4,663 research outputs found

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    Resilience-Driven Post-Disruption Restoration of Interdependent Critical Infrastructure Systems Under Uncertainty: Modeling, Risk-Averse Optimization, and Solution Approaches

    Get PDF
    Critical infrastructure networks (CINs) are the backbone of modern societies, which depend on their continuous and proper functioning. Such infrastructure networks are subjected to different types of inevitable disruptive events which could affect their performance unpredictably and have direct socioeconomic consequences. Therefore, planning for disruptions to CINs has recently shifted from emphasizing pre-disruption phases of prevention and protection to post-disruption studies investigating the ability of critical infrastructures (CIs) to withstand disruptions and recover timely from them. However, post-disruption restoration planning often faces uncertainties associated with the required repair tasks and the accessibility of the underlying transportation network. Such challenges are often overlooked in the CIs resilience literature. Furthermore, CIs are not isolated from each other, but instead, most of them rely on one another for their proper functioning. Hence, the occurrence of a disruption in one CIN could affect other dependent CINs, leading to a more significant adverse impact on communities. Therefore, interdependencies among CINs increase the complexity associated with recovery planning after a disruptive event, making it a more challenging task for decision makers. Recognizing the inevitability of large-scale disruptions to CIs and their impacts on societies, the research objective of this work is to study the recovery of CINs following a disruptive event. Accordingly, the main contributions of the following two research components are to develop: (i) resilience-based post-disruption stochastic restoration optimization models that respect the spatial nature of CIs, (ii) a general framework for scenario-based stochastic models covering scenario generation, selection, and reduction for resilience applications, (iii) stochastic risk-related cost-based restoration modeling approaches to minimize restoration costs of a system of interdependent critical infrastructure networks (ICINs), (iv) flexible restoration strategies of ICINs under uncertainty, and (v) effective solution approaches to the proposed optimization models. The first research component considers developing two-stage risk-related stochastic programming models to schedule repair activities for a disrupted CIN to maximize the system resilience. The stochastic models are developed using a scenario-based optimization technique accounting for the uncertainties of the repair time and travel time spent on the underlying transportation network. To assess the risks associated with post-disruption scheduling plans, a conditional value-at-risk metric is incorporated into the optimization models through the scenario reduction algorithm. The proposed restoration framework is illustrated using the French RTE electric power network. The second research component studies the restoration problem for a system of ICINs following a disruptive event under uncertainty. A two-stage mean-risk stochastic restoration model is proposed to minimize the total cost associated with ICINs unsatisfied demands, repair tasks, and flow. The model assigns and schedules repair tasks to network-specific work crews with consideration of limited time and resources availability. Additionally, the model features flexible restoration strategies including a multicrew assignment for a single component and a multimodal repair setting along with the consideration of full and partial functioning and dependencies between the multi-network components. The proposed model is illustrated using the power and water networks in Shelby County, Tennessee, United States, under two hypothetical earthquakes. Finally, some other topics are discussed for possible future work

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    From quality control to decision-making on the management of bridges and structures: What’s next?

    Get PDF
    The process of managing a stock of existing bridges and structures is extremely complex and challenging. At the same time, it is considered as one of the most relevant and important fields for civil engineers, involving academics, researchers, consultants, contractors, and owners. Indeed, in the recent years, several national and international RD funded projects raised this topic, and many international associations, such as EuroStruct, IABSE fib, started commissions and task groups on this field. This work consists on an overview of the most recent matters on this field, covering the whole cycle, from the quality control, addressing extreme events, to the decision making process. Also, it will be given a focus on the recent developments on the assessment and forecasting the performance of bridge and other structures. Finally, an overview will be made for different types of structures, specifically those related to transport infrastructures

    From quality control to decision-making on the management of bridges and structures: What’s next?

