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 The success of analysis and simulation in transportation systems depends on the 

availability, quality, reliability, and consistency of real-world data and the methods for 

utilizing the data. Additional data and data requirements are needed to support advanced 

analysis and simulation strategies such as multi-resolution modeling (MRM) and multi- 

scenario analysis.

            

               

            

            

           

 This study has developed, demonstrated, and assessed a systematic approach for 

the use of data to support MRM and multi-scenario analysis. First, the study developed and 

examined approaches for selecting one or more representative days for the analysis, 

considering the variability in travel conditions throughout the year based on cluster 

analysis. Second, this study developed and analyzed methods for using crowdsourced data
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to estimate origin-destination demands and link-level volumes for use as part of an MRM 

with consideration of the modeling scenario(s). 

The assessment of the methods to select the representative day(s) utilizes statistical 

measures, in addition to measures and visualization techniques that are specific to traffic 

operations. The results of the assessment indicate that the utilization of the K-means 

clustering algorithm with four clusters and spatio-temporal segregation of the variables 

demonstrated superior performance over other tested approaches, such as the use of the 

Gaussian Mixture clustering algorithm and the use of different segregation levels.  

The study assessed methods for the use of third-party crowdsourced data from 

StreetLight (SL) as part of the Origin-Destination Matrix Estimation (ODME), which 

identifies the method resulting in the closest origin-destination demands to the original seed 

matrices and real-world link counts. The results of the study indicate that Method 3(b) 

produced the best performance, which utilized combined data from demand forecasting 

models, crowdsourced data, and traffic counts. Additionally, this study examined 

regression models between crowdsourced data and count station data developed for link-

level estimation of the volumes. This study also examined the accuracy and transferability 

of the link-level estimation of the volumes to determine if the crowdsourced data combined 

with available volume data at several locations can be used to predict missing or 

unavailable volumes in different locations on different days and times within the network. 

Regression models produced low errors than the default SL estimates when hourly or daily 

traffic volumes were taken into account. For similar traffic conditions, the models predicted 

directional traffic volume close to the real-world value.  
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CHAPTER 1  

INTRODUCTION 

1.1. Background 

Transportation system analysts have used analysis, modeling, and simulation 

(AMS) tools of different types and resolutions to assess the system performance under 

different conditions and alternative improvements. The use of AMS in transportation 

decision-making systems provides a detailed analysis of alternatives and a thorough 

refinement of strategies and plans. Such a process is beneficial for assessing traffic 

performance based on the various measures of effectiveness (MOE) of transportation 

systems, as it provides detailed levels of assessment. Despite requiring a time-consuming 

rendition and recourse-intensive activity period, transportation engineers and planning 

practitioners often use traffic simulation models for detailed temporal and spatial analysis 

of traffic to assess different MOEs of the transportation system and network. However, it 

is critical that analysts or practitioners scope, develop, and calibrate the models to existing 

travel conditions and validate them to emulate real-life scenarios within the transportation 

network. Deficiencies in scoping, development, calibration, and validation of the models 

risk the accuracy of the modeling results and the decision-making process. Therefore, 

accurately assessing the performance of any transportation system effectively requires 

checking the data and model quality. 

AMS tools are essential for evaluating potential solutions for different 

transportation decision-making processes. Based on the level of details, traffic simulation 
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models are categorized into three different resolution levels: macroscopic, microscopic, 

and mesoscopic. Macroscopic models use macroscopic traffic models, parameters, and 

measures such as traffic flow, average speed, and density to model traffic operations. 

Microscopic models simulate individual vehicle dynamics and driver behavior and utilize 

microscopic parameters such as car-following, lane changing, and gap acceptance 

(Spiegelman et al., 2010). Although macroscopic models render faster processing time and 

are easier to develop and calibrate, microscopic simulation models tend to be more accurate 

and precise if well calibrated and validated. On the other hand, mesoscopic models 

combine the properties of both microscopic and macroscopic models. In most cases, they 

use aggregated speed-density (macroscopic) relationships but depict the motions of 

individual vehicles (microscopic) (De Palma et al., 2002), although some mesoscopic 

models use low fidelity car-following and lane selection models. Mesoscopic simulation 

models provide less fidelity than microsimulation tools but are more computationally 

efficient, making them ideal to use in the iterative process required for dynamic traffic 

assignment, particularly for larger networks. Depending on network size and the types of 

analyses required, all types of models are potentially valuable for transportation analysis. 

A multi-resolution modeling (MRM) framework that combines different modeling 

resolutions has found significant interest in recent years to answer questions related to 

traffic operations and advanced strategies. The term “resolution” in AMS refers to the 

degree of detail and precision in the representation of real-world conditions in a model 

(Army Modeling and Simulation Office, 2020). MRM in traffic simulation is an integrated 

framework that combines microscopic, mesoscopic, and macroscopic levels of traffic flow 

modeling to provide a unified analysis for different scenarios. 
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Another important concept that has been considered in recent years is multi-

scenario modeling that considers the variations in travel conditions due to differences in 

demand, capacity, weather, and incidents. These factors are not usually accounted for in 

modeling practice. Many improvement alternatives have different impacts depending on 

traffic conditions. With that, creating scenario-based models by identifying and labeling 

days of the year based on travel conditions can provide a better understanding of the 

impacts of these alternatives, even if only one scenario is selected for the analysis. 

However, there are constraints associated with scenario-based modeling, specifically with 

the required extra costs and time.  

An important constraint that limits this type of modeling is the unavailability of a 

complete data set for different days of the year, preventing the identification of scenarios 

and representative days. Thus, research is needed for the development of methods for the 

cost-effective support for multi-scenario modeling, or at least for the selection of a 

representative day in the year for the modeling. The Traffic Analysis Toolbox Volume 3 

developed by the Federal Highway Administration (FHWA) (Wunderlich et al., 2019) 

recommends the use of multi-scenario analysis instead of the current practices of using one 

scenario. Accordingly, it also suggests clustering the data to produce scenarios that 

represent operating conditions seen in the real world. The emergent crowdsourced data 

from social media, smartphones, and devices (Morshed et al. 2021) installed in vehicles 

can be combined with other available data to address problems related to missing and 

extensive data needs in multi-scenario modeling and MRM. Automated data collection via 

crowdsourcing created a paradigm shift in the urban mobility domain. Important 
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information that can be obtained based on the crowdsourced data includes network-wide 

traffic information such as travel times, origin-destination (O-D) demand matrices, and the 

routes used by the drivers between the O-D pairs. 

1.2. Problem Statement 

There is a wide range of simulation and modeling tools available in the market with 

different resolutions and sets of strengths. The use of these tools requires detailed data from 

multiple sources. With the availability of this data, multi-scenario analysis can be 

combined with multi-resolution analysis to provide a powerful transportation system 

analysis framework. This study research methods to address important knowledge gaps in 

multi-scenario modeling and MRM in the transportation domain considering the 

availability of data from multiple sources. 

1.2.1. Identified Gaps in Multi-Resolution Modeling (MRM) 

MRM frameworks possess varied theories and applications with different 

simulation granularity, representation (vehicle, cell, and flow), and data requirements 

(Zhou et al., 2022). MRM tools, when utilized, must provide better assessments of traffic 

conditions and an increased understanding of the performance of different alternatives 

other than single resolution models. For MRM, traffic count data from different sources 

are used in developing O-D matrices using algorithms referred to as O-D matrix estimation 

(ODME) algorithms. However, there are questions related to the quality of the resulting O-

D matrices. In addition, there are often issues related to data unavailability and missing 

data within the study area. For freeways, there are data available from traffic sensors. 



5 

However, there is a general lack of data for arterial streets that hinders multi-scenario 

modeling and  MRM. Accurate and more detailed volume data combined with the ODME 

can aid both multi-scenario and MRM analysis, respectively. In addition to traffic counts, 

O-D matrices based on crowdsourced data can be used to estimate the O-D matrices. The 

crowdsourced data can also be used to validate the path selection resulting from the traffic 

assignment in the MRM. Additionally, network-wide traffic flow information can work as 

a benchmark to help evaluate the performance of MRM.  

Existing transportation AMS tools vary widely in their implementation and data 

requirements. Combining data from various sources is a potential approach to obtaining 

good quality O-D matrices. Sources of data for use in ODME can include automatic vehicle 

re-matching technologies and automatic vehicle location technologies that track or identify 

vehicles as they move between the origins and destinations (Zhang et al. 2020). An 

important source is crowdsourced data, which is generally based on automatic vehicle 

location technologies. In many cases, this data serve to collect partial trips that do not cover 

the full trip, which means that the data only identify trips between points located on the 

paths between the origins and the destinations. There is a need for methods for the best use 

of O-D matrices estimated using crowdsourced data or vehicle re-matching technologies 

as inputs to the ODME process. Existing research studies do not address combining 

crowdsourced data with count data and initial O-D matrices from other sources to estimate 

O-D matrix.  
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1.2.2. Identified Gap in Multi-Scenario Modeling   

An important step in scoping traffic analysis projects is to process and use real-

world data to identify the operational scenarios and the representative days for these 

scenarios for AMS model development. Most existing traffic analysis studies use one set 

of inputs to the utilized tool to represent one operational scenario for each analyzed peak 

period. In most cases, analysts take the averages of traffic volume, speed, travel time, and 

possibly other measures for the weekdays and use these averages in the development and 

calibration of the simulation models. In other cases, the analysts use the averages only from 

data collected from the peak months of the year rather than the whole year. Averaging 

measures based on data collected from different days of the year could result in a synthetic 

day that does not really occur in the real world (Wunderlich et al., 2019, Dowling et al., 

2004). 

The identification of traffic patterns that best represent the traffic conditions needed 

for an AMS effort is critical to the success of these projects. In some efforts, particularly 

those associated with traffic management and operations, the analysts should perform the 

analysis for different operational conditions of the year, including different recurrent 

congestion levels, incident conditions, and bad weather conditions (Vasudevan and 

Wunderlich, 2013). However, even if the scope of the analysts is only to analyze normal 

no-event conditions, there is a need to analyze the variations in traffic conditions to 

determine the best day(s) that represent the traffic conditions. In this regard, the FHWA 

Traffic Analysis Toolbox Volume 3 (Wunderlich et al., 2013) recommended the use of 

cluster analysis to categorize the traffic conditions in an entire year into a number of 

clusters and determine a representative day for each of these clusters. Such identification 
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will allow the selection of the best operational conditions to represent the whole spectrum 

of traffic conditions present in the network for the purpose of analysis. However, the above-

mentioned reference does not provide detailed guidance on how to perform clustering 

analysis to identify the travel conditions. There are many essential decisions to take into 

consideration when conducting the cluster analysis to obtain the representative day(s). This 

study identified three knowledge gaps requiring further research in this regard. First, there 

are various clustering algorithms and methods; each have their strengths and weaknesses. 

Therefore, it is important to identify the performance of these algorithms in clustering data 

obtained from typical traffic monitoring systems. Second, it is expected that higher 

resolutions of the input variables to the clustering analysis can improve the results from the 

analysis. For example, if the traffic volume used as input is averaged over the whole 

corridor of the study and for the whole analysis peak period, then important traffic patterns 

in time and space might be lost. However, how the segregation of the input variables in 

time and space can improve the quality of the clustering is yet to be understood. Third, it 

is also necessary to investigate methods needed for measurement and evaluation of the 

aggregation levels of the performance results from the clustering of traffic conditions. 

1.3. Research Goal and Objectives 

Considering the identified gaps as presented in the previous section, the goal of this 

project is to identify the methods needed to use data from multiple sources to support 

improved multi-scenario analysis and MRM. The specific objectives related to the goal of 

this study are listed below. 
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 Develop a method to identify traffic scenarios representing traffic patterns and 

representative days of these travel patterns considering the day-to-day variations in 

traffic conditions.  

 Develop methods for integrating crowdsourced data into the ODME process 

required for the MRM for the modeled scenario(s). 

 Check the reliability and transferability of the use of crowdsourced data obtained 

from a third-party vendor in estimating segment-level daily and hourly volumes in 

support of AMS and MRM.  

1.4. Dissertation Organization 

This section presents the organization of this document, including an overview of 

the chapters in this document. 

Chapter 2 presents a synthesis and a detailed review of past research related to the 

objectives and tasks of this study. The literature review is categorized into three different 

parts, which consist of multi-scenario modeling, ODME, and crowdsourced data.  

Chapter 3 focuses on investigating methods for traffic patterns and representative 

day selection for multi-scenario analysis. This chapter explores different clustering 

algorithms and their performance based on measures reported in statistical and traffic 

engineering literature.  

Chapter 4 discusses the utilization of crowdsourced data in the ODME process. 

This chapter reports the results from using ODME methods in combination with 

crowdsourced data from a third-party vendor and regional demand forecasting model. 

Chapter 5 includes an analysis of the accuracy of segment-level estimation of 

volumes using crowdsourced data from a third-party vendor.  
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Chapter 6 presents the conclusions based on the results from the research and 

recommendations for future studies. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1. Literature Synthesis 

The literature review is categorized into three major categories based on the 

research objectives. The categories of literature review are multi-scenario modeling, 

ODME, crowdsourced data. A chart showing the synthesis of the literature review is shown 

in Figure 2-1.  

 

Figure 2-1 Literature review synthesis 
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2.2. Multi-Scenario Modeling  

The FHWA Traffic Analysis Toolbox Volume 3 (Wunderlich et al., 2019) 

presented a procedure for multi-scenario analysis, which involves the use of clustering 

analysis for the identification of modeling scenarios. Clustering analysis is characterized 

as an unsupervised machine-learning technique that segments the objects under 

consideration into clusters, with the objects within each cluster having closer relations 

compared with objects in other clusters (Hastie et al., 2009). Clustering methods mainly 

utilize a dissimilarity measure to cluster the objects (Xia and Chen, 2007b). Although the 

use of a clustering approach in the transportation engineering field has been limited due to 

the absence of data, the demand for using this approach in the recent past has gained 

popularity to identify multi-scenario prediction for traffic analysis, modeling, and 

simulation (AMS). The goal of performing data clustering is to form a set of objects into 

subsets so that the objects in the clusters formed are in close proximity compared to objects 

assigned to different clusters (He et al., 2011).  

Traffic data are mostly spatial and temporal in nature and possess high correlations. 

The focal point of implementing a clustering technique is to determine spatial and temporal 

patterns among the traffic measures, such as traffic volume, speed, and travel time. Ku et 

al. (2016) proposed a data-driven model consisting of K-means clustering and a subsequent 

deep learning-based neural network model to predict the missing counts of traffic data from 

the road segments. The implementation of the K-means clustering has been used to 

categorize the traffic flow operation regimes based on traffic density and speed data 

aggregated in 15-minute intervals. Similarly, nested clustering techniques have been used 
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to identify the operating scenarios of freeways  (Xia and Chen, 2007a). The K-means and 

Fuzzy clustering were used to forecast traffic demand and analyze temporal and spatial 

travel behaviors using data collected by license plate recognition readers (Park, 2002). 

Other studies implemented clustering approaches such as Fuzzy C-means clustering and 

spectral clustering in congestion pattern recognition on urban roads and analyzing traffic 

state variations (Chen et al. 2017, Zhang et al. 2017). The K-means clustering based on 

historical data showed that travel time can be related to external factors such as weather 

conditions and traffic incidents (Nath et al., 2010; Chen et al., 2001; Wei et al., 2007; Wu 

et al., 2004, Al-Kaisy et al. 2022). Another study showed the possibility of implementing 

clustering techniques to compute the probabilistic distribution of travel time variability on 

urban arterials (Hans et al., 2014). 

However, the most detailed and sophisticated implementation of clustering 

techniques in transportation engineering is the FHWA’s AMS testbed effort (FHWA 

2013a, FHWA 2013b, Vasudevan and Wunderlich, 2013). This effort involved six testbeds 

(San Mateo (US 101), Pasadena, Dallas, San Diego, Phoenix, and Chicago testbeds) that 

pilot-tested the use of AMS for assessing active traffic management and dynamic mobility 

applications. Table 2-1 summarizes the clustering analysis methods used in the six testbeds 

of the FHWA study mentioned above.  
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Table 2-1 Clustering analysis methods used in the six FHWA testbeds. (Source: 
FHWA 2013a, FHWA 2013b, Vasudevan and Wunderlich 2013) 

Testbed Location Clustering Method Multi-scenario Parameter 

Dallas K-means clustering Clustering of traffic data based on Vehicle 
Miles Traveled (VMT), travel time (TT), 
incident severity and precipitation 

San Diego K-means clustering  Incident duration, demand, travel time, 
and incident impact on delay in the 
clustering 

Pasadena K-means clustering  VMT, travel time, the total number of 
incidents, total duration of incidents 

Phoenix Hierarchical 
clustering & K-
means clustering 

Hourly travel speed, precipitation, incident 
frequency, traffic counts, and travel speed 

Chicago Two-step joint K-
means clustering 

Weather patterns identified based on the 
precipitation type (Rain, Snow, and Clear) 

San Mateo K-means clustering  Travel time, VMT, weather, and incident 
frequency 

 

There is limited information related to selecting appropriate clustering technique(s), 

clustering parameters, and an optimal number of clusters. The K-means clustering method 

is a widely used technique that clusters and analyzes large datasets. However, its 

application is limited to datasets consisting of quantitative variables, which utilizes 

Euclidian distance as the dissimilarity matrix (Huang, 1998). Unlike similarity-based 

clustering techniques such as K-means clustering, model-based clustering is more flexible, 

which can eradicate problems like data uncertainty. The mixture distribution type of 

clustering techniques involves data fitting and implementation of the conditional 

probabilities of data points, which naturally assign probabilistic labels to the clustered data. 

One of the most widely used mixture models for clustering is the Gaussian Mixture Model 
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(Bishop 2007). Table 2-2 presents the difference between K-means clustering and GMM 

clustering. 

Table 2-2 Comparisons between GMM and K-means clustering techniques (Wang et 
al. 2011; Huang, 1999; Bishop, 2007) 

GMM Clustering Technique K-means Clustering Technique 
GMM accounts for covariance, which 
determines the shape of the distribution. 

