case 2 and Case 3 have the same machines

but different buffer spaces. Case 4 has multiple failure modes for both machines. The

results for both ordinary machine case and no-delay machine case are considered. It

can be seen from the four cases that

* E1 = E2, which verifies the conservation of flow;

" with no-delay machine(s), the production rate of the two-machine one-buffer

building block is higher than that of the otherwise identical system without

no-delay machines;

" from Cases 2 and 3, the increment of production rate due to no-delay machines
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Table 5.1: Numerical evidence of E1 = E2

case JE 1  E2
rU1 pU rdl pdL N Ordinary .870541 .870541 10.000000
.1 .01 .1 .01 20 No-delay .872354 .872354 10.000000
rU1 pU1 rdl pdi N Ordinary .925325 .925325 46.457620
.273 .0114 .09 .0072 60 No-delay .925389 .925389 47.278691
rU1 p"1  rdl pdi N Ordinary .903442 .903442 2.917237
.273 .0114 .09 .0072 6 No-delay .907095 .907095 2.982608
r" 1  pU1 rdl pdi N
.11 .04 .12 .02 17 Ordinary .595136 .595136 4.615708
rU2 PU2 rP d 2 No-delay .597540 .597540 4.262650
.08 .02 .1 .01

is more significant when buffer size N is small. This is because the no-delay

properties of machines only change the boundary conditions. When N is small,

the system spends more time in boundary states. This is why the change in

production rate is more obvious.

Table 5.2: Parameters of two-machine one-buffer building
chine(s)

case 1 1 2 3 4
rul .1 .2 .15 .16
ru 2  .14 .1 .12 .18
pul .01 .009 .015 .02
pU2  .01 .011 .01 .02

.2 .12 .19 .16
rd2 .24 .11 .19 .18
pdi .03 .02 .01 .02
pd2 .01 .01 .01 .02
N 120 125 136 126

blocks with no-delay ma-

In addition to the results above, we provide another set of numerical experiments,

which compare the analytical solutions against simulation. They are summarized in

Tables 5.2 and 5.3. (E1 = E 2 is not reported in the table, but it is verified by all these

experiments.) In all cases, both the upstream machine and the downstream have two
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failure modes. The results show the consistency between the analytical solutions and

simulation results. The simulation is written exclusively for this purpose with exactly

the same underlying two-machine one-buffer blocks with no-delay machines. For each

experiment, the length of simulation is 21,000,000 time steps with the first 1,000,000

time steps being the warm up period. In addition for each experiment, the number of

simulation runs is 20. We report both the mean and the standard deviation for the

simulation results. These results indicate the accuracy of the analytical solutions.

Table 5.3: Numerical results of two-machine one-buffer building blocks with no-delay
machine(s)

Analytical Sim - Mean Sim - Stdev

Case 1 Production rate .802973 .803032 .000302
Average inventory 11.708614 11.717033 .013868

Case 2 Production rate .775707 .775756 .000237
Average inventory 17.022497 17.0142517 .027734

Case 3 Production rate .840486 .840501 .000282
Average inventory 9.537670 9.525308 .056079

Case 4 Production rate .772196 .772139 .000309
Average inventory 13.000000 13.005549 .028892

5.4.2 Two-Machine One-Buffer Building Block with a Buffer

of Size One

In the previous section, we reveal the first problem in Werner's algorithm. In this

section, the second problem is presented. We consider the system shown in Figure

5-16 again. Recall that it shows a modified system after the elimination of buffer

thresholds.

In particular, we assume that the size of each buffer is 20. But the loop invariant

is 21 (rather than 27 as previously). Therefore, in the modified system, the sizes

of Buffers B21, B31, and B51 are 1. In other words, given the specific buffer sizes

and the loop invariant of the system, it is possible to have buffers of size 1 after

eliminating the thresholds. This means that there could be a set of two-machine one-
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buffer building blocks for those buffers whose sizes are 1. However, the Markov chain

model developed by Tolio et al. (2002) requires the buffer size N > 2 as it defines

boundary states and internal states, and builds the model based on the transitions

among those states. Therefore, the analytical solutions of Tolio et al. (2002) do not

apply to the case where the size of the buffer is 1. As a result, in order to use the

existing two-machine one-buffer building block model, two approximate alternatives

can be considered when there are building blocks whose buffer sizes are 1:

1. keep N = 1 but use the continuous time continuous material model developed

by Levantesi et al. (1999a) to approximate the discrete time discrete material

model under consideration;

2. set N = 2 and still use the discrete time discrete material model. Werner's

algorithm adopts this approach (Werner 2001).

We realize that whenever a buffer of size 1 appears after the thresholds are elim-

inated, either its upstream machine or its downstream machine or both of them are

no-delay machines. This is because the size 1 buffer is generated by inserting per-

fectly reliable machines. Therefore, in the two-machine one-buffer building blocks

that contain size 1 buffers, we have to consider the no-delay properties of machines.

Although the two alternatives mentioned above provide good approximate evaluation

results, it is desirable to develop analytical solutions for building blocks with buffers

of size one and no-delay machines. We arrive at this conclusion by observing again

from the Batman effect shown in Figure 5-7.

Recall that Figure 5-7 illustrates the production rate as a function of loop invariant

for a closed three-machine three-buffer loop with identical machines and identical

buffers. It can be seen that the production rate of the system when I = 11 is greater

than the production rate of the system when I = 12, which is different from the

simulation result. This is expected because Werner used the second approach to deal

with buffers of size 1. As it is illustrated in Figure 5-25, when I = 11 there are six

buffers whose sizes are 9, 1, 9, 1, 9, and 1 respectively after inserting perfectly reliable

machines (denoted by M* in the figure) and eliminating buffer thresholds. After that,
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I = 11

Ni = 10

M1 B1 M2

B3 M3 B2

N 3 = 10 N2 = 10

eliminate thresholds

N12 = 9 Nnl = 1

modify size one buffer
to size two

N12 = 9 Nnl = 2

I= 12

Ni = 10

1 

O B 

1 
M2

B3 M3 B2

N3 = 10 N2 = 10

N 12 = 8

eliminate thresholds

Nnl = 2

Figure 5-25: I=11 vs I=12 for a closed three-machine three-buffer loop

all buffers of size 1 are modified to size 2. In other words, when I = 11, there are

six building blocks whose buffer sizes are 9, 2, 9, 2, 9, and 2, respectively. However,

on the other hand, when I = 12, there are also six building blocks after eliminating

buffer thresholds but their sizes are 8, 2, 8, 2, 8, and 2, respectively. Clearly, three

building blocks when I = 11 have larger buffer spaces than the corresponding three

building blocks when I = 12. As a results, there are (incorrectly) less blockage and

starvation when I = 11. This explains why the production rate is larger when I = 12.

However, we know that this is incorrect. The three size 1 buffers are enlarged to size

2 arbitrarily simply because such modifications are needed before the existing two-
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machine one-buffer building block model can be used. This is why a new Markov

chain model and new analytical solutions for two-machine one-buffer building blocks

with size 1 buffers and no-delay machines are not only desirable but also necessary.

Analytical solutions

We derive the analytical solutions for two-machine one-buffer building blocks with size

1 buffers and no-delay machine(s). Note that the upstream machine, the downstream

machine, or both of them can be no-delay machines. This makes no difference due

to the two assumptions we make about no-delay machines in Section 5.4.1. Keeping

using the notation in Tolio et al. (2002), there are all together eight sets of states for

such a building block. They are

(0,1,1) (0,1,d) (0,uid) (0,u,1) ( )
(1,1,1) (1,1,dj) (1,ui,d) (1,u2,1)

We first notice that the set of states (0, 1, dj), j = 1, -.. , t cannot be reached by any

other set of states. Therefore, it is transient. In addition, (0, ui, dj), i = 1, . , s,j =

1, - - - , j can be reached only from (0, 1, dj) or itself, so it is also transient. Similarly,

(1, us, 1), i = 1,--- , s cannot be reached by any other state. Therefore, it is also

transient. Moreover, (1,uj,dj),i = 1,- ,s,j = 1,.-- ,t can be reached only from

(1, u1, 1) or itself, so it is also transient. Hence, the four sets (0, ui, d3), (0, 1, dj),

(1,u, 1), and (1,uj,dj),i = 1,- ,s, j = 1,.-- ,t are transient. Therefore, eliminat-

ing all transient states (since their steady state probabilities are 0), the transition

equations for the other four sets of recurrent states are

S

p(0, 1,1) = p(0, 1, 1)(1 - PU)(1 - PD) + p(,uj, 1)ru'(1 - PD), (5.76)
i=1

t

p(O, uj, 1) = p(O, 1, 1)pu'+p(O, u2, l)(1-rui)+p(1, 1, 1)pu(l-pD)+Z p(l, 1, dj)pui rdi
j=1

(5.77)
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t

p(1, 1, 1) = p(1, 1, 1)(1 - PU)(1 - PD) ± E p(l, 1, dj)(1 - PU)rdi
j=1

(5.78)

and

p(1, 1, d) = p(0, 1, 1)(1- PU)pd+ p(0, u, 1)ruipdi+p(l, 1, l)pda+p(l, 1, dj)(1-rd)
i= 1

(5.79)

Now, we can solve for Equations (5.76), (5.77), (5.78), and (5.79) to find the

steady state probabilities of all recurrent states. By (5.76) we know that

(5.80)
S) PU + PD - PU PD

p(0, ui, 1)r"* = -_ D pp(0, 1, 1).

Plugging (5.80) into (5.79),

=p(0 1, 1) (1 -PU)pd + P U+_ pD' pdj + p(1, 1, )di

d1,
=p(0, 1, 1) 1 D+ p(1, 1, 1)p s.

(5.81)

Therefore,

p(1,1,d) = - pDP(0, 1, 1) + P(1, 1, 1)], j = 1,.

Similarly, by (5.78) we know that

t ~~~PU + PD - PUp P j71 )
Zp(1, dj)rdi = P _PPU p( 1 1 1 )
j=1

(5.82)

(5.83)
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Plugging (5.83) into (5.77),

FPU±+PDPUpU pD
p(1, 1, 1) (1 +PD Pu + -PU " + p ( 0 1, 1)pui

Sp(1, 1, 1) pui+ p(O, 1, 1)pu.
1 -U

(5.84)

Therefore,

P(O,Uj, 1) = 1, 1) + p(0, 1,1
1)] , i = 1, -.. , s.

In addition, substituting (5.85) into (5.76) yields

p(O, 1, 1) = p(O, 1, 1)(1 - pU)(i _ pD) + (1 - PD)PU [ _ PUP(1 1, 1) + P(0, 1, 1)],

(5.86)

Thus,

pDp( 0 , 1, 1) = (1 - p D)p 1,11).U

1-PU P(

p(, 1, 1) = (1 _ pD)pU p(1, 1, 1).
(1 - pU)pDPl11)

(5.87)

(5.88)

As a check, if we substitute (5.82) into (5.78), we will derive exactly the same

relationship between p(l, 1, 1) and p(O, 1,1). Substituting (5.88) into (5.82), we find

p dj Q U

rd (1 -pU)pD+1 ,

pas pU + pD - PU pD (11 1,

rA (1 - PU)PD

(5.89)

j=11 ... 7 t.
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p(1,1,dj)

rui P (0, Uj, 1)



Similarly, substituting (5.88) into (5.85) gives,

p(O, us, 1)

(5.90)

pui PU + PD - pU pD

rui (1 - pU)pD p i s.

Finally, the normalization condition requires that

S t

p(1, 1, 1) + p(0, 1, 1) + p(0, ui ,1) + 1 p(1, 17 dj) = 1.
i=1 j=1

or, plugging (5.88), (5.89), and (5.90),

(5.91)

[ (1± (PD)pU PU±pD-pUpD
(1+

rut

t Pd

+ra
j=1

(5.92)

Thus,

p(1,1,1) =
(_ pD)pU pU+pDpUpD

1+ +
(1 pU)pD ( 1 -pU)pD

and the steady state probabilities of other sets of recurrent states are

p(O 1,1) = (1 - pD)pU

(1 - pU)pD

(1 pD)pU

± _ pU)pD

PU + PD pU pD

(1 _ pU)pD

P pUiU + PD _ PUPD

rut (1 - PU)pD

(1 - pU + P1D-pUpD
rui

t pdj

j=1 .

i=1,-,s.
(5.95)
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(5.93)

put

rui

p(O, ui, 1)

t d

j=1

(5.94)

s PU

i=1

p ui ' 1 (1 - PD pU] - ('
= roi _1 - 4P (1 - PU)PD

+ t dc

+ d



p (, 1 dj-p dj p U + P D - PU PDp(1, 1,d) = rdi (1 - PU)PD

(1P DpU + U pD pUpD
1+ -p~D ( Up

E- -1/ S t pd 1

i=1 Ij=1
j=1,---(,t.

(5.96)

The production rate of the building block, P(N), can be calculated as

t

P(N) = p(0, 1, 1) + (1 - pD) (1 , 1, 1) + E rjp(1, 1, dj),
j=1

and the average inventory of the building block, h, can be calculated as

(5.97)

(5.98)p(1, 1, 1) + Ep(1, 1, dj).
j=1

The same four two-machine one-buffer building blocks as in Section 5.4.1 are

provided (with exception that the sizes of buffers are changed to 1) to show the

accuracy of the analytical solutions against the simulation results. They are listed in

Tables 5.4 and 5.5, which demonstrate the accuracy of the analytical solutions.

Table 5.4: Parameters of two-machine
1 and no-delay machine(s)

one-buffer building blocks with buffers of size

case 1 2 3 4
rUl .1 .2 .15 .16

ru2  .14 .1 .12 .18
p"I .01 .009 .015 .02

pU
2  .01 .011 .01 .02

PT- .2 .12 .19 .16
rd2 .24 .11 .19 .18
pdi .03 .02 .01 .02

pd2 .01 .01 .01 .02
N 11 1 1 1
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Table 5.5: Numerical results of two-machine one-buffer building blocks with buffers
of size 1 and no-delay machine(s)

I Analytical Sim - Mean Sim - Stdev
Case 1 Production rate .740970 .740922 .000243

Average inventory .632662 .632780 .000783
Case 2 Production rate .714066 .714068 .000423

Average inventory .608897 .608613 .000729
Case 3 Production rate .782864 .782822 .000322

Average inventory .425460 .425566 .000733
Case 4 Production rate .688793 .688869 .000229

Average inventory .500000 .499934 .000530

Next, we provide another set of experiments (Table 5.6) that compare the new

analytical solutions for building blocks with buffers of size 1 and the other two al-

ternatives. The simulation results are also provided. In addition to the production

rate and average inventory, we report the probability of starvation of the downstream

machine (p,) and the probability of blockage (Pb) of the upstream machine as well.

The reason why we care about these two quantities is that they are used in the de-

composition (Tolio and Matta 1998). In particular, p, and PA of one building block

are used to calculate the failure mode parameters of some other building blocks by

iteration in the decomposition approach. An inaccuracy in these two quantities may

lead to an inaccuracy of the decomposition. In Table 5.6, the parameters of four cases

are shown on the left, while the results of these cases are shown on the right. For

each case, "New", "Continuous", and "Dis (N = 2)"correspond to the new analyt-

ical solutions, the continuous model approximation (alternative 1), and the existing

discrete model with N = 2 (alternative 2), respectively. The following observations

can be made according to these results:

" For all four quantities of interest, the analytical solutions of the new model are

very accurate as compared to the simulation results.

" In terms of the production rate and average inventory, the continuous model

is indeed a good approximation. The production rate from "Dis (N = 2)"is
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Table 5.6: Comparison of the modified algorithm with the other two approximate
approaches and simulation

case P(N) Ps Pb

New .836838 .500000 .083684 .083684
rul pUI rdl pdl N Continuous .836969 .500000 .079334 .079334
.1 .01 .1 .01 1 Dis (N = 2) .833699 1.000000 .082931 .082931

Sim - Mean .836784 .499886 .083743 .083684
Sim - Stdev .000370 .001060 .000234 .000322

New .773223 .331604 .154645 .077322
rul pU1 rdi di N Continuous .773544 .332261 .149101 .071747
.1 .02 .1 .01 1 Dis (N = 2) .769854 .923015 .153160 .076175

Sim - Mean .773256 .331781 .154620 .077311
_Sim - Stdev .000379 .000828 .000327 .000301

New .852695 .481051 .094744 .056846
rU1 pU rdl pdl N Continuous .852739 .474392 .090412 .052513
.09 .01 .15 .01 1 Dis (N = 2) .849375 .962250 .094000 .056250

Sim - Mean .852616 .480659 .094830 .056839
Sim - Stdev .000280 .001108 .000243 .000158

New .850760 .814120 .050045 .106345
rU1 pUl rdl pdi N Continuous .850652 .798747 .043016 .099309
.17 .01 .4 .05 1 Dis (N = 2) .845432 1.055948 .048889 .104837

Sim - Mean .850752 .814154 .050030 .106363
_Sim - Stdev .000216 .000554 .000186 .000144

also very close to that from the new analytical solutions. However, the average

inventory from "Dis (N = 2)"is not accurate. This is expected, because we

arbitrarily enlarge N from 1 to 2 to use the model. Consequently,

inventory is higher than it should be.

the average

* In terms of p, and Pb, the "Dis (N = 2)"approach is a good approximation.

However, the "Continuous"approach underestimates both PA and p, in all cases.

Therefore, alternative 1 outperforms alternative 2 in terms of P(N) and i, but

alternative 2 is better in terms of PA and p,. Since we want to improve the evaluation

accuracy and to defeat the Batman effect, which is very important in optimization,

the new analytical solutions are desired.

236



5.4.3 Numerical Evidence about the Improvement of Evalu-

ation - Revisiting the Batman Effect

Up to this point, we have identified the two problems that lead to evaluation inaccu-

racy in the existing algorithm. To summarize, the first problem is that by inserting

the perfectly reliable machines to eliminate buffer thresholds, we bring some addi-

tional time delay that reduces the production rate in the decomposition. This is

resolved in Section 5.4.1. The second problem is that it is possible to have buffers of

size 1 after inserting perfectly reliable machines but the existing discrete model for

the two-machine one-buffer building block cannot deal with the case where N = 1.

Therefore, two alternatives can be adopted but they result in evaluation inaccuracy

with respect to different measures. This is addressed in Section 5.4.2. With both two

modifications of the loop evaluation, we will be able to mitigate the Batman effect.

In other words, the production rate curve as loop invariant I varies will be smoother.

We provide six experiments below. Since we want to compare the new evaluation re-

sults with Werner's algorithm, we will only consider closed-loop systems. Numerical

experiments involving single open-loop systems are provided in Section 5.5.

Experiment 1

We start with the case discussed in Section 5.2.3. It is a closed three-machine three-

buffer loop with identical machines. Each machine has a single failure mode with

failure probability of .01 in each time unit while it is up, and repair probability of .1

in each time unit while it is down. The size of each buffer is 10. We vary the loop

invariant I from 4 to 26. The results are depicted in Figure 5-26. It can be seen that

with those two modifications, the production rate curve is smoother and there is no

Batman effect in this experiment.

Experiment 2

The second experiment is also a closed three-machine three-buffer loop but with

different machines. Each machine has a single failure mode. Machine parameters are
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Figure 5-26: Numerical experiment 1 about the elimination of the Batman effect

r1 = .1, p1 = .01, r 2 = -1, P2 = .01, r3 = .2, and p3 = .01. The size of each buffer

is still 10. We vary the loop invariant I from 4 to 26. The results are depicted in

Figure 5-27. The production rate curve is smoother and there is no Batman effect in

this experiment.
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Figure 5-27: Numerical experiment 2 about the elimination of the Batman effect

Experiment 3

We consider another three-machine three-buffer loop with totally different machines

and buffers in experiment 3. Each machine has a single failure mode. Machine

parameters are r1 = .1, pi = .01, r 2 = -11, P2 = .009, r 3 = .2, and p3 = .013. The
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sizes of buffers are 12, 13, and 9, respectively. We vary the loop invariant I from 4 to

30. The results are illustrated in Figure 5-28. The production rate curve is smoother

and there is no Batman effect.
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0.850 - . + + . .. Shi E6 -
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0.810 + I I I I+

0 5 10 15 20 25 30 35
loop invariant

Figure 5-28: Numerical experiment 3 about the elimination of the Batman effect

Experiment 4

Now, we consider a four-machine four-buffer closed-loop with different machines and

buffers. Each machine has a single failure mode. Machine parameters are r 1 = .1,

pi = .01, r 2 = .2, P2 = .02, r3 = .2, p 3 = .02, r 4 = .1, and p4 = .01. The sizes of

buffers are 8, 12, 16, and 14, respectively. We vary the loop invariant I from 5 to

45. The results are shown in Figure 5-29. The production rate curve is smoother and

there is no Batman effect.

Experiment 5

Experiment 5 considers another four-machine four-buffer loop with identical machines

and buffers. Each machine has a single failure mode. Each machine has a failure

probability of .01 in each time unit while it is up, and a repair probability of .1 in

each time unit while it is down. The size of each buffer 10. We vary the loop invariant

I from 5 to 35. The results are shown in Figure 5-30. The production rate curve is

smoother with small bumps.
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Figure 5-29: Numerical experiment 4 about the elimination of the Batman effect
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Figure 5-30: Numerical experiment 5 about the elimination of the Batman effect

Experiment 6

Finally, we consider a five-machine five-buffer loop with different machines and buffers.

Each machine has a single failure mode. Machine parameters are r 1 = .1, pi = .01,

r2 = .13, p2 = .011, r3 = -09, p3 = .01, r 4 = -1, p4 = .013, r 5 = .12, and p5 = .012.

The sizes of buffers are 13, 10, 15, 12, and 15, respectively. We vary the loop invari-

ant I from 5 to 60. The results are illustrated in Figure 5-31. The production rate

curve is smoother as compared to Werner's algorithm. However, we have to point

out that even with the two modifications, there are also small bumps in the curve.

This is because the two modifications make the evaluation of two-machine one-buffer
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building blocks more accurate. However, the decomposition approach that utilizes

and evaluates a set of two-machine one-buffer building blocks is an approximation in

evaluating the original loop system.
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> 0.760
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0.660 T
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Figure 5-31: Numerical experiment 6 about the elimination of the Batman effect

5.5 Numerical Experiments of Single Open-Loop

System Evaluation

In this chapter, we extend the evaluation algorithm of Werner (2001) and Gershwin

and Werner (2007) for closed-loop systems to single open-loop systems. More impor-

tantly, we demonstrate two problems with the existing algorithms and resolve them.

With these two modifications, loop evaluation results are more accurate. In this sec-

tion, we study numerical experiments for single open-loop systems. In particular,

we first compare the results with both simulation and the algorithm developed by

Zhang (2006), whose objective is multiple loop systems. Since single open-loop sys-

tems belong to a subset of multiple loop systems, the algorithm of Zhang (2006) can

be applied here for comparison directly. After that, 700 numerical experiments for

open-loop systems up to 10 machines and 10 buffers are given to show the accuracy

of modified evaluation algorithm.
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Experiment 1

The first system under consideration is illustrated in Figure 5-32. System parameters

are listed in Table 5.7. The loop invariant I is 37. The evaluation results are shown in

Table 5.8, where P(N, I) is the production rate whose unit is parts per time unit, ni
is the average inventory level of Buffer Bi, L is the set that contains all buffers within

the loop, and EIL ni is the total number of parts traveling in the loop. It should be

equal to I, but there exists a small error due to the decomposition approach. In this

example, both the modified algorithm with the two modifications and the algorithm

of Zhang (2006) are accurate as compared with simulation. However, the modified

evaluation algorithm is more accurate as the P(N, I), n5, and Ns from the algorithm

are much closer to the simulation than those from the existing algorithm of Zhang

(2006).

Figure 5-32: Single open-loop system, Experiment 1

Table 5.7: Parameters

machine M1

ri .083
p .076
ej .522

buffer B1

Ni 23

of the single

M2

.021

.020
.512

B 2
76

M3

.019

.005

.792

B3
6

open-loop system, Experiment 1

M4

.096

.093

.508

B4
15

M5

.097

.093

.511

B,5
13

M6

.082

.012

.872

B6
30

My

.092

.073

.558

B7
40

Experiment 2

Let us next consider the system described in Figure 5-33. System parameters are

listed in Table 5.10. The loop invariant I is 42. The evaluation results are shown
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Table 5.8: Results of single open-loop system, Experiment 1

in table 5.10. Again, both the new algorithm with the two modifications and the

algorithm of Zhang (2006) are accurate.

Figure 5-33: Single open-loop system, Experiment 2

Table 5.9: Parameters of the single open-loop system, Experiment 2

machine M1  M2  M3  M4  M5  M6  M7  M8  M9  M10

ri .200 .100 .090 .100 .200 .110 .090 .070 .200 .150
p .030 .010 .020 .010 .011 .010 .008 .006 .011 .009
ej .870 .909 .818 .909 .948 .917 .918 .921 .948 .943

buffer B1 B2 B3  B4  B5  B6 B7  B8 B9  B10
Ni 17 22 9 38 20 15 7 18 16 30
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Simulation Shi Zhang
P(N, I) .364183 .367672 .358605

h1 13.543882 13.530605 14.477300
h2 45.967628 45.83004 48.548300
h 3  4.492122 4.533134 4.856140
N4 6.254219 6.219535 6.253310
15 1.300277 1.210711 0.870787
h6 6.465453 6.336823 5.705060
h7 24.953382 25.087090 25.024500

EiL hi 37.000000 37.050469 37.004700



Table 5.10: Results of single open-loop system, Experiment 2

Experiment 3

Zhang's algorithm provides accurate evaluation results for multiple loop systems

(Zhang 2006). But, since the two problems discussed in this chapter appear in his

model as well, we observe the Batman effect. The Batman effect shows a discontinu-

ity of the production rate as a function of loop invariant, which is undesirable to the

loop optimization work that we will discuss in Chapter 6.

Figure 5-34: Single open-loop system, Experiment 3

Here an example is given. Consider the system shown in Figure 5-34. Assume that

machines are identical. Each machine has one failure model. The failure probability

is .01 and the repair probability is .1. We vary the loop invariant from 21 to 29. The

results are shown in Figure 5-35. It can be seen from the graph that both the new

algorithm and the algorithm of Zhang (2006) are very accurate as compared with
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Simulation Shi Zhang
P(N, I) .733686 .741017 .750005

ii1 11.367146 11.271616 11.357500
h2 12.252673 12.739613 13.028900
1 3  2.535181 2.099647 2.097710
I 4  3.644253 3.163109 3.246130
n1 6.432062 6.155862 5.949010
no 5.570066 4.921985 5.053040
7 2.013722 1.840309 1.475680

78 2.796034 2.784287 2.402450
hg 2.526037 2.447165 2.013970
Fio 11.565766 12.968350 13.453600
iEL hi 42.000000 42.048567 42.828400



simulation (those discrete dots). However, results from Zhang (2006) show obvious

discontinuities.

Simulation +
Shi B

0.730 -Zhang x

0 0.725 --

E 0.720 --

0.715-

21 22 23 24 25 26 27 28 29

loop invariant

Figure 5-35: Batman phenomenon in a single open-loop system

More numerical results

Finally, we provide numerical results for 700 other single open-loop systems. The

sizes of these systems vary from three-machine three-buffer loops up to 10-machine

10-buffer loops. Their machine parameters, buffer spaces, and loop structures are

generated randomly according to a method that is similar to the one described in

Gershwin (2011). For each experiment, the evaluation results from the improved

evaluation algorithm are compared against simulation results. Moreover, we report

both production rate error (Perr) and the maximum average inventory error (herr),

which are defined as:

Perr psim - pnum) X 100%, (5.99)
psim

and r sim _ gnum
herr = max *X 100% (5.100)

where Psim and pnum are the production rates from the simulation and the analyt-

ical solution, respectively; while niuim and nnum are the average inventory levels of
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Buffer Bi from the simulation and the analytical solution, respectively.
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Figure 5-36: Production rate error of 700 experiments
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Figure 5-37: Average inventory error of 700 experiments

Figure 5-36 shows the distribution of production rate errors of the 700 experiments.

In these experiments 76% of these cases have a production rate error that is less than

1%, while 699 out of 700 cases have a production rate error that is less than 2%. The

average production rate error of these 700 experiments is 0.75%. Similarly, Figure 5-

37 shows the distribution of maximum average inventory error of the 700 experiments.

In these experiments 83.86% of these cases have an average inventory level error that

is less than 10%, and 96.71% of these cases have an average inventory level error

that is less than 15%. The average average inventory error of these 700 experiments
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is 6.54%. Werner (2001) studies a large number of experiments for three-machine,

six-machine, and 10-machine closed-loop systems, and reports the errors in terms of

the production rate and average inventory level as well. The errors shown here are

comparable to the errors in his cases. In particular, the magnitude of production rate

errors in the 700 experiments considered here are smaller than those cases in Werner

(2001).

These results demonstrate the evaluation accuracy of the improved algorithm for

single loop systems. More importantly, the modified algorithm mitigates the unde-

sirable Batman effects and makes the production rate curve smoother. With the

modified evaluation algorithm, we extend the profit maximization algorithm devel-

oped for transfer lines in Chapter 4 to single closed-loop systems in Chapter 6.
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Chapter 6

Profit Maximization for Single

Closed-Loop Production Systems

6.1 Scope of the Problem

We indicate in Chapter 5 that single closed-loop systems are common in manufactur-

ing, where the total number of parts is controlled. Given their importance, in this

chapter, we study the profit maximization problem subject to a production rate con-

straint for single closed-loop systems by extending the algorithm proposed in Chapter

4 for transfer lines to such systems.

Recall that in Chapter 4, in order to solve the profit maximization problem subject

to a production rate constraint for transfer lines (i.e., Problem (4.3)), we formulate

a corresponding unconstrained problem (4.4) by dropping off the production rate

constraint. The constrained problem is solved by conducting a one-dimension search

in the revenue coefficient A (which is replaced by A' in the search) in which for each

A' the unconstrained problem is solved with a gradient method (see Section 4.2).

Solving the unconstrained problem (4.4) with the gradient method requires that the

profit space being searched has a single maximum. This point has been confirmed by

Schor (1995), Gershwin and Schor (2000), Shi and Gershwin (2009a), (2009b), as well

as the numerical experiments provided in Chapter 3 for transfer lines. However, we

observe that this might not necessarily be true for a single closed-loop system. We
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provide an example.

Table 6.1: Parameters of the five-machine five-buffer closed-loop example

Machine

ri
pi )

rg/(ri + ps)
T

M1
.1
.01

.909

M2
.1
.01

.909

M3

.1
.01

.909

M4

.1
.01

.909

M5

.02

.01
.667

N 4  bottleneck

Figure 6-1: A five-machine five-buffer closed-loop system

Consider a five-machine five-buffer single closed-loop system where all machines

except M5 are identical, and M5 is the bottleneck of the system. Machine parameters

are listed in Table 6.1. The loop is illustrated in Figure 6-1. Let N1 = N2 = N3 =

N5 = 100 and I = 400. We vary N 4 from 4 to 400 and evaluate the loop system

for each N4 . Both the analytical approach described in Chapter 5 and simulation

are used for evaluation. In particular, for each set of system parameters, the length

of the simulation is 5,100,000 time steps with the first 100,000 time steps being the

warm up period, and we run the simulation 20 times.

0.68
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0.60 - j
0.58
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0.52 i i u i i p

0 50 100 150 200 250 300 350 400
N4

Figure 6-2: The production rate of the five-machine five-buffer closed-loop system
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(e) 4 (N, I)
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Figure 6-3: The average inventory levels of the five buffers of the five-machine five-
buffer closed-loop system
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The production rate and the average inventory levels of the five buffers as functions

of N4 are illustrated in Figures 6-2 and 6-3, respectively. (Note that the average level

graphs shown in Figure 6-3 are in the order of n5, i1 h2, 2 3 , and h4.) It can be seen

that the results from the analytical approach and the simulation are very close. It

appears that the production rate is a concave function of N4, and we will discuss more

about the qualitative property of the production rate of a single closed-loop system

in Section 6.2.

The average inventory levels of the five buffers of this system are of interest.

We observe from Figure 6-3 that, since M5 is the bottleneck machine and its isolated

production rate is much smaller than all the other machines, parts tend to accumulate

in its upstream buffer B 4. When N 4 is small, the loop invariant (I = 400) is large

enough to make all Buffers B 3 , B2, B 1, and B5 (which is the furthest buffer for M5)

to be almost full in steady state. As N4 gets bigger, there is less blockage in the

system and more parts accumulated in upstream buffers B 3, B 2, B 1, and B5 tend

to move forward. In other words, as N 4 increases, B 4 will be filled with some parts

from B 3. This leaves extra space in B 3, but this space will be filled by parts from

B 2. Similarly, extra space available in Buffer B 2 will be filled by parts from B 1.

Finally, space available in Buffer B1 will be compensated by parts from Buffer B5 .

As a results of part movement due to the increase of N4, Buffers B 3, B 2 , and B 1 still

tend to be full, while in5 becomes smaller and smaller as parts are moving forward

to B 4 eventually through B 1, B 2, and B 3 (see Figure 6-1), and this trend will not

change until N4 reaches 100. Therefore, when N 4 is between 4 and 100, hs decreases

significantly while h4 increases significantly.

Once N 4 passes 100, the average inventory level of B 1 starts to decrease signifi-

cantly. This is because more and more parts in B1 tends to move downstream as a

result of the increase of N 4. However, few parts are added into B 1 from B5 because

the latter already has a very low inventory level. The results in Figure 6-3 confirms

this as h starts to decrease significantly once N 4 is greater than 100 when A5 already

decreases to a relatively low level. The rest of the results shown in Figure 6-3 can be

explained in a similar manner. n2 starts to decrease dramatically once N 4 is greater
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than 200 when both h5 and h, already decrease to low levels. Eventually, f13 will start

to decrease drastically once N 4 is greater than 300 when all other buffers except B 4

get almost empty.

Given the interesting behaviors of average inventory levels due to the specific

parameters of the loop system, we consider the following profit function:

J(N, I) = 1000P(N, I) - - ii 2 - N 4

and the profit of the loop is plotted in Figure 6-4.

350

300 -

250 -

0 50 100 150 200 250 300 350 400
N4

Figure 6-4: The profit of the five-machine five-buffer closed-loop system

It can be seen from Figure 6-4 that the profit curve has two maxima'. First,

there is a local maximum of the profit when N4 is around 50. Then, there is a global

maximum of the profit when N4 is around 250. The local maximum and the global

maximum are caused by different factors.

