1,212 research outputs found

    Optimal switching instants for a switched-capacitor DC/DC power converter

    Get PDF
    We consider a switched-capacitor DC/DC power converter with variable switching instants. The determination of optimal switching instants giving low output ripple and strong load regulation is posed as a non-smooth dynamic optimization problem. By introducing a set of auxiliary differential equations and applying a time-scaling transformation, we formulate an equivalent optimization problem with semi-infinite constraints. Existing algorithms can be applied to solve this smooth semi-infinite optimization problem. The existence of an optimal solution is also established. For illustration, the optimal switching instants for a practical switched-capacitor DC/DC power converter are determined using this approach

    Optimal PWM control of switched-capacitor DC/DC power converters via model transformation and enhancing control techniques

    Get PDF
    Abstract—This paper presents an efficient and effective method for an optimal pulse width modulated (PWM) control of switched-capacitor DC/DC power converters. Optimal switching instants are determined based on minimizing the output ripple magnitude, the output leakage voltage and the sensitivity of the output load voltage with respect to both the input voltage and the load resistance. This optimal PWM control strategy has several advantages over conventional PWM control strategies: 1) It does not involve a linearization, so a large signal analysis is performed. 2) It guarantees the optimality. The problem is solved via both the model transformation and the optimal enhancing control techniques. A practical example of the PWM control of a switched-capacitor DC/DC power converter is presented

    Fuzzy switching systems: minimizing discontinuities and ripple magnitude and energy

    Get PDF
    This paper presents an efficient and effective method to determine optimal switching instants of fuzzy switching systems such that both the ripple magnitude and energy of the fuzzy switching systems are minimized. The method is based on optimal switching control techniques, where an optimal enhancing control method is used. This method has several advantages over the traditional methods. Firstly, it does not require the process of linearization. Secondly, it guarantees to achieve optimality. For illustration, a practical example of an optimal pulse width modulated fuzzy control of a switched-capacitor DC/DC power converter is presented

    FUZZY SWITCHING SYSTEMS: MINIMIZING DISCONTINUITIES AND RIPPLE MAGNITUDE AND ENERGY

    Get PDF
    Abstract This paper presents an efficient and effective method to determine optimal switching instants of fuzzy switching systems such that both the ripple magnitude and energy of the fuzzy switching systems are minimized. The method is based on optimal switching control techniques, where an optimal enhancing control method is used. This method has several advantages over the traditional methods. Firstly, it does not require the process of linearization. Secondly, it guarantees to achieve optimality. For illustration, a practical example of an optimal pulse width modulated fuzzy control of a switched-capacitor DC/DC power converter is presented

    FUZZY SWITCHING SYSTEMS: MINIMIZING DISCONTINUITIES AND RIPPLE MAGNITUDE AND ENERGY

    Get PDF
    Abstract This paper presents an efficient and effective method to determine optimal switching instants of fuzzy switching systems such that both the ripple magnitude and energy of the fuzzy switching systems are minimized. The method is based on optimal switching control techniques, where an optimal enhancing control method is used. This method has several advantages over the traditional methods. Firstly, it does not require the process of linearization. Secondly, it guarantees to achieve optimality. For illustration, a practical example of an optimal pulse width modulated fuzzy control of a switched-capacitor DC/DC power converter is presented

    Modeling and Efficiency Analysis of Multi-Phase Resonant Switched Capacitive Converters

    Get PDF
    International audienceThis paper presents an analytical method to evaluate pertinent data of the resonant capacitive switching converter especially the voltage gain and power efficiency. Instead of long transient simulation time, the proposed model uses frequency decomposition to speed-up computation. This method is valid for N-phase operation and extends the recently published studies on this promising topology outside zero-current/voltage switching conditions. Thanks to this tractable expression, we also reveal the intrinsic efficiencies over the voltage gain of 2-and 3-phase structures working at the resonant frequency in step-down operation. These results help to gain better understanding of multi-phase operation and encourage additional studies to use the full capability offered by the resonant switched capacitor converter especially for power on-chip integration. Keywords— DC-DC converter; switched-mode power supplies; resonant

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification

    Computational Method for a Class of Switched System Optimal Control Problems

    Get PDF

    A predictive control with flying capacitor balancing of a multicell active power filter

    Get PDF
    Unlike traditional inverters, multicell inverters have the following advantages: lower switching frequency, high number of output levels, and less voltage constraints on the insulated-gate bipolar transistors. Significant performances are provided with this structure which is constituted with flying capacitors. This paper deals with a predictive and direct control applied to the multicell inverter for an original application of this converter: a three-phase active filter. To take advantage of the capabilities of the multicell converter in terms of redundant control states, a voltage control method of flying capacitor is added, based on the use of a switching table. Flying capacitor voltages are kept on a fixed interval, and precise voltage sensors are not necessary. The association of predictive control and voltage balancing increases considerably the bandwidth of the active filter

    Hybrid cascaded multilevel converter with integrated series Active Power Filter for interfacing energy storage system to medium voltage grid

    Get PDF
    This paper presents a new control strategy for a high performance hybrid cascaded H-Bridge HB multilevel converter with integrated series Active Power Filter Stage APFS. Unequal DC voltage sources are used to energise the converter's HBs. This offers increased number of voltage levels using fewer number of series connected HBs. Simple hybrid stair-case/SVM modulation strategy is proposed to synthesise the converter output voltage waveforms and to guarantee even sharing of power between the converter's HBs. Novel capacitor voltage balancing controller is proposed and designed to guarantee decouple control of the APFS active power during the capacitors' charging and discharging modes without compromising the quality of the converter output voltage. The proposed converter is investigated under different operating conditions and the results show excellent dynamic and steady state performance
    corecore