93 research outputs found

    Global Research Performance on the Design and Applications of Type-2 Fuzzy Logic Systems: A Bibliometric Analysis

    Get PDF
    There has been a significant contribution to scientific literature in the design and applications of Type-2 fuzzy logic systems (T2FLS). The T2FLSs found applications in many aspects of our daily lives, such as engineering, pure science, medicine and social sciences. The online web of science was searched to identify the 100 most frequently cited papers published on the design and application of T2FLS from 1980 to 2016. The articles were analyzed based on authorship, source title, country of origin, institution, document type, web of science category, and year of publication. The correlation between the average citation per year (ACY) and the total citation (TC) was analyzed. It was found that there is a strong relationship between the ACY and TC (r = 0.91643, P<0.01), based on the papers consider in this research.  The “Type -2 fuzzy sets made simple” authored by Mendel and John (2002), published in IEEE Transactions on Fuzzy Systems received the highest TC as well as the ACY. The future trend in this research domain was also analyzed. The present analysis may serve as a guide for selecting qualitative literature especially to the beginners in the field of T2FLS

    Modularity in artificial neural networks

    Get PDF
    Artificial neural networks are deep machine learning models that excel at complex artificial intelligence tasks by abstracting concepts through multiple layers of feature extraction. Modular neural networks are artificial neural networks that are composed of multiple subnetworks called modules. The study of modularity has a long history in the field of artificial neural networks and many of the actively studied models in the domain of artificial neural networks have modular aspects. In this work, we aim to formalize the study of modularity in artificial neural networks and outline how modularity can be used to enhance some neural network performance measures. We do an extensive review of the current practices of modularity in the literature. Based on that, we build a framework that captures the essential properties characterizing the modularization process. Using this modularization framework as an anchor, we investigate the use of modularity to solve three different problems in artificial neural networks: balancing latency and accuracy, reducing model complexity and increasing robustness to noise and adversarial attacks. Artificial neural networks are high-capacity models with high data and computational demands. This represents a serious problem for using these models in environments with limited computational resources. Using a differential architectural search technique, we guide the modularization of a fully-connected network into a modular multi-path network. By evaluating sampled architectures, we can establish a relation between latency and accuracy that can be used to meet a required soft balance between these conflicting measures. A related problem is reducing the complexity of neural network models while minimizing accuracy loss. CapsNet is a neural network architecture that builds on the ideas of convolutional neural networks. However, the original architecture is shallow and has wide layers that contribute significantly to its complexity. By replacing the early wide layers by parallel deep independent paths, we can significantly reduce the complexity of the model. Combining this modular architecture with max-pooling, DropCircuit regularization and a modified variant of the routing algorithm, we can achieve lower model latency with the same or better accuracy compared to the baseline. The last problem we address is the sensitivity of neural network models to random noise and to adversarial attacks, a highly disruptive form of engineered noise. Convolutional layers are the basis of state-of-the-art computer vision models and, much like other neural network layers, they suffer from sensitivity to noise and adversarial attacks. We introduce the weight map layer, a modular layer based on the convolutional layer, that can increase model robustness to noise and adversarial attacks. We conclude our work by a general discussion about the investigated relation between modularity and the addressed problems and potential future research directions