As N 4 increases from 0 to 50, the production rate of the loop increases rapidly

(see Figure 6-2) and the revenue increase associated with it exceeds the cost of an

increasing N4
2 . Once N4 keeps increasing after 50, the rate of increase of P(N, I)

decreases due to its concavity. Therefore, the revenue increase associated with P(N, I)

cannot compensate for the cost increase of N 4 . As a consequence, the profit decreases

and this leads to the local profit maximum around N 4 = 50.

'The small bump on the profit curve when I= 100 is not a local optimum. But rather, it is due
to the remaining batman effect after the two modifications discussed in Chapter 5 have been made
to improve the loop evaluation.

2Note that as N 4 increases, fi1 and 12 also decrease a little, and therefore they also bring minor
contributions to the profit. However, the fast increases of the production rate and the revenue are
the key drivers.
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On the other hand, once N4 pasts 100 and keeps increasing, the revenue increment

associated with P(N, I) is very small. The profit increase is due to the fact that

i decreases rapidly. The inventory holding cost coefficient of B1 is 3, so, as N 4

increases, parts move from more expensive buffers to cheaper buffers. The savings on

the inventory holding cost exceeds the cost of increasing N4, and therefore the profit

increases again. Once N 4 passes 300, the first three terms of J (i.e., 1000P(N, I),

-3h1, and -h2) become stable. Therefore, the profit decreases approximately linear

with N4 . The behavior of the profit described above results in the global maximum.

Due to the existence of two maxima, it is possible that a gradient search method

will stop at the local maximum rather than the global one. This will prevent the

algorithm from finding the correct global maximum of the profit. Given this fact, we

impose a certain assumption to our objective function, and this also defines the scope

of our loop optimization problem.

The assumption that will be considered in closed-loop optimization is that the

average inventory cost coefficients of all buffers are the same. In other words, c1 =

C2 = - = ck = c. This assumption indicates that the inventory holding costs at

different buffers are the same. Although this assumption narrows the scope of the

study on loop optimization, we consider it a fair assumption because it is common

in manufacturing systems where all machines and buffers are operating in the same

environment, or for products that do not deteriorate or lose values over the time

scale of the lead time. Examples where this assumption holds include the fabrication

of metal parts (Bard and Feo 1989 and Wang and Bourne 1997), the assembly of

subsystems like the engine and the transmission of a car, and the fabrication of

complex printed circuit boards like computer mother boards (Carano and Fjelstad

2003)3. Also, see Ip et al. (2007) for an example of a CONWIP-based control of a

lamp assembly production system. The assembly system contains five single loops in

which three of them have equal inventory holding costs. However, it is important to

point out that the assumption of constant inventory holding cost does not hold in

some cases. For example, the inventory holding cost in a clean room environment can

3The fabrication of the board itself rather than the assembly of components on the boards.
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be much more expensive than elsewhere in the system.

Provided the assumption on average inventory cost coefficients, the objective func-

tion of the loop profit maximization is

k k

J(N 1 ,.- ,Nk,I) = AP(N1,.- ,NkI) - biNi -Z chi
i=1 i=1

(6.1)
k

= AP(N1,... ,NI)-ZbiNi-cI.
i=1

It can be seen that in the objective function, the buffer space cost and the av-

erage inventory holding cost are linear functions of the decision variables N and I.

Therefore, whether or not (6.1) has a single global maximum that can be found by

the gradient method depends on the property of the production rate of the closed-

loop system P(N, I). We will study this in Section 6.2 and indicate the concavity

of P(N, I) as a good and reasonable assumption. With this concavity assumption,

the profit function will be a concave function of N and I, and this will guarantee the

single maximum.

The rest of this chapter is organized as follows. We first discuss some qualitative

properties of the production rate of loop systems (which is a function of both buffer

sizes N and loop invariant I) in Section 6.2. The optimization algorithm is stated

in Section 6.3, followed by numerical experiments in Section 6.4. We summarize this

chapter in Section 6.5.

6.2 Qualitative Property of P(N, I)

6.2.1 Numerical Observation

We discuss the qualitative property of P(N, I) for single closed-loop systems with

numerical experiments in this section. In particular, we consider a symmetric three-

machine loop and an asymmetric three-machine loop.

In the symmetric loop, machines are identical with ri = .1 and pi = .01. We
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study how P(N, I) changes with I (given Ni = N2 = N3 = 10) as well as with Ni

(given I = 28 and N2 = N3 = 10). The results are illustrated in Figure 6-5, where

both analytical results and simulation results are provided. It appears from Figure

6-5(a) that P(N, I) is a concave function of I. It addition, we observe the symmetric

property of P(N, I), which is conjectured by some research listed in Section 6.2.2,

such that
3

P(N,1) = P N,Y Ni (6.2)

0.820
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0.810 -+++++++ analytical
4. +

5 0.800 - + +
0. +4 +

0.790 - ++~0+
o- + + .
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0.770
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(a) P(N, I) vs I
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Ni

(b) P(N, I) vs N1

Figure 6-5: P(N, I) vs N and I, symmetric loop

On the other hand, from Figure 6-5(b), it appears that P(N, I) is a concave

function of Ni. In addition, we notice that the production rate stops increasing but

becomes constant when N1 > 28. This is because the loop invariant I is 28 in this

case. Therefore, once N1 > 1, in extra space in Buffer B1 has no impact on other

machines in terms of starvation or blocking, and therefore the production rate of the

system will remain unchanged.

In the asymmetric loop example, machines are different with their parameters

listed in Table 6.2. Again, we study how P(N, I) changes with I as well as with N1,
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N2, and N3 . In particular, Ni = 12, N2 = 16, and N3 = 10. we first vary I from 4 to

34. Then by choosing I to be 26, we vary N1 , N2 , and N3 once a time. The results

are illustrated in Figure 6-6. It appears from Figure 6-6(a) that P(N, I) is a concave

function of I. As before, we observe the symmetric property of P(N, I). From Figure

6-6(b), it appears that P(N, I) is a concave function of Ni as well. The production

rate stops increasing but becomes constant once Ni > I.

Table 6.2: Parameters of the three-machine asymmetric closed-loop

machine M 1  M 2  M 3

ri .10 .20 .10
p .01 .02 .011

ri/(ri +pi) .909 .909 .901

The two examples for a symmetric loop and an asymmetric loop suggests that

P(N, I) appears to be a concave function of both the buffer sizes and the loop invari-

ant.

6.2.2 Literature Review

Some research has been dedicated to study some qualitative properties (e.g., the

symmetry, the monotonicity, and the concavity) of continuous time closed queue-

ing systems with finite buffers and blocking, where machines are modeled as reliable

machines whose service times are assumed to follow either exponential distributions

or phase-type distributions (Neuts 1981). Although the research is for continuous

systems, we believe that the discrete closed-loop we study in the thesis exhibit the

similar property. Therefore, the research in similar systems combined with the nu-

merical observation provided in Section 6.2.1 indicate that the concavity property of

P(N, I) is a reasonable assumption.

Shanthikumar and Yao (1989a) study cyclic queueing networks with finite buffer

capacity and blocking before service (Perros 1990, Onvural and Perros 1986, Gun and

Makowski 1989). In addition, the service process at each stage is Markovian with the
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Figure 6-6: P(N, I) vs N and I, asymmetric loop

service rate p;i at stage i depending only on the number of jobs of that stage and if

the server is blocked. They show that the production rate of such queueing networks

is a monotonic function of buffer capacity and a concave function of population size.

In addition, Shanthikumar and Yao (1988) show that the throughput of a single-
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class closed queueing network of Jackson type (Jackson 1963), as a function of the job

population, is nondecreasing concave if the service rate at each node, as a function of

the local queue length, has the same property.

Onvural and Perros (1987) conjecture that the production rate of a closed tan-

dem queueing network with finite buffers and exponential servers is symmetrical with

respect to the population of the network. Onvural and Perros (1989) present an ap-

proximation algorithm for estimating the throughput of closed networks as a function

of the number of jobs (i.e., loop population) in it and indicate that in closed queue-

ing networks with blocking, the throughput increases as a function of the number of

jobs up to a point after which it decreases. The point at which the throughput is

maximized with respect to the loop population is conjectured to be equal to EZ=1 Ni.

This is confirmed by Onvural (1990). Onvural and Perros (1989) also conjecture that

the throughput curve with respect to the loop population is symmetric around the

point at which it reaches its maximum.

Dallery and Towsley (1991) prove the symmetry of the production rate conjec-

tured by Onvural and Perros (1987) for closed tandem queueing networks with finite

buffers. In particular, they assume blocking before service and the service times of

all servers are i.i.d. random variables with phase-type distribution4 . In other words,

the machines considered in their model are reliable with i.i.d. service times, and the

system is a continuous model. Dallery and Gershwin (1992) explain that an unre-

liable machine with exponential processing time p, uptime r, and downtime p can

be modeled as a reliable machine with phase-type distribution. Therefore, we expect

that the symmetry property holds for the production rate of a closed-loop system

with identical unreliable machines and finite buffers in the exponential production

line model.

The numerical experiments in concert with the literature review indicate that the

concavity of P(N, I) is a reasonable assumption. With this assumption, we see that

the profit of a closed-loop system, Equation (6.1), where all ci's are the same is a

concave function. Therefore there is a single maximum and it can be found by the

4Their results also apply to exponential servers.
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gradient method. The proposed profit maximization algorithm for such closed-loop

systems is described in Section 6.3.

6.3 Profit Maximization Algorithm for Loops

In this section, we present the profit maximization algorithm for single closed-loop

systems. Similar to what we do for transfer lines in Chapter 4, we try to maximize the

profit of single closed-loop systems subject to a production rate constraint. Note that

in closed-loop optimization, the decision variables are the buffer sizes Ni, i = 1 - , k

and the loop invariant I. The optimization problem is formulated as

k

max J(N 1 , ... ,NkI) = AP(N 1 , ... , Nk, I) - biNi - cI
NJ

i=1

subject to P(N 1 ,--. ,Nk,I) > P

Ni >2 Nmin, Vi= 1, -. -7,k, (6.3)

k

Ni 2 I,
i=1

I > 0

where the constraint Z 1 Ni I says that the total number of parts that are allowed

in the system at any time should not exceed the total size of all buffers and the

constraint I > 0 says that the number of parts in the system should be nonnegative.

According to the optimization technique developed in Chapter 4 for transfer lines,

we have the following similar assertion for single closed-loop systems: the constrained

problem
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J(N, --- , Nk, I)

k

= A'P(N1,... N, I) biNi - cI
i=1

subject to P(N, --- , Nk, I)

Ni Nmin,Vi = 1,--- ,k,

Ni
i=1

>1I,

I > 0

has the same solution for all A' in

strained problem

max
N,I

J(N1,- --, Nk, I)

subject to

which the solution of the corresponding uncon-

k

= A'P(N1 ,-- , NI) - biNi - cI
i=1

Ni Nmin,Vi = 1, -. , k,

(6.5)

i=
>1I,

I > 0

has P(N", - - - , Nk, I") < /, where (Ni', - - - , N, I"), or denoted by (Nu, I), is the

solution of the unconstrained problem (6.5). This is because the solution of problem

(6.4) will satisfy P(N*, - - - , Nk, 1*) = P so the objective function is equivalent to

A'JP - k_1 biNi - cI. Since the first term is independent of all of the Ni and I, it

has no effect on the solution of the problem.

Similar to what we do in Section 4.2 of Chapter 4 for transfer lines, we apply the
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KKT conditions again to prove the assertion for single closed-loop systems. We first

convert the constrained problem (6.3) into the minimization form:

k

min -J(N 1 , ... , Nk, I) = -AP(N 1 , ... , Nk, I) + biNi + cI
N,I

subject to P - P(N 1, ... , Nk,I) < 0,

Nmin - Ni K 0Vi=1, ,k, (6.6)

k

I-ZNi < 0,
i=1

-I < 0.

We realize that for loop systems, even with the deterministic model where parts

are discrete and buffer sizes are integers, we can still treat N, as well as I, as contin-

uous variables. This is because in evaluating loop systems, the underlying evaluation

of two-machine line building blocks do not require buffer sizes to be integer. Similar,

the decomposition approach does not have that requirement either. A loop system

differs from a transfer line in the sense that the imposed loop bring impact to the

blocking and starvation of buffers within the loop. However, from the system evalu-

ation standpoint, as long as we identify the failure modes of both the upstream and

downstream pseudo-machines of all buffers, the loop evaluation procedure is the same

as the transfer line evaluation procedure (see Chapter 5, Gershwin and Werner 2007,

and Zhang 2006 for loop evaluation). Therefore, the buffer sizes as well as the loop

invariant can be considered as continuous variables. As a result, P(N, I) and J(N, I)

can be considered as continuously differentiable functions as well.

Let us consider the KKT conditions. We first point out a necessary condition

that guarantees the existence of Lagrange multipliers. The appropriate one for the

problem is again the Slater constraint qualification for convex inequalities (and we
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first apply it in Chapter 4 for transfer lines). Let us now consider the constrained

problem (6.6) for loops. In this problem, there are no equality constraints but there

are k + 3 inequality constraints:

go(N, I)=P - P(NI, ... , Nk, J) < 0,

gi(N, I) = Nmin - Ni 0, Vi = 1, ,k,

k (6.7)

gk+l(N, I) = I - Ni 0,
i=1

gk+2(N, I) = -I < 0.

Due to the concavity assumption of P(N, 1), go(N, I) is a convex function. All

other g (N, I) are linear and therefore they are also convex. In addition, it is not hard

to find a feasible vector to make the problem satisfy the Slater constraint qualification.

Since the required production rate, f, has to be feasible for the line, there exists

sufficiently large N and i such that P(N 1 ,..- , Nk, I) > P and I < E= 1 N$. Thus,

go(N 1 , - - ,Nk,I) < 0 and gk+1(N1,'- ,Nk,IZ) < 0. In addition, gi(N,- , Ak,I) <

0, Vi = 1, ... , k because Nmin - Ni < 0, Vi = 1, ... ,k, and gk+ 2 (N 1 , - - - , Nk,I) < 0

because I > 0. Hence, the constrained problem (6.6) satisfies the Slater constraint

qualification, and there exist unique Lagrange multipliers p4, i = 0, -- , k + 2 for the

problem to satisfy the KKT conditions:

k

-VJ(N*, 1*) + pv (P - P(N*, I*)) + p*V (Nmin - Nf)
i=1

(6.8)
k

+p~1V I*- *) + pt*+2V(-I*) = 0
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OJ(N*, 1*)
aN1

OJ(N*, *)
aNk

aJ(N*, *)
aI

- PLo

8P(N*, 1*)
ON1

L P(N*, 1*)
aNk

8P(N*, 1*)
\ l

y>0,Vi=0,- -,k+2,

p0 (A - P(N*, I)) = 0,

p*(Nii - Nfi) = 0, Vi =1, -. - ,k,

p4+1 (* -zN) =0,

pI+2I* = 0,
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where (N*, I*) is the optimal solution of the constrained problem (6.6).

Next, we show that finding the Lagrange multipliers i, i = 0, - - - , k + 2 and the

optimal solution (N*, 1*) to satisfy the KKT conditions (6.9) to (6.14) is equivalent

to solving the constrained problem (6.3) by the algorithm. Suppose that N* satisfies

Ni > Nmin, Vi and therefore N* is an interior solution5 . (In all our experiments, the

optimal solutions have this feature.) In this case, by condition (6.12), we know that

= 0,Vi = 1,- ,k. In addition, the optimal solution should satisfy I* < E_ Ni

because otherwise (if I* = E> Nf) the production rate of the loop would be 0

because the entire loop will be full of parts and there will be no part movement at all

due to the way that a loop system is modeled6 . Similarly, the production rate of the

loop system will be 0 if I* = 0 since there are no parts traveling through the loop.

Hence I* has to be greater than 0. Thus, according to (6.13) and (6.14), we know

that p*+ = p*+2 = 0. Consequently, we simplify the KKT conditions (6.9) to (6.14)

to
/ DJ(N*, I*) DP(N*, 1*)

ON1  ON1  0

-O p(6.15)
OJ(N*, I*) aP(N*, I*) 0

DNA DNA

OJ(N*, I*) aP(N*, I*) 0
\ 9I / DI /

p0, ( - P(N* 0, (6.16)

where p-t* > 0. We know, since (N*, 1*) is not the optimal solution of the un-

constrained problem, that VJ(N*, I*) # 0. VJ(N*, 1*) /L 0 means that not all

'We provide the proof for the case where not all Nf satisfy Ni > Nmin in Appendix E.
'Although we do not provide any formal mathematic proofs we know that the optimal solution

should satisfy 21* < Z=1 Ni and this indicates that I* / E Nf. This is because, due to the
symmetry of P(N, I) in I, if I* > 0.5 E' 1 N, we will be able to find another I' - Ni - *
that gives the same production rate with lower cost and therefore higher profit. Therefore, I* must
not be larger than 0.5 E N.
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oJ(N*)/ONi or OJ(N*)/I are equal to 0. Thus, p" = 0 since otherwise condition

(6.15) would be violated. By condition (6.16), the optimal solution (N*, I*) satisfies

P(N*, I*) = P.

Conditions (6.15) and (6.16) reveal how we could find p* and (N*, I*). For every

p0, (6.15) determines (N*, 1*) since there are k + 1 equations and k + 1 unknowns.

Therefore, we can think of N* = N*(pg4) and I* = I*(p*). We search for a value of

pL* such that P(N*(pi), I*(pL*)) = P. As we indicate in the following, this is exactly

what the algorithm does.

Replacing p* by yo > 0 in constraint (6.15) gives

OJ(N, I)
ON1

OJ(N,I)
ONk

OJ(N, 1)
BI

- Po

{P(N, I)
ON1

OP(NI)
ONk

aP(N,I)
a9I

(0 '

0)

(6.17)

where (N, I) is the unique solution

following optimization problem

min
NJI

-i(N, I)

of (6.17). Note that (N, I) is the solution of the

= -J(N, I) + po (3 - P(N, I))

subject to Nmin - Ni < 0, Vi = 1, -. ,k,

I -= Ni
i=1

-1 < 0,
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which is equivalent to

max
N,I

j(N, I) = J(N, I) - po (P - P(N, I))

subjectto Nmin -*Ni < 0,Vi = 1,..

(6.19)

I- Ni
i=1

< 0,

-I < 0,

k

= AP(N, I) -E biNi - cI - po (f - P(N, I))

subject to Nmin - Ni < 0,Vi = 1, - - - , k,

(6.20)

< 0,

J(N, I) = (A + Io)P(N, I) -

Ni > Nmin,V = 1, , k,

Ni >1I

I > 0,
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max
N,I

j(N, I)

k

I - =Ni

i=1

-I < 0,

max
N,I

subject to

b Ni - cI
i=1

(6.21)



or, finally,
k

max J(N, I) = A'P(N, I) - biNi - cI
N,I

subject to Ni > Nmin, Vi = 1, -.. , k,

(6.22)
k

Ni > I,
i=1

I > 0,

where A' = A + po. This is exactly the unconstrained problem (6.5) and (N, I) is

its optimal solution. Note that po > 0 indicates that A' > A. In addition, the

KKT condition (6.16) indicates that the optimal solution of the constrained problem

(N*, 1*) satisfies P(N*, I*) = P. This means that, for every A' > A (or po > 0),

we can find the corresponding optimal solution (N, I) satisfying condition (6.17)

by solving problem (6.5), and, we need to find the A' such that the solution to

problem (6.5), denoted as (N(A'), I(A')), satisfies P(N(A'), 1(A')) = P. Then, po =

A' - A and (N(A'), I(A')) satisfy conditions (6.15) and (6.16). Hence, yio = A' - A

is exactly the Lagrange multiplier satisfying the KKT conditions of the constrained

problem, and (N*, I*) = (N(A'), I(A')) is the optimal solution of the constrained

problem. Consequently, solving the constrained problem (6.3) through the algorithm

is essentially finding the unique Lagrange multipliers and optimal solution of the

problem. We have proven the assertion.

6.4 Numerical Experiments

In this section, we provide numerical experiments of the profit maximization algorithm

for single closed-loops. In particular, when we conduct numerical experiments, we

focus on three-machine three-buffer closed-loops and four-machine four-buffer closed-

loops. The reasons of this include the following two points:
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1. Although the number of machines in a transfer line or a closed-loop system can

be greater than 3 or 4, the number of buffers could be much smaller than the

number of machines. When modeling of both a transfer line and a closed-loop

system, it is the number of buffers that determines the structure and the scale

of the system. This is because consecutive machines without buffers can be

grouped together and modeled as a single machine with the technique intro-

duced in Gershwin (1994). Therefore, three-machine three-buffer loop systems

and four-machine four-buffer loop systems could be quite common in real in-

dustry settings.

For example, Werner (2001) studies an industry case for a Japanese electronics

company who produces a network connection device that is used to improve

the quality of signals transmitted over long distances. The system is modeled

as a four-machine four-buffer closed-loop and the production rate of the system

is studied as a function of the loop population. In addition, Resano Lazaro

and Luis Perez (2008), (2009) model an automobile assembly line as a network

of four closed-loops coupled together, where three of them have at most four

buffers'. Ip et al. (2007) analyze a lamp assembly production system that con-

sists of five closed-loops. In particular, four of these loops have four or fewer

machines each. Miller et al. (2010) indicate in a case study that a furniture pro-

duction company utilizes a CONWIP operational model that can be considered

as a three-machine three-buffer loop.

2. The second reason is that although two modification about loop evaluation has

been developed in Chapter 5 and they significant mitigate the batman effect

(i.e., undesirable jump of P(N, I) in loop evaluation introduced in Section 5.2.3),

there is still minor remaining batman effect that potentially affects the accuracy

of loop evaluation and eventually loop optimization8 . Therefore, it is valuable

to first well understand the accuracy of the proposed optimization algorithm

7 The last one is a five-machine five-buffer loop.
8 Thoughts about how to further reduce the batman effect and therefore to improve the loop

evaluation accuracy are discussed as future work in Chapter 10.
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in small loop systems before we move to larger systems in the future. From

this perspective, a good understanding about small closed-loop systems such as

three-machine three-buffer loops and four-machine four-buffer loops is valuable.

For these reasons, in this section, we concentrate on three-machine three-buffer

loops and four-machine four-buffer loops for numerical experiments. However, it is

necessary to point out that the loop optimization algorithm presented in this chapter

applies to larger systems and finds accurate optimal results as well, provided that the

batman effect in loop evaluation is further mitigated or eventually eliminated.

6.4.1 Three-Machine Three-Buffer Closed-Loops

We start with a balanced loop with identical machines. In addition, buffer cost

coefficients are also identical, which means that b = cq = 1,Vi. The parameters of

the first three-machine three-buffer closed-loop system is listed in Table 6.3. The

target production rate is P = .87. The revenue coefficient is A = 1500.

Table 6.3: Parameters of three-machine closed-loop, Experiment 1

machine M1  M2  M3

ri .10 .10 .10
p .01 .01 .01

ri/(ri + pi) .909 .909 .909

As in Chapter 4 for transfer lines, in order to verify the optimal solution, we

compare the optimal solution from the algorithm with that from P surface search.

The results from both the algorithm and the surface search are summarized in Table

6.4. The optimal solutions from the algorithm and from the P surface search are

identical. The computer time for the algorithm to find the optimal solution is 42.31

seconds.

Next, we break the balance of the previous three-machine loop system by changing

the buffer cost coefficient b2 to 2 while keeping other parameters unchanged. The

target production rate is still P = .87. Since it is more expensive to create buffer
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Table 6.4: Results of three-machine closed-loop, Experiment 1

P Surface Search The algorithm error

P(N*, 1*) .8701 .8701 0%
N* 35 35 0%
N* 36 36 0%
N* 36 36 0%
1* 51 51 0%

hn1(N*, 1*) 16.8156 16.8156 0%
ih2 (N*, 1*) 17.1314 17.1314 0%
n3 (N*, 1*) 17.4197 17.4197 0%

J(N*) ($/time unit) 1146.77 1146.77 0%

space between Machines M2 and M3 , we expect N2 to be smaller as compared to the

result in the previous example, while N* and N* to be larger such that the target

production rate can be satisfied.

The results from both the algorithm and the surface search are summarized in

Table 6.5. The optimal solutions from the algorithm and from the P surface search

are identical. The computer time for the algorithm to find the optimal solution is

54.18 seconds.

Table 6.5: Results of three-machine closed-loop, Experiment 2
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P Surface Search The algorithm error

P(N*, I1*) .8702 .8702 0%
N* 38 38 0%
N* 32 32 0%
N* 38 38 0%
1* 52 52 0%

h1(N*, *) 19.3095 19.3095 0%
n2(N*, *) 15.5497 15.5497 0%
ft3 (N*, 1*) 17.4461 17.4461 0%

J(N*) ($/time unit) 1112.93 1112.93 0%



6.4.2 Four-Machine Four-Buffer Closed-Loops

We consider two four-machine closed-loops. In particular, buffer cost coefficients

are also identical, which means that bi = c = 1,Vi. The parameters of the first

four-machine closed-loop system is listed in Table 6.6. The target production rate is

P = .86, while the revenue coefficient is A = 2000.

Table 6.6: Parameters of four-machine closed-loop, Experiment 1

machine M1 M2 M3 M4

ri .10 .20 .10 .10
p .01 .01 .01 .01

ri/(ri + pi) .909 .952 .909 .909

The results from both the algorithm and P surface search for this system are

summarized in Table 6.7. The optimal solutions from the algorithm and from the P

surface search are identical. The computer time for the algorithm to find the optimal

solution is 195.19 seconds.

Table 6.7: Results of four-machine closed-loop, Experiment 1

In the second example, we consider different machines. Buffer cost coefficients are

b1 = 0.72, b2 = 1.29, b3 = 1.79, b4 = 1.73, and ci = 0.59,Vi. The parameters of the

loop system is listed in Table 6.8. The target production rate is P = .86, while the
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P Surface Search The algorithm error
P(N*, 1*) .8600 .8600 0%

N* 21 21 0%
N* 20 20 0%
N* 31 31 0%
N* 33 33 0%
1* 50 50 0%

hi1 (N*, 1*) 9.6371 9.6371 0%
A2(N*, 1*) 10.6250 10.6250 0%
ha(N*, I*) 14.1320 14.1320 0%
54(N*, I*) 15.8885 15.8885 0%

J(N*) ($/time unit) 1565.01 1565.01 0%



revenue coefficient is A = 1500.

Table 6.8: Parameters of four-machine closed-loop, Experiment 2

machine M1 M2 M3 M4

ri .116 .125 .102 .133
p .007 .009 .005 .008

ri/(ri+pi) .943 .934 .953 .943

Given the parameters of machines and buffers, the production rate constraint

is inactive for the loop. Therefore, we conduct a surface search of (N, I) such that

P(N, I) > P for comparison. The results are summarized in Table 6.9. The maximum

error between the algorithm and the surface search is 6.25% and it appears at N*.

However, it can be seen that the optimal solution from the algorithm satisfies the

production rate constraint and the profit associated with it is very close to the one

from the surface search (the error is 0.01%). The computer time for the algorithm to

find the optimal solution this is 31.31 seconds.

Table 6.9: Results of four-machine closed-loop, Experiment 2
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Surface Search The algorithm J error
P(N*, 1*) .8647 .8651 0.05%

N* 16 17 0.00%
N2 12 12 0.00%
N* 8 8 6.25%
N* 8 8 0.00%
1* 20 20 0.00%

hi(N*, *) 6.4401 6.6665 3.52%
h2(N* I*) 6.1685 6.1736 0.08%
ih3 (N*, 1*) 4.2994 4.2865 0.30%
54(N*, *) 3.1268 2.9622 5.26%

J(N*) ($/time unit) 1230.01 1229.88 0.01%



6.4.3 More Numerical Experiments

Finally, we provide numerical experiments for 100 three-machine closed-loop systems

and 100 four-machine closed-loop systems. These systems are generated randomly ac-

cording to the method of Gershwin (2011). In all these lines, the isolated production

rate P = ri/(ri +pi) of any given machine is between .909 and .938 for three-machine

loops and between .923 and .952 for four-machine loops with ri and pi generated

randomly. In addition, the buffer cost coefficients bi and ci for any buffer are also

generated randomly with the restriction that all c's be the same. The target produc-

tion rate P is .87 for three-machine loops and .86 for four-machine loops. The revenue

coefficient A is 1500 for the three-machine loops and 2000 for the four-machine loops.

We compare the results from the algorithm with surface search and compute four

types of error. They are the production rate error, .the profit error, the maximum

buffer size error, and the loop invariant error. The subscripts aig and ss are used to

represent the optimal buffer allocations associated with the algorithm and the surface

search, respectively. The four types of error are defined as

J(Ns, Is) - J(N*ag lg)
Jerr -J(N 5 , Il)

P(N*s, Is*s) - P(N* 1alg
Perr = P(Nx 100%

{ Ns(B) - N* g(Bi)

Nerr = max x 100% ,
i=1,---,Ik Nss(Bj)

and finally
Ils* - Ial

Ierr -=alg X 100%.

The four types of errors for the 100 three-machine loops are illustrated in Fig-

ure 6-7. We rank the four types of errors in their corresponding ascending orders

respectively. (Therefore, the ith case in the profit error graph, for instance, may

not necessary be the same as the ith case in the production rate error graph.) The
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Figure 6-7: Result
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case

s of one hundred randomly generated three-machine closed-loops

average error of each type is also provided. In particular, in 65 out of the 100 cases,

the optimal buffer sizes from the algorithm and the surface search are the same, and

therefore the four types of errors in these 65 cases are 0. In addition, the average

profit error, the average production rate error, the average maximum buffer size error,

and the average loop invariant error of these 100 cases are .069%, .052%, 5.48%, and

1.44%, respectively.

The four types of errors for the 100 four-machine loops are illustrated in Figure 6-

8. In particular, in 52 out of the 100 cases, the optimal buffer sizes from the algorithm

and the surface search are the same, and therefore the four types of errors in these 52
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Figure 6-8: Results of one hundred randomly generated four-machine closed-loops

cases are 0. In addition, the average profit error, the average production rate error,

the average maximum buffer error, and the average loop invariant error of these 100

cases are .025%, .084%, 6.24%, and 2.03%, respectively.

In these 200 numerical experiments for three-machine and four-machine closed-

loops, although the maximum buffer size error and the loop invariant error can be

large, the profit error and the production rate error are always small. These experi-

ments demonstrate the accuracy and the reliability of the proposed algorithm.
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6.5 Summary

In this chapter, we extend the profit maximization algorithm developed in Chapter 4

to closed-loop systems. We show in Section 6.1 that it is possible that the profit of a

closed-loop system has multiple local maxima and therefore we focus the scope of our

problem to the case where the average inventory cost coefficients of all buffers (ci) are

the same, which is also a common situation in many actual manufacturing settings.

Under this scope, with the concavity assumption of P(N, I) discussed in Section 6.2,

the profit of a closed-loop system has only one single maximum and therefore the

algorithm of Chapter 4 can be extended to closed-loops directly.

The performance of the algorithm is shown by studying a set of three-machine

and four-machine closed-loop systems. The reasons why we focus on smaller systems

are discussed in Section 6.4. All these numerical experiments studied in this chapter

show the accuracy of the proposed algorithm.
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Chapter 7

Maximum Part Waiting Time

Constraint between Adjacent

Operations

7.1 Motivation

In some kinds of manufacturing, the time a part may spend in a buffer between

successive operations (such as cleaning and baking in semiconductor fabrication) is

limited. Parts that wait longer than this time must be reworked or discarded due

to the risk of quality degradation. This can be seen as a maximum part waiting

time constraint between operations. It says that the time for a part to wait for the

next operation after the previous operation should be kept less than a fixed value, to

guarantee the quality of the part. This constraint is common and important in sev-

eral industries, especially the semiconductor industry (Lee and Park 2005, Kitamura

et al. 2006). As examples, Kim and Lee (2008) and Rostami et al. (2001) indicate

that the time a wafer spends in a processing module within a cluster tool should be

limited. Kim et al. (2003) point out when the wafer delay at each process step of low

pressure chemical vapor deposition (LPCVD) exceeds 20 seconds, the wafer surface

deteriorates because of excessive exposure to residual gases under high temperature
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and the wafer is scrapped. Robinson and Giglio (1999) mention that a baking oper-

ation must be started within two hours of a prior clean operation. If more than two

hours elapse, the lot must be sent back to be cleaned again. Lu et al. (1994) study

the efficient scheduling policies to reduce mean and variance of cycle-time, and point

out that the shorter the period that wafers are exposed to aerial contaminants while

waiting for processing, the smaller is the yield loss. Yang and Chern (1995) indicate

the consideration of such a part waiting time constraint in food production, chemical

production, and steel production. For surveys, see Neacy et al. (1994) and Uzsoy

et al. (1992).

In this chapter, we extend the algorithm for production line profit maximization to

cope with this additional maximum part waiting time constraint. In other words, we

will consider both the production rate constraint and the maximum part waiting time

constraint. However, we want to clearly point out that this constraint can be imposed

on a single buffer, on more than one buffer, or on the entire manufacturing process.

For our purpose, we will assume that the maximum part waiting time constraint is

imposed on a single buffer B;.

Because of the randomness of machine failures, it is impractical to require the

waiting times of all parts that enter Buffer B; to be bounded. However, it is possible

to statistically assure the waiting times of at least a given percentage of parts to be

upper bounded. That is, we can require

p (T(N) <; W) > 1 - a (7.1)

where W is the maximum part waiting time allowed at Buffer B;, T(N) is a random

variable that indicates the part waiting time (and it is a function of buffer sizes N),

and 1 - a is the given percentage. With this constraint, the production line profit

maximization problem becomes
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k-1 k-1

max J(N) = AP(N)-Z biNi- cii(N)
i=1 i=1

subject to P(N) > P
(7.2)

p (T(N) W) > 1 - a

Ni > Nmin, Vi = 1, ,k -1.

In order to quantify the maximum part waiting time constraint, we derive an

analytical formulation for the part waiting time distribution for two machine lines and

apply it to a single buffer in long lines with the help of decomposition in Section 7.2.

This allows us to compute the probability p(T(N) < W). However, in the analytical

formulation, we do not have a closed form expression for p(T(N)). Instead, the

probability distribution is computed numerically through iteration. Due to the lack

of a closed form expression, we cannot treat the decision variable N as a continuous

variable when computing p(T(N) W;) in solving (7.2). To resolve this concern, we

transform (7.2) to a similar problem where Constraint (7.1) is replaced by an average

part waiting time constraint. The transformed problem will be solved and its solution

will be checked against (7.1) iteratively. We discuss the transformed problem in great

detail in Section 7.3.

