847 research outputs found

    Adaptive and Scalable Controller Placement in Software-Defined Networking

    Get PDF
    Software-defined networking (SDN) revolutionizes network control by externalizing and centralizing the control plane. A critical aspect of SDN is Controller Placement (CP), which involves identifying the ideal number and location of controllers in a network to fulfill diverse objectives such as latency constraints (node-to-controller and controller-controller delay), fault tolerance, and controller load. Existing optimization techniques like Multi-Objective Particle Swarm Optimisation (MOPSO), Adapted Non-Dominating Sorting Genetic Algorithm-III (ANSGA-III), and Non-Dominating Sorting Genetic Algorithm-II (NSGA-II) struggle with scalability (except ANSGA-III), computational complexity, and inability to predict the required number of controllers. This thesis proposes two novel approaches to address these challenges. First, an enhanced version of NSGA-III with a repair operator-based approach (referred to as ANSGA-III) is introduced, enabling efficient CP in SD-WAN by optimizing multiple conflicting objectives simultaneously. Second, a Stochastic Computational Graph Model with Ensemble Learning (SCGMEL) is developed, overcoming scalability and computational inefficiency associated with existing methods. SCGMEL employs stochastic gradient descent with momentum, a learning rate decay, a computational graph model, a weighted sum approach, and the XGBoost algorithm for optimization and machine learning. The XGBoost predicts the number of controllers needed and a supervised classification algorithm called Learning Vector Quantization (LVQ) is used to predict the optimal locations of controllers. Additionally, this research introduces the Improved Switch Migration Decision Algorithm (ISMDA) as part of the holistic contribution. ISMDA is implemented on each controller to ensure even load distribution throughout the controllers. It functions as a plug-and-play module, periodically checking if the load surpasses a certain limit. ISMDA improves controller throughput by approximately 7.4% over CAMD and roughly 1.1% over DALB. ISMDA also outperforms DALB and CAMD with a decrease of 5.7% and 1%, respectively, in terms of controller response time. Additionally, ISMDA outperforms DALB and CAMD with a decrease of 1.7% and 5.6%, respectively, in terms of the average frequency of migrations. The established framework results in fewer switch migrations during controller load imbalance. Finally, ISMDA proves more efficient than DALB and CAMD, with an estimated 1% and 6.4% lower average packet loss, respectively. This efficiency is a result of the proposed migration efficiency strategy, allowing ISMDA to handle higher loads and reject fewer packets. Real-world experiments were conducted using the Internet Zoo topology dataset to evaluate the proposed solutions. Six objective functions, including worst-case switch-to-controller delay, load balancing, reliability, average controller-to-controller latency, maximum controller-to-controller delay, and average switch-to-controller delay, were utilized for performance evaluation. Results demonstrated that ANSGA-III outperforms existing algorithms in terms of hypervolume indicator, execution time, convergence, diversity, and scalability. SCGMEL exhibited exceptional computational efficiency, surpassing ANSGA-III, NSGA-II, and MOPSO by 99.983%, 99.985%, and 99.446% respectively. The XGBoost regression model performed significantly better in predicting the number of controllers with a mean absolute error of 1.855751 compared to 3.829268, 3.729883, and 1.883536 for KNN, linear regression, and random forest, respectively. The proposed LVQ-based classification method achieved a test accuracy of 84% and accurately predicted six of the seven controller locations. To culminate, this study presents a refined and intelligent framework designed to optimize Controller Placement (CP) within the context of SD-WAN. The proposed solutions effectively tackle the shortcomings associated with existing algorithms, addressing challenges of scalability, intelligence (including the prediction of optimal controller numbers), and computational efficiency in the pursuit of simultaneous optimization of multiple conflicting objectives. The outcomes underscore the supremacy of the suggested methodologies and underscore their potential transformative influence on SDN deployments. Notably, the findings validate the efficacy of the proposed strategies, ANSGA-III and SCGMEL, in enhancing the optimization of controller placement within SD-WAN setups. The integration of the XGBoost regression model and LVQ-based classification technique yields precise predictions for both optimal controller quantities and their respective positions. Additionally, the ISMDA algorithm emerges as a pivotal enhancement, enhancing controller throughput, mitigating packet losses, and reducing switch migration frequency—collectively contributing to elevated standards in SDN deployments

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    State-Feedback Controller Based on Pole Placement Technique for Inverted Pendulum System

    Get PDF
    This paper presents a state space control technique for inverted pendulum system using simulation and real experiment via MATLAB/SIMULINK software. The inverted pendulum is difficult system to control in the field of control engineering. It is also one of the most important classical control system problems because of its nonlinear characteristics and unstable system. It has three main problems that always appear in control application which are nonlinear system, unstable and non-minimumbehavior phase system. This project will apply state feedback controller based on pole placement technique which is capable in stabilizing the practical based inverted pendulum at vertical position. Desired design specifications which are 4 seconds settling time and 5 % overshoot is needed to apply in full state feedback controller based on pole placement technique. First of all, the mathematical model of an inverted pendulum system is derived to obtain the state space representation of the system. Then, the design phase of the State-Feedback Controller can be conducted after linearization technique is performed to the nonlinear equation with the aid of mathematical aided software such as Mathcad. After that, the design is simulated using MATLAB/Simulink software. The controller design of the inverted pendulum system is verified using simulation and experiment test. Finally the controller design is compared with PID controller for benchmarking purpose

    High-Throughput Automated Multi-Target Super-resolution Imaging

    Get PDF
    Super-resolution microscopy techniques developed through the past few decades enable us to surpass the classical diffraction limit of light, and thus open new doors to investigate the formerly inaccessible world of nanometer-sized objects. Most importantly, by using super-resolution microscopy, one can visualize sub-cellular structures in the range of 10 to 200 nm. At this range, we can investigate exciting problems in biology and medicine by visualizing protein-protein interactions and spatiotemporal analysis of structures of interest on the surface or inside cells. These techniques (collectively known as nanoscopy) have a high impact on understanding and solving biological questions. This dissertation starts with a brief and general description of current super-resolution techniques and then moves toward a multi-target super-resolution imaging strategy using sequential imaging that has benefits over conventional multi-color imaging methods. Sequential microscopy takes advantage of the photo-physical properties of the most suitable dye for a particular technique to achieve the optimal and consistent resolution for each of multiple targets of imaging. For example, for dSTORM imaging, this is currently AlexaFluor647.\ Sequential dSTROM has an advantage for multi-target imaging due to having a single imaging channel which avoids dealing with differential aberration-problems between multiple emission paths unlike other multi-color imaging based methods. We show that sequential imaging method can be facilitated using automated imaging. In this dissertation, a sequential microscope is designed, calibrated, and tested on multiple structures. We show that it can automatically re-find the position of each initially registered cell and can account for sample drift through an entire experiment. The microscope has been used in multiple collaborations with other groups to investigate biological problems of interest. Two labeling strategies that facilitate sequential imaging are described.\ The first strategy is DNA-strand-displacement , which allows imaging of multiple structures in a controlled and time-efficient binding-unbinding scenario. The second strategy is imaging with the small, actin binding peptide Lifeact. Finally, future directions and suggestions are made about how we can further improve the microscope. In the Appendix I provide a guide on how to use and troubleshoot the microscope, how to measure the efficiency of the microscope, as well as how to fix and label cells for optimal imaging and how to prepare various imaging buffers
    • …
    corecore