K-means uses simple distance-from-
cluster-center to assign cluster 
membership, which leads to poor 
representation of the datasets. 

GMM performs soft classification of data, 
i.e., flexible classification. 

It performs hard classification of data i.e., 
rigid classification. 

GMM can handle very oblong clusters. Cluster models must be circular: K-means 
has no built-in way of accounting for 
oblong or elliptical clusters, i.e., if we take 
the same data and transform it, the cluster 
assignments end up becoming muddled. 

GMM contains a probabilistic model that 
finds probabilistic cluster assignments. 

The K-means model has no intrinsic 
measure of probability or uncertainty of 
cluster assignments. 

 

The FHWA guideline (Wunderlich et al. 2019) included an example of a stepwise 

method for identifying the clusters using the K- means method, as follows:  

1) Data Sorting: This step involves identifying a critical location in the network (e.g., 

bottleneck location) and organizing available recurring and non-recurring data. 

2) Clustering Number: This step involves specifying an initial cluster number (e.g., 

K as 4).  

3) Day Partitioning: In this section, there is a systematic division of days into each 

preliminary cluster. 

4) Centroid Calculation: This step calculates the centroid or mean of each cluster 

based on the attribute of the clusters. Assumingly, the attributes are equally 

weighed.  
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5) Euclidean Distance Calculation: This step calculates the Euclidean distance of each 

data to the centroid of all clusters using the following equation:  

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑦𝑦 = �(𝑥𝑥1 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1)2 +  (𝑥𝑥2 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2)2 + ⋯+ (𝑥𝑥𝑎𝑎 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑎𝑎)2    (2-1) 

where  

    xdisy = Distance of data x to the mean of cluster y; 

         xa = Value corresponding to the attribute a for data x; and  

ymeana = mean value for attribute a for cluster y. 

6) Day Assignment: This step involves the re-assignment of each day to the cluster 

with the closest centroid.  

7) Identifying Stopping Criterion: If there is no change in the day assignment step, 

then a stopping criterion takes place to identify the optimal number of clusters. 

Otherwise, the procedure is iterated starting at Step 4. 

Several internal clustering validation metrics have been proposed in statistics 

literature, such as Silhouette Coefficient (SC), Calinski-Harabasz Index (CH), and Davies-

Bouldin Index (DB), to measure the goodness-of-fit in the clustering methods (Liu et al., 

2013). However, these measures have an issue in that they are dependent on the 

dimensionality of the data, meaning that for larger numbers of parameters, these measures 

assign datapoints as outliers even though the datapoints could be a part of a cluster (Platzer, 

2013). Another method that does not have this issue is the t-Distributed Stochastic 

Neighbor Embedding (t-SNE) visualization method. The t-SNE method  allows visualizing 

the difference between different aggregation levels of the investigated dataset (Azimi and 

Zhang, 2010). The t-SNE is a non-linear dimensionality reduction technique that uses an 
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unsupervised learning algorithm. It attempts to place similar data points close to each other 

while preserving the global structure of the dataset (Lowry, 2014). Researchers have also 

proposed methods for assessing the results from cluster analysis based on traffic 

engineering concepts. For example, Azimi and Zhang (2010) observed the distribution of 

the performance measures of different clusters by plotting speed versus flow (fundamental 

diagram) data to identify the performance of the clusters. 

2.3. Origin-Destination Matrix Estimation Process  

An important and challenging component of multi-resolution analysis is the 

estimation of origin-destination (O-D) demand matrices for the analysis. Recognizing that 

the O-D demand matrices produced by most existing travel demand models cannot provide 

the accuracy required in multi-resolution analysis, the analysts have used ODME processes 

to refine the O-D demand matrices. The ODME processes are mainly performed to better 

match real-world traffic volumes when assigning the O-D demands to the network, 

considering initial O-D matrices from existing sources such as demand forecasting models. 

Based on static or dynamic assignment of the O-D demands to the paths between the O-D 

pairs, the O-D matrices are subjected to optimization procedures by minimizing the 

differences between the link volumes resulting from the assignment and the measured 

values. Sources of traffic volume data generally include permanent and portable count 

stations installed by various planning agencies, road sensors installed by traffic 

management agencies, traffic count tubes, or a combination of these sources .  
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Many researchers have developed ODME models to estimate O-D matrices based 

on an initial seed matrix combined with measurements such as traffic counts. Table 2-3 

summarizes examples of such methods developed to estimate the O-D demand. 

Table 2-3 Developed methods to predict the O-D matrices 
Author Methodology 

Lowry (2014) 
The O-D centrality method is based on graph theory, which is used in 
this paper as a regression parameter directly in a demand model (linear 
regression) to estimate AADT spatially with the help of GIS.  

Shi et al. 
(2020) 

The methodology used in this paper was to predict O-D flows by 
implementing Long Short-Term Memory (LSTM) and multi-
perspective Graph Convolutional Networks (GCN) processes. 

Ashok (1996) 
The authors proposed an offline (historical time-series data) and 
online estimation and prediction (proposed sequential model) of time 
dependent O-D flows. 

Cascetta 
(1993) 

This method developed a dynamic estimator using a (discrete) time 
varying traffic count on a general network to obtain time varying O-D 
flows or average O-D flows. The results showed consistent and 
significant estimates of true O-D flows over 15-min. intervals. 

Kikuchi and 
Tanaka 
(2000) 

The authors proposed a back-propagation artificial neural network 
(ANN) model that has been used to estimate a ramp-to-ramp O-D 
table. 

Mussone and 
Matteucci 
(2013) 

This paper performed O-D estimation using a multilayer feed forward 
neural network (NN) and principal component analysis (PCA). NN is 
robust even when data contains wrong information. This method also 
considered missing data. 

Chang and 
Wu (1993) 

This paper proposed a nonlinear dynamic system model with the 
Extended Kalman Filtering procedure. It also considered interrelations 
between O-D distributions and observed flows under congested 
conditions. 

Zhou et al. 
(2003) 

This research developed a dynamic O-D demand-based method. The 
objective function of the proposed model is to minimize the deviation 
between observed link flows and estimated link flows. Similarly, the 
method also worked on minimizing deviation between target demand 
and estimated demand volume. 

Dixon and 
Rilett (2000) 

The authors assumed that AVI readers are available at the boundaries 
of their network and used the data to estimate the O-D demand. This 
study evaluated the generalized least squares and Kalman Filter 
algorithms on a freeway section with on- and off-ramps and found that 
utilizing AVI has improved ODME estimation. 
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Some of the utilized techniques in the ODME include Bayesian Inference (Van Der 

Zijpp, 1997), Generalized Least Squares (Asakura et al., 2000) and Maximum Likelihood 

(Parry and Hazelton, 2012). Zhou and Mahmassani (2006) and Cantelmo et al. (2014) 

presented a customized ODME using the least-square estimation models based on traffic 

counts, point-to-point travel time collected from Automatic Vehicle Identification (AVI) 

data, and seed O-D matrices into a multi-objective optimization framework. Carrese et al. 

(2017) and Jamali (2014) proposed an ODME model based on travel time data from probe 

vehicles data and partial counts from AVI sensors, respectively.  

Technologies such as AVI and probe data can provide partial and sample O-D 

demands that can be used as part of the O-D matrix estimation process. AVI data is used 

to validate and adjust the initial O-D matrices from the demand models. An example is the 

use of AVI data based on Bluetooth readers to verify and adjust the O-D patterns and trip 

lengths (Corradino Group, 2013). Antoniou et al. (2004) also incorporated AVI data into 

the ODME and found that the quality of the ODME results improved with the use of AVI 

data and link counts. Barceló et al. (2010) utilized simulated data to measure the reliability 

of AVI through Bluetooth and Wi-Fi data to estimate dynamic O-D matrices using the 

linear Kalman Filter approach. Alibabai and Mahmassani (2008) experimented with using 

turning movement counts as observation in dynamic ODME and found that intersection 

turning movement counts have considerable benefits in matching observed counts over link 

volumes. 

It is evident from the literature review that there is a need for using supplemental 

data in ODME methods to improve the quality of the resulting matrices (Rodrigues et al.,  
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2017). An important type of data that became available in recent years is the crowdsourced 

probe vehicle data provided by third-party vendors. However, there are no existing studies 

that investigate crowdsourced data with other data sources for use in the ODME process. 

Crowdsourced data are designed to collect partial trips that do not cover the full trip, which 

means that the data only identify trips between points located on the paths between the 

origins and destinations. In addition, only a small percentage of vehicles are tracked as part 

of crowdsourced data. As a result, vendors like Streetlight (SL), which is one of the most 

widely used providers of crowdsourced data, report a relative number of trips between the 

origins and the destinations rather than the actual number of trips. This relative number of 

trips is reported as an index, or an “SL Index,” which can be expanded to estimate the O-

D matrix. The expansion of the O-D matrix can be done by the user, although the vendor 

also provides estimates of the expanded O-D matrices. There are questions regarding the 

accuracy of the O-D matrices obtained from the third-party vendors since they cover a 

relatively small sample size that may not be representative of the full population. Therefore, 

combining data from various sources with the crowdsourced data is a potential approach 

to obtaining good quality O-D matrices.  

2.4. Review of Crowdsourced Data Utilization  

Crowdsourced data, such as online web services (Tostes et al. 2013), social media 

data (Ni et al. 2014 and Morshed et al. 2021), cellphones, and hotspots (Pereira et al. 2015, 

Demissie et al. 2016), are often used to estimate traffic volumes. In particular, 

crowdsourced data through mobile devices have the potential for use in estimating link 

volume and O-D demand matrices (Sanchez et al. 2014). Third-party vendors such as 
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StreetLight (SL) utilize GPS-based mobile devices or location-based services (LBS) data 

(i.e., data collected from devices installed in vehicles to estimate link traffic volumes, O-D 

matrices, and Annual Average Daily Traffic (AADT)), among other data. Other vendors 

like Wejo aggregate connected vehicle data obtained from automobile manufacturers. The 

aggregated data is used to estimate various parameters, including directional traffic 

volumes, average speeds, and O-D demands. In this study, SL data is used as a source of 

crowdsourced data. Thus, a detailed discussion of this data is presented in the following 

section. 

2.4.1. Overview of Vendor-Provided Data  

Crowdsourced data from mobile devices is challenging due to difficulties in 

detecting the locations of vehicles, which is caused by a variable location sampling rate. 

Additionally, errors in location tracing through mobile data can result in faulty 

transportation mode detection. The absence of ground truth data can also reduce the 

validation and trust in the collected data.  

To tackle the challenges associated with crowdsourced data, sampling and filtering 

of the collected data is essential. For example, Rodrigues et al. (2017) utilized classification 

algorithms such as Random Forest (RF), Gradient Boosting (GB), Support Vector Machine 

(SVM), and K-Nearest Neighbors (KNN), and clustered algorithms such as weighted K-

means to sample and filter the data. SL (StreetLight Insight 2020 Whitepaper Version 1), 

one of the main vendors of crowdsourced data, uses supervised machine learning models 

that are adopted to improve the estimation of different traffic data-related features such as 

O-D demand matrices, traffic volumes, and AADT.  
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Recently, various public agencies have become interested in the prospect of using 

traffic parameters estimated based on crowdsourced data vendors. SL, a popular 

crowdsourced data platform, provides estimates of the AADT and Monthly Average Daily 

Traffic (MADT). However, the SL estimates rely heavily on the data points sampled from 

smartphone applications and GPS devices, which may be subject to potential bias and 

coverage issues. To estimate the traffic flow parameters, SL uses machine-learning models 

that use mobile data, in combination with demographics data derived from census, 

permanent traffic recorders (PTR), and OpenStreetMap data, among other data sources. 

Prior to implementing the machine-learning model, a gradient-boosting model is used to 

estimate a two-month “reference period” average daily traffic (ADT), which is used instead 

of determining the AADT based on the whole year. The ADT is calculated for September 

and August since these two months were found to exhibit relatively high and consistent 

penetration rates nationwide. The vendor also claims that the two-month ADT reference 

model outperforms a full-year AADT reference model and helps reduce the time required 

to run an analysis based on volume. Afterwards, the estimated traffic volume is adjusted 

based on data collected from 1700 PTR sites across 20 states in the U.S. In specific 

locations, PTR data is used to create MADT metrics to assess the monthly variation of trip 

volumes. MADT obtained based on PTR data are used to fine-tune the monthly seasonal 

adjustment models. The system utilizes the k-fold technique, leaving out one state from a 

set of 20 and validating the estimated results of trip volume with the left-out state based on 

novel zones created within the network. Additionally, historic counts are also used over 

the years to fine-tune the MADT in the software. Later, the data is normalized along several 

different parameters to create a relative measure of the trips called the SL Index. The SL 
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Index is a normalized mobile parameter updated each month based on the ratio of the 

mobile sample available for a location to the total population (collected from the census 

block). In other words, in the calculation of the SL Index, the data are scaled based on the 

available SL devices and residents in those locations. 

To create the O-D matrices, SL uses mobile navigation data that is updated every 

month. The trips are calibrated externally based on high-quality vehicle count sensors, 

surveys, and other externally validated sources. Ultimately, the trips are normalized to 

avoid sample bias within the data. 

2.4.2. Experience with Crowdsourced Data 

Several public agencies have explored and tried to validate the estimated traffic 

volumes obtained from SL. However, there are no clear guidelines on how to utilize the 

SL metrics and how to evaluate its performance in an accurate way. Table 2-4 shows 

various approaches taken by public agencies to assess the performance of SL metrics, along 

with the usability of the data for different applications. 

Table 2-4 Existing guidelines on StreetLight data 
Public 
Agency 
(DOT) 

Purpose Benchmark Data Performance 
Metrics 

Virginia 

Evaluation of SL AADT, 
SL O-D Trips, SL traffic 
counts, turn counts and 
truck volumes at 
intersection (2020) 

Traffic Count Database 
System (City of Virginia 
Beach 2019); O-D Trip 
based on Electronic Toll 
System (VDOT 2018) 

Percentage 
Error (PE) & 
Absolute 
Percentage 
Error (APE) 

Minnesota 
Evaluation of SL AADT 
and Average Hourly 
Volume (2017) 

MnDOT 69 permanent 
monitoring sites and 7837 
short-duration count stations 

MAPE, 
MAD, MSD 

Minnesota Evaluation of SL AADT 
(2020) 

Permanent automatic traffic 
recorders (ATR), Permanent 

MAPE, 
MPE, Mean 
error (ME) 
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WIM, Permanent RTMC, 
Permanent Wavetronix 

Oregon Evaluation of SL AADT 
(2019) Automatic Traffic Recorders PE & APE 

Georgia 
Calculate O-D Matrix 
Indices, Freight patterns 
(2019) 

N/A N/A 

Ohio Estimation of daily truck 
volume N/A N/A 

USDOT Bicycle safety analysis 
(2020) 

Permanent Bicycle Count 
Station MAPE, MAE 

Traffic volume data are essential for traffic planning, especially for evaluating the 

ratio of volume and capacity, origin–destination (O-D) matrix estimation, and detecting 

bottleneck roads (Hobbs, 2016). Additionally, transportation agencies can utilize network-

wide traffic flow information to undertake proactive traffic control policy in order to 

respond to traffic congestion (Zhu et al., 2010). Traditionally, traffic volume is measured 

by installing permanent road sensors, popularly known as automatic traffic recorders 

(ATRs), which collect counts over a period of a year. However, factors such as deployment 

cost, maintenance cost and insufficient coverage across the entire road network limit the 

availability of network-wide data to estimate traffic volume. The emergence of 

crowdsourced data created an opportunity to address this problem. Inclusion of big data 

from crowdsourced platforms such as SL is an innovative approach to strengthen the 

formulation of transportation decision-making strategies based on traffic volume 

estimation. The methodology and findings of SL volume estimation and validation reported 

by Virginia, Minnesota, and Oregon Department of Transportation (DOT) are discussed in 

the next section. 
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2.4.2.1. Virginia Department of Transportation (VDOT) Experience 

A VDOT’s study (Yang et al., 2020) aimed to formulate a guideline on using SL 

metrics by measuring its performance in different application contexts. The report assessed 

the quality of the SL metrics in six testing contexts covering the AADT, O-D trips, traffic 

flow on road links, turning movements at intersections, and truck traffic. The benchmark 

data sources were continuous count stations, toll transaction data, and the VDOT’s internal 

traffic estimations. The analysis showed that the AADT estimates based on the SL index 

had relatively small absolute percentage errors compared to other outputs such as the O-D 

trips, traffic counts on roadway links, turning movement counts at intersections, and truck 

traffic volumes, which exhibited relatively higher and consistent errors. One important 

finding from the study was that lower volume levels estimated based on the SL metrics 

generated higher errors. Additionally, using multi-periods, such as multiple days, weeks, 

or months, rather than individual periods as the input for estimating traffic measures in SL, 

resulted in reduced errors, especially in low-volume traffic segments.  

The VDOT report found a linear trend between SL Index Estimates of AADT and 

ground truth AADT, as shown in Figure 2-2. The Mean of Absolute Percentage Error 

(MAPE) measured for both 2017 and 2018 showed that for low volume segments (0-10,000 

vph), the highest errors are 18.2% and 10.2%, respectively. After observing a linear trend 

between the benchmark AADT and SL Index estimates of AADT, a linear regression 

model was developed between the SL Index and hourly sensor data to estimate traffic 

volume. However, significant errors of up to 25% have been observed in the estimated 

traffic volume from the SL index. High errors were mostly observed in the road segments 
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with a low volume of less than 500 vehicles per hour (vph). Figure 2-3 plots the fitted 

regression model, along with the resulting percentage errors. 