The rest of the chapter is organized as follows. We derive the analytical solution of

the part waiting time distribution for two-machine lines in Section 7.2. A transformed

profit maximization problem is introduced in detail in Section 7.3. We extend the

profit maximization algorithm derived in Chapter 4 to solve the transformed problem.

Numerical experiments are provided in Section 7.4 to show the accuracy and reliability

of the proposed algorithm.
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7.2 Part Waiting Time Distribution for Two-Machine

Lines

7.2.1 Derivation

In this section, we derive the part waiting time distribution for two-machine lines. In

particular, we consider the Gershwin (1994) version of the Buzacott model (Buzacott

1967a). However, the approach we use here can be applied as well to the deterministic

time and discrete material model of Tolio et al. (2002), which allows both machines

to have multiple failure modes (Shi and Gershwin 2011a).

Recall that in Buzacott model, the operation times for both machines are deter-

ministic, identical and set as the time unit. Either machine can produce exactly one

part in each time unit if it is not down in a failed state, blocked, or starved. In ad-

dition, machine failures and repairs follow geometric distributions whose means are

measured in terms of the time unit. As a result, part waiting times are integers in

this model. In addition, we want to indicate clearly that we assume that the buffer

under consideration is a FIFO buffer, which means that parts inside the buffer follow

a first-in first-out discipline.

The convention in the two-machine line model is crucial in defining the part wait-

ing time in the buffer. We emphasize it here, define the part waiting time, and derive

the distribution of the part waiting time according to the convention. By the con-

vention of Gershwin (1994), the status of both machines change at the beginning of a

time unit while buffer level changes at the end of a time unit. This implies that any

new part produced by the upstream machine M1 will enter the buffer at the end of

the current time unit, or equivalently, the same instant as the beginning of the next

time unit. To clarify this, consider Figure 7-1.

In Figure 7-1, there is a horizontal time axis on which the discrete time instants

t - 1, t, and t +1 represent the beginning of the time units after them and the end of

the time units before them, respectively. For example, time instant t is the beginning

of time unit t, while time instant t +1 is the beginning of time unit t +1 as well as the
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new part waiting for Mi

ai(t - 1) and a 2 (t - 1) determined

n(t - 1) = n(t -2) + ai(t - 1) - a 2 (t - 1)

t-1 t-1 t t t+1

Figure 7-1: Convention of Gershwin (1994) version of the Buzacott model

end of time unit t. The time interval between the time instants t and t + 1 represents

time unit t.

In the model convention of Gershwin (1994), machine states get updated at the

beginning of a time unit, while buffer level gets updated at the end of a time unit.

At the beginning of time unit t - 1, the states of the two machines a1(t - 1) and

a2(t - 1) are determined. At the end of time unit t - 1, the buffer level n(t - 1) is

determined. According to Gershwin (1994), the relationship between machine states

and the buffer level is n(t - 1) = n(t - 2) + a 1 (t - 1) - a 2 (t - 1), as it is shown in

Figure 7-1 (assuming 1 < n(t - 1) < N - 1).

Now, suppose that a new part is waiting to be produced by the upstream machine

M1 at time instant t - 1. At the beginning of time unit t - 1, the states of the two

machines a 1 (t - 1) and a 2 (t - 1) are determined. If the upstream machine is up, then

the new part will be added into the buffer at the end of time unit t - 1, which is

when the buffer level of time unit t - 1 is determined. Therefore, this new part will

enter the buffer at the end of time unit t - 1 and it will be the n(t - 1)th part in the

buffer. Since the end of time unit t - 1 is exactly the same instant as the beginning

of time unit t, it will be convenient to say that the part above enters the buffer at

the beginning of time unit t in the rest of this chapter. This is why any new part

produced by the upstream machine will enter the buffer at the beginning of a time

unit. The waiting time of the part is then counted from the instant it enters until the

instant it leaves the buffer at the end of some time unit in the future.

Suppose that at the beginning of a time unit, a new part enters an empty buffer
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and the downstream machine M2 is up. Then M 2 will work on that part during

that time unit. The part will leave the buffer at the end of that time unit and we

consider that time unit as the waiting time in the buffer of that part. Therefore, the

minimum waiting time for any given part is one time unit. Let T(N) be a random

variable that indicates the waiting time of the last part to enter the buffer and it is a

function of the buffer size N of the two-machine line (as well as machine parameters).

In what follows, we derive the probability mass function (PMF) of part waiting time

p(T(N) = r) where r is a positive integer1 .

at the beginning of time unit t

x(t) = n(t - 1) = n

the nth part in the buffer (1 < n < N)

Figure 7-2: Position of the new part that enters the buffer at the beginning of time
unit t

Suppose a new part enters the buffer at the beginning of some time unit t. We

derive the part waiting time distribution for this specific part and this part is called

the target part. We start the derivation by defining the position of the new part in

the buffer. We assume that the part that enters the buffer at the beginning of time

unit t is the nth (1 < n < N) part in the buffer (and there are n - 1 parts already in

the buffer in front of it). Specifically, we interpret n as the position of the new part.

In other words, if at the beginning of time unit t there are n - 1 parts in the buffer

and the target part enters it, then the position of the target part is n. Define x(t)

to be the position of the target part that enters the buffer at the beginning of time

unit t. According to the model convention, the buffer level gets updated at the end

of a time unit. Therefore, the buffer level at the beginning of time unit t is exactly

'The part waiting time depends on both the size of the buffer and the parameters of the two
machines. However, since (for production lines) the decision variables considered throughout the
thesis are buffer sizes, we choose to use the notation T(N).
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the same as the buffer level at the end of time unit t - 1. Therefore, once the target

part arrives, its position is x(t) = n(t - 1) = n (see Figure 7-2 for illustration). If we

can find the conditional probability that the waiting time of the part is T(N) = r

given that its position is x(t) = n when it enters the buffer, then we can find the

unconditional probability p(T(N) = r) by the Total Probability Theorem (Bertsekas

and Tsitsiklis 2008).

at the beginning of time unit t after the target part arrives and
before machine states get updated

x(t) = n(t - 1) = n a2(t - 1)

EIJ1111T ElJ
the nth part in the buffer (1 < n < N)

Figure 7-3: State of M 2 at the beginning of time unit t before it gets updated

On the other hand, once the target part enters the buffer, its waiting time in the

buffer has nothing to do with the state of the upstream machine M1 . It depends only

on the state of the downstream machine M2 after the target part enters the buffer.

(For instance, if M 2 fails for a very long time, then the part will have to wait in the

buffer for that long failure period of M 2 and its waiting time will be long.) According

to the model convention, machine states get updated at the beginning of a time unit.

This means that once they are updated, the state of M 2 is a 2(t) during time unit

t. However, in order to derive p(T(N) = r), we are interested in the state of M2

at the instant that the target part enters the buffer and before a 2 gets updated. At

that moment, both machines still assume their respective states from the previous

time unit (i.e., a 1 (t - 1) and a 2 (t - 1)). Therefore, at the instant that the target

part enters the buffer and before the machine states get updated, the state of M2 is

a2(t - 1) (see Figure 7-3).

According to the discussion above, we see that T(N) depends on both the position

of the target part x(t) and the state of M 2 before it gets updated a 2(t - 1). Hence,
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we need to find p(T(N) = TIX(t) = n,a 2 (t - 1) = 1) and p(T(N) = rIx(t) =

n, a2(t - 1) = 0). Once we find them, the unconditional probability p(T(N) = -r) can

be found by

p(T(N) = r) =

N'

E p(T(N) = rIX(t) = n, a2(t - 1) = 1)p(x(t) = n, a 2 (t - 1) = 1) (7.3)
n=1.

+ p(T(N) = rx(t) = n, a 2 (t - 1) = 0)p(X(t) = n, a 2 (t - 1) = 0)]

Note that although both p(x(t) = n, a2(t - 1) = 1) and p(x(t) = n, a 2 (t -

1) = 0), 1 < n < N look like unconditional probabilities, they imply an underlying

condition that there is indeed a new part entering the buffer at the beginning of time

unit t. In other words, the universal set in our probabilistic model is established

on the condition that a new part enters the buffer at the beginning of some time

unit t. Therefore, for instance, p(x(t) = n, a 2 (t - 1) = 1) should be read as the

probability that, given a new part entering the buffer at the beginning of time unit

t, that target part has a position of n and M 2 is up before it gets updated. To verify

this, note that p(T(N) = T) is the probability that the waiting time of the part,

which enters the buffer at the beginning of time unit t, is T(N) = r. Therefore, the

underlying condition is that a part enters the buffer at the beginning of time unit

t. These two sets of probabilities can be derived easily from the analytical solution

of two-machine line evaluation developed by Gershwin (1994), and we will discuss

them later in this section. Therefore, the difficulty in deriving p(T(N) = r) is to find

p(T(N) = rIx(t) = n, a 2 (t - 1) = 1) and p(T(N) = rIx(t) = n, a2(t - 1) = 0). We

would like to point out that due to the convention in the two-machine line model,

if the waiting time of the new part with a position n is r, then p(T(N) = rlx(t) =

n, a 2 (t - 1) = 1) = p(T(N) = -rjx(t) = n,a 2 (t - 1) = 0) = 0, Vr < n. This is because

it will at least take n time units before the nth part can leave the buffer.
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In the following derivation, for convenience, define

pt(T, n) = p(T(N) = TIX(t) = n, a 2 (t - 1) = 1),

and

qt(T, n) = p(T(N) = rlx(t) = n, a 2 (t - 1) = 0).

We find pt(r, n) and qt(T, n) by iteration. Recall that the target part under con-

sideration enters the buffer at the beginning of time unit t and x(t) = n. Suppose

a2(t - 1) = 1 for now. Let us discuss what may happen on Machine M2 during time

unit t. Since the status of machines are updated at the beginning of a time unit,

M2 can fail during time unit t with probability p2 (i.e., a 2 (t) = 0) or it can remain

up during time unit t with probability 1 - p2 (i.e., a2 (t) = 1). We consider them

separately:

" if M 2 fails with probability P2, then it cannot process any part in the buffer

during time unit t. Therefore, at the beginning of time unit t + 1, the target

part will still be the nth part in the buffer (no matter if the upstream machine

adds a new part to the buffer or not). Thus a 2(t) = 0 and x(t + 1) = n.

More importantly, the waiting time for the target part is T(N) = r and it is

counted at the beginning of time unit t. However, if it is instead counted at the

beginning of time unit t +1, then there are T(N) = r - 1 steps to go since time

unit t is passed.

" if M2 remains up with probability 1 -p2, then it will process the part in position

1 in the buffer during time unit t. Therefore, at the beginning of time unit

t + 1, the target part will be the n - 1th part in the buffer (no matter if the

upstream machine adds a new part to the buffer or not). Thus a 2(t) = 1 and

x(t + 1) = n - 1. As before, the waiting time for the target part is T(N) = r

and it is counted at the beginning of time unit t. If it is instead counted at the

beginning of time unit t + 1, then T(N) = r - 1.

With the two possibilities above, we establish the following equation (also see
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n-i

p(T(N) = rlx(t) = n, a 2 (t - 1) = 1)

- p(T(N) = r - 1|x(t + 1) = n, a 2 (t) = O)P2

+p(T(N) = r - 1|x(t + 1) = n - 1, a 2 (t)

n -

!*n - 1 *iizmzu
it M 1 is down

if M1 is up

1)(1 - P2)

if M1 is down

if M1 is up

Figure 7-4: Illustration of the transition equation when x(t) = n, a 2 (t - 1) = 1

Figure 7-4),

p(T(N) = rIx(t) = n, a 2 (t - 1) = 1) =

p 2p(T(N) = r - 1|x(t + 1) = n, a 2 (t) = 0) (7.4)

+ (1 - p2 )p(T(N) = r - 1|x(t + 1) = n - 1, a 2 (t) = 1)

or with the convenient notation, we have

P(r, n) = P2qt+1(r - 1, n) + (1 - P2)Pt+1(r - 1, n - 1). (7.5)

We can safely disregard the time subscripts in Equation (7.5) because the system is

in steady state and therefore these probabilities are independent of the time argument

t. Therefore, we take away the time subscripts in Equation (7.5) and get

p(r, n) = P2 q(r - 1, n) + (1 - P2)p(r - 1, n - 1). (7.6)
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Next, suppose that a2(t - 1) = 0 when the target part enters the buffer at the

beginning of time unit t and before the state of M 2 gets updated, then

" if M 2 gets repaired with probability r2 , then it will process the part in position

1 in the buffer during time unit t. Therefore, at the beginning of time unit

t + 1, the target part will be the n - 1th part in the buffer (no matter if the

upstream machine adds a new part to the buffer or not). Thus a2 (t) = 1 and

x(t + 1) = n - 1.

" if M2 remains down with probability 1 - r2 , then it cannot process any part in

the buffer during time unit t. Therefore, at the beginning of time unit t +1, the

target part will still be the nth part in the buffer (no matter if the upstream

machine adds a new part to the buffer or not). Thus a2(t) = 0 and x(t+ 1) = n.

Similarly, we establish the following equation (after dropping the time subscripts),

q(T, n) = r2P(T - 1, n - 1) + (1 - r2)q(r - 1, n). (7.7)

Equations (7.6) and (7.7) are the two basic recursive equations of the iteration ap-

proach. When n = 1, these two equations are simplified to

p(T, 1) = P2 q(r - 1, 1), (7.8)

and

q(r, 1) = (1 - r 2)q(r - 1, 1). (7.9)

In addition, the two initial conditions of the iteration approach are p(l, 1) = 1 - P2

and q(1, 1) = r 2 . Recall that p~r, n) = q(r, n) = 0, Vr < n, then according to the

analysis above, we summarize the expressions of non-zero p(T, n) and p(r, n) below:

P ) = 1

p(1,l1) = 1 -p2,
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q(1, 1)

e 2<r<N

p(T, 1)

q(r,1)

p(r, n)

q(r, n)

p(r, n)

q(T, n)

= p2q(T - 1, 1),

= (1 - r 2)q(T -1,1),

= p2q(T- 1,n)+(1-p 2)p(r-1,n-1),

= r2 p(T - 1, n - 1) + (1 - r2)q(r - 1, n),

= (1 - p 2)p(r - 1, n - 1),

= r 2 p(r - 1, n - 1),

2 < n < r -1,

2 <_ n < -1,

n =T,

n = r,

= p2 q(r- 1,1),

= (1 - r 2)q(r - 1, 1),

= p 2q(r - 1,7n) + (1 -p 2)p(r- 1,n- 1),

= r2 p(-r 1,n - 1)+ (1 - r2)q(r - 1, n),

2<n<N,

2<n<N.

With the iteration approach above, we are able to find p(T(N) = rjx(t) =

n, a2(t - 1) = 1) and p(T(N) = rlx(t) = n, a 2 (t - 1) = 0). Next, we explain
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how to find p(x(t) = n, a 2 (t - 1) = 1) and p(x(t) = n, a2 (t - 1) = 0), 1 < n < N

from the analytical solution of two-machine line evaluation of Gershwin (1994). The

analytical solution specifies the steady state probabilities p(n, a1, a2) of the line in

different states in terms of buffer level n as well as the status of both machines a1

and a 2.

We have mentioned that although both p(x(t) = n, a 2 (t - 1) = 1) and p(x(t) =

n, a 2 (t - 1) = 0), 1 < n < N look like unconditional probabilities, they imply an

underlying condition that there is indeed a new part entering the buffer at the be-

ginning of time unit t. As a result, p(x(t) = n, a 2 (t - 1) = 1), for instance, can be

depicted as

p(x(t) = n, a2 (t - 1) = 1) =

a new part enters the buffer

at the beginning of time unit t,
p

its position is n, and

M 2 is up before it gets updated

a new part enters the buffer

at the beginning of time unit t

For the rest of the derivation, let p"(x(t) = n, a 2 (t - 1) = 1) be the corresponding

unconditional probability of p(x(t) = n, a 2 (t - 1) = 1). In other words, we have

pu(x(t) = n, a 2 (t - 1) = 1) = p

a new part enters the buffer

at the beginning of time unit t,

its position is n, and

M 2 is up before it gets updated
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and similarly,

a new part enters the buffer

p"((t) = n, a2(t - 0) = at the beginning of time unit t, (711)

its position is n, and

M 2 is down before it gets updated

Therefore, p(x(t) = n, a 2 (t - 1) = 1) can be expressed as

p(x(t) = n, a 2 (t - 1) = 1) =

pu(x(t) = n, a 2 (t-1) =1) (7.12)
N

(zu(x(t) = j, a 2 (t - 1) = 1) + pu(x(t) = j, a 2 (t - 1) = 0))
j=1

where the denominator is the unconditional probability that a new part enters the

buffer at the beginning of time unit t. Similarly, p(x(t) = n, a 2 (t - 1) = 0) is

p(x(t) = n, a 2 (t - 1) = 0) =

p"(x(t) = n, a2 (t - 1) = 0) (7.13)
N

: (pu((t) = j, a 2(t - 1) = 1) + pu(x(t) = j, a 2(t - 1) = 0))
j=1

Next, we show how to find pu(x(t) = n, a 2 (t - 1) = 1) and pu(x(t) = n, a 2 (t -

1) = 0) with the steady state probabilities p(n, a1 , a2) of a two-machine line (see

Appendix A for those probabilities). Let us consider pU (x(t) = n, a 2 (t - 1) = 1)

where 2 < n < N - 1 first. We analyze the possible states in which the system has

to be in at the beginning of time unit t -1 such that a new part will enter the buffer

at the beginning of time unit t, the position of the new part is n once it enters the

buffer, and M 2 is up before its state is updated at beginning of time unit t. To make

this to happen, the following scenarios are possible:

e the system is in state (n, 0, 0) at the beginning of time unit t - 1, and both the
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upstream and the downstream machines are repaired with probabilities r1 and

r2 , respectively, during time unit t - 1.

" the system is in state (n, 0,1) at the beginning of time unit t - 1, the upstream

machine gets repaired with probability ri, and the downstream machine does

not fail with probability 1 - P2 during time unit t - 1.

" the system is in state (n, 1,0) at the beginning of time unit t - 1, the upstream

machine does not fail with probability 1 -pi, and the downstream machine gets

repaired with probability r 2 during time unit t - 1.

" the system is in state (n, 1, 1) at the beginning of time unit t - 1, and both the

upstream and the downstream machine do not fail with probability 1 - pi and

1 - P2, respectively, during time unit t - 1.

In all the four cases above, the upstream machine will add a part to the buffer

and the downstream machine will remove a part from the buffer at the end of time

unit t - 1, or equivalently the beginning of time unit t. That is to say that the new

part from the upstream machine will enter the buffer and the downstream machine

is up at the beginning of time unit t before its state is updated again for time unit t.

In addition, since the upstream machine adds a part while the downstream machine

removes a part, the buffer level remains to be n and therefore the position of the new

part is n. According to the analysis above, pu(x(t) = n,a 2 (t-1) = 1),2 < n < N-1,

can be computed by

p"(x(t) = n, a 2 (t - 1) = 1) = rir2p(n, 0, 0) + r1(1 - p2)p(n, 0, 1)

+(1 - pi)r2p(n, 1, 0) + (1 - pi)(1 - p2)p(n, 1, 1).

(7.14)

Next we consider pu(x(t) = n, a2(t - 1) = 1) where n = 1. To make this to

happen, the following scenarios are possible:

o the system is in state (1, 0,0) at the beginning of time unit t - 1, and both the

upstream and the downstream machines are repaired with probabilities r1 and
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r2 , respectively, during time unit t - 1.

" the system is in state (1,0,1) at the beginning of time unit t - 1, the upstream

machine gets repaired with probability ri, and the downstream machine does

not fail with probability 1 - P2 during time unit t - 1.

* the system is in state (1, 1, 1) at the beginning of time unit t - 1, and both the

upstream and the downstream machine do not fail with probability 1 - pi and

1 - P2, respectively, during time unit t - 1.

" the system is in state (0, 0, 1) at the beginning of time unit t-1 and the upstream

machine gets repaired with probability ri. Note that due to the convention of

the two-machine line model, the downstream machine will be starved during

the entire time unit t - 1.

In the first three cases above, the upstream machine will add a part to the buffer

and the downstream machine will remove a part from the buffer at the end of time

unit t - 1, or equivalently the beginning of time unit t. Therefore the new part from

the upstream machine will enter the buffer and the downstream machine is up at

the beginning of time unit t before its state is determined again. Since the upstream

machine adds a part while the downstream machine removes a part, then the buffer

level remains to be 1 and therefore the position of the new part is 1. In the four

case above, the buffer is empty at the beginning of time unit t - 1 and the upstream

machine adds a new part to the buffer at the beginning of time unit t and therefore

the buffer level becomes 1. Therefore, the position of the new part is 1. According

to the analysis above, pu(x(t) = 1, a 2 (t - 1) = 1) can be computed by

p" (x(t) = 1, a2(t - 1) = 1) = rir 2p(1, 0, 0) + r1(1 - p2)P(1, 0, 1)

(7.15)

+(1 - P1)(1 - p2)P(l, 1, 1) + rip(0, 0, 1).

Next we consider pu(x(t) = n, a 2(t - 1) = 1) where n = N. First, if the buffer

level is N, the the upstream machine is blocked and the downstream machine is up
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during time unit t - 1. Therefore, the downstream machine will remove a part from

the buffer and the buffer level becomes N - 1. On the other hand, if the buffer level

is N - 1 during time unit t - 1, then it will remain at N - 1 if both machines are up,

or it will be N - 2 if the upstream machine is down while the downstream machine

is up during time unit t - 1. Therefore, the buffer level cannot be N while M2 is up

at the beginning of time unit t. Consequently, pu(x(t) = N, a 2 (t - 1) = 1) = 0. We

summarize pu(x(t) = n, a 2 (t) = 1), 1 < n < N as follows

p"(x(t) = 1, a2(t - 1) = 1)

pu(x(t) = n, a 2 (t - 1) = 1) =

p"(z(t) = N, a 2 (t - 1) = 1)

= rir 2p(1,0,0)+r 1 (1 -p2)p(1, 0, 1)

+(1 - PI)(1 -p2)p(1, 1, 1) + rip(0, 0, 1),

rir2p(n, 0, 0) + r1(1 - p 2)p(n, 0, 1)

+(1 - pi)r2p(n, 1, 0) + (1 - pi)(1 - p2 )p(n, 1, 1),

2 < n < N - 1,

= 0.

We analyze pu(x(t)

summarized as follows

= n, a2(t - 1) = 0), 1 < n < N similarly and they are

pu(x(t) = 1, a 2 (t - 1) = 0) =

p"(x(t) = n, a2(t - 1) = 0) = ri(1 - r 2)p(n - 1, 0, 0) + rip2p(n - 1, 0, 1)

+(1 - pi)(1 - r 2 )p(n - 1, 1, 0)

+(1-p 1)p2 p(n-1,1,1), 2r<N- 1,

295



pu(x(t) = N, a 2 (t - 1) = 0) = r1(1 - r2)p(N - 1,0,0)

+(1 - pi)(1 - r 2 )p(N - 1, 1, 0)

+(1 - pi)p2 p(N - 1, 1, 1).

After finding pu(x(t) = n, a2(t - 1) = 1) and pu(x(t) = n, a 2 (t - 1) = 0), we are

able to calculate p(x(t) = n, a 2 (t - 1) = 0) and p(x(t) = n, a 2 (t - 1) = 0) according

to (7.12) and (7.13). Finally, we compute p(T(N) = r) according to (7.3),

p(T(N) = T)

N '

+ p(T(N) = rx(t) = n, a 2 (t - 1) = 1)p(x(t) = n, a 2 (t - 1) = 0)
n=1.

+ p(T(N) = rjx(t) = n, a2(t - 1) = 0)p(x(t) = n, a2(t - 1)=0)]

= p(r,n) pu(x(t) = n, - 1) = 1)

n=I (P"(x(t) = j, o2 (t - 1) = 1) + pu(x(t) = j, a 2(t - 1) = 0)

+ q(-r, npu(x(t) n, a 2 (t - 1) = 0)

I (Pu(X(t) = j, a2(t - 1) = 1) + pu(x(t) = j, a 2(t - 1) = 0)
j=1

(7.16)

To summarize, for any given positive integer T, we solve p(T, n) and q(r, n), 1 <

n < N, by iteration. Then we use (7.16) to calculate p(T(N) = r). (The derivation

of the part waiting time distribution discussed in this section is also summarized in

Shi and Gershwin 2011a.)
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7.2.2 Test with Little's Law

In this section, we verify our calculation of p(T(N) = r) by applying Little's Law

(Little 1961) to the buffer:

Lb = Awb

where Lb is the average number of parts in the buffer, A is the arrival rate, and Wb is

the average waiting time in the buffer. In our notation, the average inventory level

is h, and the arrival rate is the production rate of the line, denoted by P(N). If we

denote E[T(N)] as the average waiting time, then according to Little's Law,

E[T(N)] = P (7.17)

where E[T(N)] can be computed with the PMF of T(N) as

00

E[T(N)] = Erp(T(N) = -r).
r=1

(7.18)

Consider the five examples shown in Table 7.1, in which we use the analytical solu-

tions of two-machine lines to calculate n and P(N), and (7.17) to compute E[T(N)].

The numerical solution for the PMF of T(N) is verified by Little's Law.

Table 7.1: Test with Little's Law

Case 1 2 3 4 5
ri .1 .1 .2 .1 .5
Pi .01 .01 .01 .04 .04

r2 .1 .1 .1 .2 .4

P2 .01 .01 .04 .01 .04
N 20.00 50.00 20.00 20.00 20.00

P(N) .870541 .887845 .713445 .713445 .904528
n 10.000000 25.000000 17.974264 2.025736 12.472901

nt/P(N) 11.487113 28.158078 25.193633 2.839374 13.789396
E[T(N)] 11.487113 28.158078 25.193633 2.839374 13.789396
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7.2.3 Comparison with Simulation

We provide numerical experiments to show the accuracy of the numerical solution

for p(T(N) = r). To justify the correctness of the numerical solution, we compare it

with results from a discrete time simulation that is written for this purpose. In all

the experiments below, the length of each simulation is 21,000,000 time units with

the first 1,000,000 time units being the warm up period, and we run the simulation

30 times and use the average as the simulation result.

Experiment 1

In the first experiment, the parameters of the line are pi = .01, r1 = .1, p2 = .01, r 2 =

.1, and N = 20. The numerical results and the simulation results are shown in Figure

7-5. The horizontal axis is the waiting time r. The vertical axis is p(T(N) = T). It can

be seen that the numerical results and the simulation results are highly consistent. In

addition, according to the Central Limit Theory (Bertsekas and Tsitsiklis 2008), the

average of p(T(N) = r), VT derived from simulation follows a normal distribution.

Since we run the simulation for 30 times, we can compute the confidence interval

for each p(T(N) = T) derived from simulation 2 . The detailed simulation results

including the mean, the standard deviation, and the 95% confidence interval for each

p(T(N) = r), as well as the numerical results are provided in Table 7.2. The value

of p(T(N) = r) computed by the numerical solution for each of those 30 values of -r

is within the corresponding 95% confidence interval.

Observe that p(T = 0) and p(r = 19) are much bigger than the others. In addition,

there is a small tail indicating that there are a small portion of parts whose waiting

times are longer than 19 time units. We know that Machines M1 and M2 are identical

and that the size of the buffer is 20, which is not large. Since the size of the buffer

is only 2MTTR, once a machine fails, the buffer tends to be full or empty frequently

and the other machine is forced to be idle. Therefore, if the upstream machine fails

2Note that since the underlying true standard deviation of p(T(N) = r) for each r is unknown,
the sample standard deviation and the t-distribution (Albright et al. 2009) are used to compute the
confidence interval.
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Figure 7-5: PMF of T(N), numerical solution vs. simulation, Experiment 1

and the buffer becomes empty, then after the upstream machine gets repaired the

system will run with an inventory level of 1 before the next failure happens. In other

words, during this period, parts will spend 1 time unit in the buffer - each part that

enters the buffer at the beginning of a time unit will be processed by M2 immediately

and will leave the system at the end of that time unit. On the other hand, if the

downstream machine fails and the buffer gets full, then after the downstream machine

gets repaired, the system will run with an inventory level of 19 (not 20, due to the

convention of the model) before the next failure takes place. In other words, during

this period, each new part will be the 19th part in the buffer and will therefore have

to wait for 19 time units (if no failures of M 2 happen) in the buffer before it can leave.

If Machine M 2 fails again when the system running with an inventory level of 19, the

waiting time for those parts in the buffer will be longer than 19. In conclusion, the

small buffer makes it most likely for the system to run with either an empty buffer

or a full buffer. When the system is run with an inventory level of 1, parts' waiting

times are 1; when the system is run with an inventory level of 19, parts' waiting time

are 19 or longer.

Also, from the probability distribution of the two-machine one-buffer line, p(n =

1) and p(n = 19) are much larger (see Figure 7-6). We should expect a relationship

between the PMF of the inventory level n (p(n)) and the PMF of part waiting time

T(N). In Figure 7-6, n = 0 means that the buffer is empty and the downstream

machine is starved, while n = 20(= N) means that the buffer is full and the upstream
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Table 7.2: Comparison between numerical and simulation results, Experiment 1

r numerical sim-average sim-stdev 95% confidence interval

1 0.255155 0.255209 0.001296 [0.254725, 0.255693]
2 0.025773 0.025665 0.000389 [0.025520, 0.025811]
3 0.025773 0.025774 0.000384 [0.025631, 0.025917]
4 0.025773 0.025728 0.000372 [0.025589, 0.025867]
5 0.025773 0.025692 0.000327 [0.025570, 0.025815]
6 0.025773 0.025671 0.000362 [0.025536, 0.025807]
7 0.025773 0.025847 0.000380 [0.025705, 0.025989]
8 0.025773 0.025843 0.000430 [0.025683, 0.026004]
9 0.025773 0.025776 0.000422 [0.025619, 0.025934]
10 0.025773 0.025681 0.000449 [0.025514, 0.025849]
11 0.025773 0.025808 0.000339 [0.025681, 0.025934]
12 0.025773 0.025763 0.000381 [0.025621, 0.025905]
13 0.025773 0.025764 0.000289 [0.025656, 0.025871]
14 0.025773 0.025782 0.000467 [0.025607, 0.025956]
15 0.025773 0.025762 0.000425 [0.025603, 0.025921]
16 0.025773 0.025785 0.000478 [0.025607, 0.025964]
17 0.025773 0.025801 0.000429 [0.025641, 0.025961]
18 0.025773 0.025738 0.000353 [0.025606, 0.025870]
19 0.213386 0.213478 0.001051 [0.213086, 0.213871]
20 0.008483 0.008491 0.000090 [0.008457, 0.008525]
21 0.007715 0.007743 0.000101 [0.007705, 0.007780]
22 0.007016 0.007032 0.000067 [0.007007, 0.007057]
23 0.006380 0.006366 0.000090 [0.006332, 0.006399]
24 0.005801 0.005802 0.000086 [0.005770, 0.005835]
25 0.005275 0.005255 0.000088 [0.005222, 0.005287]
26 0.004796 0.004779 0.000056 [0.004758, 0.004800]
27 0.004360 0.004386 0.000074 [0.004359, 0.004414]
28 0.003964 0.003975 0.000065 [0.003951, 0.003999]
29 0.003604 0.003607 0.000059 [0.003585, 0.003629]
30 0.003277 0.003279 0.000059 [0.003257, 0.003301]

machine is blocked. It can be seen that p(n = 1) and p(n = 19) are much larger

than others. This indicates that since the buffer is not very big, the buffer alternates

between empty and full. Therefore, the probabilities of T(N) = 1 and T(N) = 19

will be large, which is consistent with Figure 7-5. This is why we should expect to

observe larger p(T(N) = 1) and p(T(N) = 19) as well as a small tail of long waiting

times. Figure 7-5 also indicates the values of p(T(N) = r) are the same for r between
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Figure 7-6: p(n), two-machine line, Experiment 1

2 and 18 time units, but much less than those two larger ones.

Based on the analysis above, if we reduce the MTTR of both machines or increase

the size of the buffer, it will be harder for the system to reach an empty or a full buffer.

As a result, the probability of T(N) = 0 and the probability of T(N) = N - 1 time

units will be smaller. This is verified by Figure 7-7, where the buffer size is still 20 but

parameters of both machines are changed to r1 = r2 = .6 and p1 = P2 = .04. With a

smaller MTTR for both machines, p(T(N) = 0) and p(T(N) = 19) are smaller, since

the system spends more time between n = 1 and n = 19.
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Figure 7-7: PMF of T(N), numerical solution vs. simulation, Experiment 1, modified

Experiment 2

In the second experiment, the parameters of the line are p1 = .02, r 1 = .2, p2 = .03,

r2 = .2, and N = 16, and M2 is the bottleneck. The results are shown in Figure

301



7-8. The numerical results and simulation results are consistent. Since the isolated

efficiency of M 2 (e2 = r 2 /(r 2 + P2) = .870) is smaller than the isolated efficiency of

M1 (ei = r1/(r1 + pi) = .909), the average inventory level is high and most of the

parts have large waiting times.
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Figure 7-8: PMF of T(N), numerical solution vs. simulation, Experiment 2

Experiment 3

In the third experiment, we consider another example where M2 is the bottleneck of

the line. The parameters of the line are pi = .04, r1 = .5, P2 = .04, r 2 = .4, and

N = 20. The results are shown in Figure 7-9. The numerical results and simulation

results are consistent.
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r (truncated at 30)

Figure 7-9: PMF of T(N), numerical solution vs. simulation, Experiment 3
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Experiment 4

In the last experiment, we consider an example where M1 is the bottleneck of the

line. The parameters of the line are pi = .05, r1 = .3, P2 = .05, r 2 = .5, and

N = 30. The results are shown in Figure 7-10. In this case, the isolated efficiency

of M2 (e2 = r 2/(r 2 + P2) = .909) is larger than the isolated efficiency of M1 (ei =

ri/(r1 + p1) = .857), the average inventory level is low and most of the parts have

small waiting times. These experiments studied in this section demonstrate that the

numerical solutions are accurate.

0.25
numerical

0.20 - simulation

0.15 -

0.10 -

0 .0 - i n In iniI Ii iM
C4 MV 10(0 LO CO 0 0 CD C ) IT LO (0 r- D00) C)04 CO) IV LO CO N- D00) 0)

r (truncated at 30)

Figure 7-10: PMF of T(N), numerical solution vs. simulation, Experiment 4

7.2.4 Part Waiting Time in Long Lines

The problem addressed in this chapter deals with the part time waiting time in a given

buffer B; of a long line. In Section 7.2.1, we have derived the analytical solution of the

part waiting time distribution for two-machine lines. For long lines, the decomposition

method (Gershwin 1987a) is adopted to evaluate the production rate as well as the

average inventory level of each buffer.

