2,204 research outputs found

    A Low Noise Amplifier Optimized for a GPS Receiver RF Front End

    Full text link
    A cascode LNA was optimized for a GPS receiver radio frequency front end using a 0.18 μm CMOS technology. By careful choice of device geometry, gate and source degeneration inductors, a fully integrated LNA can be optimized to have a low noise figure, a high voltage gain and a wide dynamic range. The optimized LNA has a 1.512 dB noise figure, a –42.05 dB S11, a 20.04 dB voltage gain a –19.82 dB input referred 1-db compression point and a –5.49 dBm third order input intercept point, with a 11.6 mW power consumption

    Mask Programmable CMOS Transistor Arrays for Wideband RF Integrated Circuits

    Get PDF
    A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4-22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79-96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 mum ) dielectric layer that enables very low loss lines (~0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    HIGH LINEARITY UNIVERSAL LNA DESIGNS FOR NEXT GENERATION WIRELESS APPLICATIONS

    Get PDF
    Design of the next generation (4G) systems is one of the most active and important area of research and development in wireless communications. The 2G and 3G technologies will still co-exist with the 4G for a certain period of time. Other applications such as wireless LAN (Local Area Network) and RFID are also widely used. As a result, there emerges a trend towards integrating multiple wireless functionalities into a single mobile device. Low noise amplifier (LNA), the most critical component of the receiver front-end, determines the sensitivity and noise figure of the receiver and is indispensable for the complete system. To satisfy the need for higher performance and diversity of wireless communication systems, three LNAs with different structures and techniques are proposed in the thesis based on the 4G applications. The first LNA is designed and optimized specifically for LTE applications, which could be easily added to the existing system to support different standards. In this cascode LNA, the nonlinearity coming from the common source (CS) and common gate (CG) stages are analyzed in detail, and a novel linear structure is proposed to enhance the linearity in a relatively wide bandwidth. The LNA has a bandwidth of 900MHz with the linearity of greater than 7.5dBm at the central frequency of 1.2GHz. Testing results show that the proposed structure effectively increases and maintains linearity of the LNA in a wide bandwidth. However, a broadband LNA that covers multiple frequency ranges appears more attractive due to system simplicity and low cost. The second design, a wideband LNA, is proposed to cover multiple wireless standards, such as LTE, RFID, GSM, and CDMA. A novel input-matching network is proposed to relax the tradeoff among noise figure and bandwidth. A high gain (>10dB) in a wide frequency range (1-3GHz) and a minimum NF of 2.5dB are achieved. The LNA consumes only 7mW on a 1.2V supply. The first and second LNAs are designed mainly for the LTE standard because it is the most widely used standard in the 4G communication systems. However, WiMAX, another 4G standard, is also being widely used in many applications. The third design targets on covering both the LTE and the WiMAX. An improved noise cancelling technique with gain enhancing structure is proposed in this design and the bandwidth is enlarged to 8GHz. In this frequency range, a maximum power gain of 14.5dB and a NF of 2.6-4.3dB are achieved. The core area of this LNA is 0.46x0.67mm2 and it consumes 17mW from a 1.2V supply. The three designs in the thesis work are proposed for the multi-standard applications based on the realization of the 4G technologies. The performance tradeoff among noise, linearity, and broadband impedance matching are explored and three new techniques are proposed for the tradeoff relaxation. The measurement results indicate the techniques effectively extend the bandwidth and suppress the increase of the NF and nonlinearity at high frequencies. The three proposed structures can be easily applied to the wideband and multi-standard LNA design

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Design of Power Optimized circuit of LC Voltage Controlled Oscillator for use in GSM Handsets

    Get PDF
    The recent performance requirements for mobile phones have been extending its area of interest. Handsets need to have high resolution graphics, pictures, and applications. Consequently, the requirement for a longer battery life has become a bare necessity. This makes optimization of power a critical issue. Along with this cell phones need to be thin and have light weight. A major portion of the power consumption of the handsets can be attributed to the LC oscillators used in the system. A Voltage Controlled Oscillator plays an important role in any communication system. It provides the frequency signal for down-conversion of input signals and also the carrier signals for the modulating signal. Proper amplitude and low phase noise are two important criteria to achieve suitable performance for a VCO in any transceiver system. The strong combination of low phase noise specifications with very low power consumption (battery operation) forces designers to use LC-VCOs. A great research effort has been done in the design of integrated voltage controlled oscillators (VCOs) using integrated or external resonators, but as their power consumption still cannot be unacceptable, today’s mobile phones commonly use external LC-VCO modules. Inductors used in these oscillators are usually bulky and have high power consumption. The low power LC oscillator increases the standby time, thus improving the battery life. Extended battery life provides processing power at lower clock speeds, enabling low leakage process that optimizes power consumption and increases battery time. Also provides integrated and sophisticated systems with improved power management. The main purpose of this project is to design a circuit for LC VCO to be used in GSM system with a tuning rage of 3-4GHz. Since the phase noise requirement for the system is less than 150dBc/Hz at 20 KHz offset. Also for a GSM system, the size of the inductor used in the oscillator is a major issue in determining its overall size, efforts will be made to optimize the size of the inductor as well

    A fully integrated RSSI and an ultra-low power SAR ADC for 5.8 GHz DSRC ETC transceiver

    Get PDF
    This study presents a monolithic received signal strength indicator (RSSI) and an ultra-low power SAR ADC for 5.8 GHz DSRC transceiver in China electronic toll collection systems. In order to meet the stringent requirement of wide input range for the transceiver, two RSSIs collaborate with auxiliary ADC circuits to provide the digitalized received signal strength to the digital baseband of a transceiver. The RSSI design achieves fast transient response and low power consumption with a small die area by using internal active low-pass filters instead of external passive ones. The proposed design has been fabricated using a 0.13 μm 2P6M CMOS technology. Measurement results show that the overall input dynamic range is 86 dB with an accuracy of ±1.72 dB and a transient response of less than 2 μs. Compared with the state-of-the-art designs in the literature, the overall input range and transient settling time are improved by at least 14.6%, and 300%, respectively
    corecore