2,983 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Power distribution system fault monitoring device for supply networks in Nigeria

    Get PDF
    Electric power is the bedrock of our modern way of life. In Nigeria, power supply availability, sufficiency and reliability are major operational challenges. At the generation and transmission level, effort is made to ensure status monitoring and fault detection on the power network, but at the distribution level, particularly within domestic consumer communities there are no fault monitoring and detection devices except for HRC fuses at the feeder pillar. Unfortunately, these fuses are sometimes replaced by a copper wire bridge at some locations rendering the system unprotected and creating a great potential for transformer destruction on overload. This study is focused on designing an on-site power system monitoring device to be deployed on selected household entry power cables for detecting and indicating when phase off, low voltage, high voltage, over current, and blown fuse occurs on the building’s incomer line. The fault indication will help in reducing troubleshooting time and also ensure quick service restoration. After design implementation, the test result confirms design accuracy, device functionality and suitability as a low-cost solution to power supply system fault monitoring within local communities

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers

    Full text link
    This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations.Comment: 14 pages, 1 figure, HCI International 2023 Conferenc

    A Bayesian Approach to Sensor Placement and System Health Monitoring

    Get PDF
    System health monitoring and sensor placement are areas of great technical and scientific interest. Prognostics and health management of a complex system require multiple sensors to extract required information from the sensed environment, because no single sensor can obtain all the required information reliably at all times. The increasing costs of aging systems and infrastructures have become a major concern, and system health monitoring techniques can ensure increased safety and reliability of these systems. Similar concerns also exist for newly designed systems. The main objectives of this research were: (1) to find an effective way for optimal functional sensor placement under uncertainty, and (2) to develop a system health monitoring approach with both prognostic and diagnostic capabilities with limited and uncertain information sensing and monitoring points. This dissertation provides a functional/information --based sensor placement methodology for monitoring the health (state of reliability) of a system and utilizes it in a new system health monitoring approach. The developed sensor placement method is based on Bayesian techniques and is capable of functional sensor placement under uncertainty. It takes into account the uncertainty inherent in characteristics of sensors as well. It uses Bayesian networks for modeling and reasoning the uncertainties as well as for updating the state of knowledge for unknowns of interest and utilizes information metrics for sensor placement based on the amount of information each possible sensor placement scenario provides. A new system health monitoring methodology is also developed which is: (1) capable of assessing current state of a system's health and can predict the remaining life of the system (prognosis), and (2) through appropriate data processing and interpretation can point to elements of the system that have or are likely to cause system failure or degradation (diagnosis). It can also be set up as a dynamic monitoring system such that through consecutive time steps, the system sensors perform observations and send data to the Bayesian network for continuous health assessment. The proposed methodology is designed to answer important questions such as how to infer the health of a system based on limited number of monitoring points at certain subsystems (upward propagation); how to infer the health of a subsystem based on knowledge of the health of the main system (downward propagation); and how to infer the health of a subsystem based on knowledge of the health of other subsystems (distributed propagation)

    Efficacy of Smart PV Inverter as a Strategic Mitigator of Network Harmonic Resonance and a Suppressor of Temporary Overvoltage Phenomenon in Distribution Systems

    Get PDF
    The research work explores the design of Smart PV inverters in terms of modelling and investigates the efficacy of a Smart PV inverter as a strategic mitigator of network harmonic resonance phenomenon and a suppressor of Temporary Overvoltage (TOV) in distribution systems. The new application and the control strategy of Smart PV inverters can also be extended to SmartPark-Plug in Electric Vehicles as the grid becomes smarter. As the grid is becoming smarter, more challenges are encountered with the integration of PV plants in distribution systems. Smart PV inverters nowadays are equipped with specialized controllers for exchanging reactive power with the grid based on the available capacity of the inverter, after the real power generation. Although present investigators are researching on several applications of Smart PV inverters, none of the research-work in real time and in documentation have addressed the benefits of employing Smart PV inverters to mitigate network resonances. U.S based standard IEEE 519 for power quality describes the network resonance as a major contributor that has an impact on the harmonic levels. This dissertation proposes a new application for the first time in utilizing a Smart PV inverter to act as a virtual detuner in mitigating network resonance. As a part of the Smart PV inverter design, the LCL filter plays a vital role on network harmonic resonance and further has a direct impact on the stability of the controller and rest of the distribution system. Temporary Overvoltage (TOV) phenomenon is more pronounced especially during unbalanced faults like single line to ground faults (SLGF) in the presence of PV. Such an abnormal incident can damage the customer loads. IEEE 142-“Effective grounding” technique is employed to design the grounding scheme for synchronous based generators. The utilities have been trying to make a PV system comply with IEEE 142 standard as well. Several utilities are still employing the same grounding schemes even now. The attempt has resulted in diminishing the efficacy of protection schemes. Further, millions of dollars and power has been wasted by the utilities. As a result, the concept of effective grounding for PV system has become a challenge when utilities try to mitigate TOV. With an intention of economical aspects in distribution systems planning, this dissertation also proposes a new application and a novel control scheme for utilizing Smart PV/Smart Park inverters to mitigate TOV in distribution systems for the first time. In other words, this novel application can serve as an effective and supporting schema towards ineffective grounding systems. PSCAD/EMTDC has been used throughout the course of research. The idea of Smart inverters serving as a virtual detuner in mitigating network harmonic resonance and as a TOV suppressor in distribution systems has been devised based on the basic principle of VAR injection and absorption with a new control strategy respectively. This research would further serve as a pioneering approach for researchers and planning engineers working in distribution systems