For a k-machine k - 1-buffer line, the decomposition analyzes k - 1 two-machine

one-buffer building blocks. For each building block i, two pseudo-machines with geo-

metric repair and failure probabilities are used to approximate the material behavior

in Buffer Bi of the original line. Specifically, the parameters of the two pseudo-

machines include ru(i), pu(i), rd(i) and pd(i), where ru(i) and pu(i) are parameters of
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the upstream pseudo-machine of Buffer Bi, while rd(i) and pd(i) are parameters of the

downstream pseudo-machine of Buffer Bi. With these parameters, we can apply the

analytical formulation (7.16) to compute the part waiting time for any given buffer

B;. This provides us an approximation of the part waiting time distribution in the

given buffer of a long line. We provide two long line experiments here.

Consider a balanced four-machine three-buffer line first. Machine parameters are

ri = .2 and pi = .01, i = 1, 2, 3, and 4. The size of each buffer is 20. To compute

approximations of the part waiting time distributions for the three buffers in the

line, we first evaluate the line with decomposition and derive the pseudo-machine

parameters of all building blocks. These parameters are listed in Table 7.3.

Table 7.3: Pseudo-machine parameters, Experiment 1

building block ru(i) pU(i) rd(i) pd(i)
1 .200000 .010000 .200000 .013875
2 .200000 .012178 .200000 .012178
3 .200000 .013875 .200000 .010000

Applying the analytical formulation (7.16) to these pseudo-machine parameters

allows us to find an approximation of the part waiting time distributions in the three

buffers of the original four-machine three-buffer line. On the other hand, a discrete

time simulation, which is able to compute the part waiting time distributions of all

buffers in a given long line, is written to compare with the numerical solution. The

length of each simulation is 21,000,000 time units with the first 1,000,000 time units

being the warm up period. We run the simulation 20 times and use the average as

the simulation result.

The results of p(T(N)) for all three buffers are illustrated in Figure 7-11. It can

be seen that, despite the small discrepancy between the numerical solution and the

simulation solution, the numerical solution is a very good approximation of the part

waiting time distribution of a buffer in a long line. In addition to the probability

mass function, the cumulative distribution function (CDF) p(T(N) r) is also

considered. p(T(N) 5 r) from the analytical approach is very close to that from the
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Figure 7-11: p(T(N)) in long lines, Experiment 1

simulation for every r. When p(T(N) r) approaches 1, its values from the two

approaches are almost identical. It is important to point out that, for the maximum

part waiting time constraint, we only care about the cumulative probability p(T(N) <

W;). This numerical experiment indicates that the analytical approach, which is based

on the analytical formulation (7.16) for two-machine lines and decomposition, is very

accurate to find p(T(N) 5 W) in the optimization problem.

In the second experiment, we consider a five-machine four-buffer line. Machine

parameters are r1 = .4 , pi = .01, r 2 = .3 6 , P2 = .009, r 3 = .4, P3 = .01,r 4 = .45, and

P4 = .006. The sizes of the four buffers are 28, 22, 27 and 26. We evaluate the line

with decomposition and derive the pseudo-machine parameters of all building blocks.

These parameters are listed in Table 7.4.

The results of p(T(N)) for all three buffers are illustrated in Figure 7-12. Again,

it can be seen that the numerical solution is a very good approximation of the part

waiting time distribution of a buffer in a long line. In addition, the CDF p(T(N) 5 r)

from the analytical approach is very close to that from the simulation for every r.
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Table 7.4: Pseudo-machine parameters, Experiment 2

building

1
2
3
4

block ru(i)

.400000

.363134

.477262

.413981

pU(i)

.010000

.009850

.013736

.012636

rd(i)

.376064
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.450000
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Figure 7-12: p(T(N)) in long lines, Experiment 2

When p(T(N) -r) approaches 1, its values from the two approaches are again almost

identical. This numerical experiment again indicates that the analytical approach is

very accurate to find p(T(N) 5 W) in the optimization problem.

We further study this issue in Section 7.4, where we verify the accuracy of the

optimal buffer distribution derived by our algorithm by comparing it with simulation.

In particular, we compare the values of p(T(N) 5 W;) from our algorithm and the
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simulation for 200 numerical experiments.

7.3 Transformation of the Original Problem

We have mentioned in Section 7.1 and showed in Section 7.2 that the analytical

formulation of the part waiting time distribution for two-machine lines is based on

iteration. In other words, we do not have a closed form expression for p(T(N)).

Therefore, we cannot deal with the constraint p(T(N < W)) > 1-a in Problem (7.2)

directly by treating Ni as continuous variables. In order to resolve this concern, we

transform (7.2) to a transformed problem where the constraint p(T(N < W;)) 1-a

is replaced by an average part waiting time constraint. In this section, the transformed

problem is solved and its solution is checked against p(T(N < W)) - 1-a iteratively.

We discuss the transformed problem in the remaining of this section.

7.3.1 The Transformed Problem

In the transformed problem, we consider an average part waiting time constraint

derived from Little's Law (Little 1961),

< 6Wj (7.19)
P (N) -

where A;/P(N) is the average part waiting time in Buffer B; according to Little's

Law, and 6 is a multiplier. We require the average part waiting time to be upper

bounded by 3W;. This constraint can be also written as

f; < cW;P(N). (7.20)

Therefore, the transformed problem is
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k-1 k-i

max J(N) = AP(N) - biNi - c (
i=1 i=1

subject to P(N) > P
(7.21)

A; < SWP(N)

Ni >! Nmin, Vi= 1, --- ,k -1.

The replaced constraint only guarantees the average part waiting time to be up-

per bounded, while the original constraint requires the waiting times of a required

percentage of parts to be bounded. To take this into account, we conduct a one-

dimensional search over 5 and solve Problem (7.21) and check the following condition

for each value of 5 considered:

p (T(N(6)) W) > 1 - a

where N(5) is the solution of the transformed problem for a given J. We solve the

transformed problem iteratively according to the following steps:

" Step 1: Initialize S = 50 and solve the transformed problem (7.21)3. Let the solu-

tion be N(5). If p (T(N(5)) 5 W) > 1-a, go to Step 2. If p (T(N(J)) 5 W) <

1 - a, go to Step 3. If p (T(N(5)) 5 W) = 1- a, we are done and N* = N(6).

" Step 2: p (T(N(6)) _ W;) > 1 - a indicates that either the part waiting time

constraint is inactive or the average waiting time constraint in (7.21) is overly

restrictive.

- In the former case, stop and N* = N(S).

- In the latter case, p (T(N(5)) 5 W) > 1 - a implies that 50 is too small.

Therefore, we conduct a one-dimensional search over J > 5O and solve the
3The algorithm that solves the transformed problem for a given J is discussed in detail in Section

7.3.2
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transformed problem iteratively until we find the smallest p (T(N4(6)) W;)

that is larger than 1 - a. Then N* = N(6).

9 Step 3: p (T(N(6)) 5 W;) < 1 - a implies that Jo is too large. In this case,

we conduct the one-dimensional search over 6 < o and solve the transformed

problem iteratively until we find the smallest p (T(N(J)) < W;) that is greater

than 1 - a. Then N* = N(6).

We use N* derived according to the procedure above (where we solve the trans-

formed problem for different Js iteratively) as the optimal solution of the original

problem (7.2). Although we do not have a proof that this converges to the solution

of Problem (7.2), this method has worked on all the numerical experiments we have

studied (see Section 7.4). In the numerical experiments, we compare the results from

the procedure above with the results from a surface search method. In the surface

search, we use the optimal solution from the procedure above as the center point. We

search all the points (within a reasonable range of each Nj) around the center point in

the (N1 , N2 , - - - , Nk_1) space. For every buffer distribution N within our search scope,

we first check if it satisfies both the production rate constraint (i.e., P(N > P)) and

the maximum part waiting time probability constraint 4 (i.e., p(T(N) W) 1- a).

If and only if N satisfies both constraints, it can be considered as a feasible point.

After we find all the feasible points, we compute the profits for all those feasible

points and choose the one that gives us the maximum profit as the optimal solu-

tion of the surface search method. The description above indicates that the surface

search method deals with the original problem directly. The accuracy of the optimal

buffer distributions found by solving the transformed problem iteratively is verified

by comparing with the surface search method. We want to point out that it is worth

studying the original problem directly once we have the closed form expression of

p(T(N) 5 W) and compare the solution with our approach here. We outline this as

one of the future research directions in Chapter 10.

In what follows, we discuss how to solve the transformed problem, which has a

4 Note that this is not the average part waiting time constraint derived from Little's Law.
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production rate constraint as well as an average part waiting time constraint, for a

given 6.

7.3.2 The Algorithm to Solve the Transformed Problem for

a Given J

In this section, we present the algorithm that solves (7.21) for a given 6. Before doing

that, it is helpful and necessary to indicate that this problem has five possible cases.

They are listed in Table 7.5.

Table 7.5:
constraint

Five cases for production rate constraint and average part waiting time

Consider a three-machine two-buffer line with machine parameters r1 = . 15 ,p1 =

.01, r2 = . 15 , P2 = .01, r3 = .09 and P3 = .01. In addition, the revenue coefficient

A = $1500/part. The cost coefficients b =ci = $1/part/time unit, i = 1, 2. Consider

the five examples of the cases of Table 7.5:

. Case 1: P = .89 and 6W 1 = 2.

" Case 2: P

" Case 3: P

= .88 and 6W 1 = 7.

= .88 and SW 1 = 15.

* Case 4: P = .86 and 6W 1 = 6.5.

o Case 5: P = .86 and JW1 = 15.
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the production rate con- the average part waiting .
straint time constraint

Case 1 conflict with the other conflict with the other infeasible
Case 2 active active feasible
Case 3 active inactive feasible
Case 4 inactive active feasible
Case 5 inactive inactive feasible



J(N)
1260 infeasible
1240 iso-profit 1255
1220 iso-profit 1253
1200 iso-profit 1250

1180 -iso-profit 1240
1180 iso-profit 1230
1160 - iso-profit 1220-

iso-profit 12101140 iso-profit 1200
1120 - iso-profit 1180
1100 60 iso-profit 1160

P boundary -
0 W boundary -

1 2 3 0 N2

N1 5 00

Figure 7-13: Example of the average part waiting time constraint problem, Case 1

JIM infeasible1260 -feasible
1240 -iso-profit 1252

1220 -iso-profit 1244.9-
iso-profit 1240

100iso-profit 1230
1180 iso-profit 1220
1160 iso-profit 1210
1140 iso-profit 1200

iso-profit 1180
1120 iso-profit 1160

0
60is-roi014

2 ' 0 N2

N1 4 5 0

Pf boudr -

0 W ounaibl -

Figure 7-14: Example of the average part waiting time constraint problem, Case 2

Figures 7-13 to 7-17 illustrate these five cases. In all five cases, the profit of

the three-machine two-buffer line is plotted as a function of buffer sizes N, and N2 .

The blue regions on the profit surfaces in Figures 7-14, 7-15, 7-16, and 7-17 are

the feasible regions under both the production rate constraint and the average part

waiting time constraint. In each of those four cases, the blue region on the profit

surface is also projected on N1 - N 2 plane. The red point indicates the optimal

solution that maximizes the profit of the line, while satisfying both constraints. It

is helpful to indicate that in Case 1, the production rate constraint and the average

part waiting time constraint conflict with each other and therefore the problem is
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J(N) infeasible
1260 - feasible
1240 iso-profit 1255

iso-profit 1253
1220 - iso-profit 1249.4 -
1200 - iso-profit 1240
1180 - iso-pro -- 1230

1160 ~iso-profit 1220
1140 - iso-profit 1200
1120 - iso-proft 1180

iso-profit 1160
1100 60 Optimal *

P boundary -
W boundary -

N1 5 0

Figure 7-15: Example of the average part waiting time constraint problem, Case 3

J(N) infeasible
1260 feasible

iso-profit 1255 -
1240 iso-profit 1253
1220 - iso-profit 1250
1200 iso-profit 1240

iso-profit 1230
1180 iso-profit 1220
1160 - iso-profit 1210
1140 _ iso-profit 1200

iso-profit 1180
1120 - iso-profit 1160
1100 60 Optimal *

0 P boundary -
W boundary -

1 2 3 0 N

Figure 7-16: Example of the average part waiting time constraint problem, Case 4

infeasible. Therefore, there is no blue region or optimal buffer allocation in this case.

It can be seen that, given the target production rate P and the target time con-

straint 5W, the two constraints may not be both active. If they are not both ac-

tive, the problem is essentially relaxed to a simpler one with only one constraint

(plus those Ni > Nm, i = 1, - -- , k - 1 constraints). In particular, if the produc-

tion rate constraint is the only active constraint (i.e., Case 3), the problem is ex-

actly the same as the profit maximization problem studied in Chapter 4. On the

other hand, if the average part waiting time constraint is the only active constraint

(i.e., Case 4), then an algorithm based on the KKT conditions can be developed
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J(N) infeasible
1260 - feasible

iso-profit 12551240 iso-profit 1253
1220 iso-profit 1250

120 iso-profit 12401200 -iso-profit 12301180 -iso-profit 1220
1160 - iso-profit 1210
1140 - iso-profit 1200

iso-profit 1180
iso-profit 1160

1100 ~ 60 Optimal *
0 P boundary -W boundary -

1 2 3 0 N2

Figure 7-17: Example of the average part waiting time constraint problem, Case 5

to solve the problem. This is because in this case V (j;(N 6 ) - 6WP(NS6 )) and

V (N(6) - Nmin) , Vi E B = {ili(6) = Nmin} are linearly independent 5'6 . There-

fore, the linear independence constraint qualification guarantees the existence of the

Lagrange multipliers (Bertsekas 1999). However, when both constraints are active

(i.e., Case 2), the problem becomes harder. In what follows, we discuss how a similar

optimization algorithm based on the KKT conditions can be used to solve Case 2

where both the production rate constraint and the average part waiting time con-

straint are active.

Note that the average part waiting time constraint is nonlinear because both il;(N)

and P(N) are nonlinear functions of the decision variable N. The linear independence

constraint qualification of active inequality constraints ensures that there exists La-

grange multipliers for Case 2 to satisfy the KKT conditions (Bertsekas 1999). This is

equivalent to requiring that V5;(N(6)) and VP(N(6)) are linearly independent'. We

know that all components of VP(N(6)) are positive due to the monotonicity of P(N).

5We let N(6) be the optimal solution of the transformed problem for a given 6. Most often, N(6)
is an interior solution. Therefore all Ni ;> Nmin constraints are inactive and B = 0. If B # 0,
we assume that not all optimal buffer sizes satisfy N(6) = Nmin, because otherwise the optimal
solution is simply N1 (6) = N 2 (6) = - - NAk1( 6 ) = Nmin.6Recall that in Chapter 4, we explain that N can be treated as a vector of continuous variables.
Thus, 5;(N) and P(N) can be treated as continuously differentiable functions. Therefore, we can
find the corresponding gradients.

7We again assume that the optimal solution N(6) is an interior solution and therefore all Ni >
Nmin constraints are inactive. In all our experiments, the optimal solutions have this feature.

313



Next, we discuss the positivity and negativity of each component in Vih(N(6)).

BI

Figure 7-18: Two-machine line representative of a k-machine k - 1-buffer line

In what follows, we study Vi;(N) in general. The property of Vnh(N(6)) can

be inferred directly by letting N = N(6). To study the sign of each component of

Vh;(N), we need to understand if i; increases or decreases as we change the size

of another buffer Bi, Vi = 1,--- , k - 1. To do this, we consider a k-machine k - 1-

buffer line as a two-machine one-buffer line with respect to Bt, since it divides the

original line into two segments (see Figure 7-18). In the two-machine one-buffer line

Mu(i ) -B; -d ( i ),the parameters of the two machines are chosen such that the

material behavior in B; in the two-machine line is the same as that in the original

line. We would like to point out that each of the two machines may have more

than one failure mode and its repair and failure time probability distributions are not

necessarily geometric, since both Mu( i ) and M( i) may represent a set of machines

and a set of buffers of the original line. (For this discussion, we are not talking about

the decomposition method which approximates a long line with a two-machine one-

buffer building block where each machine has a single geometrically distributed failure

mode.) For a two-machine one-buffer line where the buffer is finite and M'( Z ) and

Md( i ) are any models of machines, we make the following assumptions for subsequent

discussion. These assumptions include:

1. if Mu( i) or Md( i ) gets faster, the average production rate of the line increases;

2. if the upstream machine M"( i ) gets faster, the average inventory level ii

increases;

3. if the downstream machine Md( i ) gets faster, the average inventory level h;
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decreases;

4. and finally, if the size of B; increases, the average inventory level h; increases.

It can be seen that if we change the size of Buffer Bi, i # i, we will change the

parameter of either Mu( ) or M ( ). Then, with the assumptions listed above, we

will make conclusion on how i; varies as the size of Buffer Bi, Vi changes. Therefore,

we will be able to identify the sign of OBh;(N)/ONj in Vii;(N). Next, we first discuss

the signs of at;(N)/BNi, Vi = 1,-- ,k -1 and i = 1, - ,k-1. Then we will provide

numerical experiments to verify them.

Assume that i = 1 first. This case is illustrated by a five-machine line in Figure

7-19. We now study the sign of each component of Vi;(N). Instead of considering

the original five-machine line, we study the two-machine line M1 - B1 - Md(1). It

can be seen that, as we enlarge Buffer B 2, B 3, or B 4, Md(1) will be faster because

Machines M 2 , M 3, M4 , and M5 in the original line will be further decoupled due to a

larger B 2, B 3, or B 4. As a result, Md(1) will pull out parts from Buffer B1 faster than

before. Therefore, the average buffer level h1 will decrease due to the enlargement

of a downstream buffer. This is equivalent to saying that Ohi(N)/ON < 0,Vi =

2, ... , k - 1. On the other hand, if we increase B 1 , hi,(N) will increase as well. Thus,

ahi(N)/8N1 > 0.

1 2 B3  M4  4 M 5

Figure 7-19: Two-machine line representation, i = 1

Next, assume 1 < i < k - 1. Again, we use a five-machine line to illustrate (see

Figure 7-20). Without loss of generality, we let i = 2. (The same argument applies

to i = 3 as well.) We now study the sign of each component of Vi;(N). Here, we

group M 1, B 1, and M 2 together, and M3 , M 4, and M5 as well as B3 and B 4 together

(see Figure 7-20).
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, B1  M M3  B 3  A1 4  B 4  M 5 1

M'(2)Ma(2)

Figure 7-20: Two-machine line representation, 1 < i < k - 1 (i 2)

It can be seen that, as we enlarge B 3 or B 4 , Md(2) will be faster because M 3 ,

M 4 , and M 5 are further decoupled due to a larger B 3 or B 4 . As a result, Md(2) will

pull out parts from Buffer B 2 faster than before. Therefore, the average buffer level

h 2 will decrease due to the enlargement of a downstream buffer. This is equivalent

to saying that On2 (N)/ONj < 0,Vi > i(= 2). On the other hand, if we increase B 1 ,

M"(2) will be faster. As a result, M'(2) will put parts into Buffer B 2 faster than

before. Therefore, the average buffer level h 2 will increase due to the enlargement of

a upstream buffer. This is equivalent to saying that &N2(N)/&N1 > 0. Finally, if we

increase B 2, n 2 (N) will increase as well. Consequently, 19h 2(N)/ONj > 0, Vi < i(= 2).

Therefore, we conclude that for 1 < i < k - 1,

ang(N)/Ni > 0 if i = 1,... ,

Oii(N)/Ni < 0 if i = 7i+1,-,k-1.

M. _ _ B - 2  B2  M3  B - 3  M4 - - --

Figure 7-21: Two-machine line representation, i = k - 1 (i = 4)

Finally, we assume that i = k - 1. Once again, we use a five-machine line to

illustrate the point (see Figure 7-21). We group Machines M 1 to M 4 and Buffers

B 1 to B 3 together. It can be seen that, as we increase Buffer B 1 , B 2 , or B 3 , MU(4)
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will become faster. As a result, M"(4) will put parts into Buffer B 4 faster than

before. Therefore, the average buffer level n4 will increase due to the enlargement of

a upstream buffer. This is equivalent to saying that On4(N)/ON1 > 0,Vi < k - 1.

On the other hand, if we increase B 4 , ih4 (N) will increase as well. Consequently,

ai 4(N)/ONj > 0,Vi. This means that all components in Vn;,(N) are positive when

i = k-1.

According to the analysis above, we see that Vi = 1, - , k - 1, the following is

true ronh(N)/N, > 0 if i =1, -. -- i

(7.22)

SOn;(N)/ONj < 0 if i= + 1,1 -, k - 1.

In other words, for 1 < i < k -1, Vn;(N) has both negative and positive compo-

nents, while for i = k -1, Vnh(N) has only positive components. We also summarize

the signs of Onh;(N)/ONj, Vi = 1, .. , k-1 and i = 1, ... , k -- 1 in Figure 7-22. We pro-

vide numerical experiments to demonstrate the signs of Onl;(N)/ONj, Vi = 1, - , k-1

and i = 1, ... , k -1. In particular, the following five five-machine lines are considered

(see Table 7.6).

Figure 7-22: Summary of the signs of On;(N)/ONi

For each of these five lines, we vary Ni, i = 1, 2,3, and 4 once a time and compute
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Table 7.6: Parameters of five five-machine lines

Experiment 1 2 3 4 5
p1, r1 .020, .22 .011, .12 .018, .18 .020, .39 .013, .11
P2, r2 .015, .15 .040, .33 .033, .31 .037, .33 .033, .38
P3 , r3  .010, .18 .023, .27 .009, .13 .010, .13 .024, .20
P4, r4 .036, .35 .012, .20 .017, .15 .028, .34 .014, .13
P5 , r5  .021, .39 .017, .19 .022, .40 .010, .15 .014, .17

N1  5 19 29 44 26
N2  17 22 58 16 20
N3  28 28 72 53 39
N4  34 17 22 9 12

OP(N)/&Ni, On 1(N)/ON, On2 (N)/ONi, On3 (N)/ONj, and Oin 4(N)/ONj. While we

vary one Ni, we let other buffers have values shown in the Table 7.6. Since there is no

analytical expression of the production rate or the average inventory for long lines,

we compute OP(N)/ONi, Oh(N)/&NI, Oii2(N)/ONi, On3(N)/ON, and On4(N)/8Nj

by a forward difference method. Let 6Nj = .01 be the increment of the size of Buffer

B. Then, the five sets of quantities are calculated by

OP(N)

aNi (7.23)
i = 1,2,3,4,

and

O;(N)_
aNi

;(N1, --. - Ni + 6Nj, -. - -_1) - n;N1,.. -I Ni,.. - -,N_1
JNi

i = 1,2,3,4 and i = 1, 2,3,4.

(7.24)

The results of these five experiments are summarized in Tables 7.7, 7.8, 7.9, 7.10,

and 7.11.

These five experiments demonstrate three points:

1. 9P(N)/Nj > 0, Vi = 1, ... , k - 1. This is consistent with the monotonicity of

P(N).

2. &n;(N)/ONi > 0,Vi = 1, - - while On;(N)/ONj < 0, Vi = i+ 1,... , k - 1.
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Table 7.7: Five sets of quantities of Experiment 1

i OP(N)/DNi Oni(N)/DNi ain2(N)/DNj a(N)/DNi ah4 (N/i

1 .00414064 .50469702 .18368320 .46223830 .09158379
2 .00056910 -.00897171 .13051283 .05962690 .01224530
3 .00003081 -.00091164 -.02739080 .11000819 .00066436
4 .00000003 -.00000100 -.00003065 -.00028952 .00057232

Table 7.8: Five sets of quantities of Experiment 2

i DP(N)/aNi I ni(N)/DNi afn2(N)/aNi a(N)/DiNj DN4(N)/1N9
1 .00093878 .68789718 .07571361 .09839447 05803486
2 .00040660 -.02473193 .17126015 .04623048 .02658089
3 .00006988 -. 00418794 -. 03445800 .10118428 .00441222
4 .00005602 -. 00335589 -. 02754657 -. 18597968 .23038688

Table 7.9: Five sets of quantities of Experiment 3

i aP(N)/aNi I n1(N)/DN; ai2(N)/DNj 19na(N)/9Nj 094N)/N

1 .00040214 .60000682 .30969401 .58625849 .03262749
2 .00006920 -. 01434884 .16666728 .10299528 .00571320
3 .00002935 -. 00610637 -. 09398285 .41884511 .00182881
4 .00002648 -. 00554320 -. 09267664 -. 32430123 .06846222

Table 7.10: Five sets of quantities of Experiment 4

i OP(N)/0N Oi (N)/9Nj O 2 (N)/ONi Oin 3(N)/ONj Oh4 (N)/N
1 .00000037 .99970012 .00004039 .00025986 .00000778
2 .00106506 -. 03525464 .37710983 .72664696 .02199887
3 .00005185 -. 00224009 -. 01575971 .22817928 .00093692
4 .00031391 -. 01300477 -. 08495874 -1.43936738 .26405480

This is consistent with (7.22).

3. When i = k - 1, VP(N) and VR:;(N) are not proportional.

The three points above are further tested by another 1000 randomly generated

lines. In particular, we generate 1000 random lines whose numbers of machines vary
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Table 7.11: Five sets of quantities of Experiment 5

i- I P(N)/8N I Oni(N)/ONi &W2N)/8Ni ah3(N)/8Ni aN(N)/8N

1 .00030768 .66712030 .10055245 .12629490 .01388496
2 .00050094 -.05395109 .67020782 .21958048 .02406870
3 .00031417 -. 03310965 -. 04046203 .47178788 .01338547
4 .00083551 -. 08830334 -.10972111 -.48361869 .28916638

from 4 to 10 according to the case generation method developed by Gershwin (2011).

The three points are observed in all those 1000 random lines. We would like to point

out an uncommon case where the third point above fails. If the last machine of the

line, Mk, is a perfectly reliable machine that does fail, then the average inventory of

Buffer Bk-1 will equal to the production rate of the line. This is because if the sub-

line upstream of Buffer Bk_1 is running, then there will be one part in Bk-_; while if

the sub-line fails, then there will be no part in Bk-_. Therefore, the average inventory

level nhk_ equals to the frequency that the sub-line is running, which is the production

rate of the line. Therefore, for this uncommon case, VP(N) and Vhk_ 1 (N) are the

same. However, other than this special case, as long as the last machine of the line

is unreliable, we should expect that VP(N) and V1k(N) are not proportional.

Since the production lines studied in this research have all unreliable machines, we

safely disregard the special case and conclude that VP(N) and Vkl1(N) are not

proportional.

The goal for us to study the sign of each component in Vh; (N) is to show that for

N = N(S), VP(N) and Vng(N) are linearly independent and therefore we can apply

the KKT conditions to solve Problem (7.21) when both the production rate constraint

and the average part waiting time constraint are active (i.e., Case 2). According to

the analysis above, we know that when i = k - 1, VP(N) and Vak-l(N) are not

proportional. This implies that VP(N) and Viak1 (N) are linearly independent, VN.

Next, we show that for all other i < k - 1, VP(N) and Vng,(N) are also linearly

independent, VN.

We have shown that Vi (N), Vi < k - 1 has both positive and negative compo-
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nents. In addition, all components of VP(N) are positive. Then, it is easy to see

that ViR;(N) and VP(N),VN are linearly independent when i < k -1. To show this,

let A = Vh(N) and B = VP(N). Thus, A E Rk1 and B E Rk-1 are vectors and A

has both positive and negative components, while B has only positive components.

By definition, if they are linearly independent, then

uiA+ U2B = 0

if and only if u1 = U2 = 0, where ui and u2 are scalars, and the 0 E Rk-1 on the

right hand side above is the zero vector. In particular, components A1 to A; in A are

positive, while A's other components are negative. u1 A + U2 B = 0 means that

A1  B 1  0

At B 0
U1 + U 2  . (7.25)

A%+1 Bj+1 0

Ak_1 Bk_1 0

Let us analyze if (7.25) can be satisfied with not both u1 and u2 being 0. Assume

that not both ui and u2 are 0. Since Ai < 0 and Bi+1 > 0, (7.25) requires ui and u2

to be both positive or both negative. In other words, they have to have the same sign.

However, note that A; > 0 and B; > 0. As a result, if ui and U2 have the same sign,

then uiA; + U2 B; # 0, and (7.25) is violated. Therefore, the only way that Equation

(7.25) holds is ui = U2 = 0. In other words, A and B (Vht;(N) and VP(N), VN) are

linearly independent.

Based on the analysis above, we conclude that VP (N(6)) and V; (N(b)) are

linearly independent for any i = 1, - , k - 1. Therefore, according to the linear

independence constraint qualification (Bertsekas 1999), there exists unique Lagrange

multipliers p*, i = 0, - - - , k for Problem (7.21) to satisfy the KKT conditions:
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(N(s)) + *v (i (N(s))
k-1

- WP (()) + Ep*V (Nmin

+p1 V (P - P (N(6)))

OJ (N(J))
ON1

J(N(s))
ONkl_1

1

K) - pkI-1

ON1

OnL; N(6)
ONi

ONk-1

OP (N(5))
ON1

OP (N(6))

oP (N(J))
- SW

*ONk_1

ON'

N(6))
N1

N(s))
[I_1-/

(7.27)

0

0

p*>0,Vi=0,--- , k,

p* (n; (N(j)) - SWP (N(J))) = 0,

y, (Nmin -

p,* (P - P (N(6)) = 0,

where N(6) is the optimal solution of (7.21). Similar to the discussion in Section

4.2.1, by assuming an interior solution, we simplify the KKT conditions to
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and

(7.28)

(7.29)

(7.30)

(7.31)

- kr

Ni(j)) =0, Vi =1, --- ,k - 1



OJ (&(J)N (&iJ) -s W Op (&(6))
ON1  1/ N1

ON 1

86 o 6Ns) P _ p(N(s))
-OM +po -6

aNk-1 Ufl J\M) _ w k/ (7.32)
ONk-1 ~ k

P (&NJ)) ()~
O N_ N 1  (/

- & P (6)) .~I
ONk1

p* ( & (Nw)) - JWP (N(6))) = 0, (7.33)

and

*1 ( - P (N(6))) = 0. (7.34)

Since N(6) is not the optimal solution of the corresponding unconstrained problem

of (7.21), VJ(N(J)) / 0 where 0 E Rk-1 is the zero vector, because otherwise both

the production rate constraint and the average part waiting time constraint will be

inactive. VJ(N(J)) $ 0 means that not all OJ(N(J))/ON, i = 1, ... , k - 1 equal

0. Thus, PO and p* cannot be 0 simultaneously, since otherwise condition (7.32)

would be violated. Moreover, if either of p* and p* is 0, it means that the constraint

it corresponds to is inactive, and the problem (Case 2) is relaxed to a simpler one

(Case 3 or Case 4). Therefore, we argue that both p* and p* are positive. By

(7.33) and (7.34), the optimal solution N(s) satisfies P(N(J)) = P and n;-(N(6)) =

sW;P(N(J)). In addition, (7.32) to (7.34) reveal how we could find pig, p* and N(s).

For every combination of p* and p*, (7.32) determines N(J) since there are k - 1
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equations and k - 1 unknowns. Therefore, we can think of N(6) = N(J)(p*, p*). We

search for values of p* and p* such that P(N(6)(I*, p*)) = P and n;(N(6)(pi, p4)) =

6WP(N(6)(pw, p)). In what follows, we indicate how to find the Lagrange multipliers

and the optimal solution of the problem. Replacing p* by yo > 0 and p* by pk > 0

in (7.32) gives

/ 85(N) -W OP(N)

ON 1  - OPN1  (F)

ON, ;(NN) P(N) ON1  0
+po N W1 -k (7.35)

OJ(N) -P(N) 0

where N is the unique solution of (7.35). Note that N is the solution of the following

optimization problem

min -J(N) = -J(N) + po (;(N) - 6W;P(N)) - pk (f - P(N))

subject to Nmin - Ni < 0, Vi = 1, - k - 1,
(7.36)

which is equivalent to

max J(N) = J(N) - po (h;(N) - JW;P(N)) + pkP(N)

(7.37)

subject to Nmin -Ni < 0,Vi=1,-- ,k-1,
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k-1 k-1

max J(N) = AP(N) - biNi - cii(N)
i=1 i=1

-pao (A;(N) - 6W;P(N)) + pkP(N) (7.38)

subject to Nmin - Ni 0 ,Vi=1,--- ,k -1,

or

k-I k-1

max i(N) = (A + poSW;+ pk)P(N) - biNi - cint(N)
i=1 i=1

-P'on;(N)

subject to Nmin -Ni 0,Vi=1,--- ,k -1.

(7.39)

Therefore, when both the production rate constraint and the average part waiting

time constraint are active (i.e., Case 2), we solve (7.21) as follows. For every {po >

0, pk > 0}, we find the corresponding optimal solution N that satisfies (7.35) by

solving (7.39), and we need to find the {p' > 0, p' > 0} such that the solution to

(7.39), denoted as N(p', p'), satisfies P(N(p', s')) = P and ii;(N(p' > 0, p' > 0)) =

SWP(N(p', p')). Then, p', p' and N(p', p') satisfy (7.32) to (7.34). Hence, p' and

p are exactly the Lagrange multipliers satisfying the KKT conditions of Problem

(7.21), and N(6) = N(p', p') is the optimal solution of Problem (7.21). Consequently,

solving (7.21) with both the production rate constraint and the average part waiting

time constraint being active (i.e., Case 2) through the procedure above is essentially

finding the unique Lagrange multipliers and optimal solution of the problem.

We state the algorithm that solves Problem (7.21) for a given 6. As a reminder,

there are five potential cases for the problem. We repeat the five cases here:

1. Case 1: the production rate constraint conflicts with the average part waiting

time constraint. There is no feasible solution for the problem.
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2. Case 2: both the production rate constraint and the average part waiting time

constraint are active.

3. Case 3: the production rate constraint is active, but the average part waiting

time constraint is inactive.

4. Case 4: the production rate constraint is inactive, but the average part waiting

time constraint is active.

5. Case 5: both the production rate constraint and the average part waiting time

constraint are inactive.

Let N(6) be the optimal solution. The algorithm consists of five steps and they

are stated below:

1. Check the feasibility of the problem. That is to check

" if P is feasible for the problem without the average part waiting time

constraint;

* if the production rate constraint and the average part waiting time con-

straint conflict with each other.