    Modularity in artificial neural networks

    Get PDF
    Artificial neural networks are deep machine learning models that excel at complex artificial intelligence tasks by abstracting concepts through multiple layers of feature extraction. Modular neural networks are artificial neural networks that are composed of multiple subnetworks called modules. The study of modularity has a long history in the field of artificial neural networks and many of the actively studied models in the domain of artificial neural networks have modular aspects. In this work, we aim to formalize the study of modularity in artificial neural networks and outline how modularity can be used to enhance some neural network performance measures. We do an extensive review of the current practices of modularity in the literature. Based on that, we build a framework that captures the essential properties characterizing the modularization process. Using this modularization framework as an anchor, we investigate the use of modularity to solve three different problems in artificial neural networks: balancing latency and accuracy, reducing model complexity and increasing robustness to noise and adversarial attacks. Artificial neural networks are high-capacity models with high data and computational demands. This represents a serious problem for using these models in environments with limited computational resources. Using a differential architectural search technique, we guide the modularization of a fully-connected network into a modular multi-path network. By evaluating sampled architectures, we can establish a relation between latency and accuracy that can be used to meet a required soft balance between these conflicting measures. A related problem is reducing the complexity of neural network models while minimizing accuracy loss. CapsNet is a neural network architecture that builds on the ideas of convolutional neural networks. However, the original architecture is shallow and has wide layers that contribute significantly to its complexity. By replacing the early wide layers by parallel deep independent paths, we can significantly reduce the complexity of the model. Combining this modular architecture with max-pooling, DropCircuit regularization and a modified variant of the routing algorithm, we can achieve lower model latency with the same or better accuracy compared to the baseline. The last problem we address is the sensitivity of neural network models to random noise and to adversarial attacks, a highly disruptive form of engineered noise. Convolutional layers are the basis of state-of-the-art computer vision models and, much like other neural network layers, they suffer from sensitivity to noise and adversarial attacks. We introduce the weight map layer, a modular layer based on the convolutional layer, that can increase model robustness to noise and adversarial attacks. We conclude our work by a general discussion about the investigated relation between modularity and the addressed problems and potential future research directions

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    White Paper 11: Artificial intelligence, robotics & data science

    Get PDF
    198 p. : 17 cmSIC white paper on Artificial Intelligence, Robotics and Data Science sketches a preliminary roadmap for addressing current R&D challenges associated with automated and autonomous machines. More than 50 research challenges investigated all over Spain by more than 150 experts within CSIC are presented in eight chapters. Chapter One introduces key concepts and tackles the issue of the integration of knowledge (representation), reasoning and learning in the design of artificial entities. Chapter Two analyses challenges associated with the development of theories –and supporting technologies– for modelling the behaviour of autonomous agents. Specifically, it pays attention to the interplay between elements at micro level (individual autonomous agent interactions) with the macro world (the properties we seek in large and complex societies). While Chapter Three discusses the variety of data science applications currently used in all fields of science, paying particular attention to Machine Learning (ML) techniques, Chapter Four presents current development in various areas of robotics. Chapter Five explores the challenges associated with computational cognitive models. Chapter Six pays attention to the ethical, legal, economic and social challenges coming alongside the development of smart systems. Chapter Seven engages with the problem of the environmental sustainability of deploying intelligent systems at large scale. Finally, Chapter Eight deals with the complexity of ensuring the security, safety, resilience and privacy-protection of smart systems against cyber threats.18 EXECUTIVE SUMMARY ARTIFICIAL INTELLIGENCE, ROBOTICS AND DATA SCIENCE Topic Coordinators Sara Degli Esposti ( IPP-CCHS, CSIC ) and Carles Sierra ( IIIA, CSIC ) 18 CHALLENGE 1 INTEGRATING KNOWLEDGE, REASONING AND LEARNING Challenge Coordinators Felip Manyà ( IIIA, CSIC ) and Adrià Colomé ( IRI, CSIC – UPC ) 38 CHALLENGE 2 MULTIAGENT SYSTEMS Challenge Coordinators N. Osman ( IIIA, CSIC ) and D. López ( IFS, CSIC ) 54 CHALLENGE 3 MACHINE LEARNING AND DATA SCIENCE Challenge Coordinators J. J. Ramasco Sukia ( IFISC ) and L. Lloret Iglesias ( IFCA, CSIC ) 80 CHALLENGE 4 INTELLIGENT ROBOTICS Topic Coordinators G. Alenyà ( IRI, CSIC – UPC ) and J. Villagra ( CAR, CSIC ) 100 CHALLENGE 5 COMPUTATIONAL COGNITIVE MODELS Challenge Coordinators M. D. del Castillo ( CAR, CSIC) and M. Schorlemmer ( IIIA, CSIC ) 120 CHALLENGE 6 ETHICAL, LEGAL, ECONOMIC, AND SOCIAL IMPLICATIONS Challenge Coordinators P. Noriega ( IIIA, CSIC ) and T. Ausín ( IFS, CSIC ) 142 CHALLENGE 7 LOW-POWER SUSTAINABLE HARDWARE FOR AI Challenge Coordinators T. Serrano ( IMSE-CNM, CSIC – US ) and A. Oyanguren ( IFIC, CSIC - UV ) 160 CHALLENGE 8 SMART CYBERSECURITY Challenge Coordinators D. Arroyo Guardeño ( ITEFI, CSIC ) and P. Brox Jiménez ( IMSE-CNM, CSIC – US )Peer reviewe