 

Figure 2-2 Relationship between the SL AADT Estimate and VDOT AADT in 2017 
and 2018 (Yang et al., 2020) 

 

 

Figure 2-3 Linear regression based on SL Index and hourly sensor data (Yang et al., 
2020), Minnesota Department of Transportation (MnDOT) Experience 
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2.4.2.2. Minnesota Department of Transportation (MnDOT) Experience  

 The MnDOT (Turner and Koeneman, 2017) evaluated the accuracy of SL AADT 

estimates, which were compared against volume data from 442 permanent continuous 

counter locations in 2017 and 2019. Additionally, the MnDOT conducted an analysis on 

several hundreds of low-volume sites for short-duration counts in 2019. Typically, short-

duration count stations generate erroneous estimates of AADT. As a result, the MnDOT 

conducted the evaluation study to address the uncertainty of SL AADT estimates based on 

these two benchmark data sources (the permanent continuous counter locations and the 

short-duration count stations). The findings of the study also showed that the SL estimation 

of AADT improved significantly in 2019, compared to 2017, for moderate to high volume 

ranges (AADT greater than 10,000 vph). The MAPE decreased from approximately 42% 

to 10% for high volume locations, and 68% to 34% for low volume locations in the year 

2019, compared to 2017. Figure 2-4 shows plots of SL estimates between the AADT and 

AADT benchmark from several data sources. The plots indicated that the SL estimates for 

high volume regions (volumes higher than 10,000 vph) underestimate the volumes 

compared to benchmark data but overestimate the volumes for the low volume regions.  
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Figure 2-4 SL Estimates versus AADT Benchmark (Turner, 2020) 
  

 The MnDOT also explored the accuracy of SL estimates compared to short duration 

counts and found high errors ranging between 86% and 90% for AADTs less than 1,000 

vph. It was evident that the SL estimates do not work well with annualized short-duration 

counts. 

2.4.2.3. Oregon Department of Transportation (ODOT) Experience 

 The Oregon DOT (Roll, 2019) used AADT from the year 2017, which is based on 

Automatic Traffic Recorders (ATRs) data to measure the accuracy of the SL estimates of 

AADT. Out of the 180 ATRs in the region, 173 ATRs were used in the comparison. The 

results showed that the median and mean absolute percentage error is 18% and 26%, 

respectively. As in previous cases, low volume regions (between 0-1,000 vph) exhibited 

high discrepancies for SL volume estimation, as shown in Figure 2-5. 
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Figure 2-5 Absolute Error of the AADT between Benchmark Data and StreetLight 
Estimates (Roll, 2019) 

 

2.4.3. Using Crowdsourced Data to estimate O-D Matrix 

 A real-world application of the SL Index to estimate the O-D matrix is presented in 

a recent VDOT report on Guidelines for Using SL Data for Planning Tasks (StreetLight 

White Paper, 2018). In this report, the O-D trips were derived by combining the SL Index 

and actual O-D trips collected from toll transaction data archived by the Electronic Toll 

System on the I-66 Expressway (Northern Virginia). However, the resulting O-D estimates, 

especially for O-D pairs with estimated hourly trips below 600, generated high errors 

(Absolute Percentage Error, APE) as large as 60% for the analyzed O-Ds. To reduce the 

estimation errors, SL indices were averaged across multiple hours of different days (5 or 

15 days) for low volume conditions, as shown in Figure 2-6. The mean absolute percentage 

error (MAPE) for 5-day and 15-day aggregation were 62.9% and 58.08%, respectively. 
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Depending on project purposes, the aggregation can be based on the metrics of multiple 

days, weeks, or months. 

 

Figure 2-6 Distribution of percentage error in estimated trips based on SL Index for 
(a) Original SL index; (b) 5-day average SL Index; (c) 15-day SL Index, (Yang et al., 

2020) 
 

2.5. Summary 

As mentioned earlier, the literature review is synthesized into three major sections. 

It is evident from the literature that there is a need for data enhancement from multiple 

sources such as detector data and crowdsourced data to develop methods in order to 

conduct efficient and accurate multi-scenario analysis and MRM.  

There is no clear guidance in the FHWA Traffic Analysis Toolbox Volume 3 

(Wunderlich et al., 2019) on how to select the optimal cluster numbers, clustering 

technique, clustering parameters, measuring clustering performance, etc., to measure day-

to-day  variations of traffic data. The FHWA Traffic Analysis Toolbox Volume 3 suggested 

different clustering techniques such as K-means, GMM, etc., to conduct multi-scenario 

analysis for non-recurrent days. Theoretically, the GMM clustering technique has 
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advantages over the K-means clustering technique. However, in practice, these two 

methods were not compared to find the suitable clustering technique for multi-scenario 

analysis. The FHWA’s AMS testbed effort is the most detailed and sophisticated 

implementation of clustering techniques in transportation engineering. However, limited 

information is available related to clustering parameters, optimal number of clusters, and 

input data to measure the day-to-day  variation. Additionally, the FHWA testbed only 

considered non-recurrent days for clustering purposes.  

Many researchers have developed ODME models to estimate O-D matrices based 

on an initial seed matrix combined with measurements such as traffic counts. It is evident 

from the literature review that there is a need for using supplemental data in ODME 

methods to improve the quality of the resulting metrices. ODME methods such as Bayesian 

Inference, Generalized Least Squares, Maximum Likelihood, and Customized Least-

Square Estimation have been explored by researchers to produce O-D matrices close to the 

real-world  values. Researchers have used technologies such as AVI and probe data, which 

provided partial and sample O-D demands that can be used as part of the O-D matrix 

estimation process. There was no instance found in the literature review that shows the 

implementation of crowdsourced data in the ODME process.  

To check accuracy, several public agencies have explored and tried to validate the 

estimated traffic volumes obtained from crowdsourced data provided by third-party 

vendors such as StreetLight. Different DOTs such as Virginia, Oregon, Minnesota, etc., 

found that there is a linear trend between SL and ground truth data. Another major finding 

was that estimated traffic volumes based on SL had relatively small absolute percentage 
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errors for locations with high volume (>1000 vph) compared to locations with smaller 

traffic volume. The VDOT reported that the AADT estimates based on SL had relatively 

small absolute percentage errors compared to other outputs such as the O-D trips, traffic 

counts on roadway links, turning movement counts at intersections, and truck traffic 

volumes, which exhibited relatively higher and consistent errors. A literature review found 

that there is limited information or resources regarding the integration of crowdsourced 

data with the ODME process.  

  



32 

CHAPTER 3  

SELECTION OF TRAFFIC ANALYSIS DAY(S) UTILIZING CLUSTERING 

ANALYSIS  

An important step in scoping traffic analysis projects is how real-world data is 

collected, processed, and analyzed to identify the operational scenarios and the 

representative days for these scenarios. Most existing traffic analysis studies use one set of 

inputs to the utilized tool to represent one operational scenario for each analyzed peak 

period. When there are multiple days of data, the analysts in most cases take the averages 

of traffic volume, speed, travel time, and possibly other measures from weekdays and use 

these averages as inputs in the development, verification, and validation calibration of the 

simulation models. In some cases, to find the averages, analysts only use data collected 

from the peak months of the year rather than the whole year. Averaging measures based on 

data collected from different days of the year to develop and calibrate the simulation 

models results in a synthetic day that does not really occur in the real world. 

The identification of traffic patterns that best represent the traffic conditions in the 

AMS effort is critical to the success of these projects. In some efforts, particularly those 

associated with traffic management and operations, analysts should perform the analysis 

for different operational conditions throughout the year, including different recurrent 

congestion levels, incident conditions, and bad weather conditions. However, even if the 

scope of the analysts is only to analyze normal non-event conditions, there is a need to 

analyze the variations in traffic conditions from these days to determine the best day(s) that 
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will represent the traffic conditions. In this regard, the FHWA Traffic Analysis Toolbox 

Volume 3 (Wunderlich et al., 2019) recommended the use of cluster analysis to categorize 

the traffic conditions in an entire year into a number of clusters and determine a 

representative day for each of these clusters. Such identification will allow for the selection 

of the best operational conditions to represent the whole spectrum of traffic conditions 

present in the network for the purpose of analysis. However, the above-mentioned 

reference did not provide detailed guidance on how to perform clustering analysis to 

identify travel conditions. 

There are many decisions that need to be made when conducting the cluster analysis 

to obtain the representative day(s). This study identified three knowledge gaps to be 

addressed to support these decisions. First, there are various clustering algorithms and 

methods, each of which have their own strengths and weaknesses. There is a need to 

research and identify the abilities and performance of these algorithms in the clustering 

data obtained from typical traffic monitoring systems. Second, it is expected that a higher 

resolution of the input variables to the clustering analysis can improve the results from the 

analysis. However, it is not clear how the segregation of the input variables in time and 

space can improve the quality of the clustering. For example, if the traffic volume used as 

input is averaged over the whole corridor of the study and for the whole analysis peak 

period, then important traffic patterns in time and in space might be lost. However, it is not 

clear how the segregation of the input variables in time and space can improve the quality 

of the clustering. Third, there is a need to investigate how the performance of the results 



34 

from the clustering of traffic conditions is to be measured, as well as how to evaluate the 

aggregation levels.  

This chapter presents the methods utilized to identify the representative days and 

patterns for use in modeling event-free conditions (conditions with no incidents, 

construction, or weather events). This chapter also evaluates the use of clustering 

algorithms and methods and assesses the quality of the resulting clusters using various 

performance metrics. Initially, this chapter compares the results from the two widely used 

clustering algorithms – the K-means and Gaussian Mixture Model (GMM). Then, it 

compares the use of input variables aggregated for an entire facility and peak period versus 

using segregated input variables that are segregated in time and space. The chapter 

identifies performance assessment techniques for evaluating the clustering results in terms 

of their abilities to distinguish between different traffic patterns throughout the year. The 

evaluation of the performance is conducted using metrics reported in statistical studies as 

well as metrics and visualization techniques based on traffic engineering concepts. In 

addition, the best representative days obtained based on the clustering as identified based 

on the assessment is compared with the average day used in common modeling practices, 

specifically in terms of their abilities to represent the event-free traffic conditions in the 

year.  

3.1. Utilized Data  

The utilized case study in this chapter is an I-95 corridor segment in Broward 

County, Florida, and Palm Beach County, Florida. This segment has a length of 34.3 miles 

and 23 interchanges. The traffic volume and speed data were collected from point traffic 



35 

detectors installed and operated by the Transportation System Management and Operations 

(TSM&O) program of the Florida Department of Transportation (FDOT). The study is 

based on time-variant data for the northbound (NB) direction during the PM peak period 

(4:30 PM to 6:30 PM), which was aggregated at 15-minute intervals. This study focused 

on determining distinguished traffic patterns in event-free or  “normal”  weekdays. Thus, 

the data for these days were segregated from the data for  “abnormal”  weekdays that have 

non-recurring events like incidents, weather events, and/or construction. However, the 

investigation can be extended to include non-recurrent event days in the clustering process. 

The attributes of each data point used as inputs to the analysis are date, time 

interval, location, traffic volume in vehicle per hour (vph), and travel time rate in seconds 

per mile (sec/mi). The volume and speed data are collected using detectors located at an 

average of half-mile intervals. The traffic management center calculates the travel time 

based on the speed data collected from the point detectors. These estimates are used in this 

study to calculate the travel time rates in seconds per mile. The volume and travel time 

measures are referred to as “key measures” in this study since they are used by the cluster 

algorithms to group the data. 

3.2. Investigated Clustering Algorithms 

This study compares the use of the K-means and the GMM algorithms for the 

identification of traffic conditions for analysis. The K-means clustering partitions the 

dataset objects into  “k”  different clusters through an iterative process using simple 

distance from the cluster’s center to assign the cluster membership (Na. et al., 2010). The 

GMM is based on the Expectation-Maximization algorithm that uses Gaussian distribution 
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in clustering. Unlike the K-means algorithm, which places a circle or a hyper-sphere around 

each cluster, the directions, and lengths of the axes of GMM’s density contours are 

characterized by an ellipsoid. In theory, this is an advantage of the GMM algorithm since 

it can accommodate oblong clusters of any shape. If the shape of optimal clusters is not 

circular, then the data points of two different clusters can overlap each other when using 

the K-means algorithm due to the rigid (circular) nature of the algorithm. However, it is 

not clear if this provides an actual advantage when the GMM algorithm is applied to traffic 

data instead of the more widely used K-means algorithm. 

3.3. Investigated Aggregation Levels 

There is no clear guidance on how the data obtained from different locations along the 

analyzed facility can be aggregated in time and space. In investigating the impact of using 

segregated volume and travel time data in time and space, the study compared four levels 

of the aggregation of the data. 

• No segregation of the inputs: The clustering is based on the average values of the 

traffic volume and travel time over the entire 34.3-mile facility and over the entire 

peak period (4:30 PM to 6:30 PM) without segregating the data of the facility into 

data for different segments in space and/or different time intervals, resulting in only 

two input variables:  one for volume, and one for travel time. 

• Spatial segregation of the inputs: With this level, the clustering is based on the 

average values of the traffic volumes and traffic travel times for three segments 

instead of the averages for the full length of the facility. The three segments were a 

result of dividing the 34.3-mile facility into sub-segments based on the differences 
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in the congestion patterns and traffic demands between the three segments. This 

segregation was done considering that utilizing the average values for the whole 

segment can dilute the information required for identifying different traffic 

patterns. The spatial segregation resulted in three inputs to clustering for each of 

the two key measures instead of having one average input per measure for the full 

segment. The three segments are referred to in this study as Segment-1 or Location 

1 (Hallandale Beach Blvd. to I-595), Segement-2 or Location 2 (Davie Rd. to 

Cypress Creek Rd.), and Segment-3 or Location 3 (Atlantic Blvd. to Linton Blvd.). 

The lengths of the first two segments are about 8 miles each, while the length of 

the third segment is about 17 miles. Segment-2 has the highest average traffic flow 

(8,206 vph), and Segment-3 has the lowest average volume (5,788 vph) among the 

three segments.  

• Temporal segregation of the inputs: With this segregation level, the two-hour peak 

period is divided into four 30-minute time slices, resulting in four inputs to 

clustering for each of the two key measures instead of one input per measure 

reflecting the whole period. This level does not involve spatial segregation of the 

data. 

• Spatial and temporal segregation of the inputs: This level of segregation involves 

combining both the spatial and temporal segregation, as mentioned above. The 

measures are segregated both in time (four 30-minute periods) and space (three 

segments), resulting in a total of 12 inputs to clustering for each of the two key 

measures. This level presents the highest resolution of the key measures 

investigated in this study. The twelve input variables were given acronyms based 



38 

on the location and the time periods. For example, at location 1, volume and travel 

time of the first 30-minute time slice of the analysis period is referred to as 

avg_vol1.1 and avg_TT1.1, respectively. For location 2 and time slice 3, the 

variables are referred to as avg_vol2.3 and avg_TT2.3.  

3.4. Selection of the Number of Clusters 

Irrespective of the algorithm and the aggregation level used in clustering, an 

important consideration in cluster analysis is to determine the best number of clusters to 

use in the analysis. The Bayesian Information Criterion (BIC) and Elbow methods are 

typically used to determine the optimum number of clusters when using the GMM and K-

means clustering algorithms, respectively (Burnham et al., 2004; Brownlee, 2019). The 

BIC statistics is calculated based on logistic regression where a score is minimized to select 

the optimal number of clusters (Brownlee, 2019). However, for a small sample size, the 

BIC is not an effective measure for selecting the optimal number of clusters (Burnham et 

al., 2004). The Elbow technique is a plot that depicts the total within clusters sum of squares 

(WCSS) for each number of clusters (k). The value of k is selected for the analysis as the 

point in the graph where the decrease in the WCSS stops being significant as the value of 

k increases (Marutho et al., 2018). Table 3-1 shows the BIC score points for the different 

clustering aggregation levels and different number of clusters when using the GMM 

algorithm. The lowest BIC score indicates the optimal number of clusters and is shaded in 

Table 3-1. Table 3-1 shows that the optimal number of clusters for no segregation is 3, 

spatial segregation is 3, temporal segregation is 2, and spatio-temporal segregation is 4. 

Interestingly, the Elbow method used with the K-means algorithm suggests the same 

optimal number of clusters (3 for no segregation, 3 for spatial segregation, 2 for temporal 
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segregation, and 4 for spatio-temporal segregation). The higher number of clusters when 

using the spatio-temporal aggregation level is an indication that this clustering is able to 

identify more distinctive patterns in the data compared to other segregation levels. 

Table 3-1 Optimal number of clusters using BIC score for GMM clustering 
algorithm with different aggregation levels 

Aggregation Level BIC Score for Number of Clusters 
2 3 4 

No Segregation -57 -117 -102 
Spatial Segregation -120 -125 -50 

Temporal Segregation -420 -340 -230 
Spatio-Temporal Segregation -375 -1200 -2000 

 

3.5. Assessment of Clustering Quality 

After performing the clustering, this study evaluated the quality of clustering using 

the performance measures reported in the statistics literature and traffic engineering 

literature, as mentioned earlier. 

3.5.1. Performance Measures from Statistical Studies 

In this study, the t-SNE visualization method, discussed in the review of literature, 

is used to visualize the performance of the investigated clustering algorithms and 

aggregation levels (Al Mamun et al., 2021). The utilization of the t-SNE as a statistical 

performance measure avoids the limitations of the internal clustering validation metrics, 

such as the SC, CH, and DB, as discussed in the review of literature. 
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3.5.2. Performance Assessment Techniques Derived based on Traffic Engineering 

Literature 

In addition to the t-SNE visualization method recommended in the statistics 

literature, this study explores the use of measures reported in traffic engineering literature 

to quantify the quality of clustering of the collected traffic data. 

3.5.2.1. Sum of Representative Day Distances 

The FHWA toolbox III methodology involves identifying a single representative 

day for each cluster of the time-variant data as the individual day with the minimum 

distance between the values of the key measures (such as volume and travel time) from the 

values of these measures for all days in the cluster (Wunderlich et al., 2019). The 

Representative Day Distance is adopted in this study to obtain a variable called the Sum of 

the Representative Day Distances to assess how far the traffic conditions of the 

representative days of the clusters are, which were obtained using a specific clustering 

approach from the conditions of all days in the year. The method used to calculate the Sum 

of Representative Day Distances is shown below. 