If the problem is feasible, go to Step 2. Otherwise, the problem is a Case 1

problem and it is infeasible.

2. Solve the corresponding unconstrained problem without both constraints. That

is to maximize the profit of the production line without the production rate

constraint or the average part waiting time constraint. Let NU be the solution

of the unconstrained problem. Then, check whether both ng(NU) 5 6WP(NU)

and P(NU) > P are satisfied:

" if both are satisfied, then we are done and N(J) = NU. Both constraints

are ineffective. The problem is a Case 5 problem;

e if n;(NU) JW;P(NU) but P(NU) < P, we know that the production

rate constraint is violated. Go to Step 3;
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" if P(NU) 2 P but i;(NU) > 5W;P(NU), we know that the average part

waiting time constraint is violated. Go to Step 4;

" if both constraints are not satisfied, then go to Step 5.

3. Solve the profit maximization problem with the production rate constraint being

effective. Let NP be the solution. Check whether n;(NP) < 6W;P(Np) is

satisfied:

* if n;(NP) 3W;P(Np), then NP satisfies both constraints. In particular,

the average part waiting time constraint is inactive. N(6) - NP and the

problem is a Case 3 problem;

* if ng-(NP) > JW;P(NP), then the average part waiting time constraint is

violated by NP. Go to Step 5.

4. Solve the profit maximization problem with the average part waiting time con-

straint being effective. Let NT be the solution. Check whether P(NT) > P is

satisfied:

" if P(NT) > P, then NT satisfies both constraints. In particular, the

production rate constraint is inactive. N(6) = NT and the problem is a

Case 4 problem;

" if P(NU) < P, then the average part waiting time constraint is violated

by NT. Go to Step 5.

5. Solve the profit maximization problem with both production rate constraint and

average part waiting time constraint as equalities (i.e., being effective). To solve

this, apply the technique explained in this section. This requires to conducting

a two-dimensional search in pio and pk. For each pair of po and Pk, solve the

unconstrained problem (7.39). Stop the iteration process once p* and p* are

found such that N(6) = N(I, p*) satisfies both the production rate constraint

and the average part waiting time constraint. The problem is a Case 2 problem.
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7.4 Numerical Experiments

In this section, we study 200 four-machine three-buffer lines to show the accuracy

of the proposed algorithm that solves the transformed problem (7.21) iteratively, to

find the optimal solution of the original problem (7.2) (see Section 7.3.1). These lines

are constructed according to the method of Gershwin (2011). In all these lines, the

isolated efficiency ei = ri/(ri + pi) of any machine is between .923 and .952 with ri

and pi generated randomly. In addition, the buffer cost coefficients bi and ci for any

buffer are also generated randomly. The target production rate P is among .86, .87,

and .88 parts per time unit for all experiments. The revenue coefficient A is 2000.

For each line, the buffer where we impose the average part waiting time constraint

is randomly chosen from all three buffers. In addition, the waiting time upper limit

is chosen in a way that the average part waiting time constraint and the production

rate constraint do not conflict.

We compare the results from the algorithm with surface search and compute

three types of errors. They are the profit error, the production rate error, and the

maximum buffer size error. As a reminder, in the surface search, we use the optimal

solution from the algorithm as the center point. We search around its adjacent area

with a reasonable range of each Ni. For every buffer distribution N in this area,

we first check if it satisfies both the production rate constraint P(N > P) and the

maximum part waiting time probability constraint p(T(N) 5 W) > 1 - a. If and

only if N satisfies both constraints, it can be considered as a feasible points. After we

find all the feasible points in this area, we compute the profits for all those feasible

points and choose the one that gives us the maximum profit as the optimal solution

of the surface search method. The surface search method deals with the original

problem (7.2) directly. The comparison between the solution from our algorithm and

the solution from the surface search demonstrates the accuracy of our algorithm in

solving the original problem (7.2).

We use N*lg and Nss to denote the optimal buffer allocations from the algorithm

described in Section 7.3.1 and the surface search, respectively. Then, the three types
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of errors are computed (which are the same as those considered in Chapter 4) as:

J(Nis) - J(N*ag)
Jerr = x 100%,

J(Ns)

P(N*s) - P(N*i )
Perr = P(N ) g x 100%,

PNs)

and finally
N*s(Bi) - N* g(Bi) 1

Nerr = max x 10 .
i=1,---,k- NSs (Bi)

In addition to the three types of errors mentioned above, there is one more error

to consider. Recall that the analytical solution of part waiting time distribution

for two-machine lines is applied to a single buffer in long lines with the help of

decomposition. In particular, the pseudo-machine parameters of the two-machine

building block that contains the buffer are used to compute the part waiting time

distribution of that buffer. Since the decomposition method is an approximation,

error may exist between the probability p (T (N*) W;) we compute this way and

the actual probability without an approximation method8 . Therefore, we compare

p (T (N*) W;) from the algorithm with the one from simulation. A discrete time

simulation for production lines is written for this purpose to calculate the part waiting

time distribution of any buffer and therefore to compute the desired probability. For

each line, with the optimal buffer distribution N* derived from the algorithm, the

length of each simulation is 11,000,000 time units with the first 1,000,000 time units

being the warm up period, and we run the simulation 20 times and use their average

as the simulation result. Finally, we set a = 0.1 and therefore for each line at least

90% of the parts should have waiting times (in a given buffer) not greater than its

upper limit.

The production rate error, the profit error, and the maximum buffer size error

for the 200 four-machine lines are illustrated in Figure 7-23. For each type error in

8For notation simplicity, we drop the alg subscript and let N* denote the optimal solution from
the algorithm.
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Figure 7-23: Results of two hundred randomly
mode four-machine lines, both constraints
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generated deterministic single failure

Figure 7-23, we rank the three types of error in their corresponding ascending orders

respectively. (Therefore, the ith case in the production rate error graph, for instance,

may not necessary be the same as the ith case in the profit error graph.) The average

error of each type is also provided. In particular, in 146 out of the 200 cases, the

optimal buffer sizes from the algorithm and the surface search are the same, and

therefore the three types of error in these 146 cases are 0. In addition, the average

profit error, the average production rate error, and the average maximum buffer error

of these 200 cases are .002%, .01%, and 1.77%, respectively.

Figures 7-24 and 7-25 demonstrate p (T (N*) < W), which is the probability that

the waiting time of a part in Buffer B; does not exceed the upper limit W;. The

errors in Figure 7-25 are computed by the probability found by simulation minus the

probability found by the analytical solution and ranked according to the descending

order. As mentioned previously in this section, the decomposition method is approx-
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Figure 7-25: Error in p (T (N*) W;) between the analytical solution and the simu-
lation

imate and therefore we compare p (T (N*) W) from the analytical solution with

that from simulation. It can be seen from Figure 7-24 that they are very close to

each other, which indicates the accuracy of the analytical approach in computing

the cumulative distribution function (CDF) of the part waiting time in a buffer in

a long line when compared with simulation. Furthermore, Figure 7-25 suggests that

the analytical approach, which makes use of the decomposition method to compute

the waiting time probability for a buffer in long lines, slightly overestimates the prob-

ability as compared to simulation. This is because the errors in all 200 cases are

negative. In all these 200 cases, there are 10 cases whose p (T (N*) 5 W) from sim-

ulation is slightly smaller than the target value of 90%. All other 190 cases satisfy

the constraint. In addition, it is helpful to indicate that since for the deterministic

production line model, the part waiting time is discrete and therefore its CDF is a
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piecewise constant function of T(N). This is why this constraint is in general not

satisfied with equality because it is unlikely to have p (T (N*) W;) = 0.9 exactly.

Therefore in most of the cases, the constraint is satisfied with p (T (N*) W) > 0.9,

but they do not suggest that the maximum part waiting time constraint is inactive

in the problem. The results of these 200 numerical experiments indicate the accuracy

and reliability of the algorithm.

Note that if one or more machines downstream of Buffer B; are very unreliable

with both large up-times and down-times, most of the parts could have very long

waiting times in B;, and this could make the maximum part waiting time constraint

always infeasible. This is because once such a downstream machine (say Mj) fails,

it will take a very long time to get repaired. During this time, machines upstream

of Mj will start getting blocked and eventually B; will get full. Thus, parts need

to wait in B; for a long time due to the failure of Mj. In this case, the constraint

p(T(N) W) > 1 - a could always be infeasible for the line regardless of how

small the size of B; is. In our approach of solving the transformed problem (7.21)

iteratively, we will keep searching 6 until p (T(N(6)) W) 1 - a is satisfied.

However, since the part waiting time constraint is always infeasible, we will not be

able to find the desirable value of 6 no matter how small it is. This will tell us that

the original maximum part waiting time constraint is infeasible for the problem. Or,

once the 6 is too small, the transformed average part waiting time constraint conflicts

with the production rate constraint. Then the problem becomes infeasible as well.

Finally, as desirable future work directions, we could consider developing the closed

form of p(T(N) W), and then solving the original problem (7.2) directly.
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Chapter 8

The Segmentation Method for

Long Line Optimization

8.1 Motivation

In Chapter 4, we develop an efficient buffer design algorithm for production line profit

maximization. As a reminder, the algorithm solves the following problem:

K-1 K-1

max J(N) = AP(N) - biNi - cing(N)
i=1 i=1

subject to P(N) 2 , (8.1)

Ni 2! Nmini 1, -. - k - 1,

where J(N) is the profit of the line, A ($/part) is the revenue coefficient associated

with the production rate P(N), while bi and c, ($/part/time unit) are cost coefficients

associated with the buffer space and average inventory of Buffer Bi. P is the target

production rate. To solve (8.1), the algorithm starts with solving a corresponding

unconstrained problemi

'We have pointed out in Section 4.1.2 that the unconstrained problem is a convenient, although
not quite accurate, name for (8.2) since we still have the buffer size constraint.
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K-1 K-1

max J(N) = AP(N) - biNi - cjin(N)

(8.2)

subject to Ni > Nmin, i = 1,- , k- 1.

If the solution of (8.2), say N', satisfies the production rate constraint, then it

is also the optimal solution of the original problem (8.1). However, if N" does not

satisfy the production rate constraint, the algorithm conducts an one-dimensional

search over the revenue coefficient A' > A and solves (8.2) iteratively for different A's

until it finds a value of A' for which the solution of the unconstrained problem (8.2),

denoted by N'(A'), satisfies P(N'(A')) = P. Then the optimal solution of (8.1) is

N* = N'(A'). The algorithm solves Problem (8.1) efficiently.

However, both Chapter 4 and Shi and Gershwin (2009a) indicate that the com-

puter time of the algorithm increases exponentially with the length of the line when

N' does not satisfy the production rate constraint and therefore the one-dimensional

search over A' > A is adopted to find N* = N'(A') such that P(N'(A')) = P (see

Figure 4-7). This is because there are two factors in the algorithm that determine the

computer time. They are the time required for solving (8.2) for a given A' in each it-

eration and the number of iterations. As the length of the line increases, both factors

increase and they lead to a drastic increase in computer time. The long computer

time is undesirable in the design and operation of long production lines. Therefore,

it is desirable and important to find a method to reduce the computer time in long

line optimization, while assuring the accuracy of the optimization algorithm. In this

chapter, we propose a segmentation method that is proved to achieve these goals.

The method is accurate, reliable, and greatly reduces the computer time when N*

of (8.1) is such that the production rate constraint is satisfied with equality. This

should be determined as a first step in the method and it does not require very much

computer time.

The materials of this chapter are structured as follows. We first demonstrate

the segmentation method with two sets of examples on perfectly balanced long lines
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as well as unbalanced long lines in Sections 8.2 and 8.3. After that, the method is

presented and explained formally in Section 8.4. Two strategies that can be used to

improve the accuracy of the segmentation method are also addressed, following by

more numerical experiments to show the efficiency of the method in Section 8.5.

8.2 Qualitative Behavior of Perfectly Balanced Lines

We first provide two examples of perfectly balanced long lines to show how the optimal

solution of the original line can be found by the segmentation method. The two lines

being considered are a 20-machine line and a 30-machine line. As the name suggests,

a perfectly balanced line has identical machines and identical buffers2

8.2.1 A 20-Machine Line Example

The 20-machine 19-buffer line has 20 identical machines and 19 identical buffers.

Machine parameters are r = .1 and pi = .01, i = 1, - - -, 20. Buffer parameters

are bi = c; = 1, i = 1, -- - , 19, and the revenue coefficient A = 10, 000. The target

production rate is .88 parts per time unit. Suppose that instead of optimizing the

original 20-machine 19-buffer line, we optimize the following three 10-machine 9-buffer

lines that are constructed by the machines and buffers of the original line:

" the first 10-machine 9-buffer line is M 1 - B 1 - M2 - - - - - B9 - Mio;

e the second 10-machine 9-buffer line is M6 - B6 - M7- - B14 - M15; and

* the third 10-machine 9-buffer line is M 11 - Bu1 - M - - - Big - M 2 0 .

The segmentation of the original 20-machine 19-buffer line is illustrated in Figure 8-1.

For these three 10-machine lines, we modify the revenue coefficient A to 5,000.

The value of A is modified such that the production rate constraint will be satisfied

with equality in all line segments as well. (We further comment on the effect of the

2 In a perfectly balanced line, all machines have exactly the same repair and failure probabilities
and therefore the same isolated production rates. However, machines are still unreliable.
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The first 10-machine line

The second 10-machine line

The third 10-machine line

Figure 8-1: The segmentation of a 20-machine 19-buffer line

revenue coefficient A when we explain the segmentation method in Section 8.4.1.)

Let NI, N*, and N* be the optimal buffer distributions of the three lines. They are

provided in Table 8.13 as well as Figure 8-2. For illustration purpose, we keep the

original buffer indices. For instance, the nine buffers in the second 10-machine line

are labelled as Buffers B 6, B7 , ... , B14. The optimal buffer distributions of the three

10-machine lines are exactly the same despite the indices of buffers, because the three

lines are identical.

Table 8.1: The optimal buffer distribution of a perfectly balanced line, Example 1

The first line B1  B2 B3 B 4  B5 B 6  B7  B8 B9
NI 59.00 83.89 92.16 94.63 95.20 94.97 93.63 89.15 73.12

The second line B 6  B7  B8  B9  B10  Bn B 1 2  B13 B 14
N_ _ 59.00 83.89 92.16 94.63 95.20 94.97 93.63 89.15 73.12

The third line B11 B12 B13 B 14  B 15  B 16  B 17  B 18  B19
N_ _ 59.00 83.89 92.16 94.63 95.20 94.97 93.63 89.15 73.12

We take some results from each segment and construct the approximate solution

Nseg for the original line who has 19 buffers as follows (and we further explain the

construction in Section 8.4):

Nseg = N* (B1 ), NI(B2),.-. , N*(B 7 ), N*(B8 ), N*(B), ,N(B

N(B 13), N*(B14), ... (8.3)

3We have argued in Chapter 4 that buffer sizes can be treated as continuous variables in the
algorithm. Therefore, NI, N*, and N* are not integers. We keep them as non-integers for illustration
purpose.
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Figure 8-2: The optimal buffer distributions of the three 10-machine lines, a perfectly
balanced line, Example 1

For comparison, we optimize thie original 20-machine 19-buffer line directly and

let N* be the optimal buffer distribution. We display N* and Nseg in Figure 8-3.
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Figure 8-3: Comparison between N* and Nseg, a perfectly balanced line, Example 1

Figure 8-3 shows that Nseg is very close to N*. The computer time required to

optimize the original 20-machine 19-buffer line directly is 483.74 seconds, while the

computer time for the segmentation method is 125.00 seconds. It can be seen that

the segmentation method reduces the computer time dramatically. The production

rate P(N*) is .8800 parts per time unit, while P(Nseg) is slightly smaller at .8798

parts per time unit. The profit rate J(N*) is $6259.11 per time unit, while J(Nseg)

is $6270.34 per time unit. Note that J(Nseg) > J(N*) does not indicate that N* is

not the optimal solution. However, this is because the production rate associate with

Nseg is smaller than P. Thus, if we optimize the original line directly, Nseg will be

an infeasible solution to the problem. With Nseg, the production rate of the line is
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slightly lower than P, while the buffer space cost and the inventory holding cost are

also smaller. The combined effect of the revenue and the cost leads to a slightly higher

profit rate than J(N*). (We observe J(Nseg) > J(N*) in the following examples as

well.) We will further study the difference between N* and Nseg, the lengths of the

line segments, and the computer time in detail in Section 8.4.

Before leaving this example, we want to repeat the important fact that in the

optimization for the original 20-machine line and those three segmented 10-machine

lines, the production rate constraint P(N) > P is always satisfied with equality. In

other words, all N*, N*, N*, N* satisfy P(N*) = P, P(N*) = P, P(N*) = P, and

P(N*) = P. As we show in Section 8.4.1, the fact that the production rate constraint

is satisfied with equality is a crucial prerequisite of the segmentation method.

8.2.2 A 30-Machine Line Example

Next we consider a perfectly balanced 30-machine 29-buffer line. The parameters of

each machine and each buffer are the same as those in the previous case. The revenue

coefficient is A = 15,000. The target production rate is again .88 parts per time unit.

We segment the original line into five 10-machine lines:

" the first 10-machine 9-buffer line is Mi - B1 - M2- - - B - ;

" the second 10-machine 9-buffer line is M6 - B6 - M7 - - - B 14 - Mis;

" the third 10-machine 9-buffer line is Mn - B11 - - - Big - M2;

e the fourth 10-machine 9-buffer line is M16 - B16 - Mi-- - B24 - M 25 ; and

" the fifth 10-machine 9-buffer line is M 2 1 - B 21 - M22- - B29 - M 3o.

For these five 10-machine lines, we use a revenue coefficient of 5,000. Let NI, N*,

NN*, and N* denote the optimal buffer distributions of these five lines. Again,

for illustration purpose, we keep the original buffer indices. The optimal buffer dis-

tributions of the five 10-machine lines are illustrate in Figure 8-4. It is helpful to

indicate that NI, N*, N*, N*, and N* are the same since the five 10-machine lines
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Figure 8-4: The optimal buffer distributions of the five 10-machine lines, a perfectly
balanced line, Example 2

are identical. For values, see Table 8.1 since the parameters of any of these five 10-

machine lines are the same as the parameters of any of those three 10-machine lines

in the previous example. We take some results from each segment and construct the

approximate solution Nseg for the original line who has 29 buffers as follows

Nseg = N*(Bi), Ni(B2),- , Ni(B 7 ), N*(B 8), N*(B), ,N(B

N*(B13), N*(B14), N*(B17), N*(Bis), N*(Bis), --- , N*(B2)

N*(B 23), N*(B 24), - N *(B29))
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Figure 8-5: Comparison between N* and Nseg, a perfectly balanced line, Example 2
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For comparison, we optimize the original 30-machine 29-buffer line directly and

display N* and Nseg in Figure 8-5. It demonstrates that Nseg is very close to

N*. With the segmentation method, the computer time to optimize the original 30-

machine 29-buffer line is reduced dramatically from 2137.65 seconds (if optimizing

the original line directly) to only 290.55 seconds. The production rate P(N*) is .8800

parts per time unit, while P(Nseg) is slightly smaller at .8797 parts per time. The

profit rate J(N*) is $9237.20 per time unit, while J(Nseg) is $9276.35 per time unit.

The two examples in Sections 8.2.1 and 8.2.2 show how we can find an approx-

imation of the optimal buffer distribution of the original line by the segmentation

method for perfectly balanced long lines. In Section 8.3, we discuss unbalanced lines.

8.3 Qualitative Behavior of Unbalanced Lines

We study three examples of unbalanced long lines. The lines being considered are two

20-machine lines and one 30-machine line. As opposite to perfectly balanced lines, a

unbalanced line does not have all identical machines or all identical buffers.

8.3.1 A 20-Machine Line Example

The 20-machine 19-buffer line has 20 machines falling into two groups and 19 identical

buffers. The parameters for the first 10 machines are ri = .1 and pi = .01, i =

1, ... , 10, while the parameters for the second 10 machines are ri = .12 and pi = .01,

i = 11, ... ,20. Buffer parameters are bi = ci = 1, i = 1, ... , 19. The revenue

coefficient of A = 10, 000. The target production rate is .88 parts per time unit. As

before, we segment the original line into three 10-machine lines and optimize them

separately and get N*, N*, and N* (see Table 8.2 and Figure 8-6). We construct

Nseg according to Equation (8.3).

We also optimize the original 20-machine 19-buffer line directly and compare N*

and Nseg in Figure 8-7. Figure 8-7 demonstrates that Nseg is also a very good

approximation of N*. The segmentation method reduces the computer time from

233.18 seconds to 101.06 seconds. The production rate P(N*) is .8800 parts per time
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Table 8.2: The optimal buffer distribution of a unbalanced line, Example 1

The first line B1 B2 B 3  B4  B 5  B 6  B7  B8 B9
NI 59.00 83.89 92.16 94.63 95.20 94.97 93.63 89.15 73.12

The second line B 6  B7 B8 B9  B10 B11  B 12  B 13  B14
N 59.27 83.32 89.84 86.65 68.19 53.35 47.72 43.47 34.05

The third line B11 B12 B13  B 14  B 15  B 16  B17 B 18  B19
N3 25.76 39.39 44.17 45.71 46.12 46.01 45.20 42.54 33.62

100

-- 
N* --

8 80 - , N2-
- N* -- --4J* 3

60

340

o 20 -
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Figure 8-6: The optimal buffer distributions of the three 10-machine lines, a unbal-
anced line, Example 1
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Figure 8-7: Comparison between N* and Nseg, a unbalanced line, Example 1

unit, while P(Nseg) is slightly smaller at .8798 parts per time. The profit rate J(N*)

is $6931.68 per time unit, while J(Nseg) is $6941.88 per time unit.

8.3.2 Another 20-Machine Line Example

In this example, we let machines be the same but buffers be very different in terms

of their coefficients. The parameters for all machines are ri = .1 and pi = .01,
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i = 1, , 20. Buffer parameters are listed in Table 8.3. The target production rate

is .88 parts per time unit and the revenue coefficient is A = 10, 000. As before,

we segment the original line into three 10-machine 9-buffer lines in the way stated

previously in Section 8.2.1, optimize them separately, and derive N*, N*, and N* (see

Table 8.4 and Figure 8-8). We construct Nseg with NI, N*, and N* according to

Equation (8.3).

Table 8.3: Buffer cost coefficients

b1  b2  b3  b4  b5  b6  b7  b8  b9  b10

0.26 1.28 0.56 1.92 0.32 1.92 1.62 0.86 1.60 1.32
bnl b12  b13  b14  b15  b16  b17  b18  big

1.70 1.36 1.50 1.32 1.42 0.56 0.20 1.40 1.92

C1  C2 C3  C4  C5  C6  C7  C8  C9  C10

1.84 0.20 1.10 1.94 1.96 0.98 0.30 1.84 1.92 0.08
Cni C12  b13  C14  C15  C16  C17  C18  C19

1.88 1.52 0.80 0.36 0.08 0.10 1.66 0.64 0.08

Table 8.4: The optimal buffer distribution of a unbalanced line, Example 2

The first line B1  B2 B 3  B 4  B5 B 6  B7  B8  B9
NI 60.73 83.69 109.69 67.27 129.34 85.21 96.43 94.83 66.47

The second line B6 B7  B8 B9 B10 B 1  B12 B 13  B14
N_ 56.54 88.25 96.92 83.80 119.60 79.04 94.71 90.20 75.93

The third line Bn1  B12 B 13  B 14  B15 B16 B17 B18 B 19

N _ _ 54.55 86.66 93.20 98.82 85.91 123.35 99.47 83.00 62.60

We optimize the original 20-machine 19-buffer line directly and compare N* and

Nseg in Figure 8-9. Figure 8-9 demonstrates that for this unbalanced line where

buffers are very different, Nseg approximates N* very well. The segmentation method

reduces the computer time from 603.33 seconds to 199.80 seconds. The production

rate P(N*) is .8800 parts per time unit, while P(Nseg) is slightly smaller at .8798

parts per time. The profit rate J(N*) is $5904.10 per time unit, while J(Nseg) is

$5922.54 per time unit.
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Figure 8-8: The optimal buffer distributions of the three 10-machine lines, a unbal-
anced line, Example 2
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Figure 8-9: Comparison between N* and Nseg, a unbalanced line, Example 2

8.3.3 A 30-Machine Line Example

Finally, a unbalanced 30-machine 29-buffer line is studied. In particular, machine

repair probabilities are very different (see Table 8.5) but buffers are identical. Failure

probabilities for all machines are identical at pi = .01, i = 1, - - -, 30. The revenue

coefficient of the line is A = 15, 000. The target production rate is again .88 parts per

time unit. We segment the original line into five 10-machine lines in the way stated

previously in Section 8.2.2, optimize them, and derive NI, N*, N*, N*, and N* (see

Table 8.6 and Figure 8-4).

We construct Nseg with NI, N*, and N* according to Equation (8.4) and optimize

the original 30-machine 29-buffer line directly. We compare N* and Nseg in Figure

8-11, which demonstrates that for this unbalanced line where machines are very dif-

ferent, Nseg approximates N* very well. The segmentation method dramatically
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Table 8.5: Machine repair probabilities, 30-machine unbalanced line

ri r2 r3 r4 r5 r6 r7 T8 rg r1o Ti r12 r13 r14 r15

.11 .09 .12 .14 .13 .11 .09 .088 .095 .106 .11 .11 .09 .09 .13
r16  r17 r 18  r19  T2o r21 22 Tr23  r 24  r25 r26  r27  r 28  r29  r 30
.12 .09 .098 .11 .105 .11 .12 .15 .14 .13 .094 .085 .11 .12 .104

Table 8.6: The optimal buffer distribution of a unbalanced line, Example 3

The first line B 1  B2 B3 B 4  B5  B6 B7  B8  Bg
N* 52.04 66.85 47.48 43.50 55.15 90.80 141.05 133.06 82.40

The second line B6  B7 B8 B B10  B11  B 12  B13 B 14
N* 67.48 133.74 136.32 101.89 80.03 77.04 94.95 120.79 61.58

The third line Bi B 12  B 13  B 14  B 15  B16 B17 B18 B19
N* 46.71 84.45 121.54 83.93 63.89 79.17 103.96 81.42 58.56

The fourth line B16  B17 B 18  Big B20  B 21  B 22  B23 B24
N* 51.04 95.66 84.09 72.99 65.97 52.37 36.67 28.94 22.72

The fifth line B21 B22 B 23  B 24  B 25  B26 B27 B 2 8  B29
N* 26.77 32.63 33.06 41.31 64.90 122.27 107.41 66.44 50.77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

Figure 8-10: The optimal buffer distributions of the five 10-machine lines, a unbal-
anced line, Example 3

reduces the computer time from 2665.99 seconds to 751.29 seconds. The production

rate P(N*) is .8800 parts per time unit, while P(Nseg) is slightly smaller at .8798

parts per time. The profit rate J(N*) is $9867.40 per time unit, while J(Nseg) is

$9895.70 per time unit.
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Figure 8-11: Comparison between N* and Nseg, a unbalanced line, Example 3

8.4 The Segmentation Method

According to all those examples in Sections 8.2 and 8.3 on both perfectly balanced

lines and unbalanced lines, it can be seen that the buffer distribution derived by

the segmentation method approximates the actual optimal buffer distribution of the

original very well. However, we observe small discrepancy between Nseg and N*,

especially in buffers shared by two adjacent segments. For instance, in the perfectly

balanced 20-machine 19-buffer line example, both the first and the second segmented

10-machine lines contain Buffers B6, B7, B8, and B9. They are buffers shared by two

adjacent segments. Figure 8-3 shows that errors between Nseg and N* on B7 and B8

(as well as B12 and B 13) are the biggest compared to errors on other buffers.

These errors are due to the segmentation, which changes the variabilities at one or

both ends of a line segment. In what follows, we first heuristically explain and then

formally state the segmentation method. After that, we provide some preliminary

study about two ways that can be used to improve the accuracy of the segmentation

method.
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8.4.1 Heuristic Explanation

We use the perfectly balanced 20-machine 19-buffer line of Section 8.2.1 to explain

the segmentation method. The optimal buffer distributions of the original 20-machine

line and the first 10-machine line segment N* and NI are illustrated in Figure 8-12.
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Figure 8-12: Comparison between N and N*

Comparing the first nine components of N* with N*, we observe increasing differ-

ences in Buffers B6 , B7 , B8 , and B9. The optimal buffer sizes for those four buffers

in NI are smaller than those in N*. This can be explained by looking at the original

20-machine line and the first 10-machine line segment. In the original line, there are

ten machines and ten buffers downstream of Mio, while in the first line segment there

is nothing downstream of M10 . Therefore, in the original line M10 can be blocked

if Buffer B 10 gets full because downstream machine failures, while in the first line

segment M10 will not be blocked. From the variability standpoint, the variability

downstream of M10 in the original line is not 0, while the variability downstream of

M10 in the first line segment is 0. As a result, N*(B) is larger than N*(B) to absorb

the variability. Buffers B8, B7 , and B6 in the first line segment are also affected and

reduced because of the zero variability downstream of M10 .

Figure 8-12 also indicates that there is no visible difference in Buffers B1, B 2, B 3,

B4, and B 5 in the original line and the first line segment. This is because the benefits

(in terms of reduced buffer space) brought by zero variability downstream of M10 in

the first line segment have been consumed by B 6, B7 , B8 , and B9 . If we place an
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operator at Buffer B 5 in either the original line or the first line segment, the material

outflow behaviors the operator will observe will be almost the same statistically.

Therefore, to achieve the required target production rate, the two lines require the

same set of Buffers B 1, B 2, B 3, B 4, and B5 , or N*(Bi) = N*(Bi), i = 1, 2, 3, 4, 5.

The analysis above emphasizes the importance of the condition that the produc-

tion rate constraint has to be active for the line segments. It is the active production

rate constraint that ensures that the buffer sizes in N* that are not affected by the

zero variability to be (approximately) the same as those in N*. This also explains

why we might not use the revenue coefficients A of the original line directly but to

choose a smaller A to optimize the line segments. This is because it is possible that

the A for the original line is too large for the line segments. According to Chapter 4,

the production rate constraint will be inactive for the line segments if A is too large.

The optimal sizes of buffers will be larger than necessary such that the production

rate associated with the buffers is larger than P to enjoy the large revenue coefficient

towards the goal of achieving a higher profit (rate). In this case, the segmentation

method would not work. Consequently, we may need to choose the revenue coeffi-

cient when we optimize those line segments such that the production rate constraint

is satisfied with equality in all segments.

In addition, the analysis related to the zero downstream variability reveals the

source of inaccuracy of the segmented buffer distribution Nseg as compared to the N*.

To explain this, we refer to the benefits brought by the zero upstream or downstream

variability to buffers at each end of a line segment as the edge effect. For example,

the smaller B 6 , B7 , B8 , and B9 in the first line segment as compared to those in the

original line in Figure 8-12 are due to the edge effect. Now we explain how the edge

effect becomes a source of inaccuracy of Nseg.

Consider the example of Section 8.2.1 again. Figure 8-13 shows the optimal buffer

distributions for the original line and the first two segments. The bars show NI and

N2, while the curve shows N*. We focus on the buffers that are common to the two

segments (i.e., B 6, B7, B8, and B 9). We refer to them as buffers on the boundary of

the two segments. The edge effects that we must correct can be found at the right
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Figure 8-13: Explanation of the edge effect

end of the first segment and at both ends of the second segment. Due to the edge

effect, the optimal sizes of B6 , B7 , B8 , and B9 in both segments are smaller than their

corresponding ones in the original line. Therefore, for these four buffers, we choose

max{NI(Bj), N*(Bj)} as the size of Bi, i = 6, 7, 8, 9 in Nseg. As a result, the first

nine components of Nseg are N*(B 1 ), N*(B 2), N*(B 3), NI(B 4 ), N*(B 5 ), N*(B 6 ),

N*(B 7), N*(B 8 ), and N*(B), and this setting mitigates the edge effort the most and

gives the best approximation of the first nine components of N* with N* and N*.

However, we still observe differences between NI(B 7 ) and N*(B 7 ), as well as between

N*(B 8) and N*(Bs). These differences result in the error in Nseg.

The edge effect can be further mitigated by increasing the number of buffers

common to two or more segments. To achieve this, we can

" increase the number of segments (while maintaining the length of each segment),

or

" increase the length of each segment (while maintaining or slightly reducing the

number of segments).

We provide a preliminary study about these approaches in Sections 8.4.3 and 8.4.4.
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8.4.2 The Method

We state formally the segmentation method here. To solve Problem (8.1) for a K-

machine K - 1-buffer line4 , the segmentation method consists of the following steps.

0. Solve the corresponding unconstrained problem (8.2). If the solution of (8.2)

satisfies the production rate constraint, then it is also the solution of (8.1)

and we are done. If the solution of (8.2) does not satisfy the production rate

constraint, then go to Step 1.

1. Choose the length of the line segments, say k. k should be large enough such

that the number of buffers that are not apparently impacted by the edge effect

in each segment is large enough to construct Nseg. On the other hand, k

should be kept small enough to keep the computer time spent on those segments

small. Given the trade-off between the computer time and the accuracy of the

segmentation method, we have not found a optimal way to choose k (but for

a discussion about the trade-off, see Section 8.4.4). According to the examples

studied in this chapter, 10 appears to be a good choice.

2. Choose the number of segments, say s, such that every two adjacent segments

should share a set of buffers. The number of buffers contained by both segments

should be large enough (e.g. four buffers in the examples discussed in Sections

8.2 and 8.3) to mitigate the edge effect. (Note that it is possible for buffers to

be shared by more than two segments. In this case, more than two segments

partially overlap with each other.)

3. Optimize each line segment and let N' be the optimal buffer distribution of the

ith segment, i = 1, 2, ... , s.

4. Construct Nseg from Nis. If a buffer is contained in more than one segment,

the largest value of that buffer from any segment should be used in Nseg to

4 By convention, the lower case k is used for a k-machine k - 1-buffer line. However, we use the
upper case K here for the original line, while saving the lower case k for the line segments.
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eliminate the edge effect. For instance, if segments i1 , i2 , - Z , in contain Bn,

then Nseg(Bm) = max(Ni(Bm), N*(Bm), -.- ,N*(Bm)).

5. Verify that P(Nseg) ~ P and compute the profit of the line by J(Nseg).

In the following two sections, we examine two strategies that can be considered

to reduce the edge effect and to improve the accuracy of the segmentation method.

For the following discussion, define Nseg(s, k) as the approximate buffer distribution

for the original line resulted from the segmentation method with s k-machine line

segments. In addition, define the error of the segmentation method as eseg(s, k) =

Nseg(s, k) - N*.

