4,052 research outputs found

    Nonlinear stochastic controllers for semiactive and regenerative structural systems, with guaranteed quadratic performance margins

    Get PDF
    In many applications of vibration control, the circumstances of the application impose constraints on the energy available for the actuation of control forces. Semiactive dampers (i.e., viscous dampers with controllable coefficients) constitute the simplest example of such actuation in structural control applications. Regenerative Force Actuation (RFA) networks are an extension of semiactive devices, in which mechanical energy is first converted to electrical energy, which is then dissipated in a controllable resistive network. A fairly general class of semiactive and regenerative systems can be characterized by a differential equation which is bilinear (i.e., linear in state, linear in control input, but nonlinear in both). This paper presents a general approach to bilinear feedback control system design for semiactive and regenerative systems, which is analytically guaranteed to out-perform optimal linear viscous damping in stationary stochastic response, under the familiar Quadratic Gaussian performance measure. The design for full-state feedback and for the more practical case of noise-corrupted and incomplete measurements (i.e., output feedback) are separately discussed. Variants of the theory are shown to exist for other quadratic performance measures, including risk-sensitive and multi-objective frameworks. An illustrative application to civil engineering is presented

    Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model

    Full text link
    We obtain stability estimates and derive analytic expansions for local solutions of multi-dimensional quadratic BSDEs. We apply these results to a financial model where the prices of risky assets are quoted by a representative dealer in such a way that it is optimal to meet an exogenous demand. We show that the prices are stable under the demand process and derive their analytic expansions for small risk aversion coefficients of the dealer.Comment: Final version, 28 page

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Risk Aversion in Finite Markov Decision Processes Using Total Cost Criteria and Average Value at Risk

    Full text link
    In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviations from the expected behavior may have detrimental effects, and conventional MDP algorithms usually ignore this aspect. We provide conditions for the structure of the underlying MDP ensuring that approximations for the exact problem can be derived and solved efficiently. Our findings are novel inasmuch as average value at risk has not previously been considered in association with the total cost criterion. Our method is demonstrated in a rapid deployment scenario, whereby a robot is tasked with the objective of reaching a target location within a temporal deadline where increased speed is associated with increased probability of failure. We demonstrate that the proposed algorithm not only produces a risk averse policy reducing the probability of exceeding the expected temporal deadline, but also provides the statistical distribution of costs, thus offering a valuable analysis tool

    A minimal HIV-AIDS infection model with general incidence rate and application to Morocco data

    Full text link
    We study the global dynamics of a SICA infection model with general incidence rate. The proposed model is calibrated with cumulative cases of infection by HIV-AIDS in Morocco from 1986 to 2015. We first prove that our model is biologically and mathematically well-posed. Stability analysis of different steady states is performed and threshold parameters are identified where the model exhibits clearance of infection or maintenance of a chronic infection. Furthermore, we examine the robustness of the model to some parameter values by examining the sensitivity of the basic reproduction number. Finally, using numerical simulations with real data from Morocco, we show that the model predicts well such reality.Comment: This is a preprint of a paper whose final and definite form is with 'Statistics Opt. Inform. Comput.', Vol. 7, No 2 (2019). See [http://www.IAPress.org]. Submitted 16/Sept/2018; Revised 10 & 15/Dec/2018; Accepted 15/Dec/201

    Evolutionary Poisson Games for Controlling Large Population Behaviors

    Full text link
    Emerging applications in engineering such as crowd-sourcing and (mis)information propagation involve a large population of heterogeneous users or agents in a complex network who strategically make dynamic decisions. In this work, we establish an evolutionary Poisson game framework to capture the random, dynamic and heterogeneous interactions of agents in a holistic fashion, and design mechanisms to control their behaviors to achieve a system-wide objective. We use the antivirus protection challenge in cyber security to motivate the framework, where each user in the network can choose whether or not to adopt the software. We introduce the notion of evolutionary Poisson stable equilibrium for the game, and show its existence and uniqueness. Online algorithms are developed using the techniques of stochastic approximation coupled with the population dynamics, and they are shown to converge to the optimal solution of the controller problem. Numerical examples are used to illustrate and corroborate our results
    • …
    corecore