In calculating this Sum of Representative Day Distance, the difference (𝑚̇𝑚𝑘𝑘,𝑖𝑖,𝑛𝑛) 

between the value of a certain input variable in the representative day and the value 

observed on a particular day, expressed as a percentage of the representative day value, is 

calculated as, 

                                          𝑚̇𝑚𝑘𝑘,𝑖𝑖,𝑛𝑛 =
�(𝑚𝑚𝑘𝑘,𝑖𝑖,𝑛𝑛 – 𝑚𝑚𝑘𝑘,𝑛𝑛)2

𝑚𝑚𝑘𝑘,𝑛𝑛
                                                (3-1)  
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where  

𝑚̇𝑚𝑘𝑘,𝑖𝑖,𝑛𝑛 = difference between the value of a key measure k in the representative day and the 

value observed on a particular day i in cluster n (percentage); 

mk, i, n = value of a key measure k on day i in cluster n; and 

mk, n   = value of a key measure k in the representative day of cluster n. 

Next, for each cluster, the distance between each individual day in the cluster and 

the corresponding representative day is calculated as the summation (𝑑𝑑𝑖𝑖,𝑛𝑛) of all the 

differences of all the input variables calculated in the previous step: 

                                               𝑑𝑑𝑖𝑖,𝑛𝑛 = ∑ 𝑚̇𝑚𝑘𝑘,𝑖𝑖,𝑛𝑛𝑘𝑘                                                         (3-2) 

where 

di,n = distance between each individual day i in cluster n and the corresponding 

representative day. 

Finally, the Sum of Representative Day Distance (𝑑̅𝑑) for each aggregation level is 

calculated as the average of all the distances 𝑑𝑑𝑖𝑖,𝑛𝑛 between each individual day and the 

representative day of all clusters, calculated in the previous step: 

                                                   𝑑̅𝑑 = ∑ 𝑑𝑑𝑖𝑖,𝑛𝑛𝑖𝑖
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

                                                               (3-3) 

where 

 𝑑̅𝑑 =  sum of Representative Day Distance; and 

Ndays = total number of clustered days. 
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3.5.2.2. Fundamental Diagram 

A macroscopic fundamental diagram is used to visualize the relationship between 

traffic flow and speed (Geroliminis and Sun, 2011). The horizontal and vertical axes 

represent the volume (vehicles per 30 minutes) and speed (miles per hour, mph), 

respectively. In this study, the data points of speeds and volumes of the identified 

representative days are highlighted on the fundamental diagram to visualize the change in 

travel conditions between the identified days relative to the traffic conditions for all days 

in the year. 

3.5.2.3. Heat Map 

The heat map is a two-dimensional comprehensive visualization technique that 

shows the magnitude of a phenomenon as variation in color by hue or intensity (Zhao, 

2014). Heat maps are used to visualize the traffic patterns generated for each cluster 

generated using a given clustering approach. Each point on the horizontal axis in the 

utilized maps represents a day belonging to a given cluster. In the heat maps, the key 

measures within each cluster are visualized through changing color schemes, with the red 

color indicating high traffic volume or high travel time; green representing low traffic 

volume or low travel time, and yellow representing medium traffic volume and travel time.  

3.6. Clustering Results 

This section describes the results of clustering using different algorithms and 

aggregation levels. The clustering results are assessed based on performance assessment 

techniques, which are identified based on statistics literature and traffic engineering 
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literature. In addition, the best representative days obtained based on the clustering and the 

assessment is compared with the average day used in common modeling practices in terms 

of their abilities to represent the event-free traffic conditions in a year. 

3.6.1. Assessment of Clustering based on Measures from Statistical Literature 

Figure 3-1 shows the t-SNE projections for different aggregation levels for the same 

clustering algorithm (the K-means algorithm) and same number of clusters (four). In Figure 

3-1, the data points in the four clusters are displayed in different colors (red for Cluster 1, 

green for Cluster 2, blue for Cluster 3, and purple for Cluster 4, as indicated by the legends 

in the figures) for the comparison of the results of clustering using different aggregation 

levels. Figure 3-1(d) shows that the best clustering is obtained with the spatio-temporal 

segregation level. Compared to other clustering levels shown in Figure 3-1(a), Figure 

3-1(b) and Figure 3-1(c), the spatio-temporal segregation level in Figure 3-1(d) shows a 

clearer separation of the data points of different clusters, indicating better clustering of the 

data points. 



44 

 

Figure 3-1 t-SNE Projections to compare the different aggregation levels 
 

Second, with the results from using the two clustering algorithms, the K-means and 

GMM are compared in Figure 3-2. In this case, the same number of clusters (four) and the 

same segregation level (spatio-temporal segregation) were used. Figure 3-2(a), which 

represents the K-means algorithm, shows evenly clustered data, while Figure 3-2(b), which 

represents the GMM algorithm, shows significant overlaps in the data points from different 

clusters with no clear separation of the data points for different clusters. In the upcoming 

sections, the GMM algorithm is ruled out based on the results of the projections in Figure 

3-2(b). 

(a) No Segregation K-means (b) Spatial Segregation K-means  

(c) Temporal Segregation K-means (d) Spatio-temporal Segregation K-means  
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Figure 3-2 t-SNE Projections to compare the K-means and GMM algorithms 
 

Finally, the use of different numbers of used clusters are compared in Figure 3-3 

using the same clustering algorithm (K-means) and the same aggregation level (Spatio-

Temporal Segregation). The x-axis and y-axis, referred to as comp-1 and comp-2, indicate 

the relative distances between the data points. The wider the range of the distances between 

the data points in the extremities within the cluster, the poorer the clustering. This property 

is called perplexity. Typically, the range of distance of the extreme data points should be 

closer to the total number of data points to ensure good quality clusters. Figure 3-3(a) 

indicates that using two clusters results in a large number of data present in each cluster 

covering wide ranges (Chatzimparmpas et al., 2020). Figure 3-3(b), which represents three 

clusters, shows better results than two clusters. Figure 3-3(c), which represents four 

clusters, shows even better results compared to two and three clusters. In the upcoming 

sections, the utilization of two clusters is ruled out, and further results are based on only 

using three and four clusters. 

(a) Spatio-temporal K-means (b) Spatio-temporal GMM 
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Figure 3-3 t-SNE Projections to compare the use of different number of clusters 
 

Based on the analysis of the results of the t-SNE projections, it can be concluded 

that the K-means algorithm using the spatio-temporal aggregation level with four clusters 

provides the most distinctive clustering results with a better ability to group days that share 

similar travel conditions together.  

3.6.2. Assessment of Clustering based on Techniques Derived based on Traffic 

Engineering Literature  

This section compares different approaches to clustering based on selected 

measures with techniques derived from traffic engineering literature. These techniques 

include the Sum of Representative Day Distances, the heat map, and the fundamental 

diagram, as described earlier. 

  

(a) K-means with 2 clusters (b) K-means with 3 clusters (c) K-means with 4 clusters 
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3.6.2.1. Sum of Representative Day Distances 

Table 3-2 presents the calculated Sum of Representative Day Distance according 

to Equations 3-1 through 3-3 for each aggregation level when using the K-means with four 

clusters. Table 3-2 indicates that the segregation with the spatio-temporal segregation 

performed the best among all other segregation levels in providing the lowest Sum of 

Representative Day Distance (230%). This value is significantly lower than the Sum of 

Representative Day Distance when using the average day, which is 313%, indicating better 

representation of the traffic conditions with the utilization of the representative days from 

clustering.  

Table 3-2 Sum of Representative Day Distances with different segregation levels 
using K-means clustering with four clusters 

Segregation Level Sum of Representative Day Distances 
No Segregation 281% 

Spatial Segregation 253% 
Temporal Segregation 261% 

Spatio-Temporal Segregation 230% 
Average (All-Days) 313% 
Average (Feb-Mar) 381% 

 

3.6.2.2. Fundamental Diagram  

The macroscopic fundamental diagrams were plotted to examine the advantage of 

using clustering to select representative days for modeling compared to using the average 

values. For this purpose, this section presents the diagrams for event-free days for 

Segement-2, which connects the Davie Rd. interchange and Cypress Creek Rd. and has a 

length of about eight miles. Figure 3-4 shows a color-coded traffic fundamental diagram 

with each color representing the data points of one of the four clusters obtained when using 



48 

the spatio-temporal level of segregation. The data for the representative day for each cluster 

are highlighted using numbers from 1 to 4. These numbers indicate the 30-minute interval 

of the data with   “1” indicating the data point for the first interval in the peak period, and  

“4” indicating the data point for the last interval in the peak period. The diagram indicates 

that both Cluster 1 and Cluster 4 are congested, but Cluster 4 is less congested, and the 

congestion in the representative day of Cluster 4 starts clearing in the last 30 minutes. 

Cluster 2 and Cluster 3 have relatively high speeds (55 to 65 mph versus 35 to 45 mph for 

the congested intervals of Clusters 1 and 4). However, Cluster 3 has much higher demands 

than Cluster 2, with volumes close to the capacity of the segment. It is interesting to see 

that although Clusters 1 and 4 have significantly lower speeds than Cluster 3, their volumes 

are also significantly lower, indicating that these clusters are on the congestion side of the 

fundamental diagram with the measured volumes constrained by the capacity of the 

bottleneck segments. 

 

Figure 3-4 Traffic fundamental diagram with highlighted representative day data 
points for segment 2 for four time slices 
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Figure 3-5 shows the same fundamental diagram as Figure 3-4, but this time with 

the highlighted data points with the interval numbers reflecting the average value for all 

days in the year and the average values for the peak season (February and March). The 

average speed ranges from 52 mph to 55 mph when averaging the data points through the 

year, and from 47 mph to 54 mph when averaging the data for the peak season. However, 

the actual speed of a significant proportion of the actual data points is below 45 mph. 

Averaging the speed and volume values masked the fact that such days present since the 

low speeds are averaged with high speeds. As indicated in Figure 3-4 , the speed ranges 

from 35 mph to 65 mph when using clustering, which indicates better coverage of the 

operational conditions. 

 

Figure 3-5 Traffic fundamental diagram with highlighted average day data points 
for segment 2 for four time slices 
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3.6.2.3. Heat Maps 

Heat maps based on the key measures, such as volume and travel time, are 

constructed for location 2 out of the three locations in the network. The vertical solid black 

borders divided the heat maps by the clusters, which was a result of the clustering with the 

spatiotemporal segregated data, as shown in Figure 3-6 and Figure 3-7. The horizontal lines 

divide the heat map by the four investigated time slices. On the x-axis, each column 

corresponds to a day within a cluster, with the last two columns representing the average 

value of all days and the average value of the days in the peak months (February and 

March), respectively. The representative day of each cluster is displayed in both figures 

with a red box surrounding it. 

 

Figure 3-6 Heat Map of location 2 displaying traffic volume  
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Figure 3-7 Heat Map of location 2 displaying travel time  
 

It is evident from the heat maps that Cluster 1 groups together the days with 

volumes that are lower than capacity and high travel times indicating congested conditions 

constrained by capacity. Cluster 2 consists of days with the lowest volumes and lowest 

travel times, whereas Cluster 3 has high volumes and low travel times, indicating 

conditions that are close but below the capacity. Finally, Cluster 4 has higher volumes 

(higher than Cluster 1 and Cluster 2) and lower than that of Cluster 3, and higher travel 

times compared to Cluster 2 and Cluster 3, indicating that this cluster represents traffic 

volumes above the capacity of the segments, but not as bad as the conditions of Cluster 1. 

It is clear from the last two columns in Figure 3-6 and Figure 3-7 that both methods 

of averaging clearly level out the variation in volume and travel time, as significant 

variation can be observed in each of the four resulting clusters. In comparison to the 
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identified clusters, the averages overestimate or underestimate the volumes and travel 

times. Hence, when modelers choose an average day to represent a certain network 

condition, different travel patterns are diluted to become a singular travel condition that 

incorrectly characterizes the modeled network. Clustering that uses spatio-temporal 

segregation effectively separates the different travel conditions within the network.  

Given that there are four identified representative days (one for each resulting 

cluster) for normal (event-free) days, the next issue to address is which one of these four 

days will be used in the modeling. Table 3-3 shows the representative day for each cluster 

and the percentage of days for each of the four clusters resulting from different levels of 

segregation in time and space. The analyst can examine the number of days in each cluster 

and the congestion level in the representative day to determine which day to model. As 

stated earlier in this section, Cluster 1 and Cluster 4 represent the congested conditions on 

the corridor. Table 3-3 indicates that Cluster 1, which has the highest level of congestion, 

as indicated earlier, represents 10% of the data points, while Cluster 4 represents 27% of 

the data points. Depending on the analysis scope, the analyst may decide to model the 

representative day for Cluster 1, the representative day for Cluster 4, or more than one 

representative day, if multi-scenario analysis is to be modeled. In other words, the 

distribution of days in different clusters aids the analyst in examining the number of days 

in each cluster and the congestion level in the representative day to determine which day 

to model. 
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Table 3-3 Number of days in each resulting clusters 
Clustering 

Method 
Cluster 

Components 
Representative 

Day 
Percentage of 

days 

Spatio-
Temporal 

1 2/13/2015 4(10%) 
2 7/9/2015 12(29%) 
3 5/14/2015 14(34%) 
4 2/3/2015 11(27%) 

Temporal 

1 7/13/2015 8(20%) 
2 4/9/2015 12(29%) 
3 2/25/2015 4(10%) 
4 3/2/2015 17(41%) 

Spatial 

1 9/9/2015 24 (59%) 
2 7/10/2015 2(5%) 
3 2/13/2015 4(10%) 
4 8/19/2015 11(27%) 

No Segregation 

1 2/16/2015 19 (46%) 
2 7/20/2015 2(5%) 
3 7/13/2015 16(39%) 
4 2/25/2015 4(10%) 

 

3.7. Summary 

The K-means clustering method with four clusters and spatiotemporal segregation 

level exhibited the best results from the statistical measures (t-SNE plot) and traffic 

engineering technique (Sum of Representative Day Distances, heat map and fundamental 

traffic diagram) points of view. Zero use of spatial segregations of the road segments or 

temporal segregation of the peak period into intervals, along with a lower number of 

clusters was less effective in clustering the data into distinctive patterns that account for 

the variations in traffic conditions along the roadway segments and within the peak period 

considering the day-to-day variations throughout the year. The study also showed that 

despite its theoretical advantage, the GMM clustering was less effective than the K-means 

clustering in identifying the traffic patterns in this study. 
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The results presented in this chapter also clearly show that the use of an average 

day of the year or the peak season is not acceptable in allowing an effective simulation 

model’s development and calibration. In addition to the fact that averaging volume and 

travel time data results in synthetic days that do not occur in the real world, such averaging 

results in diluted congestion levels. The analysis of the case study indicates that a large 

percentage of the days (the days in Clusters 1 and 4, which constitute about a third of the 

days) have more congestion levels than those of the averages. Thus, for example, the use 

of the averages for making highway designs may result in the under-design of the facilities. 

This chapter also introduces various techniques to identify the quality of the results 

of cluster analysis utilized in selecting the representative days. It is clear that the use of 

standard statistical measures of clustering quality such as the t-SNE plot is not sufficient 

to provide the full picture of the quality of the resulting traffic patterns and the associated 

representative days. Measures identified in this study based on traffic engineering concepts, 

including the Sum of Representative Day Distances, heat map and fundamental traffic 

diagram, were demonstrated to be critical in assessing the clustering result quality and their 

ability to represent traffic conditions throughout the year.  
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CHAPTER 4  

UTILIZING CROWDSOURCED DATA IN ORIGIN DESTINATION MATRIX 

ESTIMATION (ODME) PROCESS 

Origin-destination demand estimation is a vital part of MRM. The resulting traffic 

O-D demand matrices are used as inputs to static and dynamic traffic assignment models 

that are important components of the MRM. Often, in current practices, the traffic O-D 

demands used as inputs to the traffic assignment are extracted for a subnetwork from the 

larger networks modeled in existing regional travel demand models. However, modelers 

are often challenged with the inadequate quality of the O-D demand matrices obtained from 

demand forecasting models, which result in large errors in the link counts resulting from 

the assignment compared to real-world counts (Hadi et al. 2022). This implies the need for 

further refinement of the ODME procedures and the use of additional data sources as inputs 

to these procedures to allow these models to produce results that are acceptable for 

simulation modeling. In many cases, modelers have used ODME procedures that utilize a 

combinations of traffic counts and initial O-D demand matrices obtained from the demand 

models to obtain better estimations of the O-D demand matrices. Still, questions remain 

about the quality of the O-D matrices resulting from the ODME procedures. This chapter 

explores the possibility of including crowdsourced data sources into the ODME process 

and evaluates the quality of the resulting O-D matrices. 
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4.1. Utilized ODME Procedures 

Existing ODME procedures are provided with both commercially available and 

open-source demand forecasting and assignment tools. These procedures can update initial 

O-D demands, such as those generated by the demand forecasting models to improve their 

quality based on collected traffic count data and sometimes, other performance measures. 

The procedures allow the O-D demand to produce link volumes that better correspond to 

real-world traffic counts when used in traffic assignment. The ODME procedures in these 

tools generally utilize optimization algorithms to estimate the O-D matrices by minimizing 

the errors between the model outputs. This optimization results in improved O-D demand 

matrices compared to the O-D matrices generated by demand forecasting models. Input 

variables such as link and/or turning movement counts, as well as initial O-D matrices, are 

often used to seed the optimization process alongside other variables, such as the attractions 

and production demands per zone. Some of the latest tools provide the advantage of using 

additional measures such as travel time, queue lengths, and densities as an input to the 

ODME process.  

Modelers often ignore the inclusion of important inputs to the ODME due to time 

and cost constraints, despite the proven ability to improve the ODME results. Modelers 

usually perform ODME procedures with or without a seed O-D demand matrix. Although 

the quality of the ODME output vastly depends on the availability of high-quality initial 

O-D demand matrices (Lin, 2006), modelers often choose to ignore the use of O-D matrices 

as seed matrix and rely on count data only. A common practice is to combine traffic volume 

measurements with initial O-D matrices obtained from demand forecasting models that are 
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used as seed matrices. Also, partial O-D demand matrices obtained from automated 

roadside readers, such as Bluetooth readers and license plate readers, vehicle tracking using 

crowdsourced data such as global positioning system (GPS) data, and other data sources, 

are used as seed matrices to the O-D demand estimation (Hadi et al. 2022). 