    Learning EEG Biometrics for Person Identification and Authentication

    Full text link
    EEG provides appealing biometrics by presenting some unique attributes, not possessed by common biometric modalities like fingerprints, retina and face scan, in terms of robustness against forgery, secrecy and privacy compliance, aliveness detection and potential of continuous authentication. Meanwhile, the use of EEG to provide cognitive indicators for human workload, fatigue and emotions has created an environment where EEG is well-integrated into systems, making it readily available for biometrics purposes. Yet, still, many challenges need to be properly addressed before any actual deployment of EEG-based biometric systems in real-life scenarios: 1) subjects' inconvenience during the signal acquisition process, 2) the relatively low recognition rates, and 3) the lack of robustness against diverse human states. To address the aforementioned issues, this thesis is devoted to learn biometric traits from EEG signals for stable person identification and authentication. State of the art studies of EEG biometrics are mainly divided into two categories, the event-related potential (ERP) category, which relies on a tight control of the cognitive states of the subjects, and the ongoing EEG category, which uses continuous EEG signals (mainly in resting state) naturally produced by the brain without any particular sensory stimulation. Studies in the ERP category focus more on the design of proper signal elicitation protocols or paradigms which usually require repetitive sensory stimulation. Ongoing EEG, on the contrary, is more flexible in terms of signal acquisition, but needs more advanced computational methods for feature extraction and classification. This study focuses on EEG biometrics using ongoing signals in diverse states. Such a flexible system could lead to an effective deployment in the real world. Specifically, this work focuses on ongoing EEG signals under diverse human states without strict task-specific controls in terms of brain response elicitation during signal acquisition. This is in contrast to previous studies that rely on specific sensory stimulation and synthetic cognitive tasks to tightly control the cognitive state of the subject being reflected in the resulting EEG activity, or to use resting state EEG signals. The relaxation of the reliance of the user's cognitive state makes the signal acquisition process streamlined, which in turn facilitates the actual deployment of the EEG biometrics system. Furthermore, not relying on sensory stimulation and cognitive tasks also allows for flexible and unobtrusive biometric systems that work in the background without interrupting the users, which is especially important in continuous scenarios. However, relaxing the system's reliance on the human state also means losing control of the EEG activity produced. As a result, EEG signals captured from the scalp may be contaminated by the active involvement of the tasks and cognitive states such as workload and emotion. Therefore, it becomes a challenge to learn identity-bearing information from the complicated signals to support high stability EEG biometrics. Possible solutions are proposed and investigated from two main perspectives, feature extraction and pattern classification. Specifically, graph features and learning models are proposed based on the brain connectivity, graph theory, and deep learning algorithms. A comprehensive investigation is conducted to assess the performance of proposed methods and existing methods in biometric identification and authentication, including in continuous scenarios. The methods and experiments are reported and detailed in the corresponding chapters, with the results obtained from data analysis

    Computer Game Innovation

    Get PDF
    Faculty of Technical Physics, Information Technology and Applied Mathematics. Institute of Information TechnologyWydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej. Instytut InformatykiThe "Computer Game Innovations" series is an international forum designed to enable the exchange of knowledge and expertise in the field of video game development. Comprising both academic research and industrial needs, the series aims at advancing innovative industry-academia collaboration. The monograph provides a unique set of articles presenting original research conducted in the leading academic centres which specialise in video games education. The goal of the publication is, among others, to enhance networking opportunities for industry and university representatives seeking to form R&D partnerships. This publication covers the key focus areas specified in the GAMEINN sectoral programme supported by the National Centre for Research and Development
    corecore