8.4.3 Discussion on the Number of the Line Segments

To show the effect of the number of line segments on the accuracy of the segmentation

method, we reconsider those three 20-machine 19-buffer lines discussed in Sections

8.2.1, 8.3.1, and 8.3.2. In each of those three examples, we segment a 20-machine line

with three 10-machine line segments. In this section, we segment the original line

with five 10-machine lines.

Consider the line of Section 8.2.1 first. The configurations (in terms of the ma-

chines and buffers in the original line) of these five segments are:

1. the first segment: M 1 - B 1 - M2 - - - - - B 9 - Mio;

2. the second segment: M 4 - B 4 - M - - B 1 2 - M13;

3. the third segment: M6 - B 6 - M7- - B 14 - Mi5;

4. the four segment: M8 - B8 - - - B 16 - M 17 ; and

5. the fifth segment: Mil - Bu1 - M - - - B 19 - M 20 .

Let NI, N*, N*, N*, and N* be the optimal buffer distributions of these five

segmented 10-machine lines. We construct Nseg according to Step 4 in Section 8.4.2
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as follows:

Nseg = Ni(Bi), N*(B 2), ,N*(B 6 ), N*(B 7), N*(B8 ), N*(B), (

N*(B 1 o), N(Bnj), N*(B 12 ), N*(B 13), N*(B 14), - , (Big
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Figure 8-14: Effect of the number of the segments on the accuracy of the segmentation
method, Example 1

To study the effect of the number of the segments on the accuracy of the seg-

mentation method, we compare the optimal distribution of the original line N*, the

solution constructed from three 10-machine line segments Nseg( 3, 10), and the so-

lution constructed from five 10-machine line segments Nseg(5, 10) (see Figure 8-14).

The errors of the two constructed solutions are also included in Figure 8-14. Figure

8-14 reveals that the inaccuracy due to the edge effect is much more obvious when

we approximate N* with three 10-machine lines. However, with five segments, the

solution from the segmentation method is more accurate.

Table 8.7 compares the three alternatives that can be used to find the optimal

buffer distribution for the original line: optimizing the original line by the original

method of Chapter 4, segmenting the original line into three 10-machine lines, and

segmenting the line into five 10-machine lines. We see that segmenting the line
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Table 8.7: Result summary, effect of the number of the line segments, Example 1

P(N) J(N) compter max. buffer
time (sec.) difference

N* .8800 6259.11 483.74 -
Nseg(3 , 10) .8798 6270.34 125.00 -3.56
Nseg(5, 10) .8799 6263.13 164.86 -1.02

with five 10-machine lines provides a more accurate approximation of the optimal

buffer distribution at a cost of longer computer time because more segments are

optimized. As there are more segments, the number of buffers shared by any two

adjacent segments becomes larger, and therefore more buffers affected by the edge

effect will not be chosen to construct Nseg. This mitigates the edge effect. With the

segmentation method, we reduce the computer time dramatically. Similarly results

can be observed on the other two unbalanced 20-machine lines of Sections 8.3.1 and

8.3.2 (see Figures 8-15 and 8-16). The comparison is summarized in Tables 8.8 and

8.9 as well.

N*E-

Nseg( 5 , 10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
buffer

16 17 18 19

2

0

8 -2

-4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

buffer

Figure 8-15: Effect of the number of the segments on the accuracy of the segmentation
method, Example 2
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Figure 8-16: Effect of the number of the segments on the accuracy of the segmentation
method, Example 3

Table 8.8: Result summary, effect of the number of line segments, Example 2

P(N) J(N) compter max. buffer
time (sec.) difference

N* .8800 6931.68 233.18 -
Nseg(3 ,10) .8798 6941.88 101.06 -3.86
Nseg(5,10) .8799 6938.54 120.05 -1.39

Table 8.9: Result summary, effect of the number of line segments, Example 3

P(N) J(N) compter max. buffer
time (sec.) difference

N* .8800 5904.10 603.33 -
Nseg(3 ,10) .8798 5922.54 199.80 -3.91
Nseg(5, 10) .8799 5912.86 274.91 -1.08

8.4.4 Discussion on the Length of the Line Segments

In this section, with the three 20-machine 19-buffer lines of Sections 8.2.1, 8.3.1, and

8.3.2 as well as the two 30-machine 29-buffer lines of Sections 8.2.2 and 8.3.3, we

study the effect of the length of the line segments. Recall that we have discussed
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the segmentation method with 10-machine lines. In addition to that, for 20-machine

lines, we consider 15-machine line segments; while for 30-machine lines, we consider

both 15-machine line segments and 20-machine line segments.

Consider the perfectly balanced 20-machine 19-buffer line of Section 8.2.1 first.

The configurations of the two 15-machine line segments are:

1. the first segment: M 1 - B1 - M2- - - B1 4 - M15 ; and

2. the second segment: M6 - B 6 - M7- - - B 19 - M 2 0 .

Let NI and N* be the optimal buffer distributions of the two 15-machine line

segments. We construct Nseg as follows:

Nseg = N* (Bi), N*(B 2 ),--- , N*(Bio), N*(B 1 ), N*(B 12 ), - , N*(B 1 9)) . (8.6)

As a reminder, we let Nseg(s, k) be the constructed buffer distribution from the

segmentation method with s k-machine line segments, and let eseg(s, k) = Nseg(s, k)-

N* be the error. We plot N*, Nseg( 3, 10), and Nseg( 2 ,15) as well as the errors of

the two constructed solutions in Figure 8-17. Figure 8-17 reveals that with two

15-machine line segments, the solution from the segmentation method improves ob-

viously and the error in buffer is very close to zero. Table 8.10 compares these three

alternatives.

Table 8.10: Result summary, effect of the length of line segments, Example 1

P(N) J(N) compter max. buffer
time (sec.) difference

N* .8800 6259.11 483.74 -
Nseg(3, 10) .8798 6270.34 125.00 -3.56
Nseg(2,15) 1.8800 6257.03 340.71 0.19

Segmenting the line with two 15-machine line segments provides a more accurate

approximation of the optimal distribution at a cost of larger computer time. This

is because the time to compute Nseg(s, k) is roughly linear in s and exponential
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Figure 8-17: Effect of the length of line segments on the accuracy of the segmentation
method, Example 1

in k. Therefore, it takes more time to find Nseg( 2 , 15) as longer line segments are

optimized even though the number of segments is reduced. As the segments get

longer, the number of buffers shared by any two adjacent segments becomes larger,

and therefore more buffers affected by the edge effect will not be chosen to construct

Nseg. This mitigates the edge effect. Furthermore, we see that even with two 15-

machine line segments, we still reduce the computer time from 483.74 seconds to

340.71 seconds, although this is not very drastic. However the solution from the

segmentation method is very accurate. Similarly results can be observed on the other

two unbalanced lines of Sections 8.3.1 and 8.3.2 (see Figures 8-18 and 8-19, as well as

Tables 8.11 and 8.12.)

Table 8.11: Result summary, effect of the length of line segments, Example 2

P(N) J(N) compter max. buffer
time (sec.) difference

N* .8800 6931.68 233.18 -
Nseg(3, 10) .8798 6941.88 101.06 -3.86
Nseg(2, 15) .8800 6936.24 168.31 -0.64
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Figure 8-18: Effect of the length of line segments on the accuracy of the segmentation
method, Example 2
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Figure 8-19: Effect of the length of line segments on the accuracy of the segmentation
method, Example 3

Next, we study the two 30-machine lines of Sections 8.2.2 and 8.3.3. In particular,

we study the segmentation method with three 15-machine lines as well as two 20-

machine lines.

First, we segment an original 30-machine line with three 15-machine lines:
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Table 8.12: Result summary, effect of the length of line segments, Example 3

1. the first line: M 1 - B1 - M2- - - - - B14 - Mi5;

2. the second line: M8 - B8 - M9 - - - - - B21 - M 22 ; and

3. the third line: M16 - B16 - M17 - - - - - B 29 - M 30 -

Alternatively, we segment the original line with two 20-machine lines. The two

segments are

1. the first line: M 1 - B 1 - M2- - B1 9 - M 20 ; and

2. the third line: M11 - B11 - M12 - - - B 29 - M30.

We compare N*, Nseg(5, 10), Nseg (3, 15), and Nseg(2 , 20). The results are shown

in Figures 8-20 and 8-21. It can be seen that the accuracy of the segmentation method

with 15-machine segments and 20-machine segments is better than the accuracy with

10-machine segments. The comparison is summarized in Tables 8.13 and 8.14 as well.

The segmented solution Nseg( 3 ,15) is accurate enough as compared to either the

actual solution N* or the segmented solution Nseg(2 , 20). On the other hand, since

the computer time increases exponentially with the length of the segment, using a

segment with 20 machines seems not to be a good idea from a standpoint of computer

time saving. From the discussion in this section, it appears that segments of 10 or 15

machines can be considered good choices.

8.4.5 Proposed Improvement Strategies

We discuss preliminarily, in this section, two strategies to reduce the optimization

inaccuracy of the segmentation method brought by the edge effect. To further inves-
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Figure 8-20: Comparsion of different lengths of line segments, Example 4

Table 8.13: Result summary, effect of the length of line segments, Example 4

P(N) J(N) compter max. buffer
time (sec.) difference

N* .8800 9237.20 2137.65 -
Nseg(5,10) .8797 9276.35 290.55 -4.01
Nseg( 3 ,15) .8800 9254.66 569.29 -1.53
Nseg(2, 20) .8799 9256.98 1075.72 -0.68

Table 8.14: Result summary, effect of the length of line segments, Example 5

P(N) J(N) compter max. buffer
P time (sec.) difference

N* .8800 9867.41 2665.99 -
Nseg(5, 10) .8798 9895.70 751.29 -4.72
Nseg( 3

7 15) .8800 9869.05 1244.60 -1.01
Nseg(2, 20) .8800 9872.28 1802.52 -1.42

358



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

Figure 8-21: Comparsion of different lengths of line segments, Example 5

tigate these two strategies in the future, it is helpful to study the length limit of a

line segment (Anthony 2011). For example, for an original 20-machine line, we can

start the segmentation method with 20 five-machine four-buffer line segments, and

increase the length of each segment (while reducing the number of segments when

necessary) gradually. This will allow us to further study the trade-off between the

computer time and the optimization accuracy of the segmentation method.

In addition, we notice that Step 0 of the segmentation method (see Section 8.4.2)

requires solving the corresponding unconstrained problem first. The computer time

of solving the unconstrained problem when the original line is long can contribute a

big portion of the total computer time of the segmentation method. For instance,

for the 30-machine line of Section 8.2.2, the computer time for solving the uncon-

strained 30-machine line problem is 197.82 seconds. The total computer time of the

segmentation method with three 10-machine line segments is 290.55 seconds. The

time spent on solving the unconstrained 30-machine line problem accounts for over
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2/3 of the total computer time. Therefore, it is desirable if Step 0 can be skipped in

the segmentation method (Graves 2011). The segmentation method without Step 0

finds the approximate optimal buffer distribution with the assumption that the pro-

duction rate constraint is active for the original line. Therefore, if we get rid of Step

0, we need to find other ways to check if the original problem has this property or

not. This can be a future research direction of the segmentation method.

8.5 Numerical Experiments

Finally, we provide more numerical experiments to show the efficiency and accuracy

of the segmentation method. First, numerical results for 100 randomly generated 20-

machine 19-buffer lines are provided. After that, we consider some cases of extremely

long lines, such as lines that have 50 machines, 60 machines, and 70 machines.

8.5.1 More Numerical Examples

We study 100 20-machine 19-buffer lines that are randomly generated according to

the method of Gershwin (2011). Both machine parameters and buffer cost coefficients

are randomly chosen. The isolated production rate of each machine is greater than

.89 parts per time unit. The target production rate is .87 parts per time unit, which

proves to be active in all cases when the revenue coefficient is A = 10, 000. For each

20-machine 19-buffer line, we segment it into three 10-machine 9-buffer lines starting

with Machines M 1, M6 , and Mn, of the original line, respectively.

Figure 8-22 displays the computer time for optimizing the 100 lines by the di-

rect method of conducting the one-dimensional search over A' > A (labeled Time,

direct) with that for optimizing them via the segmentation method (labeled Time,

segmentation). We rank these 100 cases in a descending order of the computer time

for optimizing them by the direct method. The figure also shows that the average

computer time for optimizing these 100 lines by the direct method is 696.07 seconds,

while the average computer time by the segmentation method is only 286.69 seconds.

The three types of errors considered are the profit error (Jerr), the production rate
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error (Perr), and the maximum buffer size error (Nerr):

J(N*) - J(Nseg) X 100%,
Jerr = J(100%

J(N*)

P(N*) - P(Nseg)
Perr = x 100%

and { N*(Bi) - Nseg (B)
Nerr =max <IX 100% ,

i=,--19 tIN*(Bi)

and they are shown in Figure 8-23 for these 100 lines.

Figure 8-23 reveals that the average profit error of the 100 lines is .05%, the

average production rate error is .03%, and the average maximum buffer size error is

5.38%. These results demonstrate the accuracy and efficiency of the segmentation

method.

1600
T ~Time, direct---

Time, segmentation -------

800
0

S1200-
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Figure 8-22: Comparison of the computer times for 100 randomly generated 20-
machine 19-buffer lines

8.5.2 Extremely Long Lines

Finally, we study three extremely lone lines: a 50-machine 49-buffer line, a 60-machine

59-buffer line, and a 70-machine 69-buffer line. The purpose of these three examples

is to show how much computer time can be saved with the segmentation method.

However, we have to mention that such long lines (in terms of number of buffers)

are not common in reality. In particular, all these lines are perfectly balanced lines.
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Figure 8-23: Production rate errors, profit errors, and maximum buffer errors of the
segmentation method for 100 randomly generated 20-machine 19-buffer lines

All machines have parameters ri = .1 and pi = .01. All buffers have parameters

bi = ci = 1. The revenue coefficients for these three examples are A = 25000, 30000,

and 35000, respectively. The target production rate is P = .88 for all three examples.

For the 50-machine 49-buffer line, we segment it into 14 10-machine 9-buffer line

segments. They start with Machines M 1 , M4 , M7 , - - -, M37, and M4 1 of the original

line, respectively. We compare Nseg and N* in Figure 8-24, which shows that Nseg

is a good approximation of N*. The key measures of this example are summarized

in Table 8.15. We see that with the segmentation method, the computer time for

optimizing the 50-machine 49-buffer line is reduced dramatically from 8967.80 seconds

to 1316.51 seconds. If we further realize that the 14 10-machine 9-buffer segments

are indeed identical and we need only optimize one of them rather than all of them,

we can even reduce the computer time to merely 895.01 seconds.

Similarly, we segment the 60-machine 59-buffer line with 18 10-machine 9-buffer

line segments, and the 70-machine 69-buffer line with 21 10-machine 9-buffer line

segments. The results for these two lines are summarized in Figures 8-25 and 8-26, as

well as Tables 8.16 and 8.17. With the segmentation method, we reduce the computer

time for optimizing the 60-machine 59-buffer line from 17908.25 seconds to 1501.88
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seconds. Similarly, for the 70-machine 69-buffer line, the computer time is reduced

from 20753.75 seconds to 1839.43 seconds.

Table 8.15: Result summary for a 50-machine 49-buffer line

P(N) J(N) computer max. buffer
time (sec.) difference

N* .8800 15218.95 8967.80 -
Nseg .8799 15261.12 1316.51 -2.34
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Figure 8-24: The segmentation method for a 50-machine 49-buffer line
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Figure 8-25: The segmentation method for a 60-machine 59-buffer line
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Figure 8-26: The segmentation method for a 70-machine 69-buffer line

Table 8.16: Result summary for a 60-machine 59-buffer line

P(N) J(N) computer max. buffer
time (sec.) difference

N* .8800 18209.24 17908.25 -
Nseg .8799 18260.85 1501.88 -1.57

Table 8.17: Result summary for a 70-machine 69-buffer line

P(N) J(N) computer max. buffer
time (sec.) difference

N* .8800 21217.08 20753.75 -
Nseg .8799 21260.15 1839.43 -1.36

8.6 Summary

In this chapter, we study the segmentation method for long line optimization. Instead

of optimizing the original long line, the segmentation method divides it into several

short line segments, optimizes these short line segments separately, and combines the

optimal buffer distributions to find an approximate optimal buffer distribution of the

original line.

With demonstrative numerical experiments, we first show that the segmentation

method works well for both perfectly balanced lines and unbalanced lines. After ex-
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plaining the method in Section 8.4.1, two strategies that improve the accuracy of

the segmentation method are studied. Based on the discussion, the accuracy of the

segmentation method can be improved by increasing the number of line segments

or by increasing the length of each line segment. Both methods improve the accu-

racy at a cost of longer computer time. With the segmentation method, the total

computer time required to find the optimal solution for the original long line can be

reduced dramatically. Eventually, 100 numerical experiments are provided to show

the accuracy and efficiency of the segmentation method.
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Chapter 9

The Additive Property in Long

Line Optimization

9.1 Overview

In this chapter, we make use of the algorithm of Chapter 4 for production lines to

study an additive property in long line optimization. The property shows that the

effect of a set of local bottleneck machines on the optimal buffer distribution, which

maximizes the profit of the production line defined by Equation (4.1) subject to a

production rate constraint, is approximately the same as the sum of the effects of each

local bottleneck machine by itself. A similar property is observed with a mixture of

local bottleneck machine and local anti-bottleneck machines'. The additive property

provides valuable insight in the design and optimization of long lines.

The goal of this chapter is to report on a phenomenon we have observed. We

report only on numerical experiments and we describe a preliminary hypothesis to

explain it. We do not provide precise conditions under which it will occur, analytical

bounds on its accuracy, or potential computational benefits. We also do not provide

an algorithm for using it in system design.

This chapter is organized as follows. We first demonstrate the qualitative behavior

of the additive property with examples in Section 9.2. The heuristic explanations

'The definition of a local anti-bottleneck machine is provided in Section 9.2.1.

367



about the additive property are provided in Section 9.3. Some cases where the additive

property is less accurate are also examined in Section 9.4. We summarize this chapter

in Section 9.5.

9.2 Qualitative Demonstration of the Additive Prop-

erty

We use a 30-machine 29-buffer line to illustrate the additive property in long line

optimization. In particular, we start with a base line that contains 30 identical

machines and 29 identical buffers (in terms of the buffer space cost and average

inventory cost). The optimal buffer allocation that maximizes the profit of the base

line is first determined by the algorithm presented in Chapter 4. Then, we vary the

parameters of a set of machines and show the additive property.

9.2.1 The Base Line - a 30-Machine Line with Identical Ma-

chines and Identical Buffers

In the base line, the parameters of Machine Mi are r; = .1 and pi = .01, i = 1,--- ,30.

Therefore, the isolated production rate of Mi is P = .909. The buffer space cost coef-

ficient and average inventory cost coefficient of Buffer Bi are bi = ci = $1/part/time

unit, i = 1, ... , 29. The revenue coefficient A = $15,000/part and the target pro-

duction rate is .88 parts per time unit. For convenience in the discussion about the

additive property in the remaining of this chapter, we let the base line be called

line L*, and the optimal buffer distribution for the base line L* be called N*. N* is

illustrated in Figure 9-1.

In what follows, we study several cases by replacing machines of the base line L*

with local bottleneck and/or local anti-bottleneck machines. A machine Mi is called

an anti-bottleneck machine if its isolated production rate P is higher than those orig-

inal machines in the base line whose isolated production rate is .909. Similarly, Mi

is called a local anti-bottleneck machine if its isolated production rate is higher than
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Figure 9-1: The optimal buffer allocation for the base line

those machines in its neighborhood. For simplicity, we refer to local bottleneck ma-

chines and local anti-bottleneck machines as bottleneck machines and anti-bottleneck

machines, respectively, for the rest of this chapter. The new line with Machines Mi.,

Mh2 ,- , Mi,, being replaced is called L(i1, i2 ,- , in). These newly replaced machines

are called cause machines. The optimal buffer distribution of line L(ii, 2 , - - in) is

denoted by N(ii, i2 , - - - , in). For instance, if Machines M5 and M25 of the base line are

replaced by other machines, then the new line is called L(5, 25) and its optimal buffer

distribution is N(5, 25). Moreover, we define D(ii, i2 , - - - , in) = N(ii, i2 , ... ,in)-N*,

the difference between the optimal buffer distribution for L(ii, i2 , - , in) and the op-

timal buffer distribution for the base line L*.

9.2.2 Case 1: Two Bottleneck Machines

In this section, we consider the first case where two machines of L* are replaced

by two bottleneck machines. In particular, we choose Machines M5 and M 25 to

be two bottleneck machines (cause machines) with parameters r5 = r25 = .08 and

P5 = P25 = .01. Therefore, their isolated production rates are P5 = P25 = .889. Other

machines as well as buffer costs remain unchanged. The line is called L(5,25) and

its optimal buffer distribution is N(5, 25) and D(5, 25) = N(5, 25) - N*. On the

other hand, instead of considering two bottlenecks, we consider only one bottleneck

machine at a time and optimize L(5) and L(25) separately. Let D(5) = N(5) - N*

and D(25) = N(25) - N* where N(5) is the optimal buffer distribution for the line
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with only Machine M5 being the bottleneck machine, and N(25) is the optimal buffer

distribution for the line with only Machine M25 being the bottleneck machine. We

display D(5) and D(25) in Figure 9-2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

buffer

Figure 9-2: D(5) and D(25), Case 1

It can be seen from Figure 9-2 that D(5) looks like a pulse centered at Buffer B5 ,

while D(25) looks like a pulse centered at Buffer B25. More importantly, D(5) shows

that the bottleneck machine M5 has no observable impact on Buffer B 10 to Buffer

B 29 , since the components of these buffers in D(5) are almost 0. Similarly, D(25)

shows that the bottleneck machine M25 has no observable impact on Buffer B 1 to

Buffer B 20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

Figure 9-3: D(5, 25) and D(5) + D(25), Case 1

Now, we compare D(5, 25)

reminder, D(5, 25) = N(5,25)

and D(5) + D(25). This is shown in Figure 9-3. As a

- N*. It is the effect brought to N* by the two bot-
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tleneck machines M5 and M25 together. It can be seen from Figure 9-3 that D(5, 25)

is approximately equal to D(5) + D(25). This is because, according to the observa-

tion made from Figure 9-2, the impacts of bottleneck machines M5 and M25 on the

optimal buffer distribution N* of the base line L* are approximately independent,

and therefore their effects are approximately additive. In other words, optimizing

line L(5, 25) with bottleneck machines M5 and M 25 is approximately equivalent to

optimizing L(5) and L(25) separately and adding their effects. This explains why

D(5, 25) r D(5) + D(25). We refer to the fact D(5, 25) - D(5) + D(25) as the ad-

ditive property in long line optimization. The argument above can be also expressed

with mathematical notations.

N(5, 25) N(5) + D(25)

= N(5) + N(25) - N*

= (N(5) - N*) + (N(25) - N*) + N*

- D(5) + D(25) + N*.

Therefore,

N(5, 25) D(5) + D(25) + N*.

N* + D(5, 25) D(5) + D(25) + N*.

D(5,25) D(5) + D(25).

9.2.3 Case 2: Two Anti-bottleneck Machines

In Case 2, we consider an opposite situation from Case 1. In particular, M5 and M2 5

in the base line L* are replaced by two anti-bottleneck machines with parameters

r5= .13, r2 5 = .12, and p5 = P25 = .01. Therefore, their isolated production rates are

P5 = .929 and P25 = .923. We study D(5, 25) and D(5) + D(25) as before. Figure
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9-4 shows D(5) and D(25). Note that these are inverse pulses centered at Buffers B 5

and B 25, respectively. This is because in this case these two cause machines are anti-

bottleneck machines, and therefore their corresponding adjacent buffers are reduced

due to smaller variabilities of the anti-bottleneck machines.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2D 21 22 23 24 25 26 27 28 29
buffer

Figure 9-4: D(5) and D(25), Case 2

It can be seen from Figure 9-5 that D(5, 25) ~ D(5) + D(25). As before, this

result indicates that the effect of the anti-bottleneck machine M 5 is approximately

independent of the effect of the anti-bottleneck machine M 25 on N*. Therefore, the

two effects are approximately additive.

10
D(5,25) -e-

5 D(5) + D(25) -+--

-5

-10

-15

-20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

buffer

Figure 9-5: D(5,25) and D(5) + D(25), Case 2
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9.2.4 Case 3: One Bottleneck Machine and One Anti-bottleneck

Machine

In Case 3 we modify the base line L* with a bottleneck machine M5 and an anti-

bottleneck machine M 25 . Their parameters are r5 = .08, r 25 = .12, and p5 = P25 = .01.

Thus, P5 = .889 and P25 = .923. Other machines as well as buffer costs remain

unchanged. We study D(5,25) and D(5) + D(25) as before. Figure 9-6 shows D(5)

and D(25). D(5) looks like a pulse centered at Buffer B5 while D(25) looks like an

inverse pulse centered at Buffer B25.

80
70 - D(5) -x-

60 - D(25) ---

S50-

40 -

30 -

20 -

10 -
Off

-10 -

-20 -

-30 ' ' ' ' ' ' ' '
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 1 7 18 19 20 21 22 2324 25 26 2728 29

buffer

Figure 9-6: D(5) and D(25), Case 3

Figure 9-7 shows that D(5,25) ~ D(5) + D(25). This result indicates that the

effect of the bottleneck machine M5 is approximately independent of the effect of the

anti-bottleneck machine M 25. Therefore, the two effects are approximately additive.

9.2.5 More General Cases

The three cases mentioned in Sections 9.2.2, 9.2.3, and 9.2.4 are three basic variations

of the base line L* and therefore three basic situations from which we observe the

additive property in long line optimization. In this section, we study more general

cases that are derived from these three basic situations. Specifically, we study the

following two questions:

1. Whether the additive property holds if we reduce the distance between the two
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buffer

Figure 9-7: D(5, 25) and D(5) + D(25), Case 3

cause machines;

2. Whether the additive property holds if there are more than two cause machines.

1. The effect of the distance between the two cause machines

In the three basic situations, we observe that the effect of M5 and the effect of M2 5

on the optimal buffer distribution of the base line are approximately independent

and additive. This is because the cluster of buffers affected by M5 and the cluster of

buffers affected by M25 do not overlap. The distance between the two cause machines

(M5 and M 2 5) are 19 (in terms of the number of machines between them). However,

as we reduce the distance between the two cause machine, the two clusters of affected

buffers move towards each other. If the two cause machines are close enough, part

of the two clusters may overlap. We are interested in whether the additive property

still holds as we reduce the distance between the two cause machines. We describe

some experiments below.

Again, we start with two bottleneck machines. In particular, we first let Machines

M5 and M25 be the two cause machines and then move the two cause machines towards

each other. As a result, the four lines considered are L(5, 25), L(8, 23), L(11, 20), and

L(14, 17). As the two cause machines move closer, the two clusters of affected buffers

move towards each other as well. This can be seen from Figure 9-8, which shows the

individual effect of each cause machine. When the two cause machines are M14 and
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M 17, the two clusters overlap partially. The additive property in these four lines are

demonstrated in Figure 9-9. Even in L(14,17) where the two clusters overlap, the

additive property still holds as D(14, 17) ~ D(14) + D(17).

0 D(5) -4-

D(25) -B--

D-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

(a) Machines M5 and M25 are bottleneck machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
buffer

(b) Machines M8 and M23 are bottleneck machines

24 25 26 27 28 29

0
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

(c) Machines M 11 and M20 are bottleneck machines

0
0 D(14) -X--
0 D(17) -a-
0
0
0
0
0 -
0a i i I I I1 I I I I1i I I i I T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23
buffer

(d) Machines M14 and M1 7 are bottleneck machines

24 25 26 27 28 29

Individual effect of each cause machine, two bottleneck machines, Exam-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2D 21 22 23 24 25 26 27 28 29
buffer

(a) Machines M5 and M25 are bottleneck machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

buffer

(b) Machines MA8 and M23 are bottleneck machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

buffer

(c) Machines Mn1 and M 20 are bottleneck machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2D 21 22 23 24 25 26 27 28 29

buffer
(d) Machines MA14 and MA1 are bottleneck machines

Figure 9-9: Effect of the distance between the two cause machines, two bottleneck
machines, Example 1
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Next, we consider another example that has two different bottleneck machines.

The repair probabilities of the two bottleneck machines are .08 and .09, respectively.

The four lines being considered are still L(5, 25), L(8,23), L(11,20), and L(14,17).

The individual effect of each bottleneck machine in these four lines and the additive

property in these four lines are illustrated in Figure 9-10 and Figure 9-11, respectively.

The additive property exits in all four lines.

U
0 D(5)
0 D(25) :
0
0
0
0
0

o .oco .. .lu .* .u .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

(a) Machines M5 and M2 5 are bottleneck machines

0
D(8) ::

0 D(23) E-
0-
0-
0-

01
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

(b) Machines M8 and M2 3 are bottleneck machines
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D(20) a
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0D
0D
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202 223 24 25 26 27 28 29
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(c) Machines M11 and M20 are bottleneck machines

0-
0 -(4

0 -(7
10-
.0

0'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202 223 24 25 26 27 28 29
buffer

(d) Machines M14 and M17 are bottleneck Machines

Figure 9-10: Individual effect of each cause machine, two bottleneck machines, Ex-
ample 2
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(a) Machines M5 and M2 5 are bottleneck machines
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

(b) Machines Mg and M23 are bottleneck machines

10
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;0 - D(11) + D(20) X

1 2 3 4 5 6 7 8 9 1011 1213141516 17 18 19 21 22 232425262728

buffer
(c) Machines M11 and M20 are bottleneck machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

buffer
(d) Machines M14 and Mr are bottleneck machines

Figure 9-11: Effect of the distance between the two cause machines, two bottleneck
machines, Example 2
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Next, we study an example of Case 2 where two machines in the base line L* are

replaced by two anti-bottleneck machines. The repair probabilities of the two anti-

bottleneck machines are .13 and .12, respectively. The four lines being considered

are again L(5,25),L(8,23),L(11,20), and L(14,17). The individual effect of each

bottleneck machine in these four lines and the additive property in these four lines

are illustrated in Figure 9-12 and Figure 9-13, respectively. The additive property

exits in all four lines.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 23 21 22 23 24 25 26 27 28 29
buffer

(a) Machines M and M25 are anti-bottleneck machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

(b) Machines M8 and M2 3 are anti-bottleneck machines

5
01
5
0
5
0 [ D(11)
5 D(20) -3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1923 21 22 23 24 25 26 27 28 29
buffer

(c) Machines Mil and M20 are anti-bottleneck machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 23 21 22 23 24 25 26 27 28 29
buffer

(d) Machines M14 and M17 are anti-bottleneck machines

Figure 9-12: Individual effect of each cause machine, two anti-bottleneck machines
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(a) Machines M5 and M25 are anti-bottleneck machines
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(c) Machines M, and M20 are anti-bottleneck machines
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(d) Machines M 14 and M1 7 are anti-bottleneck machines

Figure 9-13: Effect of the distance between the two cause machines, two anti-
bottleneck machines
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Finally, we consider an example of Case 3 where two machines in the base line L*

are replaced by one bottleneck machine and one anti-bottleneck machine. The repair

probabilities of the two machines are .08 and .12, respectively. The four lines being

considered are L(5, 25), L(8, 23), L(11, 20) and L(14, 17). The individual effect of each

bottleneck machine in these four lines and the additive property in these four lines

are illustrated in Figures 9-14 and 9-15, respectively. The additive property exits in

all four lines.

The four examples above indicate that the additive property is almost insensitive

to the distance between the two cause machines. However, we have to point out

clearly that, when two cause machines are close enough, the additive property is less

accurate. We show this in Section 9.4.

2. Effect of the number of cause machines

In this section, we discuss whether the additive property holds if there are more

than two cause machines. Before running any experiments, we expect that the addi-

tive property holds, since the additive property is almost insensitive to the distance

between two adjacent cause machines. Therefore, as long as any two adjacent cause

machines are not too close together, we expect the additive property to hold regardless

of the number of cause machines. The set of examples below verify our expectation.

We first modify the base line L* with three bottleneck machines Mi,, Mi2 and Mi .

Four sets of Mi,, Mi2 and Mi, are considered. The additive property holds in all these

four lines and it is shown in Figure 9-16.

In the second example, we consider five cause machines spaced evenly in the 30-

machine 29-buffer line. In other words, Machines M5, Mio, M15, M 20 , and M25 in

L* are first replaced by five bottleneck machines whose repair probabilities are .09,

and then replaced by five anti-bottleneck machines whose repair probabilities are

.12. These results are shown in Figure 9-17, which depicts that D(5,10, 15, 20, 15) ~

D(5) +D(10) +D(15) +D(20) +D(25) in both scenarios. Consequently, the additive

property still holds.

In the third example, we consider seven cause machines spaced evenly. Machines
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(a) Machine M5 is the bottleneck; Machine M25 is the anti-bottleneck
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(b) Machine M 8 is the bottleneck; Machine M23 is the anti-bottleneck
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(c) Machine MnI is the bottleneck; Machine M20 is the anti-bottleneck
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(d) Machine M,, is the bottleneck; Machine Mr, is the anti-bottleneck

Figure 9-14: Individual effect of each cause machine, one bottleneck machine and one
anti-bottleneck machine

M3, M7 , M11 , M15 , M19 , M2 3 , and M27 in L* are first replaced by seven bottleneck ma-

chines whose repair probabilities are .09, and then replaced by seven anti-bottleneck

machines whose repair probabilities are .12. These results are shown in Figure 9-18,

which depicts that D(3, 7, 11,15, 19, 23, 27) ~ D(3)+D(7)+D(11)+D(15)+D(19)+

D(23) + D(27) in both scenarios. Consequently, the additive property holds.