The ODME algorithms produce O-D demands that minimize deviations from the 

counts and seed matrices. In the ODME process, analysts can assign relative weights on 

different variables included in the optimization objective function to reflect the level of 

confidence in the data used to estimate the variables. In the mesoscopic simulation tool 

utilized in this study, weight ratio can be assigned, which reflects the relative weight of the 

seed matrix to traffic counts in the optimization process. For instance, analysts may assign 

a lower weight ratio if there is a higher confidence in the quality of the traffic counts 

compared to the quality of the seed O-D demand matrices.  

This study investigated the performance of twelve different variations of the ODME 

processes. These variations use different combinations of initial O-D matrices from the 

regional demand forecasting model and crowdsourced data from a third-party vendor. The 

ODME procedures used in this study are provided with the PTV VISUM modeling tool 

(PTV Group 2021a). VISUM can be used to provide both macroscopic and mesoscopic 

levels of modeling as part of an MRM implementation. VISUM has two default ODME 

algorithms, the Least Square and the TFlowfuzzy methods (PTV Group 2021a). The least-

square method minimizes the squared distance between the assignment link volume value 

and the count value. In addition, it also allows the analysts to limit the deviation from the 

initial O-D matrix that is used as an input to the ODME process by minimizing the squared 
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distance between the initial and modified trip demand values (Hadi et Al., 2022). This 

method has other advantages, such as short run time, adaptability to large networks, and 

simplicity. Hadi et al. (2022) reported better results when using the least square algorithm 

for a case study compared to the results from using the TFlowfuzzy algorithm. Thus, the 

least square method is used in this analysis.  

4.2. Network Preparation  

The case study network is located in downtown West Palm Beach, Florida, which 

was originally extracted as a subnetwork from the regional demand forecasting model. The 

regional model is referred to as the Southeast Florida Regional Planning Model (SERPM 

7.0) (FSUTMSOnline 202l). The extracted subnetwork consisting of the base geometry 

and initial O-D matrices for the year 2015 was exported to VISUM in a previous project 

conducted for Palm Beach County (Palm Beach County, 2020; Hadi et al., 2022). The 

already exported network to the VISUM model in the above-mentioned project was used 

in this study. The study area consists of 35 signalized and 38 unsignalized intersections. 

For completeness and future usage, the previously developed VISUM model includes 

additional segments and intersections outside the boundaries of downtown West Palm 

Beach, as indicated by the red lines on the map in Figure 4-1. Throughout the study, this 

case study network is referred to as the “West Palm Beach” network.  
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Figure 4-1 Screenshot of Expanded West Palm Beach area in VISUM (Palm Beach 
County 2020) (Hadi et al., 2022). 

 

4.3. Integration of Crowdsourced Data 

In this study, StreetLight (SL) is used as the provider of the crowdsourced data. 

There are 93 traffic analysis zones (TAZs) in the West Palm Beach network that have been 

used in the case study. Figure 4-2 shows these zones as highlighted in the SL analysis 

dashboard display. 
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Figure 4-2 StreetLight analysis dashboard of the West Palm Beach network 
 

After selecting the corresponding zones in the SL platform, the SL index value for 

each O-D pair in the network is obtained from the analysis report generated by the platform. 

As described earlier, the SL index is a normalized mobile parameter updated each month 

based on the ratio of the mobile sample available for a location to the total population 

(collected from the census block). Since the utilized mobile units represent only a fraction 

of the total numbers of vehicles, the absolute number of trips between the zones cannot be 

estimated without combining the SL index with other information. However, the SL Index 

can be used in combination with other data to provide an estimate of the number of trips 

between any two locations. 

In this study, to compute the number of trips between an origin zone and a 

destination zone, the “SL index proportions” are computed. The SL index proportions is 
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the ratio of the SL index for each O-D pair to the sum of the SL Index values between the 

origin and all destinations.  

In addition to providing the SL Index values, StreetLight provides the users with 

an option to collect estimated demands from a specific origin zone to a destination zone. 

The vendor calculates these demands by expanding the mobile data using count data 

obtained from other sources. These demands referred to as the “SL Expanded” in this study 

are obtained using a proprietary machine-learning algorithm that uses the SL Index values 

and ground truth data as inputs (StreetLight Insight 2020 Whitepaper Version 1). 

4.3.1. O-D Matrix Development Methods  

This study explores twelve variations of the O-D matrix estimation procedure with 

and without the use of crowdsourced data. As stated earlier, the least square algorithm was 

utilized to perform the ODME procedure. The ODME procedure used in this study is an 

assignment-based procedure which utilized the static traffic assignment option in this 

study. A comparative analysis is performed between all of the investigated methods to 

identify the best way to develop an O-D matrix. This section describes each method and 

the use of different weight ratios on the inputs. The methods can be categorized into four 

different types – Category 1 through Category 4. Methods in Category 1 use an initial O-

D matrix from the regional demand model (SERPM 7.0) with relative weights on the initial 

matrix of 0, 1 and 10. Methods in Category 2 are produced by using an initial O-D matrix 

that is generated by multiplying the sum of the production trips of each origin as estimated 

by SERPM 7.0 by the proportion to each destination as estimated by the SL Index 

proportions, since the SL index values do not provide the actual demands. Thus, the 
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demand forecasting model is used to estimate the generation, while the SL Index is used to 

estimate the distribution. Methods in Category 3 are similar to the methods in Category 2, 

but instead of using the trip generation based on SERPM 7.0, the trip generation is based 

on the results from the Category 1 method with a relative weight of ten. The rationale is 

that the refined O-D matrix based on both count data and an initial O-D matrix from 

SERPM 7.0 can provide better trip generation than using trip generation based on the 

original O-D matrix obtained from the SERPM 7.0 model. Similar to the methods in 

Category 2, the SL Index proportions are used to distribute the trips to destination in 

methods from Category 3. The methods in Category 4 use the O-D matrix expanded by the 

vendor (StreetLight), which is referred to as the SL Expanded. The twelve methods within 

these four categories are described in the following text. 

Method Category 1: The seed matrix used in this category is the initial O-D matrix 

obtained from SERPM 7.0.  

Method 1: This is a Category 1 method with no ODME (uses the O-D matrix 

obtained from SERPM 7.0 in the assignment process). 

Method 1(a): In this method, the ODME procedure is implemented with a relative 

weight on the seed matrix of zero, indicating that the ODME procedure will estimate the 

O-D matrix based on the link count only. In other words, this method does not consider the 

impact of the seed matrix.  

Method 1(b): Method 1(b) implements the ODME procedure with a relative weight 

of ten on the O-D matrix obtained from SERPM 7.0 (the seed matrix) to put more emphasis 

on the seed matrix than the count deviation.  
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Method 1(c): Method 1 (c) is similar to Method 1(b), but with a relative weight of 

one to put equal weight on the count and seed matrix in the ODME process. 

Method Category 2: As explained earlier, the methods in this category use the trip 

generation from demand forecasting model (SERPM 7.0) and calculated trip distributions 

based on the SL Index. 

Method 2: This is a Category 2 method with no ODME (uses an O-D matrix with trip 

generation from the O-D matrix obtained from SERPM 7.0 and trip distribution based on 

the SL Index proportion in the assignment process). 

Method 2(a): This is a Category 2 method with a relative weight of ten on the initial 

O-D matrix in the ODME process.  

Method 2(b): This is a Category 2 method with a relative weight of one on the initial 

O-D matrix in the ODME process. 

Method Category 3: This Category is similar to the Method Category 2 but with the 

use of trip generation based on the O-D matrix resulting from Method 1(b) rather than 

based on the original O-D matrix from SERPM 7.0. As with the methods in Category 2, 

the SL index proportion is used for trip distribution. 

Method 3: This is a Category 3 method with no ODME (uses an O-D matrix with trip 

generation from the O-D matrix obtained from Method 1b and trip distribution based on 

the SL Index proportion in the assignment process). 
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Method 3(a): This is a Category 3 method with a relative weight of ten on the initial 

O-D matrix in the ODME process.  

Method 3(b): This is a Category 3 method with a relative weight of one on the 

initial O-D matrix in the ODME process.  

Method Category 4: The utilized matrix in Method 4 is the default SL expanded O-

D matrix provided by the vendor (i.e., matrices estimated by SL without any ODME 

procedure implemented on the resulting O-D matrix). 

Method 4: This is a Category 4 method with no ODME (uses the SL Expanded O-D 

matrix in the assignment process). 

Method 4 (a): This is a Category 4 method with a relative weight of ten on the initial 

SL Expanded O-D matrix in the ODME process.  

4.3.2. Performance Measures of O-D Matrix Estimation Methods 

Instead of a single performance indicator, three performance indicators were used to 

evaluate the performance of different methods in this study. The following three 

performance metrics (Equations 4-1 to 4-3) were used to evaluate the accuracy of the O-D 

matrix development methods: 

1. Root Mean Squared Error (RMSE): RMSE measures the error of the prediction 

model. The distance between the predicted values and the benchmark values is 

squared and averaged over the sample dataset. Since the errors are squared before 

it is averaged, RMSE puts a high weight to large deviations compared to the 
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absolute mean error measures. As a result, RMSE is a good indicator when large 

errors are undesirable.    

                                                𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑥́𝑥𝑖𝑖−𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 

𝑛𝑛
                                                (4-1) 

where,  

RMSE = root mean squared error; 

       𝑥́𝑥𝑖𝑖 = benchmark traffic volume for link/turn movement i; 

       𝑥𝑥𝑖𝑖 = estimated traffic volume for link/turn movement i; and 

        n = number of estimate-to-benchmark comparisons. 

2. Mean Absolute Error (MAE): MAE is the average of the absolute distance between 

each estimated data value and the benchmark value. The MAE is a linear score 

which puts equal weight on the individual differences in the average. A small MAE 

indicates that the data values are close to the benchmark data. The unit used in 

determining the  

                                    𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛

× ∑ |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝚤́𝚤|𝑛𝑛
𝑖𝑖=1                                                         (4-2) 

where 

MAE = mean absolute error; 

 𝑥́𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖 and n are as previously defined in Equation (4-1).  

3. Mean Absolute Percentage Error (MAPE): MAPE is the average of the absolute 

percentage errors of the predicted value. MAPE is scale-independent and widely 

used due to easy interpretation of the deviations from the benchmark data. 

                                       𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (%) =  100
𝑛𝑛

× ∑ |𝑥𝑥𝑖𝑖−𝑥𝑥𝚤𝚤́ |
𝑥́𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1                                                 (4-3) 
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where 

MAPE = mean absolute percentage error; 

 𝑥́𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖 and n are as previously defined in Equation (4-1).  

Table 4-1 shows an overall comparison of the performance measures computed 

based on Equations 4-1 to 4-3 for the different ODME estimation methods. The error values 

(performance measures) are rounded off in the table due to space constraints. These 

performance measures are used to determine the deviation of the link volumes from the 

real-world link counts referred to as  “Link,” and the deviation of the turn movement 

volumes from the real-world counts referred to as  “Turn” in Table 4-1. 

Table 4-1 Performance measures computed for link and turn volumes 
Method  RMSE MAE MAPE (%) 

ID Seed Matrix Relative 
Weight ODME Link Turn Link Turn Link Turn 

1 None N/A No 769 394 513 249 138 252 
1(a) None 0 Yes 68 76 46 39 20 50 
1(b) SERPM 10 Yes 87 85 52 48 20 60 
1(c) SERPM 1 Yes 903 741 593 379 170 356 

2 SERPM x SL Index N/A No 156 108 92 59 33 61 
2(a) SERPM x SL Index 10 Yes 1172 779 601 341 116 211 
2(b) SERPM x SL Index 1 Yes 1172 779 601 341 116 211 

3 Production of  
1(b) x SL Index N/A No 99 96 67 53 30 60 

3(a) Production of  
1(b) x SL Index 10 Yes 708 616 331 271 90 170 

3(b) Production of  
1(b) x SL Index 1 Yes 71 84 47 43 20 50 

4 SL Expanded N/A No 315 303 166 159 42 94 
4(a) SL Expanded 10 Yes 142 99 77 55 27 60 

  

Method 1(a) and Method 1(b) produced the best results from the first category as it 

exhibited lower deviations from traffic link volume and turn counts. Method 1(a) has a 

relative weight of zero, which means the ODME process puts maximum weight on the 
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counts by not taking the seed matrix into consideration. Method 1(b) has a relative weight 

of ten, which is the maximum weight explored in the ODME processes. Method 1 consists 

of the initial O-D matrix and no ODME process was applied to it. The initial O-D matrix 

exhibited high deviation from traffic link volume and turn counts. In Method 1(c), a relative 

weight of one was implemented to put relatively higher emphasis on the counts than the 

seed matrix in the ODME process. However, Method 1(c) produced the poorest result 

among all of the methods in the category with Method ID 1. In the next category, i.e., with 

Method ID 2, the initial O-D matrix as used in Method 1 is combined with SL index 

proportions to observe improvements in the O-D methods. Method 2 with no ODME 

produced results with high discrepancies in the second category like Method 1 in the first 

category. Method 2(a) and Method 2(b) utilized the ODME process with a relative weight 

of ten and one, respectively. However, both methods equally produced poor performance 

with high deviation from the link and turn counts. The next category consists of methods 

where the seed matrix is developed by multiplying the trip production from Method 1(b) 

with SL Index proportions. Method 1(b) produced good performance from the first 

category of the O-D matrix, and as a result, the SL data was integrated into developing 

Method 3. The seed matrix of Method 3(a) and 3(b) is developed by using a first ODME 

process with a seed O-D matrix from the regional model combined with the SL Index, 

respectively. The result is used to estimate the trip production for each zone, and a new O-

D matrix is calculated based on the SL Index proportions. Finally, a weight of 10.0 and 1.0 

is put on this seed matrix, which is assigned in a second ODME process. Method 3(b) 

exhibited minimum deviations in link and turn counts. In the fourth category with Method 

ID 4, the SL Expanded O-D was used with and without the ODME. However, using the 
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SL Expanded as a seed matrix did not produce better performance than the other methods 

explored in the previous categories. 

4.3.3. Deviations from the Available O-D Matrices 

After carefully considering the results of the investigation of the deviations from 

the ground truth traffic counts of the ODME estimation methods presented in the previous 

section, this study then compares the deviations for the available O-D matrices resulting 

from some of the investigated methods. As stated in the previous section, Method 1(b) and 

Method 3(b) exhibited minimum deviations from the link volume and turn counts and was 

also similar to the deviation obtained with Method 1(a) when no seed matrix was used in 

the ODME. These methods are candidates to be recommended for use in the ODME. 

However, further analysis is needed to determine the degree of deviation from the available 

O-D matrices of the investigated methods. 

To illustrate the trend in the deviation of demands between the O-D pairs of 

individual methods, each method is compared to the O-D matrix from the demand model 

and the O-D matrix based on the SL Expanded matrix. Table 4-2 to Table 4-4 show the 

distribution of mean absolute errors (MAE) of the O-D pair demands among the three 

matrices. The errors are categorized into seven intervals, as follows: errors that are equal 

to 0, errors that are between 0 and 50 vehicles (0<MAE<50), errors that are between 50 

and 100 vehicles (50≤MAE<100), errors that are between 100 and 300 vehicles 

(100≤MAE<300), errors that are between 300 and 500 vehicles (300≤MAE<500), errors 

that are between 500 and 1,000 vehicles (500≤MAE<1000), and errors that are greater than 
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1,000 (≥1000). There are certain O-D pairs that do not have trips between them (i.e., the 

volume is zero). For that reason, the MAE values are zero in such cases.  
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Table 4-2 The deviation of the O-D matrix with no ODME or relative weight 0 from different methods to SERPM 7.0 
 and SL Expanded O-D matrices 

(a) Method 1(a) – Relative Weight = 0 (no Seed Matrix)  (b) Method 2 – Production from SERPM 7.0 and Distribution based on SL Index 
Proportions, No ODME 

Method 1 (a) Relative to SERPM 7.0 Relative to StreetLight Expanded  Method 2 Relative to SERPM 7.0 Relative to StreetLight Expanded 
MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

 MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

≥1000 1 0.01% 0 0.00%  ≥1000 0 0.00% 1 0.01% 
500≤MAE<1000 6 0.07% 5 0.06%  500≤MAE<1000 3 0.04% 1 0.01% 
300≤MAE<500 10 0.12% 6 0.07%  300≤MAE<500 3 0.04% 5 0.06% 
100≤MAE<300 38 0.44% 33 0.39%  100≤MAE<300 43 0.50% 22 0.26% 
50≤MAE<100 79 0.92% 51 0.60%  50≤MAE<100 106 1.24% 61 0.71% 
0<MAE<50 4671 54.59% 4656 54.42%  0<MAE<50 5146 60.14% 1513 17.68% 
MAE = 0 3751 43.84% 3805 44.47%  MAE = 0 3255 38.04% 6953 81.26% 
MAE Considering All 
Errors 4805 56.16% 4751 55.53% 

 MAE Considering All 
Errors 5301 61.96% 1603 18.74% 

Total Cells 8556 100% 8556 100%  Total Cells 8556 100% 8556 100% 
(c)  Method 3 -Production based on Method 1b Results and Distribution based on SL 

Index Proportions, No ODME 
 (d) Method 4 – SL Expanded, No ODME   

Method 3 Relative to SERPM 7.0 Relative to StreetLight Expanded  Method 4 Relative to SERPM 7.0   
MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

 MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

  

