7 research outputs found

    Optimal Transport for Change Detection on LiDAR Point Clouds

    Full text link
    The detection of changes occurring in multi-temporal remote sensing data plays a crucial role in monitoring several aspects of real life, such as disasters, deforestation, and urban planning. In the latter context, identifying both newly built and demolished buildings is essential to help landscape and city managers to promote sustainable development. While the use of airborne LiDAR point clouds has become widespread in urban change detection, the most common approaches require the transformation of a point cloud into a regular grid of interpolated height measurements, i.e. Digital Elevation Model (DEM). However, the DEM's interpolation step causes an information loss related to the height of the objects, affecting the detection capability of building changes, where the high resolution of LiDAR point clouds in the third dimension would be the most beneficial. Notwithstanding recent attempts to detect changes directly on point clouds using either a distance-based computation method or a semantic segmentation pre-processing step, only the M3C2 distance computation-based approach can identify both positive and negative changes, which is of paramount importance in urban planning. Motivated by the previous arguments, we introduce a principled change detection pipeline, based on optimal transport, capable of distinguishing between newly built buildings (positive changes) and demolished ones (negative changes). In this work, we propose to use unbalanced optimal transport to cope with the creation and destruction of mass related to building changes occurring in a bi-temporal pair of LiDAR point clouds. We demonstrate the efficacy of our approach on the only publicly available airborne LiDAR dataset for change detection by showing superior performance over the M3C2 and the previous optimal transport-based method presented by Nicolas Courty et al.at IGARSS 2016.Comment: Submitted to IEEE International Geoscience and Remote Sensing Symposium 2023 (IGARSS 2023

    Implicit neural representation for change detection

    Full text link
    Detecting changes that occurred in a pair of 3D airborne LiDAR point clouds, acquired at two different times over the same geographical area, is a challenging task because of unmatching spatial supports and acquisition system noise. Most recent attempts to detect changes on point clouds are based on supervised methods, which require large labelled data unavailable in real-world applications. To address these issues, we propose an unsupervised approach that comprises two components: Neural Field (NF) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes. NF offer a grid-agnostic representation to encode bi-temporal point clouds with unmatched spatial support that can be regularised to increase high-frequency details and reduce noise. The reconstructions at each timestamp are compared at arbitrary spatial scales, leading to a significant increase in detection capabilities. We apply our method to a benchmark dataset of simulated LiDAR point clouds for urban sprawling. The dataset offers different challenging scenarios with different resolutions, input modalities and noise levels, allowing a multi-scenario comparison of our method with the current state-of-the-art. We boast the previous methods on this dataset by a 10% margin in intersection over union metric. In addition, we apply our methods to a real-world scenario to identify illegal excavation (looting) of archaeological sites and confirm that they match findings from field experts.Comment: Main article is 10 pages + 3 pages of supplementary. Conference style pape

    Quantile Propagation for Wasserstein-Approximate Gaussian Processes

    Full text link
    We develop a new approximate Bayesian inference method for Gaussian process models with factorized non-Gaussian likelihoods. Our method---dubbed Quantile Propagation (QP)---is similar to expectation propagation (EP) but minimizes the L_2 Wasserstein distance rather than the Kullback-Leibler (KL) divergence. We consider the case where likelihood factors are approximated by a Gaussian form. We show that QP matches quantile functions rather than moments as in EP and has the same mean update but a smaller variance update than EP, thereby alleviating the over-estimation of the posterior variance exhibited by EP. Crucially, QP has the same favorable locality property as EP, and thereby admits an efficient algorithm. Experiments on classification and Poisson regression tasks demonstrate that QP outperforms both EP and variational Bayes

    Optimal Transport for Data Fusion in Remote Sensing

    Get PDF
    International audienceOne of the main objective of data fusion is the integration of several acquisition of the same physical object, in order to build a new consistent representation that embeds all the information from the different modalities. In this paper, we propose the use of optimal transport theory as a powerful mean of establishing correspondences between the modalities. After reviewing important properties and computational aspects, we showcase its application to three remote sensing fusion problems: domain adaptation, time series averaging and change detection in LIDAR data
    corecore