In the fourth example, we consider nine cause machines spaced evenly. Machines
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(a) Machine M5 is the bottleneck; Machine M 25 is the anti-bottleneck

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2D 21 22 23 24 25 26 27 28 29
buffer

(b) Machine M8 is the bottleneck; Machine M 23 is the anti-bottleneck
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buffer

(c) Machine M, is the bottleneck; Machine M 20 is the anti-bottleneck

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
buffer

(d) Machine M14 is the bottleneck; Machine M 17 is the anti-bottleneck

Figure 9-15: Effect of the distance between the two cause machines, one bottleneck
machine and one anti-bottleneck machine

M3, M6 , M9 , M12 , M15 , M18 , M21, M2 4 , and M27 in L* are first replaced by nine

bottleneck machines whose repair probabilities are r3 = .09, r6 = .09, r9 = .085,

r12 = .08, r 15 = .08, r 18 = .08, r2l = .085, r 24 = .09, and r 27 = .09. Then these

nine machines are replaced by another nine anti-bottleneck machines whose repair

probabilities are r3 = .11, r6 = .11, r9 = .12, r 12 = .12, r15 = .13, r18 = .12, r 21 = .12,

r24 = .11, and r 27 = .11. The results are shown in Figure 9-19, which demonstrates
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(b) Machines M8 ,M1 5 , and M23 are bottleneck machines
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(c) Machines Mo, M1 5 , and M21 are bottleneck machines
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buffer

(d) Machines M12 , M1 5 , and MIS are bottleneck machines

Figure 9-16: Effect of the number of cause machines, Example 1

that D(3, 6, 9, 12, 15, 18, 21, 24, 27) ~ D(3) + D(6) + D(9) + D(12) + D(15) + D(18) +

D(21) + D(24) + D(27) in both scenarios. Thus, the additive property holds.

Finally, in the fifth example we consider nine cause machines again. However,

some of them are bottleneck machines while the others are anti-bottleneck machines.

The repair probabilities of these cause machines are r3 = .12, r6 = .09, r9 = .12,

r12 = .09, r15 = .12, r 18 = .09, r 21 = .12, r 24 = .09, and r 2 7 = .12. The result

is shown in Figure 9-20, which demonstrates that D(3,6,9, 12, 15, 18, 21, 24, 27) ~

384

+

+

+



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2D 21 22 23 24 25 26 27 28 29
buffer

(a) Machines M5 , MIO, M1 5 , M 20 , and M2 5 are bottleneck machines
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(b) Machines M5 , Mio, M 15 , M2 0 , and M25 are anti-bottleneck machines

Figure 9-17: Effect of the number of cause machines, Example 2
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(a) Machines MS, M7, Mu, M1 5, M1 9 , M23 , and M27 are bottleneck machines
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(b) Machines M 5 , M7 , M1 1 , M 15 , M 19, M23, and M27 are anti-bottleneck machines

Figure 9-18: Effect of the number of cause machines, Example 3
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(b) Machines M5 , M6 , M9 , M12 , M1 5 , M18, M21, M24 , and M27 are anti-bottleneck machines

Figure 9-19: Effect of the number of cause machines, Example 4
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Figure 9-20: Effect of the number of cause machines, Example 5

D(3) + D(6) + D(9) + D(12) + D(15) + D(18) + D(21) + D(24) + D(27). Thus, the

additive property holds.

These five examples above demonstrate that the additive property holds when

there are more than two cause machines. As long as the effects on the optimal buffer
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distribution of the base line of any two cause machines are approximately independent,

the additive property holds regardless of the number of cause machines in the line.

9.3 Explanation

In this section, we explain intuitively why the additive property holds. To show this,

we first modify the base line L* by replacing a machine by a bottleneck machine.

Consider line L(11) where Machine Mn in the base line is replaced by a bottleneck

machine whose repair probability is .08. Then we compare N* and N(11) in Figure

9-21.
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Figure 9-21: Explanation of the additive property, bottleneck machines

Figure 9-21 indicates that the optimal sizes of Buffers Bio and Bu1 in L(11) are

considerably larger than those in L*. This is because in L(11), M11 is the bottle-

neck machine whose isolated production rate (Pu = .889) is smaller than any other

machines in the line (P = .909, Vi # 11). The bottleneck machine exhibits larger

variability than any other machines. This large variability requires B10 and B11 to be

large, and therefore they can absorb the variability and guarantee the performance

of the line in terms of achieving the target production rate. Note that Buffers B9

and B 12 of L(11) are also enlarged due to the large variability of Mu. However, they

are much smaller than B 10 and B11, because B 10 and B 11 have absorbed most of the

variability. In addition, the effect of Mn on B8 and B 13 is observable but very small.

Finally, M1 has no observable impact on other buffers in L(11). This is because the

small set of buffers affected by M11 have absorbed all the variability, and they prevent
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M11 from affecting buffers further upstream or downstream. Therefore, only a small

cluster of buffers adjacent to the cause bottleneck machine M1 are affected. If we

compute D(11) by subtracting N* from N(11), then it looks like a pulse centered at

Bul.

Next, we modify the base line L* by replacing a machine by an anti-bottleneck

machine. Consider line L(11) again where M11 in the base line is replaced by an

anti-bottleneck machine whose repair probability is .13. Then we compare N* and

N(11) in Figure 9-22.
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Figure 9-22: Explanation of the additive property, anti-bottleneck machines

Figure 9-22 shows that the optimal sizes of B10 and B11 in L(11) are considerably

smaller than those in L*. This is because in L(11), M11 is the anti-bottleneck machine

whose isolated production rate (P11 = .929) is larger than any other machines (P =

.909, Vi =,4 11). The anti-bottleneck machine exhibits lower variability (and higher

reliability) than any other machines. The high reliability of Mn allows B 10 and B11

to be small, since there is less variability for them to absorb in order to achieve the

target production rate. Note that B9 and B12 are also pulled down due to the large

reliability of M1. However, B9 and B12 are larger than B10 and B11, because B10

and B 11 have absorbed most of the reliability. In addition, the effect of M11 on B8

and B 13 is observable but very small. Finally, M11 has no observable impact on other

buffers. The few buffers affected by M11 have absorbed all the reliability of M11 ,

and prevent it from affecting buffers further upstream or downstream. Therefore, as

before, only a small cluster of buffers adjacent to the anti-bottleneck machine are

affected.' If we compute D(11) by subtracting N* from N(11), then it looks like a
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inverse pulse centered at B11 .

According to this analysis, we can see that a single bottleneck machine or a single

anti-bottleneck machine has an observable affect on only a small cluster of buffers

adjacent to it. The optimal solution of the line with a bottleneck machine can be

found by adding a pulse centered at the buffer downstream of the cause machine to

the optimal solution of the base line. On the other hand, the optimal solution of

the line with an anti-bottleneck machine can be found by adding an inverse pulse

centered at the buffer downstream of the cause machine to the optimal solution of

the base line.

If the line has more than one cause machine (and each of them can be either a

bottleneck or anti-bottleneck machine), as long as the distance between any two of

them is not too small, their effects on the optimal buffer distribution are approxi-

mately independent and additive. This explains why the additive property holds in

long line optimization. In summary, the additive property in long line optimization

says that the effect of multiple cause machines on the optimal buffer distribution is

approximately equivalent to the sum of the individual effects of each cause machine,

as long as these machines are not too close together.

9.4 Extreme Cases

In the previous sections, we have shown that the additive property is almost insensitive

to the distance between any two cause machines and therefore it holds in general.

However, we do observe some cases where the additive property is less accurate. This

is because when any two cause machines are too close together, there may exist an

interaction between their effects on the optimal buffer distribution. However, the

additive property fails to account for such an interaction. We explain this in this

section.

Consider the first scenario where Machines M14 and M16 in the base line L* are

replaced by two bottleneck machines whose repair probabilities are .08. In the second

scenario, we replace M15 and M16 in L* by two bottleneck machines. The additive
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(b) Machines Mic and M2r are anti-bottleneck machines

Figure 9-23: Extreme case of the additive property, Example 1

property is less accurate in both scenarios (see Figure 9-23). We use the second

scenario as an example to discuss this.

Figure 9-23(b) implies that the true optimal size of B 15 ,16) (N* +

D(15, 16)) is larger than the value (N* + D(15) + D(16)) derived from the addi-

tive property. In this case, Mis and Mi6 are bottleneck machines, and Bis5 is the

buffer between them. Both Mis and Mis require Bi5 to be large so that it absorbs

the large variabilities of both machines. The result implies that there is a positive in-

teraction between the effects of the two machines on the optimal size of Bi5. Such an

interaction can be explained as follows. Recall that both M15 and M16 are bottleneck

machines. If M15 fails for a long time, B15 will be empty and Mi6 will be starved. On

the other hand, if Mis fails for a long time, B15 will be full and M15 will be blocked.

In other words, since both machines are bottleneck machines, they have greater po-

tential to prevent each other from producing parts by either starvation or blockage

if the buffer between them is not big enough. Thus, to achieve the required produc-
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tion rate, the size of B15 needs to be large enough to absorb the variabilities of both

M15 and M 16 as well as to further decouple the two machines from impacting each

other. However, the additive property does not account for the interaction between

the effects of the two machines. Therefore, we observe a large discrepancy between

D(15, 16) and D(15) + D(16). The incorrect optimal buffer distribution derived from

the additive property overestimates the production rate of the line.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

buffer

Figure 9-24: Extreme case of the additive property, Example 2

Similar results can be observed when there are two anti-bottleneck machines

placed next to each other. Consider the case where Machines M15 and M 16 in the base

line L* are replaced by two anti-bottleneck machines whose repair probabilities are

.13 and .12, respectively. In this case, the additive property is less accurate as well,

which is illustrated in Figure 9-24. As before, the incorrect optimal buffer distribution

derived from the additive property overestimates the throughput of the line.

*+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29

huffer

Figure 9-25: Extreme case of the additive property, Example 3
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Next, we consider a case where Machines M 14 , M15 , and M 16 in the base line

L* are replaced by three bottleneck machines. Figure 9-25 shows that the additive

property is less accurate in Buffers B 1 4 and B 15.

Finally, we consider a case where machines are randomly generated. In particular,

the failure probabilities for all 30 machines are still .01, while the repair probabilities

of the 30 machines are illustrated in Figure 9-26. We still use the same L* as the base

line and change the repair probability of one machine at a time. In other words, we

have 30 lines derived from L* where ri is changed in L(i) while the parameters of the

other machines remain unchanged. Eventually, we change the ri's for all 30 machines

and derive line L(1, 2, .- , 30).

We compare D(1, 2,- ,30) and D(1)+D(2)+- - -+D(30), where D(1,... , 30) and

D(i) are computed by N(1, ... , 30) - N* and N(i) - N*, Vi = 1, - - -, 30, respectively.

The comparison between D(1, 2, - - - , 30) and D(1) + D(2) + - - - + D(30) is shown in

Figure 9-27. In addition, The comparison between N(1, 2, - , 30) and N* + D(1) +

D(2) + -.- + D(30) is shown in Figure 9-28.

0.16

0.15 -

0.14 -

0.13 -

i 0.12 -

0.111

0.10 -

0.09 -

0.08 I 1 _ _ I I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

machine

Figure 9-26: Repair probabilities of the 30 machines

Figures 9-27 and 9-28 show that when there are a pair of bottleneck machines or

anti-bottleneck machines next to each other, the buffer distribution from the additive

property is less accurate. For instance, note that Machines M21, M2 2, M2 3, M2 4,

and M 25 are all anti-bottleneck machines. The optimal buffer distribution in Buffers

B 2 2 , B 23 , and B24 derived from the additive property diverges away from the correct

distribution (see Figure 9-28). However, the middle ranges of the two curve are very

close to each other.
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Figure 9-27: Extreme case of the additive property, Example 4
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Figure 9-28: Comparison of buffer distributions, Extreme case example 4

The four examples presented in this section show the cases where the additive

property is less accurate. If there are a couple of bottleneck or anti-bottleneck ma-

chines placed close enough to each other, the additive property may not account for

the interaction among those machines and therefore it is less accurate.

9.5 Summary

In this chapter, we study an additive property in long line optimization. The property

is that the effect of a set of local bottlenecks on the optimal buffer distribution is

approximately the same as the sum of the effects of each local bottleneck by itself.

A similar property is observed with a mixture of local bottlenecks and local anti-
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bottlenecks. Both heuristic explanations and numerical examples are provided to

demonstrate the additive property. However, when there is an interaction between

the effects of two cause machines on the optimal buffer distribution, the additive

property may is less accurate as it does not account for such an interaction.

The additive property in long line optimization is an important observation, es-

pecially when it is considered together with the segmentation method for long line

optimization (Chapter 8). Instead of optimizing the original long line, the segmenta-

tion method divides it into several short lines, optimizes these short lines separately,

and combines the optimal buffer distributions to find an approximately optimal buffer

distribution of the original line. Suppose a line is already set up and its buffer allo-

cation is already optimized accordingly. Now if a certain machine is replaced with

a different one, instead of optimizing the entire line with the new machine, we can

optimize a set of segmented short lines according to the segmentation method. In

addition, because of the additive property, we know in advance that the new machine

will not change the optimal sizes of the buffers that are not adjacent to it. Therefore,

we can only optimize the specific segmented line that contains the new machine. Con-

sequently, because of the segmentation method and the additive property, instead of

re-optimizing the original long line with the new machine, we could simply optimize

a much shorter line that contains the new machine. This will dramatically reduce the

computer effort and time, while assuring the optimization accuracy.

Given the potential importance of the additive property, future research should be

devoted to the formal analysis of this phenomenon and to its application to efficient

line design.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

With the goal of developing efficient buffer design algorithms for production system

profit maximization, this thesis studies three major topics about production lines and

closed-loop systems, as well as investigates methods and properties that facilitate long

line optimization.

We define the profit of a production line as the revenue associated with the pro-

duction rate minus the buffer space cost and the average inventory holding cost. In

addition, in our problem, we assume that manufacturing processes and machines have

already been chosen and therefore our only decision variables are buffer sizes (for pro-

duction lines) 1 . In this thesis, we present an accurate, fast, and reliable algorithm

for maximizing profits through buffer space optimization for production lines, and

extend the algorithm to closed-loop systems and production lines with an addition

maximum part waiting time constraint. The major difficulty in this research is the

presence of nonlinear components in both the objective function and the constraint

of the optimization problem, because the production rate as well as average inven-

tory levels are nonlinear functions of buffer sizes. A nonlinear programming approach

is adopted to solve the optimization problem. Numerical experiments are provided

to show the accuracy and efficiency of the proposed algorithms for the three topics.

'For closed-loop systems, in addition to buffer sizes, the loop invariant is also the decision variable.
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Finally, a segmentation method and an additive property of line optimization are

analyzed. They enable us to optimize long lines fast and accurately.

The key contributions of this thesis and their importance are highlighted here:

9 A discussion about the qualitative properties of the production rate

P(N).

The continuity, monotonicity, and concavity of P(N) are studied. The conti-

nuity enables us to treat P(N) as a continuous function of N and facilitates

the application of a gradient method in the profit maximization algorithm. In

addition, the monotonicity and concavity assumption of P(N) are also used in

deriving the optimization algorithm.

9 A discussion about the behavior of the average buffer levels in mul-

tiple stage tandem lines as functions of the buffer sizes.

We start by focusing on three-machine two-buffer lines, for which we break up

the line at each buffer into a single machine and a two-machine, one buffer

line and we compare production rates of each. This leads to the observation

that there are five possible types of three-machine lines, each with a specific

qualitative behavior. For each type, the average inventories of Buffers B 1 and

B 2 and the profit of the line are studied as functions of the sizes of the two

buffers. The results show that for some types, the average inventories and

the profit of the line are neither convex nor concave functions of buffer sizes.

However, for each feasible type, we observe that no matter whether the profit

of the line is a concave/convex function of buffer sizes or not, there is a unique

global optimal solution of buffer allocation that maximizes the profit. This is

consistent with Schor's argument on the uniqueness of the maximum of J(N)

(Schor 1995 and Gershwin and Schor 2000). Therefore, a gradient method is

appropriate to solve the unconstrained profit maximization problem without

the production rate constraint.

9 An efficient buffer design algorithm for production line profit maxi-

mization subject to a production rate constraint.
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An effective algorithm for maximizing profits through buffer size optimization

for production lines is developed. Both buffer space cost and average inven-

tory cost with distinct cost coefficients for different buffers are considered, as

well as a nonlinear production rate constraint. To solve the problem, a cor-

responding unconstrained problem is introduced and a nonlinear programming

approach is adopted. The algorithm is proved theoretically by the KKT con-

ditions of nonlinear programming. The proposed algorithm are applied to the

three production line models (i.e., the deterministic single failure mode line

model of Gershwin 1994, the deterministic multiple failure mode model of Tolio

and Matta 1998, and the continuous multiple failure mode model of Levantesi

et al. 2003). To study the accuracy and efficiency of the algorithm, we pro-

vide numerical experiments on randomly generated lines and compare it with

many existing algorithms for solving a special case (i.e., Problem (4.31)) of the

constrained problem.

e Two modifications that improve the accuracy of the existing evalu-

ation algorithm for closed-loop systems and its extension to single

open-loop systems.

A closed-loop production system is a system in which a constant amount of

material flows through a single fixed cycle of work stations and storage buffers.

While an evaluation method already exists (Gershwin and Werner 2007) which

is accurate for Buzacott systems, it produces results that are discontinuous as

functions of certain key design parameters (the Batman effect). These disconti-

nuities are detrimental to the performance of optimization methods. We present

two modifications that improve the accuracy of this method, which is based on

the decomposition of such systems. Analytical solutions for the evaluation of

two new special types of two-machine one-buffer building blocks from the de-

composition are developed. Numerical experiments are provided to show the

improvement of the evaluation accuracy as compared with the existing algo-

rithm. The Batman effect is eliminated with these modifications.
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" Extension of the profit maximization algorithm for production lines

to closed-loop systems.

We extend the profit maximization algorithm developed for lines to closed-loop

systems. Given the fact that a loop system may have multiple profit maxima (as

shown in Chapter 6), the scope of the algorithm is addressed. The performance

of the algorithm is shown by studying a set of three-machine and four-machine

closed-loop systems. Numerical experiments demonstrate the accuracy of the

proposed algorithm.

" An analytical formulation of the part waiting time distribution in a

Buzacott two-machine line and the production line profit maximiza-

tion algorithm with the additional part waiting time constraint.

An analytical formulation for the part waiting time distribution in a Buzacott

two-machine one-buffer transfer line is presented. The numerical solution is

tested with Little's Law (Little 1961). Numerical experiments are provided

to illustrate the accuracy of the solution as it is compared with simulation.

This distribution and the decomposition approach allow us to approximately

(yet accurately) compute the part waiting time distribution in the given buffer

of a long line. The profit maximization algorithm developed in Chapter 4 is

extended to cover the additional maximum part waiting time constraint.

" A segmentation method for long line optimization.

A segmentation method for long line optimization is developed. Instead of op-

timizing the original long line, the segmentation method divides it into several

short lines, optimizes these short lines separately, and combines the optimal

buffer distributions to find an approximately optimal buffer distribution of the

original line. This method reduces the computer time for long line optimiza-

tion dramatically. Both heuristic explanations and numerical experiments are

provided to show the accuracy and speed of the method.

" A discussion about an additive property in long line optimization.
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The additive property we observe is that the effect of a set of local bottlenecks

on the optimal buffer distribution (in which profit is maximized subject to a

production rate constraint) is approximately the same as the sum of the effects of

each local bottleneck by itself. A similar property is observed with a mixture of

bottlenecks and "anti-bottlenecks". Both heuristic explanations and numerical

experiments are provided to demonstrate the property. Some limitations on the

additive property are also examined.

The additive property in long line optimization is an important observation, espe-

cially when it is applied together with the segmentation method. Suppose that a line

is already set up and its buffer allocation is already optimized accordingly. Now if a

machine is replaced with a different one, instead of optimizing the entire line with the

new machine (which can be time-consuming), we can just optimize a small portion

of the line that contains the new machine according to the segmentation method. In

addition, because of the additive property, we know in advance that the new machine

will not change the optimal sizes of the buffers that are far enough from it. Therefore,

with the segmentation method and the additive property, we can dramatically reduce

the computer effort and time for the optimization of long lines.

10.2 Future Work

There are several research directions to which we can extend our research and algo-

rithms in the future.

1. Tree structured Assembly/Disassembly (A/D) systems.

Tree structured A/D systems are extensions of lines in which assembly and

disassembly take place. The first extension of the profit maximization algorithm

could be to acyclic A/D systems.

2. Systems with machine and/or buffer location selection.

In the design of a production line, each operation has various machine choices.

Each machine has its own distinct parameters and cost. Different machine
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combinations lead to different production line performance and cost. Nahas

et al. (2009) develop a method to select machines and buffers in unreliable

series-parallel production lines to maximize the production rate subject to a

total cost constraint. We want to decide which machine to choose for each

operation as we select buffers to maximize the profit for the line. In addition,

we can also study the locations of buffers on the performance of the production

lines.

3. Larger loop systems.

We have shown in Chapter 5 that with the two modifications, we reduce the

Batman effect significantly. However, there are still improvement opportunities

for loop evaluation since small bumps may still appear in the production line

curve and they prevent the algorithm from finding the optimal solution. One

possible approach to further smooth the production rate curve is discussed here,

with the help of Figure 10-1.

Bj

3

M B1  B2

Figure 10-1: Part traveling time in a closed-loop system

Suppose that Machine Mi fails in the closed-loop system, and it causes B to be

empty. For the building block that contains B in the decomposition approach

of loop evaluation, the upstream machine M'(Bj) would fail to a remote failure

mode that corresponds to the actual failure mode of Mi that leads to an empty

Bj. In the evaluation algorithm of Gershwin and Werner (2007), M"(Bj) is

repaired once the actual failure of Mi is repaired with probability ri, and it

will start operation and add a part into B immediately. In other words, the
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repair probability of that remote failure mode of Mu(Bj) is ri. However, the

reality is that even after Mi is repaired, the first part produced by Mi needs

to travel through Buffers B 1, B 2, and B3 until it reaches Bj. In other words,

B3 needs to wait for at least three time units (provided no failures occur in

the machines between B 1 and Bj) until a part is added to it. Therefore, the

evaluation algorithm overestimates the production rate of the loop since it does

not consider the part traveling time. This is indicated from the numerical

experiments of Chapter 5, where the evaluation results of the analytical solution

(with the two modifications) are always higher than those from simulation. As

a result, if we want to further improve the accuracy of loop evaluation, ri should

not be used as the repair probability of that remote failure mode of M"(Bj). In

fact, the repair probability is not a geometric distribution, and the correct value

of the repair probability has to be determined in the decomposition approach.

Once we further reduce the bumps, the loop optimization algorithm of Chapter

6 can be applied to larger closed-loop systems and extended to multiple loop

systems.

4. A formulation of the production line profit maximization problem that deals

with the maximum part waiting time directly.

In Chapter 7, we study the production line profit maximization problem sub-

ject to both a production rate constraint and a maximum part waiting time

constraint (i.e., p(T(N) < W;) > 1 - a). However, due to the lack of a closed

form expression of the probability above, we transform the original problem to

a transformed problem and solve it iteratively. The accuracy of this alterna-

tive approach is verified with a surface search method. However, it is desirable

to solve the original problem directly (with or without a closed form of the

probability distribution of part waiting time).

5. Systems with part lead time constraints.

Part lead time is of great interest as it is the time a part spends in the entire

production line. Therefore, it will be valuable to study the total time that a part
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spends in the whole line and to impose such a constraint in the optimization

problem. We expect that the total time distribution is not simply a summation

of the part waiting time distributions in all buffers. There may be correlation

among different waiting times in different buffers. Even if it were a summation,

we would have to deal which convolutions. Some preliminary discussion about

the lead time distribution for the deterministic line model is available in Tan

(2002).

6. Systems with set-up cost for buffers.

This means whenever we decide to establish a buffer between two machines, we

introduce a fixed buffer set-up cost. After the buffer is established, the buffer

space cost will be proportional to its size. So, in this case, buffer space cost will

be 0 if Ni < Nin or ai + b Nj if Ni > Nmin for Buffer B .

7. Systems with quality control.

By taking account of quality control, we assume that machines generate both

good parts and bad parts. Unfortunately, buffers delay the inspection of bad

parts. Consider a two-machine line. Suppose parts are inspected only after the

second machine. So, when the first machine begins to generate bad parts, we

will not know it immediately if there are still some good parts in the buffer.

We will only know that the first machine is generating bad parts after all good

parts in the buffer are processed by the second machine and it begins to process

the first bad part. During that delay, the first machine could have generated

more bad parts. Thus, in this case, buffers bring potential delay to inspection,

which reduces the production rate and the profit of the line. Kim and Gershwin

(2005) point out that in the case of our example above, an increase of buffer

size could either increase or decrease the production rate of good parts for dif-

ferent lines. The quality issue will change the nature of the profit maximization

problem, since the bad quality parts should be considered as cost. Therefore,

it is desirable to study how buffers should be allocated to maximize the profit

of the line associated with good quality parts.
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8. Systems with additional buffer space constraints.

In some cases, we may encounter additional buffer space constraints of the form

EX gKN < h. For instance, consider a production line, in which two buffers,

say Buffers B5 and B6 , are in the clean room. Due to the high cost of buffer

space in the clean room, there is a maximum total space constraint for B 5 and

B 6 as N5 + N6 < C, where C is a constant. This brings additional constraints

to our problem, so we need to make necessary modification to our algorithm so

that it can apply to the new problem.

These extensions are key complements to make production line models more prac-

tical for modeling actual production lines and more general manufacturing systems in

factories. A good understanding of the behavior of the proposed algorithms on those

extensions would be valuable in future production line design.
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Appendix A

The Continuous Variable Version

of the Analytical Solution of the

Deterministic Two-Machine Line of

Gershwin (1994)

The continuous variable version of the solution of the deterministic two-machine line

of Gershwin (1994) is presented in this section. Suppose we have a two-machine line

with parameters ri, pi, r2 , and P2, and the buffer size is N. In the two-machine,

the state of the system is s = (n, ai, a 2) where n (0 < n < N) is the buffer level

and ai (a = 0, 1) is the state of Machine Mi, i = 1, 2. p(n, ai, a2) stands for the

steady-state probability of that state. Gershwin (1994) shows that the steady-state

probability distribution is

p(O, 0, 0) = 0, (A.1)

p(O 0, 1) = CX r2 - rlr2- rP2, (A.2)
r1P2

p(O 1, 0) = 0, (A.3)

p(O1,1) = 0, (A.4)

p(1,0,0) = CX, (A.5)
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p(1, 0, 1)

p(1,1,0)

p( 1, 1, 1)

p(N - 1, 0, 0)

p(N - 1, 0, 1)

p(N - 1, 1, 0)

p(N - 1, 1, 1)

p(N, 0, 0)

p(N, 0, 1)

p(N, 1, 0)

p(N, 1, 1)

p(n, a1, a 2 )

= CXY2,
= 0,

CX T1 + r 2 - r1 r 2 - r 1P2

P2 P1 +P 2 -P1P2 - rIP2
= CXN-1

= 0,

SCXN-lY
1 ,

CXN-1 r1 + r2 - r 1r 2 - p1r 2

P1 p 1 +P2 - P1P2 - p1 r 2

= 0,

= 0,

= CXN-1 r1 + r 2 - r1 r 2 - p1r 2

= 0,

- CXY1
1Y 2

02,2nN - 2; a =0, 1; a2=0,1,

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

where C is a positive normalizing constant and

r 1 + r 2 - r1 r 2 - r1P2

P1 + P2 - P1P2 - P1r 2

r 1 + r2 - r 1r2 - P1 r 2

P1 + P2 - P1P2 - T1P2

X Y2
Y,

(A.18)

(A.19)

(A.20)

For convenience, we define internal states as those states in which 2 < n < N - 2;

while boundary states as those states in which n = 0, 1, N - 1, or N. We further let

PB be the summation of the steady-state probabilities of all boundary states and p,

be the summation of the steady-state probabilities of all internal states. Then,
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PB = l bup(n,arita2)
all boundary states

= Cr + r2 - rlr2 - rIP2 + CX + CXY2 + CX r1 + r2 - rr2 - r1P2
r 1P 2  P2 P1 + P2 - P1P2 - r1P 2

+CXN-1 + CXN-1Y 1 + CX N-1 1 + r2 - r1r2 - p1r2
P PI + P2 - P1P 2 - P1r2

+CXN-1 r1 + r2 - r1r2 - p 1r 2

p1r2
(A.21)

In addition, we calculate p, in the continuous variable version by

Es
all internal states

p(n, ai, a2) =

XN-1 
- X

C (1+ Y1)(1 + Y2)X - 1

C(N - 3)(1 + Y)(1 + Y2)

if X # 1,

if X = 1.
(A.22)

The normalizing constant C can be found by condition PB + PI = 1. A smarter

way to find C is also provided in Section 2.2.1. The production rate of the line can

be calculated by

P(N) = +(1 - pb)
T1 +p1

(A.23)

_ 1  (1 - CXN-1 + r2 - rir2~P12
T1 -+Pi "1 Pr2

where Pb = p(N, 1, 0) is the probability of blocking, and
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r2 + P2 r 1 + p1

C =r2 r,
r 2 + P2 XN-1 r1 + r 2 - r, r 2 - p 1r 2  r1  P1 X r1 + r 2 - r1 r 2 - r1 P2 '

r2 p1 r 2  ri r1 P2

assuming that X # 1. (See the expression of C when X = 1 in Section 2.2.1.)

Finally, let us consider how to calculate the average inventory for the line. We

compute the average inventory for the internal states, denoted by ny, as

= np(n,a1,a 2)

all internal states

X 2X + (N - 1)XN- 2 _XN -x2

C (1+Y 1)(1+Y 2) if X 1,

1
-CN(N - 3)(1+ Y1 )(1 + Y2) if X =1.
2

(A.24)

Then, to calculate the average inventory for the line, we need to consider both

internal states and boundary states whose steady-state probability is non-zero and n

is non-zero. Then, the average inventory of the line is calculated as

:= np(n,a,a 2)
all states

Sp(1, 0, 0) + p(1 0, 1) + p(1, 1, 1) + h,

+(N - 1) (p(N - 1, 0,0)+ p(N - 1,1, 0) + p(N - 1,1,1)) + Np(N,1, 0).

(A.25)

In the implementation of the computer program, the condition X = 1 is replaced

by IX - 11 ; 5, where J is a very small non-zero positive value; while the condition

X 4 1 is replaced by IX - 11 > 6.

408



Appendix B

Proof of the Assertion in Section

4.2.1 for the Case in Which Some

N* - Nmin

We provide the proof of the assertion in Section 4.2.1 for the case in which some

Ni = Nmin. Recall that the assertion states that:

Assertion The constrained problem

J(N1, ... , Nk_1)

k-1 k-1

= A'P(N1 7 ... , Nk1) - bNi - cZi
i=1 i=1

subject to P(N 1, --- , Nki1) > P,

Ni > Nmin,Vi = 1, k - 1

has the same solution for all A' in which the solution of the unconstrained problem

(4.5) has P' < P.

Let B be the set of i such that {ilNi = Nmin}. Hence, Nf = Nmin, Vi E B,

while Ni > Nmin, Vi V B. In this case, those Nf equal to Nmin are on the boundary

of the feasible region of the optimal solution. By condition (4.15), we know that
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= 0,Vi ( B and i # 0. Hence, we simplify the KKT conditions (4.12) to (4.15) to

/ J(N*) \P(N*)
ON1  ON1  0

OJ(N*) OP(N*)
ON 2  (N 2

O- ppe= , (B.1)
iEB

OJ(N*) OP(N*) 0
\ Nk_1 /Nk_1

where
0

ei= 1

0

in which the 1 is in the ith position.

p* ( - P(N*)) = 0, (B.2)

p*(Nmin - Ni*) = 0,Vi = 1, -..-,k. (B.3)

where p > 0, Vi = 0, - - - , k - 1. We first argue that not all Nf, i g B satisfy

aJ(N*)/ONi = 0. This is because if OJ(N*)/ONi = 0 for all Nf, i 5 B and all other

Ni = Nmin, i E B, then the solution of the constrained problem (N*, - - - , Ng_1) is

equivalent to the solution of the unconstrained problem, since it is just constrained

by the buffer size constraint. This is a conflict. Therefore, it is not possible for all

Nf, i V B to satisfy oJ(N*)/ONi = 0. So, there exists some i's for which N2 > Nmin

and aJ(N*)/ON; $ 0. Since NC > Nmin, by condition (B.3), we know p = 0. Thus,

p0 0 since otherwise condition (B.1) would be violated. Hence, by condition (B.2),

we know that the optimal solution N* satisfies P(N*) = P. In this case, there are
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more than one active inequality constraints: the production rate constraint go(N)

and buffer size constraints gi(N),Vi E B. It is not hard to show that Vgo(N*) and

Vgi(N*), Vi E B are linearly independent 1 so the optimal solution is regular.

Replacing pL by yo > 0 and i,Vi E B by pi > 0,Vi E B in constraint (B.1) gives

(B.4)-VJ(N) + 0v - P(N)) + piV(Nmin )0
iEB

where N is the unique solution. Note that N is exactly the optimal solution of the

following optimization problem

min
N

-j(N) = -J(N) + po (P - P(N)) + p Mi(Nmin - Ni)
iEB

subject to Nmin - Ni
(B.5)5 0, Vi = 1, -.. k - 1,

Ni = Nmin, Vi E B,

which is equivalent to

max
N

J(N) = J(N) - po (P - P(N))

subject to Nmin - Ni 0, Vi = 1, - - - , k - 1, (B.6)

Ni = NminVi E B,

'This is because Vgo(N*) = V(P - P(N*)) has all negative component due to the monotonicity
of P(N), but a linear combination of Vgi(N*) = -ei, Vi E B cannot generate all corresponding
non-zero components of Vgo(N*) since not all buffers belong to set B.
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max J(N)
k-1 k-1

(A + po)P(N) - biNi - ciii
i=1 i=1

(B.7)
subject to Ni > Nmin,Vi = 1, - -k- 1,

Ni = Nmin,VZ E B,

or, finally,

max J(N)
k-1 k-i

= A'P(N) - biNi - c i
i=1 i=1

(B.8)
subject to Ni > Nmin, Vi = 1, - - - ,k - 1,

Ni = Nmin, Vi E B,

where A' = A + po. Again, this is exactly the unconstrained problem in which A is

replaced by A', and N is its optimal solution with the fact that Ni = Nmin, Vi E B.
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Appendix C

The Continuous Variable Version

of the Analytical Solution of the

Deterministic Two-Machine Line of

Tolio et al. (2002)

The continuous variable version of the solution of the deterministic multiple-failure

mode two-machine line of Tolio et al. (2002) is presented in this section. Suppose we

have a two-machine line where the upstream machine has s failure modes while the

downstream machines has t failure modes. The parameters of the upstream machine

are r"i and p"i, i = 1, ... , s and the parameters of the downstream machine are rdi

and p dj = 1,--- , t. The buffer size is N. The state of the system is s = (n, ai, a 2)

where n (0 < n < N) is the buffer level and a1 and a 2 are the states of Machines

M1 and M 2, respectively. In particular, ai = 1 if M1 is up, while ai = ui if M1 is

down in failure mode i. Similarly, a2 = 1 if M2 is up, while ai = dj if M2 is down in

failure mode j. p(n, ai, a 2) stands for the steady-state probability of that state. In

addition, internal states are defined as those states in which 2 < n < N - 2; while

boundary states are defined as those states in which n = 0, 1, N - 1 or N. Tolio et al.