≥1000 1 0.01% 0 0.00%  ≥1000 1 0.01%   

500≤MAE<1000 4 0.05% 2 0.02%  500≤MAE<1000 6 0.07%   

300≤MAE<500 6 0.07% 2 0.02%  300≤MAE<500 5 0.06%   

100≤MAE<300 39 0.46% 22 0.26%  100≤MAE<300 31 0.36%   

50≤MAE<100 99 1.16% 54 0.63%  50≤MAE<100 52 0.61%   

0<MAE<50 5162 60.33% 1531 17.89%  0<MAE<50 5232 61.15%   

MAE = 0 3245 37.93% 6945 81.17%  MAE = 0 3229 37.74%   
MAE Considering All 
Errors 5311 62.07% 1611 18.83% 

 MAE Considering All 
Errors 5327 62.26% 

  

Total Cells 8556 100% 8556 100%  Total Cells 8556 100%   
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Table 4-3 The Deviation of the O-D matrix from methods with relative weight 10 compared to the SERPM 7.0 and SL 
Expanded O-D matrices 

(a) Method 1(b) – Seed Matrix: Method 1, Relative Weight = 10  (b) Method 2(a) – Seed Matrix: Method 2, Relative Weight = 10 
Method 1 (b) Relative to SERPM 7.0 Relative to StreetLight Expanded  Method 2 (a) Relative to SERPM 7.0 Relative to StreetLight Expanded 
MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

 MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

≥1000 0 0.00% 0 0.00%  ≥1000 1 0.01% 1 0.01% 
500≤MAE<1000 2 0.02% 3 0.04%  500≤MAE<1000 4 0.05% 1 0.01% 
300≤MAE<500 4 0.05% 5 0.06%  300≤MAE<500 6 0.07% 3 0.04% 
100≤MAE<300 42 0.49% 37 0.43%  100≤MAE<300 49 0.57% 29 0.34% 
50≤MAE<100 91 1.06% 63 0.74%  50≤MAE<100 102 1.19% 68 0.79% 
0<MAE<50 4627 54.08% 4547 53.14%  0<MAE<50 5960 69.66% 1500 17.53% 
MAE = 0 3790 44.30% 3901 45.59%  MAE = 0 2434 28.45% 6954 81.28% 
MAE Considering All 
Errors 4766 55.70% 4655 54.41% 

 MAE Considering All 
Errors 6122 71.55% 1602 18.72% 

Total Cells 8556 100% 8556 100%  Total Cells 8556 100% 8556 100% 
(c)  Method 3(a) – Seed Matrix: Method 3, Relative Weight = 10  (d) Method 4(a) – Seed Matrix: Method 4, Relative Weight = 10 

Method 3 (a) Relative to SERPM 7.0 Relative to StreetLight Expanded  Method 4 (a) Relative to SERPM 7.0 Relative to StreetLight Expanded 
MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

 MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

≥1000 2 0.02% 0 0.00%  ≥1000 1 0.01% 0 0.00% 
500≤MAE<1000 5 0.06% 2 0.02%  500≤MAE<1000 5 0.06% 0 0.00% 
300≤MAE<500 9 0.11% 2 0.02%  300≤MAE<500 6 0.07% 0 0.00% 
100≤MAE<300 44 0.51% 15 0.18%  100≤MAE<300 27 0.32% 3 0.04% 
50≤MAE<100 99 1.16% 51 0.60%  50≤MAE<100 86 1.01% 25 0.29% 
0<MAE<50 5964 69.71% 1541 18.01%  0<MAE<50 5196 60.73% 1526 17.84% 
MAE = 0 2433 28.44% 6945 81.17%  MAE = 0 3235 37.81% 7002 81.84% 
MAE Considering All 
Errors 6123 71.56% 1611 18.83% 

 MAE Considering All 
Errors 5321 62.19% 1554 18.16% 

Total Cells 8556 100% 8556 100%  Total Cells 8556 100% 8556 100% 
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Table 4-4 The deviation of the O-D matrix from methods with relative weight 1 compared to the SERPM 7.0 and SL 
Expanded O-D matrices 

(a)  Method 1(c) – Seed Matrix: Method 1, Relative Weight = 1  (b) Method 2(b) – Seed Matrix: Method 2,Relative Weight = 1 
Method 1 (c) Relative to SERPM 7.0 Relative to StreetLight Expanded  Method 2 (b) Relative to SERPM 7.0 Relative to StreetLight Expanded 
MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

 MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

≥1000 0 0.00% 0 0.00%  ≥1000 1 0.01% 0 0.00% 
500≤MAE<1000 7 0.08% 3 0.04%  500≤MAE<1000 6 0.07% 3 0.04% 
300≤MAE<500 13 0.15% 8 0.09%  300≤MAE<500 11 0.13% 3 0.04% 
100≤MAE<300 44 0.51% 47 0.55%  100≤MAE<300 51 0.60% 40 0.47% 
50≤MAE<100 88 1.03% 56 0.65%  50≤MAE<100 96 1.12% 49 0.57% 
0<MAE<50 5902 68.98% 3058 35.74%  0<MAE<50 5958 69.64% 1516 17.72% 
MAE = 0 2502 29.24% 5384 62.93%  MAE = 0 2433 28.44% 6945 81.17% 
MAE Considering All 
Errors 6054 70.76% 3172 37.07% 

 MAE Considering All 
Errors 6123 71.56% 1611 18.83% 

Total Cells 8556 100% 8556 100%  Total Cells 8556 100% 8556 100% 
(c)  Method 3(b) – Seed Matrix: Method 3, Relative Weight = 1     

Method 3 (b) Relative to SERPM 7.0 Relative to StreetLight Expanded     
MAE by Error Range 
(Vehicle per PM Peak 
Period) 

Frequency 
Count 

Frequency 
Percentage 

Frequency 
Count 

Frequency 
Percentage 

 
     

≥1000 1 0.01% 0 0.00%       
500≤MAE<1000 5 0.06% 3 0.04%       
300≤MAE<500 7 0.08% 2 0.02%       
100≤MAE<300 49 0.57% 33 0.39%       
50≤MAE<100 93 1.09% 59 0.69%       
0<MAE<50 5155 60.25% 1514 17.70%       
MAE = 0 3246 37.94% 6945 81.17%       
MAE Considering All 
Errors 5310 62.06% 1611 18.83% 

      
Total Cells 8556 100% 8556 100%       
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Table 4-2 shows the MAE of the resulting O-D matrix compared to the SERPM 7.0 

matrix and SL Expanded matrix for the ODME methods. Method 1(a), where no initial 

seed matrix was used, produced high overall deviation from both the SERPM 7.0 and SL 

Expanded matrices of about 56% and 55%, respectively. When using the SL index to 

distribute the trips generated based on the SERPM 7.0 model or the results from Methods 

2 and 3, the MAE, compared to the SL Expanded matrix, dropped significantly, from 55% 

to about 19%, while the error, compared to the SERPM 7.0 matrix, increased from 56% to 

62%. This indicates that improvement in the MAE relative to SL Expanded is much higher 

than the increase in the MAE relative to the SERPM 7.0 when using the SL Index 

proportion to distribute the generated trips. 

Table 4-3 shows that Method 1(b), which uses the SERPM 7.0 O-D matrix as an 

initial O-D matrix with a relative weight of 10 in the ODME, resulted in high deviation 

from both SERPM 7.0 (about 55%) and SL Expanded (about 54%). However, in terms of 

large errors (MAE >300), Method 1(b) produced a higher frequency of errors compared to 

Method 1(a). Method 1(b) has only six large error counts, compared to 17 large errors in 

Method 1(a), when compared to the default SERPM 7.0 O-D matrix. This indicates that 

Method 1(a) is further away from the existing O-D matrix developed by the regional 

demand forecasting model (SERPM 7.0). Interestingly, when the SL Index is incorporated 

to distribute the generated traffic and then conducting an ODME with a relative weight 10, 

as implemented in Methods 2(a) and 3(a), the deviation from the O-D matrix developed 

from SERPM 7.0 increased to about 71%, while the deviation from the SL Expanded 

matrix dropped to 19%. This indicates that Method 2(a) and Method 3(a) are similar to SL 
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estimates but are distant from the O-D matrix generated by SERPM 7.0, compared to 

Method 1(b). 

Table 4-4 shows that Method 1(c), which uses the SERPM 7.0 O-D matrix as an 

initial O-D matrix with relative weight one in the ODME without using SL data resulted in 

higher deviation from the SERPM 7.0 O-D matrix (about 71%) and lower deviation from 

the SL Expanded (about 37%). In terms of large error frequencies (MAE >300), Method 

1(c) produced 20 error counts. Interestingly, in Method 2(b), the deviation from the O-D 

matrix developed from SERPM 7.0 increased to about 72%, while the deviation from the 

SL Expanded matrix dropped to 19%. This indicates that Method 2(b) is similar to SL 

estimates but distant from the O-D matrix generated by SERPM 7.0 and similar to Method 

1 (c). Method 3(b) generated lower overall deviations from the O-D matrix developed from 

SERPM 7.0 (62%) and from SL estimates (19%).  

4.4. Summary 

As stated earlier, based on traffic count deviation, both Method 1(b) and Method 

1(c) produced relatively good deviation from the real-world traffic counts, compared to 

Method 1(a), which does not use a seed matrix and optimizes the O-D matrix. Method 1(b) 

uses the O-D matrix developed from the SERPM 7.0 model as a seed matrix and a relative 

weight of 10 in the ODME process. Method 1(b) does not use the crowdsourced data. 

Method 3(b) further refines the results from Method 1(b) by using an initial matrix resulting 

from the redistribution of the generated trips according to the O-D matrix calculated in 

Method 1(b) using the SL Index proportions, and then conducting a second ODME process 

with weight one on the initial matrix. Although both Method 1(b) and 3(b) resulted in 



75 

relatively good deviations from the counts (as shown in Table 4-1), the results in Table 4-2 

to Table 4-4 show that Method 1(b) produced an overall deviation from the O-D Matrix 

developed from the SERPM 7.0 model and the SL Expanded by about 55% and 54%, 

respectively. Method 3(b) produced corresponding deviations of 62% and 19%, 

respectively, indicating generally less deviation than Method 1(b) when it comes to 

comparing it with the existing O-D matrix from SERPM 7.0. 

To further examine the resulting O-D matrix from the use of Method 3(b), the 

demands for the O-D pairs with the highest errors from Method 1 (i.e., the O-D matrix 

from SERPM 7.0 and Method 4, and the O-D matrix from the SL Expanded), are 

investigated. Figure 4-3 shows that SERPM 7.0 always overestimates the number of trips, 

while Method 3(b) produces results that fall between the values from SERPM 7.0 and SL 

Expanded. SERPM 7.0 overestimates the O-D trips because the trips are estimated without 

considering actual traffic but instead, are based on the data collected from the household 

survey based on demographic attributes. For instance, a link with a capacity of 2,000 

vehicles per link can be assigned much more traffic than reality if only considering the 

results from the survey. On the other hand, the SL Expanded O-D trips are not perfect 

either, as it uses partial counts to predict the O-D trips, as discussed earlier. The developed 

method, Method 3(b), uses data from multiple sources (SERPM 7.0, SL, and traffic counts) 

to produce results that produce reasonable deviations from real-world  conditions.  
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Figure 4-3 O-D Pairs trip demand with highest errors 

 

Table 4-5 to Table 4-8 show the turning movement volumes for four critical 

intersections resulting from assigning the O-D matrix produced from Method 3(b), 

compared to those resulting from assigning the SERPM 7.0 and SL Expanded O-D 

matrices. The four critical intersections are located at Okeechobee Boulevard at the 

Tamarind Avenue/Parker Avenue intersection, Banyan at the North Tamarind intersection, 

Banyan Boulevard at the North Dixie Highway intersection, and Lakeview Avenue at the 

North Dixie Highway intersection in downtown West Palm Beach, which are referred to 

as Intersection 1, Intersection 2, Intersection 3, Intersection 4, respectively.  

The comparative analysis, performed for the four intersections in the network, 

shows that Method 3(b) in particular produced lower deviations from the real-world  turn 

movement counts. Overall, Method 3(b) exhibited the least deviation from the real-world  

conditions when compared to the other two examined alternatives. 
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Table 4-5 Turning movement counts for intersection 1 

  Approach  
Intersection 1 Method ID SBR SBT SBL EBR EBT EBL NBR NBT NBL WBR WBT WBL Total 

Counts 

Real World 913 596 47 303 1369 382 106 177 103 51 2096 112 6255 
1 839 727 48 303 1350 394 105 187 121 125 2256 91 6546 

3(b) 1041 607 43 298 1351 389 92 191 137 13 2103 92 6357 
4 1058 598 95 270 1401 427 137 201 162 38 2136 105 6628 

Percentage 
Deviation 
from Real-

World Count 

1 8% 22% 2% 0% 1% 3% 1% 6% 17% 145% 8% 19% 5% 
3(b) 14% 2% 9% 2% 1% 2% 13% 8% 33% 75% 0% 18% 2% 

4 16% 0% 102% 11% 2% 12% 29% 14% 57% 25% 2% 6% 6% 
 

Table 4-6 Turning movement counts for intersection 2 

  Approach  
Intersection 

2 
Method 

ID SBR SBT SBL EBR EBT EBL NBR NBT NBL WBR WBT WBL Total 

Counts 

Real 
World 146 503 10 50 472 66 40 399 141 14 1656 178 3675 

1 230 447 0 102 409 58 11 399 701 15 1530 85 3987 

3(b) 140 490 0 40 391 48 0 354 118 15 1588 217 3401 

4 155 510 1 49 386 43 9 336 93 21 1541 198 3342 
Percentage 
Deviation 
from Real-

World 
Count 

1 58% 11% 100% 104% 13% 12% 73% 0% 397% 7% 8% 52% 8% 

3(b) 4% 3% 100% 20% 17% 27% 100% 11% 16% 7% 4% 22% 7% 

4 6% 1% 90% 2% 18% 35% 78% 16% 34% 50% 7% 11% 9% 
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Table 4-7 Turning movement counts for intersection 3 

  Approach  
Intersection 3 Method ID SBR SBT SBL EBR EBT EBL WBR WBT WBL Total 

Counts 

Real World 388 354 32 42 95 62 18 263 68 1322 
1 332 263 76 45 160 55 74 338 36 1379 

3(b) 375 380 30 46 94 57 74 174 34 1264 
4 244 357 23 39 113 49 57 288 68 1238 

Percentage Deviation 
from Real-World Count 

1 14% 26% 138% 7% 68% 11% 311% 29% 47% 4% 
3(b) 3% 7% 6% 10% 1% 8% 311% 34% 50% 4% 

4 37% 1% 28% 7% 19% 21% 217% 10% 0% 6% 
 

Table 4-8 Turning movement counts for intersection 4 

  Approach  
Intersection 4 Method ID SBR SBT NBL WBT WBL Total 

Counts 

Real World 208 543 327 1086 237 2401 
1 242 680 359 1159 195 2635 

3(b) 262 561 369 1123 203 2518 
4 258 571 369 1121 212 2531 

Percentage Deviation from Real-
World Count 

1 16% 25% 10% 7% 18% 10% 
3(b) 26% 3% 13% 3% 14% 5% 

4 24% 5% 13% 3% 11% 5% 
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CHAPTER 5  

USING CROWDSOURCED DATA FOR SEGMENT-LEVEL VOLUME COUNT 

ESTIMATION  

In addition to providing data that can be used for O-D matrix estimation, 

crowdsourced data have been proposed to provide estimates of daily and hourly traffic 

volume counts. Such estimates can be used to provide support to analysis, simulation, and 

MRM, as volume count data is expensive to collect and in many cases, counts are available 

only for short periods of time and may not cover all links in the network. This chapter 

provides a method to utilize crowdsourced data in combination with the real-world data 

collected from permanent detectors at specific locations to estimate the link volumes. This 

chapter also discusses the assessment, the accuracy, and the transferability of using the data 

for link volume estimation. 

5.1. Existing Volume Count Data 

Data from the same West Palm Beach network presented in Chapter 4 are used in 

the development and assessment of the method to estimate the volume counts based on SL 

data in this chapter. There are two permanent count stations (PCS) maintained by the 

Florida Department of Transportation (FDOT) in the case study network. The first is 

located near the Flagler Memorial Bridge (Site 0087), while the second is on I-95 (Site 

0174), as indicated by the red circles in Figure 5-1. The whole year traffic volumes from 

these two permanent count stations are used in this study. The year-long data from 2020 is 
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collected from Florida Traffic Online, which is an online tool established and maintained 

by the FDOT.   

 

Figure 5-1 PCS locations in StreetLight dashboard 
 

5.2. Seasonal Variations in the Data  

The first question to be answered is whether crowdsourced data can provide enough 

information to determine the seasonal variation in the data. This is important because an 

analyst may need to conduct multi-scenario analysis or need to estimate the traffic volumes 

in the peak season of the year based on data collected in other seasons. This section 

compares seasonal variation in average daily traffic (ADT) from the PCS (used in this case 

as benchmark data) with the variations based on the SL Expanded volume, in vehicles per 

day (vpd). The monthly average daily traffic (MADT) of June, July and August are 

aggregated to represent the summer season ADT and the MADT for December, January 

and February, which are aggregated to represent the winter season ADT. The traffic 

demand is expected to be higher during the winter season in West Palm Beach, Florida, 

compared to the summer.  
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Table 5-1 compares the seasonal variation in the ADT based on the PCS and SL 

Expanded (SL Exp) data in the two locations where PCSs are present, as discussed earlier. 

The two locations are the Flagler Memorial Bridge for eastbound and westbound traffic, 

and the I-95 Congress location for northbound and southbound traffic. As shown in Table 

5-1, the seasonal factors (SF) were calculated for PCS and SL Expanded data sources. For 

instance, the summer SF is calculated by dividing the summer ADT based on the three 

months (i.e., June, July, and August) over the ADT based on all six months. It is evident 

that there is a significant difference of ADT in some cases, such as eastbound (EB) (28%) 

and westbound (WB) (27%) during the summer season.  

