9,956 research outputs found

    Data Analytic Approach to Support the Activation of Special Signal Timing Plans in Response to Congestion

    Get PDF
    Improving arterial network performance has become a major challenge that is significantly influenced by signal timing control. In recent years, transportation agencies have begun focusing on Active Arterial Management Program (AAM) strategies to manage the performance of arterial streets under the flagship of Transportation Systems Management & Operations (TSM&O) initiatives. The activation of special traffic signal plans during non-recurrent events is an essential component of AAM and can provide significant benefits in managing congestion. Events such as surges in demands or lane blockages can create queue spillbacks, even during off-peak periods resulting in delays and spillbacks to upstream intersections. To address this issue, some transportation agencies have started implementing processes to change the signal timing in real time based on traffic signal engineer/expert observations of incident and traffic conditions at the intersections upstream and downstream of congested locations. This dissertation develops methods to automate and enhance such decisions made at traffic management centers. First, a method is developed to learn from experts’ decisions by utilizing a combination of Recursive Partitioning and Regression Decision Tree (RPART) and Fuzzy Rule-Based System (FRBS) to deal with the vagueness and uncertainty of human decisions. This study demonstrates the effectiveness of this method in selecting plans to reduce congestion during non-recurrent events. However, the method can only recommend the changes in green time to the movement affected by the incident and does not give an optimized solution that considers all movements. Thus, there was a need to extend the method to decide how the reduction of green times should be distributed to other movements at the intersection. Considering the above, this dissertation further develops a method to derive optimized signal timing plans during non-recurrent congestion that considers the operations of the critical direction impacted by the incident, the overall corridor, as well as the critical intersection movement performance. The prerequisite of optimizing the signal plans is the accurate measurements of traffic flow conditions and turning movement counts. It is also important to calibrate any utilized simulation and optimization models to replicate the field traffic states according to field traffic conditions and local driver behaviors. This study evaluates the identified special signal-timing plan based on both the optimization and the DT and FRBS approaches. Although the DT and FRBS model outputs are able to reduce the existing queue and improve all other performance measures, the evaluation results show that the special signal timing plan obtained from the optimization method produced better performance compared to the DT and FRBS approaches for all of the evaluated non-recurrent conditions. However, there are opportunities to combine both approaches for the best selection of signal plans

    Quantitive analysis of electric vehicle flexibility : a data-driven approach

    Get PDF
    The electric vehicle (EV) flexibility, indicates to what extent the charging load can be coordinated (i.e., to flatten the load curve or to utilize renewable energy resources). However, such flexibility is neither well analyzed nor effectively quantified in literature. In this paper we fill this gap and offer an extensive analysis of the flexibility characteristics of 390k EV charging sessions and propose measures to quantize their flexibility exploitation. Our contributions include: (1) characterization of the EV charging behavior by clustering the arrival and departure time combinations that leads to the identification of type of EV charging behavior, (2) in-depth analysis of the characteristics of the charging sessions in each behavioral cluster and investigation of the influence of weekdays and seasonal changes on those characteristics including arrival, sojourn and idle times, and (3) proposing measures and an algorithm to quantitatively analyze how much flexibility (in terms of duration and amount) is used at various times of a day, for two representative scenarios. Understanding the characteristics of that flexibility (e.g., amount, time and duration of availability) and when it is used (in terms of both duration and amount) helps to develop more realistic price and incentive schemes in DR algorithms to efficiently exploit the offered flexibility or to estimate when to stimulate additional flexibility. (C) 2017 Elsevier Ltd. All rights reserved

    Multi-resolution Modeling of Dynamic Signal Control on Urban Streets

    Get PDF
    Dynamic signal control provides significant benefits in terms of travel time, travel time reliability, and other performance measures of transportation systems. The goal of this research is to develop and evaluate a methodology to support the planning for operations of dynamic signal control utilizing a multi-resolution analysis approach. The multi-resolution analysis modeling combines analysis, modeling, and simulation (AMS) tools to support the assessment of the impacts of dynamic traffic signal control. Dynamic signal control strategies are effective in relieving congestions during non-typical days, such as those with high demands, incidents with different attributes, and adverse weather conditions. This research recognizes the need to model the impacts of dynamic signal controls for different days representing, different demand and incident levels. Methods are identified to calibrate the utilized tools for the patterns during different days based on demands and incident conditions utilizing combinations of real-world data with different levels of details. A significant challenge addressed in this study is to ensure that the mesoscopic simulation-based dynamic traffic assignment (DTA) models produces turning movement volumes at signalized intersections with sufficient accuracy for the purpose of the analysis. Although, an important aspect when modeling incident responsive signal control is to determine the capacity impacts of incidents considering the interaction between the drop in capacity below demands at the midblock urban street segment location and the upstream and downstream signalized intersection operations. A new model is developed to estimate the drop in capacity at the incident location by considering the downstream signal control queue spillback effects. A second model is developed to estimate the reduction in the upstream intersection capacity due to the drop in capacity at the midblock incident location as estimated by the first model. These developed models are used as part of a mesoscopic simulation-based DTA modeling to set the capacity during incident conditions, when such modeling is used to estimate the diversion during incidents. To supplement the DTA-based analysis, regression models are developed to estimate the diversion rate due to urban street incidents based on real-world data. These regression models are combined with the DTA model to estimate the volume at the incident location and alternative routes. The volumes with different demands and incident levels, resulting from DTA modeling are imported to a microscopic simulation model for more detailed analysis of dynamic signal control. The microscopic model shows that the implementation of special signal plans during incidents and different demand levels can improve mobility measures