(2002) show that the steady-state probability distribution for all internal states is
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R

p(n, 1, 1) = CmX",
m=1

p(n, 1,d3 ) =

p(n, uj, 1) =

R

SCmX"Dj,m, j= 1, -. ,t,
m=1

R

SCmX"Ui,m, i=1, -. , s,
m=1

R

p(n,u,dj)=ECmX",UmDjm, i=1,- ,s,j= 1-- ,t
m=1

where R = s + t, Cm, m = 1, - - -,R are normalizing constants, and Xm, U,m, and

Dj,m, m =1, -. , R, i = 1,... ,s,j = 1, .. , t are system parameters computed by

machine parameters (see Tolio et al. 2002 for their definitions). In addition, for

i = 1, --. , s and j = 1, -, t, the steady-state probability distribution for boundary

states is

p(0,1, dy) = 0,

p(0, ui, dj) = 0,

p(O 1, 1) = 0,

pui(1 - PD) R D- 1 - ru, R U-
p(0, us, 1) = CmXm M+ r Et Cm

rp m=1 m=1

P 1 R Dj~
p( 1 , 1 , 1 ) = 4Z CXm 'm

p(1, 1, dj) = 0,
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p(1, uj, 1)
R

m=1

R

p(1, ui, dj) =
m=1

p(N - 1, 1, 1)

p(N - 1,1, dj)

p(N - 1,ui,1)

p(N - 1, ui, dj)

CmXmUi,,,

CmXmU,mDj,m,

1R
= f CmXf-1 UmKm,

m=1

R

= CmXZ-jDj,m,
m=1

= 0,

R

= CmX -U,mDj,m,
m=1

p(N,1,1) = 0,

p(N, 1, d)

p(N, ui, 1)

p(N, ui, dj)

pd(1 - PU) R 1CX 7U. Km + r d

M=1

R

CmXXDj,mKm,
m=1

= 0,

= 0.

According to Tolio et al. (2002), the production rate of the line can be computed

P(N) = p(a1 = 1 and n < N)

(C.1)N-1 t= E p(n, 1, 1) + E p(n, 1, di).
n=0 j=1 .

With the steady-state probabilities of all states, (C.1) can be further expressed by
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N-2 N-2 t t

P(N) = p(l, 1, 1)+ p(n, 1, 1)+Z Zp(n, 1, dj)+p(N-1, 1, 1)+E p(N-1, 1, dj).
n=2 n=2 j=1 j=1

(C.2)

To evaluate P(N) with a non-integer N, we need to find analytical expressions

for the second and the third terms on the right hand side of (C.2). We consider them

separately.
N-2 N-2 R

Ep(n,1, 1) = EZ CmX"
n=2 n=2 m=1

(C.3)
R (N-2

= ECm X
m=1 n=2

For m = 1, R, we need to treat Xm # 1 and Xm = 1 differently. Let M

be the set of m such that {mIXm $ 1}. Therefore, the complementary of M is

MC = {mIXm = 1}. It can be seen that

XN-1 - X2I '"if Xm#1,
N-2 Xm -1 

(AZX", (C.4)
n=2

N-3 if Xm=1-

Therefore,

N-2 
R C N-2XE p(n,1,1) = .E X)

n=2 M=1 n=2

(C.5)

= ZCm_ X1 + Cm(N-3).
mEM mEMC
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Similarly, for the third term on the right hand side of (C.2) can be computed by

R

m=1

t N-2

Cm E Dj,m (
j=1 (n=2

X")

= Cm
mEM j

=1 ' X _1 + E
mEMc

t

Cm E Dj,m(N - 3).
j=1

(C.6)

Therefore, the production rate P(N) in the continuous variable version is

D.
CmXm +

Km E
MEM

(X -1) E Cm(N
mEMc

+ CmE D j,m X 3( _ n)

mEM j=1
S Cm D,m(N

mEMc j=1

R t R

+ CmXN-T1 UI,mKm + CmXN- 1Dj,m.
m=1 j=1m=1

(C.7)

Note that (C.7) does not require N to be integer and therefore it can be evaluated

with non-integer N.

Next, we consider the average inventory, which can be calculated by

t s

- p( 1, 1, 1) + p(1,1, dj) +
j=1 i=1

S t

p(1,u 2 ,1) + p(1,1u, dj) +n 1 (N)
i=1 j=1

+(N-1) p(N-1,1,1)±+ p(N- 1,
j=1

1, dj) + E p(N
i=1 j=1

+N Ep(N, 1, dj),
j=1

(C.8)

where hr(N) represents the portion of the average inventory contributed by all internal
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n p(n, 1, di)
n=2 j=1

P(N)
1 R

== E
M=1

-3)

-3)

n(N)

- 17 ui, d))



states and therefore it is

t s

+Ep(n,1,dj) +
j=1 i=1

s t

p(n,ui, 1)+E Ep(n,,d)
i=1 j=1

N-2

= np(n,1,1)
n=2

N-2 t

+ E np(n,1, dj) +
n=2 j=1

N-2 s

E E np(n,Ui, 1)
n=2 i=1

N-2 s t

+ E E np(n, ui, dj).
n=2 i=1 j=1

(C.9)

To evaluate h(N) with a non-integer N, we have to find the analytical expression

for ii(N). Let us consider the four terms of hI(N) separately. We use EZ -2 np(n, 1,1)

as an example.

N-2

Znp(n,1,1)
n=2

N-2 R

= n E CmX"n
n=2 m=1

R C(N-2

=E C E nX",
m=1 n=2

R

m=1

Cm (2X2+ 3X3+ --- + (N - 2)XN-2)

Let us first consider those m E M. Define A as,

(C.11)

and therefore,

AXm = 2Xm3+ 3Xm + - - -+ (N - 2)XmN-' (C.12)

Subtracting (C.12) from (C.11) gives
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= n

n=2

p(n, 1,1)

(C.10)



Thus,

= 2XX + XH + X + -+ X;-2 - (N - 2)XZ-1

= 2Xm + X?3+ XI+ + X -2 + XmN-1 - (N - 1)XN-1

X3 -x"N
= 2X2,- (N -1)X,2-'± m Xm

1l-Xm

On the other hand, for those m E Mc, we have

2_N(N -3)2X2+ 3X3+ -+ (N - 2)XN-2 =
2

Therefore,

+ -X

N-2

Enp(n,1, 1)
n=2

ZCm 
2X

MEM

- (N - 1)XZ-' +

1 -Xm

X 3 -XN -

1"- X "' +z mN(N - 3)
mEMc 2

(C.16)

We can apply similar analysis to the other three terms. They are

1)X -i +N-2 t

ZE np(n, 1, dj)
n=2 j=1

= E CmDjm
mEM j=1

+ >?Cm D'mN(N - 3 )

mEMc j=1

(C.17)
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(C.15)
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N-2 s s

EEnp(n,u,1) = CmUi'"
n=2 i=1 mEM i=1

X 3 - XN-
2Xl2 - (N - 1)X- + "

- Xm 1 - Xm

+ SCmUimN(N - 3)

mEMC i=1

N-2 st

E En np(n, i,d) =
n=2 i=1 j=1

S t

E E CmU,mD3''
mEM i=1 j=1

X 3 - XN
2X2 - (N - 1)XZ-1 + m- 1 -Xm

+ S t N(N - 3).+ ZZ CmU,mDj'"' 2
mEMC i=1 j=1

Consequently, n(N) in the continuous variable version can be computed by (C.8),

(C.16), (C.17), (C.18), and (C.19). Therefore, we have shown that both the produc-

tion rate and the average buffer level can be evaluated with non-integer N. These

analytical expressions for P(N) and h(N) are used in the gradient method to solve

the unconstrained problem for the deterministic multiple failure mode model of pro-

duction lines. In the implementation of the computer program, the condition Xm = 1

is replaced by IXm - 11 < 6, where 6 is a very small non-zero positive value; while the

condition Xm / 1 is replaced by IXm - 11 > 6.
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Appendix D

Supplementary Explicit Analytical

Solutions to Levantesi et al.

(1999a) for Continuous Multiple

Failure Mode Two-machine Lines

The material covered in this section is an extension to the evaluation of continuous

two-machine lines with multiple failure modes and finite buffer capacity developed by

Levantesi et al. (1999a). In this appendix, we provide explicit, complete analytical

solutions which are suitable for writing in computer algorithms. These are implied,

but not stated explicitly by Levantesi et al. (1999a).

In Levantesi et al. (1999a), the system is modeled as a continuous time, mixed

state Markov process. The state (x, au, ad) represents the amount of material in

the buffer (x) and the condition of the upstream machine Mu and the downstream

machine Md (a, and ad, respectively). Note that x is a real number in the continuous

model. When Mu is operational a, = 1, while a. = ui, i = 1, - - - , s means that M' is

down due to failure mode i. Similarly, ad can assume the values 1, di, d2 , --- , dt. It is

possible to distinguish the states the system can reach in internal states (0 < x < N)

and boundary states (X = 0 or N). The internal states are described by probability
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density function f(x, a,, ad) while the probability of finding the system in a boundary

state is given by a probability mass function p(0, au, ad) or p(N, a., ad).

Levantesi et al. (1999a) provide in detail the steps to analyze, establish, and solve

the model. In particular, they provide a general form of the probability density func-

tions for all internal states. In addition, they also solved the steady-state probabilities

of the boundary states in the case that p,, > pd. However, they do not discuss the

solutions for the cases where P, < p or ,, = Pd, although the case that p, < Pd

can be solved easily by reversing the line in which p, > Pg. In addition, in Levantesi

et al. (1999a), both the production rate and the average inventory are given in inte-

gral forms, which cannot be used directly for programming. Therefore, we provide

the analytical solution for the case y. = Pd. Some discussion from the perspective of

algorithm realization, including the analytical forms of the production rate and the

average inventory, is also provided.

D.1 Note on Algorithm Realization when pu - p=ld

We discuss some issues that facilitate the realization of the algorithm developed by

Levantesi et al. (1999a) when p. $ Pd- In particular, we assume that p, > pd and

the case p, < Pd can be realized by reversing the line. These issues include:

" The distribution of the roots of the polynomial in K;

" The method to determine the set of normalizing constants C,;

* Modification of the steady-state probabilities of some non-transient boundary

states;

" and the analytical expressions for the production rate and average inventory.
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D.1.1 The Distribution of Roots of the Polynomial in K

The general form of the probability density functions for internal states (x, ui, dj) in

Levantesi et al. (1999a) is

R

f(x,u, di) = CreXUi,rD,,r, r = 1,- , R,i=1,- , s, j = 1, --- , t (D.1)
r=1

where
PUt

Us,,= , i = 1, -- , s,Uir r's + Kr, 7.

Dj,r = i r - K,.' (D.2)

A= ' 1+

Ar ra7 -[K,
S =1 rdi K

and Cr are the normalizing constants to be determined. In the solution above, Kr is

the rth root of the following polynomial in K of degree R = s + t + 1:

pK 1+E = pK 1+ .ui (D.3)
. d ra-K . rui +K ]

Although not indicated explicitly in Levantesi et al. (1999a), it can be shown

(according to an argument similar to the one provided in Tolio et al. 2002) that all

the roots of the polynomial are real. Therefore, (D.3) can be solved by a binary search

method. A clear understanding about how the roots of K distribute will enable us

to solve it efficiently. According to a similar analysis presented in Tolio et al. (2002),

we conclude the distribution of the roots of K as follows 2

* One root of K is K = 0;

" Re-arranging rut, i = 1, -, s in an ascending order, for i = 1,--- , s - 1, there

'This is under the assumption that pA # A. When pu = Pd, we find a similar polynomial in K
of degree R = s + t. We discuss this in Section D.2.1.

2We assume that all r"i are not the same and all rdi are not the same. Therefore, there are
s + t + 1 different roots of K.
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is a root of K between every two adjacent -ri and -rui+1. So there are totally

s - 1 roots of K that are smaller than 0;

" Re-arranging rd, j = 1,- ,t in an ascending order, for j = 1,- - ,t - 1, there

is a root of K between every two adjacent rdi and rdi+1. In addition, there is

another root of K that is greater than rdt. Therefore, there are totally t roots

of K that are greater than 0.

* Finally, there is a root of K between -ru1 and rdl.

Hence, there are s + t + 1 roots of K in total. We provide an example to illustrate

this graphically. Suppose we have a two machine line with parameters pu = 0.9,

Pd= 0.8, ru = 0.1, p"l = 0.01, ru2 = 0.11, pU2 = 0.01, r d = 0.1, pdi = 0.009,

rd2 = 0.12, and pd2 = 0.008. The distribution of the roots of K in this example is

illustrated in Figure D-1. In particular, the roots are K1 = -0.1053, K 2 = -0.0289,

K 3 = 0, K 4 = 0.1104, and K5 = 0.3468. As a verification, K1 is between -rU 2 and

-rUl, K 2 is between -ru1 and 0, K 3 is 0, K4 is between rdl and rd2, and K5 is greater

than rd2.

D.1.2 The Method to Determine the Normalizing Constants

Cr

Levantesi et al. (1999a) provide s + t +1 equations for solving Cr, r = 1, - , s+t + 1

for the case that pu > Pd. They are

R

SCrDj,r = 0, j 1, , t. (D.4)
r=1

Rt

E Cre AN pu 1+ Dj,,. - Pd 1+ Ui,, =0, i=1,--- ,s (D.5)
r=1 PU _as

where pU - ' -~1 pt
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K - K2 Ka K K5
-K4

-0.4 -0.2 0 0.2 0.4

(a) Overview

K 2 K3

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02

(b) Partially enlarged view around K = 0

Figure D-1: Distribution of the solutions of K

e The normalization equation, i.e., the fact that the steady state probabilities of

all states must add to 1.

However, it is formidable to write out the normalization equation. To avoid doing

so, we adopt a trick in which we let C+t+1 be 1 and solve the other s + t equations

for the C,,r = 1,--- s+t. Then we adjust C,,r = 1,--- ,s+t+ 1 such that the

normalization equation is satisfied.
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D.1.3 Modification of the Steady-State Probabilities of some

Non-Transient Boundary States

Equations (37) and (38) of Levantesi et al. (1999a) are formulas to determine the

steady-state probabilities of the two sets of boundary states (N, 1, 1) and (N, 1, dj),

respectively. They are

R

p(N, 1, 1) = Iulf(N, ui, 1) = P E CreArNUi,,. (D.6)
pui pUt r=1

R - dj
p(N, 1, di)= -ZCrea' I Ui,r + D , j=1, ,t. (D.7)

Although they are correct, the appearance of i in Equations (D.6) and (D.7) brings

unnecessary confusion to the understanding of them. They indicate that p(N, 1,1)

and p(N, 1, dj) can be calculated by the parameters of any failure mode i of the

upstream machine Mu. The results of p(N, 1, 1) or p(N, 1, dj) with different is are

automatically identical3 . However, we can avoid the confusion by a slight modifica-

tion. Equation (D.6) comes from Equation (21) of Levantesi et al. (1999a), which

is

pdf(N, ui, 1) = Pdp"'p(N, 1, 1). (D.8)
Pu

Summing over i yields

3 We have verified this through numerical experiments.
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s S

puip(N, 1, 1),pdE f(Nlti, 1)

or f(Nu7, 1)
i=1

p(N,1, 1)

=d

= p(N,1,1),
A~U

SsU
=p(N,1, 1)

R

E Cre AN Ui,r-
r=1

By (17) of Levantesi et al. (1999a), we modify the formula of p(N, 1, dj) to

p(N, 1, dj) p [pp(N, 1,1) + p f(N, 1, dj)

es R

p P Crek1rN Ui,r & puf (N,
.i=1 r=1

pdj s R AN R

P E E Crehr Ui,r + R
L i=1 r=1 r=1

1,d)]

(D.10)

CreArTN Dj,r

R

- S Cre
r=1

" dj U
.U i +Djr

D.1.4 Integral Calculation

Levantesi et al. (1999a) indicate that the production rate of the continuous two-

machine line is computed as

P(N) = puE, = p p(0, 1, 1) + N( t f (X7 17,d3 ) + f (x, 1,

In the case where pu > Pd, p(O, 1, 1) = 0, and p(N, 1, 1) is given by Equation
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=~~ jf(N, ui,l),

(D.9)

rdi

rdj

j=1,--- ,t.

+pdp(N, 1, 1).

(D.11)



(D.9). Hence, we discuss how to further compute the integral part above to find the

analytical expression of P(N).

(1j X 7d)+ x 1 dxpU N f 71
j=

N t R

=U yO EE
j= r=

t

= pI(f
j=1

= ptuE
j=1

R N

I: JO
r=1 0

C,e AxD,rdx

Cre ArxDj,,dx

.CrD,r (eArN

rEW Ar

N R

+p CreArxdx

r=1

( ArN - 1) +

t

y, EECrD,rN + p(uE CrN

j=1 rOW roli
(D. 12)

rHE ,

where 7 denotes the set of all nonzero Ar. Therefore, the analytical expression of the

production rate is

= p E CrDr (eArN

j=1rA A

t

+p, ( ( CrDj,rN +
j=1 r(X

+ CIArN

rEA A

(D.13)

[tUE
prV(

Cr N + pu paIlui

S R

S ( Cre ANUi,r.
i=1 r=1

Next, let us consider the average inventory for the case pu > A. According to

Levantesi et al. (1999a), the average inventory, t, can be calculated by

0 N sx = fxjf(X,1)1)+Ef(X'u 1 ,1)+
IO i=1

E
j=1

at

f(x, 1, dj) + E
i=1 j=1

f(x, u, di)] dx

p(N, 1, 1) + E p(N, ui, 1) + E p(N, 1, dj)
s t

+ EE p(N, u, dj).
i=1 j=1 .

(D.14)

In steady state, p(N, ui, 1) = p(N, ui, dj) = 0, while p(N, 1, 1) and p(N, 1, dj)
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are given by Equations (D.9) and (D.10). Again, we focus on the integral part in

Equation (D.14). We consider each component in the integral part separately.

xf(x, 1, 1)dx

N R

= x ( Cre~r'dx
J O r=1

(D.15)
R N

=E Cr 10xe Ar'dx

r=10

- I: (rNe rN
rEf

Ar
(eArN - 1)) rN2

rg7

x f(x, ui, 1)dx

f N R

= x ES CrerxUi,rdx
i=1 r=1

(D.16)
R N

= (ZCrU,r j
i=1 r=1

xer'xdx

CrUi,r

i=1 rEW Ar (NeArN Ar
(eArN -1 + CrUi,rN2

i=1 r(7i
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N t

x( f(x, 1,dj)dx
j=1

N t R

S x ( E CreArxD,rdx
j=1 r=1

t R N

E EZ CrDj,r] xeAr'dx
j=1 r=1

= CrDj.

I: E r 3,rA

j=1 rE'H A
+N 2 CrDj,rN2

j=1 rOW

N st

x j f (x, ui, dj)dx

N s t R

xfsv-N( Cre Ui,rD,,.dx
0 i=1 j=1 r=1

S t R N
E ELEZC, Ui,rDj,r / xe dx
i=1 j=1 r=1

st

- E f CU rD ,r Ne ArN _ 1

i=1 j=1 rEW r Ar
(eArN 1 ))

s t 12
ENCrUi,,D,,.N

i=1 j=1 r§9-t

(D.18)

Substituting Equations (D.9), (D.10), and (D.15) to (D.18) into Equation (D.14)

gives a analytical expression of the average inventory.
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D.2 Algorithm Realization when pu = P d

Note that p = 'Pd requires necessary modification of Equation (D.3) and the dis-

tribution of the roots of K. It also requires the modification to the steady-state

probabilities of the boundary states since, for example, p(O, 1, 1) is no longer zero as

it is in the case pu # pd. In the reminder of this section, let y = pu = Pd.

D.2.1 Distribution of the Roots of the Polynomial in K when

Pu = Pd

Since yu = pd, Equation (D.3) is simplified to

t d = K

rd - K ru' + K
j=1 i=1

(D.19)

Note that this is a polynomial in K of degree R = s + t, rather than R = s + t +1

as in the case pu / Pd. This is because if we multiple both sides of (D.19) by

s t

11(r'ui + K) 1I(rdb - K),
i=1 j=1

each term on the left hand side will become

Kpdi(rdi - K) ... (rdi-1 - K)(rdi+1 - K) ... (rdt -

while each term on the right hand side will become

Kp"i(rul + K) ... (ru1 + K)(r'+1 + K) ... (ru +

K) 7 (ru' + K), j=,- - ,t,
i=1

K)fl(rdi -

j=1

It is easy to see that the highest order of K in all terms are KS+t and therefore

(D.19) is a polynomial in K of degree s + t. On the other hand, if we do the same

thing to both sides of (D.3), the terms pK and pdK on the right and left hand sides
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of (D.3) will become
S t

pIK 1(ru + K) fJ(rdi - K),
i=1 j=1

and
st

pdK (r* + K) fJ(rds - K).
i=1j=1

Since both of them contain Ks+t+1, which is the highest order of K that (D.3) has

after the modification, (D.3) is a polynomial in K of degree s + t + 1.

Assuming that all r*i are distinct and all rdi are distinct, the distribution of the

roots of K from (D.19) is concluded as follows:

* One root of K is K = 0;

* Re-arranging r', i = 1, -- , s in an ascending order, for i = 1, - , s - 1, there

is a root of K between every two adjacent -r"* and -rt+1. So there are s - 1

roots of K due to the distinct values of ru, i = 1, -.. , s;

" Re-arranging rdi, j = 1,- ,t in an ascending order, for j = 1,- ,t - 1, there

is a root of K between every two adjacent rdj and rd+1. Therefore, there are

t - 1 roots of K due to the different values of rdij = 1, - --

" There is another root of K between -r"1 and rdl. In particular,

t d- * U-

- IfE -> - , then the root is between -rul and 0;
=1 i&=1

t d- p
-I < E S , then the root is between 0 and rdi;

j=1 i=1
t d- -

- if >u=-, then the root is 0. Therefore, 0 is a root with a
j=1 i=1

multiplicity of 2.

Hence, there are totally s+t roots of K. Again, we provide an example to illustrate

this graphically. Suppose we have a two machine line with parameters pu = pd = 1,

rU1 = 0.1, pU1 = 0.01, rU2 = 0.11, p U2 = 0.01, rdi = 0.1, p"d = 0.009, rd2 = 0.12, and

p 0.008. Note that in this example, we have E yL < Z_ 1 P. Therefore, we

432



expect to have a root of K between 0 and rdl, which is 0.1. The distribution of the

roots of K in this example is illustrated in Figure D-2. In particular, the roots are

K 1 = -0.1051, K 2 = 0, K 3 = 0.0105, K 4 = 0.1111. As a verification, K1 is between

-r12 and -ri, K 2 is 0, K 3 is between 0 and r d, and K 4 is between rdl and rd2.

1.2

0.8

0.6

0.4

0.2 K1K2 Ka

0

-0.2 -

-0.4 -

-0.6 -

-0.8 -

-1
-0.1 -0.05 0 0.05 0.1

Figure D-2: Distribution of the solutions of K, pu = pd

D.2.2 Steady-state Probabilities of Boundary States

In the case p > pd, the steady-state probabilities of those non-transient boundary

states are deducted based on the fact that p(O, 1, 1) = 0. However, this is no longer

true when p. = pd. Thus, we need to re-construct the formulas of the steady-state

probabilities of those non-transient boundary states.

When pu = pd, Equation (21) of Levantesi et al. (1999a) becomes

(D.20)
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and therefore,

p (N, 1, 1) = f(N, ui, 1)=

P i

or, summing over i in Equation (D.20),

yf (N, ui, 1)

or f(N, ui, 1)
i=1

p(N, 1, 1)

p(N,1,1)

= pu"p(N, 1, 1),
i=1

PU
= p(N, 1, 1),

S

= U f(N, uj,1),

i=1

s R
= /1 ~~ reArNr,

i=1 r=1

Substituting Equation (D.21) into Equation (17) of Levantesi et al. (1999a) gives

R

p(N 17 dj) E + Cre ArN
rd3

r=1

Ui,r + Di,, , j = 1, -.. , t.

Note that (D.23) is the same as Equation (D.7) except that pu in (D.7) is replaced

by p in (D.23). Substituting Equation (D.22) into Equation (17) of Levantesi et al.

(1999a) gives

R

p(N, 1, dj) =
r=1

CreArN i,, + Dj, , j = 1, - - ,t

Next, we show how to find p(O, 1, 1). By Equation (11) of Levantesi et al. (1999a)

we know that

(PU + PD) p(0, 1, 1) = r"'p(O, ui, 1)
i=1

(D.25)
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where PU = ls and pD E d. In addition, from Equation

Levantesi et al. (1999a) we know that

rup(O, uj, 1) = pUip(O 1, 1) + pff(0, U, 1), i = 1, ... , s.

Summing over i gives

r "UP'p(O, u, 1)
i=1

or (PU +pP ,,

PD) p(0, 1, 1)

pDP( 0 , 1, 1)

= p" p(O 1, 1) + p f(O,us, 1),
i=1 i=1

i=1

= s R

= Pp(0 1,1)+/iy >CUi,r,,
i=1 r=1

sR

= p E CUi,,,
i=1 r=1

sR

p(O 1, 1) = CrUir.
i=1 r=1

Therefore, substituting Equation (D.27) into Equation (D.26), we have

p ( O ' u j 1 ) = - . s + I R R

pui uD 1= CU,r + yD CUi,, ,

i=1 r=1 r=1

i = 1, -.. ,s.

Equations (D.22), (D.24), (D.27) and (D.28) are the steady-state probabilities of

all non-transient boundary states. Now, we are ready to find out the normalizing

constants Cr according to the method introduced in Section D.1.2. Note that Section

D.1.2 offers s + t + 1 equations while we only have s + t unknowns of Cr when

pU = pd. Therefore, we adopt the t equations in the equation set (D.4) and the first

s - 1 equations in the equation set (D.5), together with the normalization equation.
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Appendix E

Proof of the Assertion in Section

6.3 for the Case where Some

N* = Nmin

We provide the proof of the assertion in Section 6.3 for the case where some Ni=

Nmin. Recall that the assertion states that the constrained problem

max J(N1i,-
NI

subject to P(N1 ,.

k

- Nk , 1) = A'P(N1 , ... N, I) - bNi - cI

,NkI) P,

Ni > Nmin,V = 1, , k,

>1,ENi

*TI ~T

I > 0

has the same solution for all A' in which the solution of the unconstrained problem

(6.5) has P(Nr", - - - , Nu, Iu) < P.
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Let B be {ilNT = Nmin}. Hence, NT = Nmin, Vi E B, while N > Nmin, Vi E BC,

where BC is {ilN > Nmin}. In this case, those NT equal to Nmin are on the boundary

of the feasible region of the optimal solution. By condition (6.12), we know that

pL = 0, Vi E BC. Hence, we simplify the KKT conditions (6.9) to (6.14) to

OJ(N*, I*)
| N1

OJ(N*, 1*)
ONc

aJ(N*, I*)
0I

r OP(N*, 1*)
| N1

OP(N*, 1*)
ONk

aP(N*, 1*)

\ I

- Z ei =
iEB

in which the 1 is in the ith position, and

p (s- P(N*, I*)) =0

p*(Nmin - N ) = 0,Vi =1, -- - , k,

i4+~ J*~N) = 07pAk+1 I* - NL =0,

/*+2* = 0,
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(E.1)

where

(E.2)

(E.3)

(E.4)

(E.5)

-ApO

0 )

ej =



where p," > 0, Vi = 0, -- - , k + 2. In particular, pi = 0, Vi E Bc and pk+1 = pk+2 = 0

from (E.4) and (E.5) since 0 < I* < Ei= 1 NT.
Next, we argue that not all NT, i E BC satisfy OJ(N*)/&Ni = 0. This is because if

aJ(N*)/8Ni = 0 for all N,*, i E Bc and all other Ni = Nmin, i E B, then the solution

of the constrained problem (N*, - - - , Ng, 1*) is equivalent to the solution of the uncon-

strained problem, since it is just constrained by the buffer size constraint. This is a

conflict. Therefore, it is not possible for all Ni7, i E B to satisfy OJ(N*)/ONi = 0. So,

there exists some i's for which N> Nmin and OJ(N*)/ON $ 0. Since N. > Nmin,

by condition (E.3), we know p= 0. Thus, p* / 0 since otherwise condition (E. 1)

would be violated. Hence, by condition (E.2), we know that the optimal solution

(N*, 1*) satisfies P(N*, I*) = P. In this case, there are more than one active inequal-

ity constraints: the production rate constraint go(N, I) and buffer size constraints

g(N, I), Vi E B. It is not hard to see that Vgo(N*, I*) and Vgi(N*, 1*), Vi E B are

linearly independent1 so the optimal solution is regular.

As before, replacing p* by po > 0 and p*, Vi E B by yi > 0, Vi E B in constraint

(E.1) gives

-VJ(N, I) + poV (' - P(N, I)) + E iV (Nmin - Ri) = 0, (E.6)
iEB

where N is the unique solution. Note that N is exactly the optimal solution of the

following optimization problem

'This is because in Vgo(N*, I*) = V(P - P(N*, I*)), the first k components are negative due
to the monotonicity of P(N, I) with respect to N while the last component can be either positive
or negative depending on whether I is greater than half of the total buffer size of the loop or not,
but a linear combination of Vgi(N*, 1*) = -ei, Vi E B cannot generate all corresponding non-zero
components of Vgo(N*) since not all buffers belong to set B.
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min
N,I

-J(N, I) E i(Nmin - Ni)
iEB

subject to Nmin -Ni K 0,Vi 1,--- ,k,

Ni = Nmin,Vi EB,

< 0,

-I < 0,

(E.7)

which is equivalent to

= J(N, I) - po (16 - P(N, I))

subject to Nmin - Ni < 0,Vi = 1, , k,

Ni = Nmin,Vi E B,

< 0,

max
N,I

J(N, I)

k

I Ni

(E.8)

-I < 0,
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= -J(N, -I) + po (P) - P(N, I)) +

I - ENi



k

I) = (A + o)P(N, I) - biNi - cI

Ni > Nmin,Vi = 1,- , k,

Ni = Nmin, Vij EB,

Nz > I,

k

= A'P(N, I) - biNi - cI
i=1

subject to N > Nmin,V = 1, -. , k,

Ni = Nmin, Vi E B,

k

ZNi
i=1

(E.10)

> 1,

I > 0,

where A' = A + po. Again, this is exactly the unconstrained problem in which A is

replaced by A', and (N, I) is its optimal solution with the fact that Ni = Nmin, Vi E B.
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max
N,I

J(N,

subject to

(E.9)

i=1

I > 0,

or, finally,

max
N,I

J(N, I)
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Appendix F

P Surface Search

We provide a brief description about the P surface search. All buffer size allocations,

N, such that P(N) = P compose the P surface. For instance, consider a 4-machine

3-buffer line with parameters r1 = .11, pi = .008, r 2 = .12, p2 = .01, r3 = -1, p 3 = .01,

r4 = .09, and p4 = .01. The target production rate is P = .88. A portion of the P*

surface of this example is shown in Figure F-1. It means that all points on this surface

satisfy P(N) = P. We further let the profit be J(N) = 2000P(N)- _1 Ni-ZE ni.

The optimal solution achieved by the algorithm developed in Chapter 4 is also shown

in Figure F-1.

To verify the optimal solution, we conduct a search on this P surface. It is obvious

that the P surface is boundless and it is impractical to search the whole surface, even

for the simplest three-machine two-buffer line. Therefore, in our implementation, we

only search around the optimal solution achieved by our algorithm. Since there is

only one maximum, searching around the optimal solution is accurate enough.

In the P surface search, we first find all feasible points on the surface around the

optimal solution gained by the algorithm. To do this, we set ranges for all buffers

and then at each time we vary one buffer size by a step size 1 while keeping other

buffers unchanged. Therefore, we can calculate the production rates and the profits

for all combinations of all buffers. All those points, whose production rate P satisfy

P(N) - P < 6 where 6 is a very small non-zero positive value, compose the P surface.

Then we compare the profits of those points. The point having the maximal profit
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Figure F-1: P surface

in the P search becomes the optimal solution by this searching method. Then, we

compare our optimal solution with this one and calculate the error.
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Appendix G

Details of the 5000 Three-Machine

Lines Studied in Chapter 3

We mention in Section 3.6.6 that, in order to investigate the single profit maximum

issue of production lines, we have generated 5000 three-machine two-buffer lines ran-

domly and studied their profits. For each type of three-machine line, we consider

1000 lines.

These 5000 three-machine two-buffer lines are generated according to the method

described in Gershwin (2011). In particular, the isolated production rate of each

machine Mi (i.e., ri/(r + pi)) is between .667 and .952, with ri and pi randomly

generated. In addition, in order to compute the profit, we randomly generated the

revenue coefficient A between 1500 and 7500, the buffer space coefficients b1 and b2

between 0 and 5, and the inventory cost coefficients ci and c2 between 0 and 5.

For each line, we search for local maxima in (N 1, N2) space by varying both N1 and

N2 from 4 to 500. (Note that 4 is the minimum value of Ni given the convention of the

deterministic model we use.) To check if a point J(N 1, N2) is a local maximum, we

compute the profits associated with the buffer sizes adjacent to (N1 , N2). Specifically,

if (N 1, N2) is not on the boundary or the corner of the search space, then we calculate

the profits J(N1-1, N2), J(N1 +1,N2), J(N1, N2 -1), and J(N1 , N2 +1). If and only

if J(N, N2) is greater than all these four values mentioned above, it is considered as

a local maximum. If (N 1, N2) is on the boundary or the corner of the search space, we
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compute the profits of the points that are both adjacent to (N1 , N2) and within the

search space. For instance, for J(80, 500), we compare it with J(80, 499), J(79, 500),

and J(81, 500), but not J(80, 501) because (8,501) is outside the search space. As

explained at the end of Section 3.6.6, the profit J is decreasing in N and N2 for

Ni and N2 sufficiently large and it finally goes to -oo if N1 and N2 keep increasing.

Therefore, there are no local maxima for large (N1 , N2).

In all these 5000 three-machine lines studied, there is only a single global profit

maximum for each line. This indicates that the single profit maximum is a reasonable

assumption for production lines and therefore we can adopt a gradient method to solve

the profit maximization problem without a production rate constraint.
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