Table 5-1  Seasonal ADT comparison SL Expanded vs PCS Counts 

 
Flagler Memorial Bridge I-95 Congress 

Eastbound Westbound Northbound Southbound 
Winter Summer Winter Summer Winter Summer Winter Summer 

PCS (vpd) 28,004 17,823 32,073 21,072 322,701 258,266 326,074 259,769 
SL Exp 
(vpd) 25,969 18,922 27,316 19,873 223,363 179,689 241,207 197,272 

PCS SF 0.61 0.39 0.60 0.40 0.56 0.44 0.56 0.44 
SL Exp SF 0.50 0.50 0.50 0.50 0.49 0.51 0.48 0.52 
Percentage 
Difference 18% 28% 17% 27% 12% 15% 13% 16% 

 

5.3. Comparison of Monthly Volumes between PCS and SL Expanded Data 

Figure 5-2 shows a comparison of the MADT for each month of the year based on 

the data from PCS with those based on SL Expanded. Interestingly, for the eastbound (EB) 

and westbound (WB) directions at the Flagler Memorial Bridge location, the MADT 

estimates based on SL data are similar to the PCS data, except for the months of January, 

February, and September, as displayed in Figure 5-2 (a) and Figure 5-2 (b). The annual 

average daily traffic (AADT) for the eastbound direction is 6,961 vpd and 7,507 vpd based 
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on PCS and SL data, respectively. The AADT for the westbound direction is 7,958 vpd 

and 8,157 vpd based on PCS and SL data, respectively. However, for the northbound (NB) 

and southbound (SB) directions of the I-95 location, the SL data underestimates the MADT 

compared to the PCS data in most cases, as seen in Figure 5-2 (c) and (d). In terms of 

AADT at the I-95 location, high discrepancies are observed for I-95 directions in the I-95. 

The annual average daily traffic (AADT) for the northbound direction is 90,276 vpd and 

66,944 vpd based on PCS and SL data, respectively. The AADT for the southbound 

direction is 90,836 vpd and 72,720 vpd based on PCS and SL data, respectively. The SL 

Expanded underestimation of the volume is possibly due to the expansion of the partial 

data by SL using data collected from other locations that have different characteristics or 

are less congested than freeway facilities in South Florida.  
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Figure 5-2 Comparison of MADT based on SL Expanded vs. PCS Counts 

5.4. Estimating Daily Volume at PCS locations using Regression Analysis  

The comparison in the previous section indicates that there are large discrepancies 

between the AADT and MADT estimated based on SL Expanded data and PCS data. This 

section presents and investigates an enhanced methodology to estimate the traffic volumes 

based on the SL Index values using a regression model to expand the data rather than using 

the SL Expanded data. 

(a) – PCS on Flagler Memorial Bridge (b) – PCS on Flagler Memorial Bridge 

(c) – PCS on I-95 (d) – PCS on I-95 
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As discussed in Chapter 4, the SL index is a metrics used by SL to estimate features 

like segment-level volume, O-D trips, and turning movement volumes. The SL index is 

expanded by Streetlight to full counts based on data from ground truth locations that may 

not be in the same region or network of the study. Thus, it is expected that expanding the 

SL index values to full counts based on ground truth counts collected from the same 

network under investigation can produce better results. To develop and assess a method for 

SL Index expansion based on local network data, the relationship between the PCS values 

and the SL Index is fitted in a regression model, with the volumes based on the PCS values 

as the response or dependent variable (indicated as PCS in the regression equation in the 

following sections) and SL Index as the explanatory or independent variable (indicated as 

SL in the regression equations in the following sections). Data aggregated daily from 

eleven months chosen randomly out of the twelve months in the year 2020 are used as 

training data, and data from the remaining month is used as testing data in the regression 

model. For each month, data collected from the PCS and SL Index data for the same 

locations discussed in the previous section are averaged for each of the seven days in the 

week over the whole month, resulting in seven data points per month. For instance, all of 

the Mondays in one certain month are averaged. Similarly, the rest of the days in the month 

are averaged.  

Regression models are fitted for the two different location sites in five variations, 

including a model for each of the four directions and a model with all four directions 

combined. The statistical inferences are summarized in Table 5-2. The R2 value is a 

goodness-of-fit measure that indicates how much of the deviations in the dependent 
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variable are explained by the independent variable in the fitted model. The higher the R2, 

the better and more accurate the model is in predicting the real-world values using SL Index 

as an input. The fitted regression models, for every direction, have an R2 greater than 60%, 

indicating that the models can predict more than 60% of the variation in the PCS values. 

The model developed with all directions has an R2 of 97.6%, which is the best fitted model 

among all of the models. The p-value determines if the explanatory variable is significant 

in the model. A p-value less than a certain significance level, usually 5%, indicates that the 

explanatory variable is significant. In this case, all p-values are close to zero, indicating 

that, for all directions, the SL Index aggregated daily for every month is a significant 

predictor of PCS values.  

Table 5-2 Regression statistical inferences for PCS Counts as a function of SL Index 
using daily data  

Direction Regression Equation R2 p-value 
EB PCS = 434.8060 + 0.7012SL 69.0% 0.000 
WB PCS = 1087.0000 + 0.717SL 62.0% 0.000 
SB PCS = -3039.0000 + 1.051SL 77.8% 0.000 
NB PCS = 2961.0000 + 1.061SL 83.8% 0.000 

All Directions PCS = -2531.0000 + 1.082SL 97.6% 0.000 
 

The regression plots, along with the regression models for the two different location 

sites in five variations, including a model for each of the four directions and a model with 

all four directions combined, are shown in Figure 5-3 and Figure 5-4, respectively. 
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(a) For EB Direction 
 

 

(b) For WB Direction  

 

(c) For SB Direction 

 

(d) For NB Direction  
Figure 5-3 PCS Counts vs. SL Index fitted regression model using daily volumes 
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Figure 5-4 PCS Counts vs. SL Index fitted regression model for All Directions using 
daily volumes  

 

Another approach to expanding the SL data based on the ground truth counts is to 

develop another regression model to correct the SL Expanded based on PCS data instead 

of using the SL Index as described above, again at the daily aggregation level, with the 

volumes based on the PCS values as the response or dependent variable (referred to as PCS 

in the regression equations) and SL Expanded as the explanatory or independent variable 

(referred to as SL in the regression equations). The statistical inferences of the fitted models 

are summarized in Table 5-3. The R2 values are relatively lower for all five models 

compared to the models developed earlier using the SL Index. The values are particularly 

low for the models developed based on the eastbound and westbound data, which are 24% 

and 29%, respectively. The lower R2 values indicate that the models developed per 

direction for SL Expanded are not as accurate to predict the variations in the counts as the 

models developed based on the SL Index. However, the All Directions model still produced 

a very good fit with an R2 of 94.1%. 
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Table 5-3 Regression statistical inferences for PCS Counts as a function of SL 
Expanded using daily data 

Direction Regression Equation R2 p-value 
EB PCS = 3093.1120 + 0.5087SL 29.0% 0.000 
WB PCS = 4273.0880 + 0.4923SL 23.7% 0.000 
SB PCS = 25027.0000 + 0.9007SL 53.9% 0.000 
NB PCS = 27675.4300 + 0.9341SL 58.4% 0.000 

All Directions PCS = -547.0 + 1.281SL 94.1% 0.000 

 

The regression plots along with the regression models are shown in Figure 5-5 for 

EB, WB, SB, and NB and in Figure 5-6  for all directions, respectively. Based on the 

statistical inferences from the above results, regression models developed based on the 

SL Index for daily volumes was selected for further analysis.  

 



89 

 

(a) For EB Direction 
 

 

(b) For WB Direction 
 

 

(c) For SB Direction  

 

(d) For NB Direction 
Figure 5-5 PCS Counts vs. SL Expanded fitted regression model using daily volumes
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Figure 5-6 PCS Counts vs. SL Expanded fitted regression model for All Directions 
using daily volumes  

 
The performance of the regression models developed based on SL Index to estimate 

the daily volumes are compared to the ground truth data collected from the PCS. Table 5-4 

shows the MAPE computed for the training data and testing data for the two methods 

(expansion of SL Index based on local volume data, and the original SL Expanded volume 

data). As shown in Table 5-4, the regression models developed using the SL Index (for 

both, each specific direction, and all directions) as an explanatory variable generated low 

MAPE in each direction. However, the regression models developed using the SL Index in 

specific directions outperformed the all-direction model in the Flagler Bridge location. For 

both the Flagler Bridge and the I-95 location, the direction-specific and all-direction 

models produced low MAPE values. When using the SL Expanded volumes, the MAPE 

for the testing data reached up to 36% on the I-95 testing location. The volumes estimated 

using the direction-specific regression models have MAPE values of 5% to 8%. The 

volumes estimated using the all-direction regression model have MAPE values of 5% to 

9%. Manual aggregation of daily volume from the available SL Estimates produced better 
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result than the AADT compared earlier. However, the regression models based on the SL 

index improved the daily volume predictions in the locations tested.   

Table 5-4 MAPE of SL Index regression models for daily volume estimation 

Used Model Measure 
Flagler 
Bridge 

EB 

Flagler 
Bridge 

WB 
I-95 NB I-95  

SB 

SL Estimates 
(SL Expanded) 

MAPE Training Data 22.28% 19.96% 17.62% 20.20% 
MAPE Testing Data 8.00% 17.00% 36.00% 29.00% 

Direction-Specific 
Linear Regression 
based on SL Index 

MAPE: Training Data 12.63% 12.88% 7.53% 8.14% 

MAPE: Testing Data 7.40% 8.50% 6.10% 5.35% 

All-Direction 
Linear Regression 
based on SL Index 

MAPE: Training Data 18.19% 16.05% 5.81% 9.01% 

MAPE: Testing Data 9.43% 7.58% 5.51% 8.87% 

 

5.5. Estimating Hourly Volume at the PCS locations using Regression Analysis 

based on SL Index 

Considering the improvement in the ADT estimates based on the developed 

regression models in the previous section, additional work was done to investigate the 

estimation of the hourly traffic volumes using the same method. Regression models were 

developed between the hourly SL Index and PCS hourly volumes. The SL and PCS are 

divided into training datasets, consisting of data for 11 months, and testing dataset, 

consisting of data in the remaining (one) month. The PCS values are used as the response 

or dependent variable, and the SL Index as the explanatory or independent variable. The 

hourly volumes (vph) for all of the days of the week are manually averaged over the whole 

month. For instance, volumes for all of the Mondays at 4:00 PM are averaged over a certain 

month. 
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This study investigated three different variations of the regression models using the 

hourly volume data. These variations are explained next. In the first variation (Scenario 1), 

the data is averaged over all Tuesdays (typical weekday) per month from 4:00 PM to 5:00 

PM, resulting in a total of 11 data points for the training dataset. Tuesday is selected as a 

typical weekday, and the timing from 4:00 PM to 5:00 PM is selected as a typical peak 

hour. The fitted direction-specific regression models did not exhibit good performance as 

shown in Table 5-5, which summarizes the statistical inferences. The regression plots for 

Scenario 1 are included in Figure 5-7 and Figure 5-8 for further inferences. The All 

Directions model has an acceptable R2 (63%), and low p-value compared to the direction-

specific models.  

 

Table 5-5 Regression Statistical Inferences for PCS Counts as a function of SL 
Index for Tuesday peak hour 

Direction Regression Equation R2 p-value 
EB PCS = 657.4389 – 0.2152SL 4.4% 0.540 
WB PCS = 501.0428 + 0.4316SL 55.6% 0.010 
SB PCS = 8956.9030 – 0.1344SL 37.0% 0.050 
NB PCS = 8302.7340 – 0.1844SL 27.0% 0.100 

All Directions PCS = 1203.0 + 0.433SL 62.8% 0.000 
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(a) For EB Direction  

 
(b) For WB Direction 

 

 
(c) For SB Direction  

 
(d) For NB Direction  

Figure 5-7 PCS Counts vs. SL Index fitted regression model using hourly volumes (Scenario 1)
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Figure 5-8 PCS Counts vs. SL Index fitted regression model for All Directions using 
hourly volumes (Scenario 1) 

 

In the second variation (Scenario 2), the hourly volume data for every weekday is 

averaged over the whole month from 4:00 to 5:00 PM, resulting in a total of 55 data points 

for the training dataset. The reason weekdays (Monday through Friday) are chosen to 

perform this analysis is to observe the change in the SL Index data when a larger dataset is 

considered. Table 5-6 shows that the per direction R2  values are low, while the R2 and p-

value for the All-Directions model is acceptable. Figure 5-9 and Figure 5-10 exhibit 

more  on the fitted regression models for Scenario 2.   

Table 5-6 Regression statistical inferences for PCS Counts as a function of SL Index 
for Weekday average peak hour 

Direction Regression Equation R2 p-value 
EB PCS = 620.5602 – 0.1597SL 2.9% 0.220 
WB PCS = 445.8093 + 0.4709SL 46.3% 0.000 
SB PCS = 8807.8910 – 0.1159SL 29.0% 0.000 
NB PCS = 8235.8860 – 0.1657SL 22.0% 0.000 

All Directions PCS = 1256.0000 + 0.447SL 62.8% 0.000 
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(a) For EB Direction  

 

 
(b) For WB Direction 

 
(c) For SB Direction  

 
(d) For NB Direction 

Figure 5-9 PCS Counts vs. SL Index fitted regression model using hourly volumes (Scenario 2)
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Figure 5-10 PCS Counts vs. SL Index fitted regression model for All Directions 
using hourly volumes (Scenario 2) 

 

In the third variation (Scenario 3), the analysis period is increased by two hours 

from the previous scenario to capture more of the peak period. As a result, the weekdays 

(Monday through Friday) are averaged over the whole month from 4:00 to 7:00 PM, 

resulting in a total of 165 data (5 days, 3-hour slots, 11 months) points for the training 

dataset. As was the case with the other two variations, the per direction R2  values are 

low, while the R2 and p-value for the All-Directions model is acceptable, as shown in 

Table 5-7. Figure 5-11 and Figure 5-12 exhibit the regression plots for the Scenario 3 

models to provide more inference to the statistical result. 

Table 5-7 Regression statistical inferences for PCS Counts as a function of SL Index 
for Weekday average peak period 

Direction Regression Equation R2 p-value 
EB PCS = 478.6238 – 0.0246SL 0.1% 0.700 
WB PCS = 520.9119 + 0.4614SL 43.0% 0.000 
SB PCS = 8724.3580 – 0.0998SL 21.1% 0.000 
NB PCS = 8255.9590 – 0.1558SL 18.6% 0.000 

All Directions PCS = 1359.0 + 0.493SL 61.4% 0.000 
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(a) For EB Direction  

 

 
(b) For WB Direction 

 
(c) For SB Direction 

 
(d) For NB Direction 

Figure 5-11 PCS Counts vs. SL Index fitted regression model using hourly volumes (Scenario 3)
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Figure 5-12 PCS Counts vs. SL Index fitted regression model for All Directions 
using hourly volumes (Scenario 3) 

 

5.6. Estimating Hourly Volume at PCS locations using Regression Analysis based 

on SL Expanded Volumes 

Given the poor prediction of the regression model between the hourly SL Index and 

hourly PCS, additional exploration is done this time to base the prediction on the hourly 

output of SL Expanded volumes corrected based on local data. Regression models were 

developed between the hourly SL Expanded volumes and PCS hourly volumes. The SL 

and PCS volume data are divided into training datasets, consisting of data for 11 months, 

and testing dataset, consisting of data in the remaining (one) month. The PCS values are 

used as the response or dependent variable, and the SL Expanded volumes are used as the 

explanatory or independent variable. The utilized data is in the form of hourly data for 

every day of the week, averaged over the whole month, resulting in seven data points for 

every hour in every month. Similar to the previous regression models, PCS hourly data for 
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every day of the week is manually averaged over the whole month and used as the response 

variable. As is done in the previous section, this study tried three different variations of the 

regression models using the hourly volume data.  

Contrary to the findings in the model developed based on the SL Index reported in 

the previous section, the data points when plotting the SL Expanded volumes and PCS 

volumes exhibit a linear relationship. Table 5-8 summarizes the statistical results obtained 

from the regression model. According to p-values, all models are significant at a 1% level 

of significance. Also, the R2 values are high (i.e., greater than 60% for all models), except 

for the WB model. The high R2 values indicate a high predictability of the variations in the 

PCS data. Similar to the previous models, the All Directions model resulted in the highest 

R2 value of approximately 98%. Regression plots and models are shown in Figure 5-13 and 

Figure 5-14 for further inferences. 

Table 5-8 Regression statistical inferences for PCS Counts as a function of SL 
Expanded volumes for the Tuesday peak hour 

 Direction Regression Equation R2 p-value 
EB PCS = 56.0 + 1.162SL 83.1% 0.000 
WB PCS = 562.0 + 0.511SL 43.6% 0.027 

SB PCS = 774.0+1.031SL 62.9% 0.004 

NB PCS = 1455.0 + 0.994SL 80.0% 0.000 
All Directions PCS = 86.0+ 1.181SL 97.7% 0.000 



100 

 
(a) For EB Direction 

 
(b) For WB Direction 

 
(c) For SB Direction  

 
(d) For NB Direction 

Figure 5-13 PCS Counts vs. SL Expanded fitted regression model using hourly volumes (Scenario 1)
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Figure 5-14 PCS Counts vs. SL Expanded fitted regression model for All Directions 
using hourly volumes (Scenario 1) 

 

As shown in Table 5-9 and Table 5-10 similar pattern of R2 values were obtained 

when conducting the regression analysis based on the hourly SL Expanded volumes using 

weekday average peak hour and weekday average peak period volumes. Although the 

models produced lower R2 values compared to SL Expanded Volumes for Tuesday Peak 

Hour, the All Directions models for all cases show very accurate predictability of variations 

in volumes. Regression plots and models for Scenario 2 and Scenario 3 are shown in Figure 

5-15, Figure 5-16, Figure 5-17 and Figure 5-18 for further inferences. 