    A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification

    Get PDF
    In recent years, electrified transportation, be it in the form of buses, trains, or cars have become an emerging form of mobility. Electric vehicles (EVs), especially, are set to expand the amount of electric miles driven and energy consumed. Nevertheless, the question remains as to whether EVs will be technically feasible within infrastructure systems. Fundamentally, EVs interact with three interconnected systems: the (physical) transportation system, the electric power grid, and their supporting information systems. Coupling of the two physical systems essentially forms a nexus, the transportation-electricity nexus (TEN). This paper presents a hybrid dynamic system assessment methodology for multi-modal transportation-electrification. At its core, it utilizes a mathematical model which consists of a marked Petri-net model superimposed on the continuous time microscopic traffic dynamics and the electrical state evolution. The methodology consists of four steps: (1) establish the TEN structure; (2) establish the TEN behavior; (3) establish the TEN Intelligent Transportation-Energy System (ITES) decision-making; and (4) assess the TEN performance. In the presentation of the methodology, the Symmetrica test case is used throughout as an illustrative example. Consequently, values for several measures of performance are provided. This methodology is presented generically and may be used to assess the effects of transportation-electrification in any city or area; opening up possibilities for many future studies

    Multi-resolution Modeling of Dynamic Signal Control on Urban Streets

    Get PDF
    Dynamic signal control provides significant benefits in terms of travel time, travel time reliability, and other performance measures of transportation systems. The goal of this research is to develop and evaluate a methodology to support the planning for operations of dynamic signal control utilizing a multi-resolution analysis approach. The multi-resolution analysis modeling combines analysis, modeling, and simulation (AMS) tools to support the assessment of the impacts of dynamic traffic signal control. Dynamic signal control strategies are effective in relieving congestions during non-typical days, such as those with high demands, incidents with different attributes, and adverse weather conditions. This research recognizes the need to model the impacts of dynamic signal controls for different days representing, different demand and incident levels. Methods are identified to calibrate the utilized tools for the patterns during different days based on demands and incident conditions utilizing combinations of real-world data with different levels of details. A significant challenge addressed in this study is to ensure that the mesoscopic simulation-based dynamic traffic assignment (DTA) models produces turning movement volumes at signalized intersections with sufficient accuracy for the purpose of the analysis. Although, an important aspect when modeling incident responsive signal control is to determine the capacity impacts of incidents considering the interaction between the drop in capacity below demands at the midblock urban street segment location and the upstream and downstream signalized intersection operations. A new model is developed to estimate the drop in capacity at the incident location by considering the downstream signal control queue spillback effects. A second model is developed to estimate the reduction in the upstream intersection capacity due to the drop in capacity at the midblock incident location as estimated by the first model. These developed models are used as part of a mesoscopic simulation-based DTA modeling to set the capacity during incident conditions, when such modeling is used to estimate the diversion during incidents. To supplement the DTA-based analysis, regression models are developed to estimate the diversion rate due to urban street incidents based on real-world data. These regression models are combined with the DTA model to estimate the volume at the incident location and alternative routes. The volumes with different demands and incident levels, resulting from DTA modeling are imported to a microscopic simulation model for more detailed analysis of dynamic signal control. The microscopic model shows that the implementation of special signal plans during incidents and different demand levels can improve mobility measures

    Enhanced Methods for Utilization of Data to Support Multi-Scenario Analysis and Multi-Resolution Modeling

    Get PDF
    The success of analysis and simulation in transportation systems depends on the availability, quality, reliability, and consistency of real-world data and the methods for utilizing the data. Additional data and data requirements are needed to support advanced analysis and simulation strategies such as multi-resolution modeling (MRM) and multi-scenario analysis. This study has developed, demonstrated, and assessed a systematic approach for the use of data to support MRM and multi-scenario analysis. First, the study developed and examined approaches for selecting one or more representative days for the analysis, considering the variability in travel conditions throughout the year based on cluster analysis. Second, this study developed and analyzed methods for using crowdsourced data vii to estimate origin-destination demands and link-level volumes for use as part of an MRM with consideration of the modeling scenario(s). The assessment of the methods to select the representative day(s) utilizes statistical measures, in addition to measures and visualization techniques that are specific to traffic operations. The results of the assessment indicate that the utilization of the K-means clustering algorithm with four clusters and spatio-temporal segregation of the variables demonstrated superior performance over other tested approaches, such as the use of the Gaussian Mixture clustering algorithm and the use of different segregation levels. The study assessed methods for the use of third-party crowdsourced data from StreetLight (SL) as part of the Origin-Destination Matrix Estimation (ODME), which identifies the method resulting in the closest origin-destination demands to the original seed matrices and real-world link counts. The results of the study indicate that Method 3(b) produced the best performance, which utilized combined data from demand forecasting models, crowdsourced data, and traffic counts. Additionally, this study examined regression models between crowdsourced data and count station data developed for link-level estimation of the volumes. This study also examined the accuracy and transferability of the link-level estimation of the volumes to determine if the crowdsourced data combined with available volume data at several locations can be used to predict missing or unavailable volumes in different locations on different days and times within the network. Regression models produced low errors than the default SL estimates when hourly or daily traffic volumes were taken into account. For similar traffic conditions, the models predicted directional traffic volume close to the real-world value
    • …
    corecore