    Get PDF
    The process of managing a stock of existing bridges and structures is extremely complex and challenging. At the same time, it is considered as one of the most relevant and important fields for civil engineers, involving academics, researchers, consultants, contractors, and owners. Indeed, in the recent years, several national and international RD funded projects raised this topic, and many international associations, such as EuroStruct, IABSE fib, started commissions and task groups on this field. This work consists on an overview of the most recent matters on this field, covering the whole cycle, from the quality control, addressing extreme events, to the decision making process. Also, it will be given a focus on the recent developments on the assessment and forecasting the performance of bridge and other structures. Finally, an overview will be made for different types of structures, specifically those related to transport infrastructures

    Dynamic Risk Assessment of Resilient Infrastructure Systems under Uncertain Conditions

    Get PDF
    This paper proposes an adaptive risk management for civil infrastructure system in a dynamic stochastic environment, aimed at improving the ability of the system to adapt to changing conditions in the future. The proposed methodology is developed based on a rolling-horizon (RH) approach to (a) increase computational efficiency, (b) reduce uncertainties in the prediction of evolving conditions in the future, and (c) implement over an uncertain or infinite time horizon. The proposed RH-based adaptive risk management is applied to a decision problem where a hypothetical residential community in Kathmandu, Nepal is exposed to earthquake hazard as well as multiple evolving conditions. The results show that the proposed risk management significantly reduces the uncertainties in the prediction of the dynamic conditions and mitigates seismic risk to the community over time

    Optimizing resilience decision-support for natural gas networks under uncertainty

    Get PDF
    2019 Summer.Includes bibliographical references.Community resilience in the aftermath of a hazard requires the functionality of complex, interdependent infrastructure systems become operational in a timely manner to support social and economic institutions. In the context of risk management and community resilience, critical decisions should be made not only in the aftermath of a disaster in order to immediately respond to the destructive event and properly repair the damage, but preventive decisions should to be made in order to mitigate the adverse impacts of hazards prior to their occurrence. This involves significant uncertainty about the basic notion of the hazard itself, and usually involves mitigation strategies such as strengthening components or preparing required resources for post-event repairs. In essence, instances of risk management problems that encourage a framework for coupled decisions before and after events include modeling how to allocate resources before the disruptive event so as to maximize the efficiency for their distribution to repair in the aftermath of the event, and how to determine which network components require preventive investments in order to enhance their performance in case of an event. In this dissertation, a methodology is presented for optimal decision making for resilience assessment, seismic risk mitigation, and recovery of natural gas networks, taking into account their interdependency with some of the other systems within the community. In this regard, the natural gas and electric power networks of a virtual community were modeled with enough detail such that it enables assessment of natural gas network supply at the community level. The effect of the industrial makeup of a community on its natural gas recovery following an earthquake, as well as the effect of replacing conventional steel pipes with ductile HDPE pipelines as an effective mitigation strategy against seismic hazard are investigated. In addition, a multi objective optimization framework that integrates probabilistic seismic risk assessment of coupled infrastructure systems and evolutionary algorithms is proposed in order to determine cost-optimal decisions before and after a seismic event, with the objective of making the natural gas network recover more rapidly, and thus the community more resilient. Including bi-directional interdependencies between the natural gas and electric power network, strategic decisions are pursued regarding which distribution pipelines in the gas network should be retrofitted under budget constraints, with the objectives to minimizing the number of people without natural gas in the residential sector and business losses due to the lack of natural gas in non-residential sectors. Monte Carlo Simulation (MCS) is used in order to propagate uncertainties and Probabilistic Seismic Hazard Assessment (PSHA) is adopted in order to capture uncertainties in the seismic hazard with an approach to preserve spatial correlation. A non-dominated sorting genetic algorithm (NSGA-II) approach is utilized to solve the multi-objective optimization problem under study. The results prove the potential of the developed methodology to provide risk-informed decision support, while being able to deal with large-scale, interdependent complex infrastructure considering probabilistic seismic hazard scenarios