    Development of a multilevel converter topology for transformer-less connection of renewable energy systems

    Get PDF
    The global need to reduce dependence on fossil fuels for electricity production has become an ongoing research theme in the last decade. Clean energy sources (such as wind energy and solar energy) have considerable potential to reduce reliance on fossil fuels and mitigate climate change. However, wind energy is going to become more mainstream due to technological advancement and geographical availability. Therefore, various technologies exist to maximize the inherent advantages of using wind energy conversion systems (WECSs) to generate electrical power. One important technology is the power electronics interface that enables the transfer and effective control of electrical power from the renewable energy source to the grid through the filter and isolation transformer. However, the transformer is bulky, generates losses, and is also very costly. Therefore, the term "transformer-less connection" refers to eliminating a step-up transformer from the WECS, while the power conversion stage performs the conventional functions of a transformer. Existing power converter configurations for transformer-less connection of a WECS are either based on the generator-converter configuration or three-stage power converter configuration. These configurations consist of conventional multilevel converter topologies and two-stage power conversion between the generator-side converter topology and the high-order filter connected to the collection point of the wind power plant (WPP). Thus, the complexity and cost of these existing configurations are significant at higher voltage and power ratings. Therefore, a single-stage multilevel converter topology is proposed to simplify the power conversion stage of a transformer-less WECS. Furthermore, the primary design challenges – such as multiple clamping devices, multiple dc-link capacitors, and series-connected power semiconductor devices – have been mitigated by the proposed converter topology. The proposed converter topology, known as the "tapped inductor quasi-Z-source nested neutral-point-clamped (NNPC) converter," has been analyzed, and designed, and a prototype of the topology developed for experimental verification. A field-programmable gate array (FPGA)-based modulation technique and voltage balancing control technique for maintaining the clamping capacitor voltages was developed. Hence, the proposed converter topology presents a single-stage power conversion configuration. Efficiency analysis of the proposed converter topology has been studied and compared to the intermediate and grid-side converter topology of a three-stage power converter configuration. A direct current (DC) component minimization technique to minimize the dc component generated by the proposed converter topology was investigated, developed, and verified experimentally. The proposed dc component minimization technique consists of a sensing and measurement circuitry with a digital notch filter. This thesis presents a detailed and comprehensive overview of the existing power converter configurations developed for transformer-less WECS applications. Based on the developed 2 comparative benchmark factor (CBF), the merits and demerits of each power converter configuration in terms of the component counts and grid compliance have been presented. In terms of cost comparison, the three-stage power converter configuration is more cost-effective than the generatorconverter configuration. Furthermore, the cost-benefit analysis of deploying a transformer-less WECSs in a WPP is evaluated and compared with conventional WECS in a WPP based on power converter configurations and collection system. Overall, the total cost of the collection system of WPP with transformer-less WECSs is about 23% less than the total cost of WPP with conventional WECs. The derivation and theoretical analysis of the proposed five-level tapped inductor quasi-Z-source NNPC converter topology have been presented, emphasizing its operating principles, steady-state analysis, and deriving equations to calculate its inductance and capacitance values. Furthermore, the FPGA implementation of the proposed converter topology was verified experimentally with a developed prototype of the topology. The efficiency of the proposed converter topology has been evaluated by varying the switching frequency and loads. Furthermore, the proposed converter topology is more efficient than the five-level DC-DC converter with a five-level diode-clamped converter (DCC) topology under the three-stage power converter configuration. Also, the cost analysis of the proposed converter topology and the conventional converter topology shows that it is more economical to deploy the proposed converter topology at the grid side of a transformer-less WECS
    corecore