Table 5-9 Regression statistical inferences for PCS Counts as a function of SL 
Expanded volumes for Weekday average peak hour  

Direction Regression Equation R2 p-value 
EB PCS = 140.0 + 0.972SL 63.5% 0.000 
WB PCS = 561.0 + 0.51SL 32.2% 0.000 
SB PCS = 660.0+ 1.064SL 63.5% 0.000 
NB PCS = 1109.0 + 1.088SL 78.1% 0.000 

All Directions PCS = 78.0+ 1.204SL 97.7% 0.000 
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(a) For EB Direction  

 
(b) For WB Direction 

 
(c) For SB Direction 

 
(d) For NB Direction  

Figure 5-15 PCS Counts vs. SL Expanded fitted regression model using hourly volumes (Scenario 2)
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Figure 5-16 PCS Counts vs. SL Expanded fitted regression model for All Directions 

using hourly volumes (Scenario 2) 
 

Table 5-10 Regression statistical inferences for PCS Counts as a function of SL 
Expanded volumes for Weekday average peak period  

Direction Regression Equation R2 p-value 
EB PCS = 133.0+ 0.903SL 42.8% 0.000 
WB PCS = 545.0 + 0.604SL 38.8% 0.000 
SB PCS = 5413.0 + 0.387SL 22.8% 0.000 
NB PCS = 4360.0 + 0.573SL 37.9% 0.000 

All Directions PCS = 370.0+ 1.298SL 90.7% 0.000 
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(a) For EB Direction  

 
(b) For WB Direction 

 
(c) For SB Direction 

 
(d) For NB Direction  

Figure 5-17 PCS Counts vs. SL Expanded fitted regression model using hourly volumes (Scenario 3)
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Figure 5-18 PCS vs SL Expanded fitted regression model for All Directions using 
hourly volumes (Scenario 3) 

 

Based on the statistical results, the accuracy of the hourly volume estimation based 

on the regression model selected for the Tuesday Peak Hour (Scenario 1 of the SL 

Expanded models) was selected for comparison with the accuracy of the default SL 

Expanded data. The MAPE values of the models reported in Table 5-11 indicate how close 

the developed models are to the real-world data collected from the PCS. It is evident that 

the regression models developed from SL Expanded based on specific direction and all 

direction outperforms the default SL Expanded output. As indicated in Table 5-11, the 

deviation in the hourly volume for the SL Expanded volume ranges between 27% and 43% 

for the four directions in the testing dataset. Utilizing the direction-specific models drops 

these values to between 14% and 23%, while using the all-direction model dropped these 

values to between 13% and 25%.  
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Table 5-11 MAPE of different regression models for hourly volume estimation 

Used Model Measure 
Flagler 
Bridge 

EB 

Flagler 
Bridge 

WB 

I-95 
NB 

I-95  
SB 

SL Expanded 
Hourly 

Aggregation 

MAPE Training Data 23.65% 17.65% 21.86% 12.82% 

MAPE Testing Data 40.00% 43.00% 32.00% 27.00% 

Direction-
Specific Linear 

Regression based 
on SL Expanded 
(Tuesday Peak 

Hour) 

MAPE: Training Data 9.52% 10.80% 6.08% 7.27% 

MAPE: Testing Data 22.00% 23.00% 8.00% 10.01% 

All-Direction 
Linear 

Regression based 
on SL Expanded 
(Tuesday Peak 

Hour) 

MAPE: Training Data 11.42% 18.49% 8.83% 8.88% 

MAPE: Testing Data 17.00% 25.00% 18.00% 13.00% 

 

The MAPE values corresponding to the models using SL Expanded showed higher 

accuracy, which can be attributed to the fact that SL Expanded data undergoes machine 

learning processes that account for additional factors when estimating the volume. The 

expansion process also takes the PCS as reference, producing more realistic results at an 

hourly level. 

5.7. Transferability of the Models Developed based on Combining SL and PCS 

Data 

This section reports on testing the transferability of the volume estimation models 

developed based on combining SL and PCS data to other links in the network (other than 

the PCS links from which the data was collected to develop the model). If these models 

can provide accurate estimates for the volumes in the network, they can be used as an 
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important source for estimating missing volume data in a network. As found earlier, 

regression models developed based on the hourly SL Expanded performed better compared 

to the model that uses the hourly SL Index. The transferability of the developed model to 

estimate the daily and hourly volumes based on PCS data and the SL data is tested for the 

intersection of Okeechobee Boulevard and Tamarind Avenue/Parker Avenue, which is 

different than the locations used in the development of the regression models. The 

benchmark data to assess the model’s accuracy is in the form of hourly tube counts that are 

available at the investigated intersection for only one day, October 30, 2019, and are 

collected from the regional traffic management center of the FDOT. Accordingly, the SL 

data was retrieved for the same location, date, and time intervals, and are used to test the 

transferability. Unfortunately, data for more days are not available for this location. Thus, 

the testing results may be different if such data would have been available, allowing the 

use of the average volumes over multiple days in the testing phase. 

To measure the accuracy of the transferability of the developed models, MAPE is 

computed between the estimated values and the ground truth data from the tube counts. In 

Table 5-12 to Table 5-15, the models based on Tuesday Peak Hour, Weekday Average 

Peak Hour, and Weekday Average Peak Period are referred to as Scenario 1, Scenario 2, 

and Scenario 3, respectively. The results in Table 5-12 and Table 5-13 show the results of 

estimating the volumes based on the models developed for each direction separately, 

whereas Table 5-14 and Table 5-15 include the results based on the All Directions model. 

Table 5-12 shows significantly low errors for the developed models, with the lowest errors 

resulting from the models developed based on the average of the Tuesday Peak Hour 
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(Scenario 1). This indicates that the regression models developed using the PCS and SL 

Expanded volumes for each direction separately exhibit very good transferability for 

various data aggregation levels, especially for the hourly aggregation. The reason behind 

the poorer transferability of daily aggregated data can be the difference in traffic conditions 

between the PCS locations (higher volume conditions) and the tube counts (lower volume 

conditions). The transferability for the SB and NB directions, which is not presented in this 

document, is very poor. These directions have lower volumes than the EB and WB 

directions. 

In contrast, Table 5-13 shows higher errors for the hourly models, indicating that 

the models based on SL Index data do not provide good transferability compared to the 

models based on the SL Expanded. However, the models based on the SL Index resulted 

in lower errors for the daily volume estimation. Similar to the previous results, MAPE for 

the SB and NB directions is very high. As a result, the SB and NB directions were ignored 

for testing the transferability of the models. 

Table 5-12 Testing Transferability of the direction-specific models developed based 
on PCS Counts and SL Expanded Volumes at the selected intersection 

 MAPE 
Regression Model WB Approach EB Approach 

SL Expanded Hourly Data – Scenario 1 3% 2% 
SL Expanded Hourly Data – Scenario 2 3% 12% 
SL Expanded Hourly Data – Scenario 3 9% 18% 

SL Expanded Daily Data 25% 47% 
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Table 5-13 Testing Transferability of the direction-specific models developed based 
on PCS Counts and SL Index at the selected intersection 

 MAPE 
Regression Model WB Approach EB Approach 

SL Index Hourly Data – Scenario 1 11% 76% 
SL Index Hourly Data – Scenario 2 8% 74% 
SL Index Hourly Data – Scenario 3 6% 71% 

SL Index Daily Data 9% 38% 

  

The All Directions models developed using the SL Expanded volumes and SL 

Index resulted in higher MAPE than the models developed for each direction separately, 

as shown in Table 5-14 and Table 5-15. Similar to the results mentioned above, the models 

based on the SL Expanded volumes resulted in better transferability for the hourly volume 

estimation, while the SL Index produced better estimation for the daily volume estimation. 

It is evident that for the hourly volume estimation, estimates based on the direction-specific 

SL Expanded model exhibited very small errors for the WB and EB (3.0% and 2% errors, 

respectively). Similarly, for the daily volume estimation, the SL Index-based direction-

specific model produced better results (9.0% for the WB and 38% for the EB). However, 

the All Directions model generated MAPE ranging from 14.0% to 22.0%. The estimates 

for the NB and SB exhibited large errors and thus they are not reported in this document. 

Table 5-14 Testing Transferability of the model developed based on PCS Counts  
and SL Expanded at the selected intersection – All Directions 

 MAPE 
Regression Model WB Approach EB Approach 

SL Expanded Hourly Data – Scenario 1 22% 14% 
SL Expanded Hourly Data – Scenario 2 26% 18% 
SL Expanded Hourly Data – Scenario 3 37% 29% 

SL Expanded Daily Data 38% 7% 
  



110 

Table 5-15 Testing Transferability of the model developed based on PCS Counts 
and SL Index at the selected intersection – All Directions 

 MAPE 
Regression Model WB Approach EB Approach 

SL Index Hourly Data – Scenario 1 28% 18% 
SL Index Hourly Data – Scenario 2 32% 22% 
SL Index Hourly Data – Scenario 3 44% 33% 

SL Index Daily Data 16% 14% 

 

5.8. Summary 

The results presented in this chapter indicate that there are significant discrepancies 

between the AADT and MADT estimated based on the SL Expanded volume data and the 

PCS data used as ground truth data for the two locations. Large errors were also found 

when estimating the seasonal factors based on the SL data.  

Considering the results above, this study investigated and refined the volume 

estimation based on SL data by developing regression models that relate the SL data to the 

ground truth PCS data. These models were then investigated for use to expand the SL data 

rather than using the SL Expanded data. It was possible in this study to develop well fitted 

regression models between the SL measures and the ground truth volumes with high R2 

values and acceptable significant levels. This was the case for both the daily and hourly 

volumes. 

There are indications based on the results obtained in this study that the use of 

regression models can improve the link volume estimation for links with relatively high 

volumes. For example, when using the SL Expanded volumes, the MAPE for the testing 

data ranged between 10% and 16%, depending on the testing location. The volumes 

estimated using the direction-specific regression models have MAPE values of 10% to 
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13%. The volumes estimated using the All Directions regression model have MAPE values 

of 5% to 23%. The deviation in the hourly volume for the SL Expanded volume ranges 

between 27% and 43% for the four directions for the testing dataset. Utilizing the direction-

specific models dropped these values to between 14% and 23% and using the All 

Directions model dropped these values to between 13% and 25%. 

The transferability test of the volume estimation models developed based on PCS 

data to other locations was conducted based on a one-day data for one other location due 

to data limitation. Using data from multiple days from this location would have been better 

to make conclusions about the transferability. In general, the transferability test results 

indicate acceptable results for the directions with heavy volumes but high errors for the 

directions with lower volumes. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

This study proposes methods to use data from multiple sources to improve scenario-

based analysis and MRM. The study develops a method to identify traffic scenarios and 

representative days considering different traffic patterns throughout the year. This research 

also proposes methods for integrating crowdsourced data into the OMDE process, which 

is required for MRM considering the modeled scenario. The study then checks the quality 

and transferability of the crowdsourced data for potential use in estimating segment-level 

volumes. The following subsections present the conclusions based on the results of this 

research and the recommendations for future work.  

6.1. Summary and Conclusion  

The selection of a representative day or a representative condition for the purpose 

of AMS and MRM to assess traffic performance requires clear methods and guidance, 

which are currently not available. Practitioners often adopt ad-hoc approaches to identify 

travel conditions to represent the real world and use traffic measures for these conditions 

such as traffic volume, speed, travel time, etc., as inputs to the model development and 

calibration process. This research studied the use of the K-means and GMM clustering 

methods with the aim of determining the variations in the temporal and spatial patterns 

based on key traffic measures  Then, it compares the use of input variables aggregated for 

an entire facility and peak period versus using segregated input variables that are 

segregated in time and space. Four different segregation levels were examined: no 
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segregation, spatial segregation, temporal segregation, and spatio-temporal segregation. In 

addition, the clustering was done with different numbers of clusters.  

The assessment of the clustering results for a case study indicates that the K-means 

clustering algorithm with four clusters and spatiotemporal segregation level produced the 

best results. This conclusion is based on the assessment using the measures recommended 

in statistical measure literature (the t-SNE plot) and techniques based on traffic engineering 

literature. Utilizing no spatial segregations of the road segments, no temporal segregation 

of the peak period into intervals, and a lower number of clusters was less effective in 

clustering the data into distinctive patterns that account for the variations in traffic 

conditions along the roadway segments and within the peak period considering the day-to-

day variations throughout the year. The study also showed that despite its theoretical 

advantage, the GMM clustering was less effective than the K-means clustering in 

identifying the traffic patterns in this study. 

The results of this study clearly show that the use of an average day of the year or 

the peak season is not acceptable because it will not allow for an effective simulation model 

development and calibration. In addition to the fact that averaging volume and travel time 

data results in synthetic days that do not occur in the real world, such averaging results in 

diluted congestion levels. The analysis of the case study indicates that a large percentage 

of the days (the days in Clusters 1 and 4, which constitute about a third of the days) have 

more congestion levels than those of the averages. Thus, for example, the use of the 

averages for making highway designs may result in the under-design of the facilities.   
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This study demonstrated the values of measures based on traffic engineering 

literature, in addition to the commonly used statistical measures used to identify the quality 

of the clustering results. Measures identified in this study based on traffic engineering 

concepts including the Sum of Representative Day Distances, heat map and fundamental 

traffic diagram, were demonstrated to be critical in assessing the clustering result quality.  

In order to achieve an accurate multi-resolution modeling (MRM) platform, a static 

traffic assignment-based ODME procedure combining crowdsourced data and an initial 

origin-destination (O-D) matrix from a regional demand forecasting model (SERPM 7.0) 

is utilized to improve the initial O-D matrix obtained from SERPM 7.0. After testing twelve 

different variations of the ODME processes and assessing the performance of the results, 

it was determined that Method 3(b) produced the best results. The method utilizes an initial 

ODME runs with an initial seed matrix from the SERPM 7.0 model to minimize the 

deviation from the initial O-D matrix and traffic counts. It then uses the resulting O-D 

matrix to estimate the trip generation from each zone but uses the SL index to estimate the 

trip distribution. Finally, a second ODME run is conducted to minimize the deviation from 

this resulting O-D matrix and the traffic counts. This method produced the best deviation 

from the counts and the crowdsourced data and slightly the worst deviation from the O-D 

matrix obtained.  

An analysis was conducted to determine the quality and transferability of estimating 

segment-level data based on crowdsourced data. The results indicate that the default SL 

Expanded volumes without correction or calibration based on local data do not provide 

good estimates of the daily and hourly volumes. Large errors were also found when 
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estimating the seasonal factors based on the SL data. Considering the results above, this 

study investigated and refined the volume estimation based on SL data by developing 

regression models that relate the SL data to the ground truth PCS data. These models were 

then investigated for use to expand the SL data rather than using the SL Expanded data. It 

was possible in this study to develop well fitted regression models between the SL 

measures and the ground truth volumes with high R2 values and acceptable significant 

levels. This was the case for both the daily and hourly volumes. 

There are indications based on the results obtained in this study that the use of 

regression models can improve the link volume estimation for links with relatively high 

volumes. However, further research is needed to investigate the results for additional case 

studies. The transferability test of the volume estimation models developed based on PCS 

data to other locations was conducted based on a one-day data for one other location due 

to data limitation. Using data from multiple days from this location would have been better 

to make conclusions about the transferability. In general, the transferability test results 

indicate acceptable results for the directions with heavy volumes, but high errors for the 

directions with lower volumes. 

6.2. Research Contributions 

Analysts or practitioners scope, develop, analyze, and calibrate simulation models 

to existing travel conditions and validate them to emulate real-life scenarios within the 

transportation network. Accuracy of AMS effectively depends on checking data and model 

quality. The multi-scenario and MRM methodology developed in this study using spatio-

temporal data from detectors and crowdsourced platform paved the way for identifying 
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travel patterns and improving the quality of the O-D matrix required for accurate multi-

scenario analysis and MRM practices.  

This study proved that using clustered data in modeling can have a significant 

impact on improving the analysis and thus the decisions made based on the analysis 

compared to existing practices. It will be up to the agencies to choose which representative 

day to model based on the clustering results, given that there are multiple identified 

representative days (one for each resulting cluster). The analyst can examine the number 

of days in each cluster and the congestion level in the representative day to determine which 

day to model.  

The O-D matrices from the demand models only consider the results from demand 

surveys, which do not consider the network operations and capacity constraints. The results 

in this study indicate that the use of the regional demand model always overestimates the 

number of trips. This study also developed a unique method to integrate crowdsourced data 

with the existing O-D matrix from the regional planning model to estimate an accurate O-

D matrix through the ODME process. As a result, the developed method provides agencies 

with accurate O-D matrices to conduct MRM. Additionally, the transferability and 

reliability of the crowdsourced data from a third-party vendor (i.e., Streetlight) explored in 

this study created an opportunity for agencies to utilize crowdsourced data as an accurate 

source of network-wide traffic information for AMS purposes.  
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6.3. Recommendations for Future Studies 

A number of research topics can be recommended to extend the research of this study, 

as listed below: 

1. The methodology to support scenario-based analysis and the associated 

representative days presented in this study can be expanded to include the 

operational conditions for eventful days (i.e., days with incident, work zone, 

weather events).  

2. The methodology to support scenario-based analysis and the associated 

representative days be extended to arterial networks and multi-facility networks, 

including use in MRM analysis.  

3. The ODME process developed by integrating crowdsourced data with a regional 

planning model can be used as the basis of an MRM framework. Further refinement 

based on integrating crowdsourced data from other sources, partial counts, and turn 

movement counts can be explored to develop an O-D matrix similar to real-world  

conditions.   

4. The ODME procedure used in this study is based on static assignment. Further 

assessment is need for the advantage of using dynamic traffic assignment-based 

ODME.  

5. Data accuracy and transferability of other crowdsourced data sources from other 

vendors can be checked using the methods developed in this study. Cross-validation 

of the results obtained based on data from different vendors will be extremely 

powerful in validating the quality of the resulting matrices. 
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6. Investigation is needed for the use of crowdsourced data to validate the utilized 

paths between the origins and destinations. 

7. Further analysis is needed for additional case study networks with better ground 

truth data availability to confirm the quality and transferability of models developed 

to expand the measured mobile data to segment-level volumes using regression 

analysis or machine learning. 
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