    Disaster management from a POM perspective : mapping a new domain

    Get PDF
    We have reviewed disaster management research papers published in major operations management, management science, operations research, supply chain management and transportation/ logistics journals. In reviewing these papers our objective is to assess and present the macro level “architectural blue print” of disaster management research with the hope that it will attract new researchers and motivate established researchers to contribute to this important field. The secondary objective is to bring this disaster research to the attention of disaster administrators so that disasters are managed more efficiently and more effectively. We have mapped the disaster management research on the following five attributes of a disaster: (1) Disaster Management Function (decision making process, prevention and mitigation, evacuation, humanitarian logistics, casualty management, and recovery and restoration), (2) Time of Disaster (before, during and after), (3) Type of Disaster (accidents, earthquakes, floods, hurricanes, landslides, terrorism and wildfires etc.), (4) Data Type (Field and Archival data, Real data and Hypothetical data), and (5) Data Analysis Technique (bidding models, decision analysis, expert systems, fuzzy system analysis, game theory, heuristics, mathematical programming, network flow models, queuing theory, simulation and statistical analysis). We have done cross tabulations of data among these five parameters to gain greater insights in disaster research. Recommendations for future research are provided

    Disaster risk management of interdependent infrastructure systems for community resilience planning

    Get PDF
    This research focuses on developing methodologies to model the damage and recovery of interdependent infrastructure systems under disruptive events for community resilience planning. The overall research can be broadly divided into two parts: developing a model to simulate the post-disaster performance of interdependent infrastructure systems and developing decision frameworks to support pre-disaster risk mitigation and post-disaster recovery planning of the interdependent infrastructure systems towards higher resilience. The Dynamic Integrated Network (DIN) model is proposed in this study to simulate the performance of interdependent infrastructure systems over time following disruptive events. It can consider three different levels of interdependent relationships between different infrastructure systems: system-to-system level, system-to-facility level and facility-to-facility level. The uncertainties in some of the modeling parameters are modeled. The DIN model first assesses the inoperability of the network nodes and links over time to simulate the damage and recovery of the interdependent infrastructure facilities, and then assesses the recovery and resilience of the individual infrastructure systems and the integrated network utilizing some network performance metrics. The recovery simulation result from the proposed model is compared to two conventional models, one with no interdependency considered, and the other one with only system-level interdependencies considered. The comparison results suggest that ignoring the interdependencies between facilities in different infrastructure systems would lead to poorly informed decision making. The DIN model is validated through simulating the recovery of the interdependent power, water and cellular systems of Galveston City, Texas after Hurricane Ike (2008). Implementing strategic pre-disaster risk mitigation plan to improve the resilience of the interdependent infrastructure systems is essential for enhancing the social security and economic prosperity of a community. Majority of the existing infrastructure risk mitigation studies or projects focus on a single infrastructure system, which may not be the most efficient and effective way to mitigate the loss and enhance the overall community disaster resilience. This research proposes a risk-informed decision framework which could support the pre-disaster risk mitigation planning of several interdependent infrastructure systems. The characteristics of the Interdependent Infrastructure Risk Mitigation (IIRM) decision problem, such as objective, decision makers, constraints, etc., are clearly identified. A four-stage decision framework to solve the IIRM problem is also presented. The application of the proposed IIRM decision framework is illustrated using a case study on pre-disaster risk mitigation planning for the interdependent critical infrastructure systems in Jamaica. The outcome of the IIRM problem is useful for the decision makers to allocate limited risk mitigation budget or resources to the most critical infrastructure facilities in different systems to achieve greater community disaster resilience. Optimizing the post-disaster recovery of damaged infrastructure systems is essential to alleviate the adverse impacts of natural disasters to communities and enhance their disaster resilience. As a result of infrastructure interdependencies, the complete functional restoration of a facility in one infrastructure system relies on not only the physical recovery of itself, but also the recovery of the facilities in other systems that it depends on. This study introduces the Interdependent Infrastructure Recovery Planning (IIRP) problem, which aims at optimizing the assignment and scheduling of the repair teams for an infrastructure system with considering the repair plan of the other infrastructure systems during the post-disaster recovery phase. Key characteristics of the IIRP problem are identified and a game theory-based IIRP decision framework is presented. Two recovery time-based performance metrics are introduced and applied to evaluate the efficiency and effectiveness of the post-disaster recovery plan. The IIRP decision framework is illustrated using the interdependent power and water systems of the Centerville virtual community subjected to seismic hazard
    corecore