
Advanced Technologies for Energy
Savings in Small Cell Networks

Guangpu Yang

Department of Electronic and Electrical Engineering
University of Sheffield

This dissertation is submitted for the degree of
Doctor of Philosophy

November 2020





I would like to dedicate this thesis and everything I do to my family. I would not be who I
am today without their love and support.





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Guangpu Yang
November 2020





Acknowledgements

I am thankful to my supervisors Prof. Jie Zhang and Dr. Xiaoli Chu for their academic
suggestions and selfless help during my PhD study. I want to especially thank Prof. Jie
Zhang, who not only gave me academic guidance, but also a lot of help in life, and also, Dr.
Xiaoli chu, who gave me great support for my study.

I want to thank Dr. Zitian Zhang and Dr. Bowei Yang for their valuable suggestions and
guidance. Without their precious help, it would not be possible to conduct this research.

I also want to thank all of my colleagues in the Wireless Communications Group, who
gave me the opportunity to enjoy a comfortable PhD study.

Last but not the least, I would like to thank my family: my parents, my wife for supporting
me spiritually throughout my life.





Abstract

Since small base station (SBS) deployment is one of key technologies in 4G and 5G to meet
the explosive increasing traffic demand, the power consumption problem becomes more
serious. To reduce the power consumption of cellular networks, two promising technologies
were proposed: one is energy efficient SBS deployment, the other is BS sleeping. For the
former one, how to identify the number and the locations of SBSs is open research worth
investigation. For the latter, when and which SBS is switched on/off are the core issues.
Besides, how to guarantee the Quality of Service (QoS) while BSs are switched off also
needs to be considered. This thesis tries to answer these two questions by proposing novel
algorithms.

In Chapter 3, the SBS deployment problem is investigated, and novel data-driven methods
are proposed in different scenarios and different constraints. Based on existing networks,
the aim in this scenario is to uncover the blackspots, improve the coverage probability, and
minimizing the power consumption. Based on the Twitter data and k-means, the optimal
number of SBSs and the tradeoffs between power consumption and coverage probability is
investigated and compared with existing method. For a scenario where existing network is
not available or non-existent, the aim is to satisfy users traffic requirements, and minimize
the power consumption. A reward function is proposed for this work, then the tradeoffs
between power consumption and the percentage of served traffic is investigated compared
with existing method. The results in this chapter show the superiority of the proposed
methods.

In Chapter 4, a joint sleeping control and bandwidth allocation problem is addressed
and formulated as a mixed integer non-linear programming (MINLP) problem subject to the
transmission rate requirements. The joint optimization problem is then decoupled into two
sub-problems: a centralized bandwidth allocation (CBA) sub-problem that minimizes the
power consumption of the system by optimizing the allocated bandwidth of the active SBSs;
and a centralized sleeping control (CSC) sub-problem that finds the optimal SBS sleeping
strategy among all the possible ones. To solve the CSC sub-problem, two different algorithms
are proposed based on K-Nearest Neighbor (KNN) and Convolutional Neural Network
(CNN), respectively. For the KNN-based algorithm, the effectiveness of the algorithm is
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theoretically proven. The performance of proposed algorithm is evaluated in terms of average
total power consumption (APC), percentage of unserved traffic (UR), and the complexity. As
to CNN-based algorithm, the CSC problem is transformed to a classification problem and
solved by a CNN model. For this algorithm, the CNN model is firstly trained by training
data, and evaluated by the testing data. The metrics for this algorithm includes APC, UR,
complexity, and accuracy. Simulation results in this chapter show the proposed schemes have
superior performance compared with existing approaches.

In Chapter 5, a similar problem to Chapter 4 is considered, while a reinforcement learning
based mechanism is proposed to solve CSC sub-problem. By regarding the sleeping strategies
as arms, mapping the transmission rate requirements to states, and defining the optimal CBA
solution corresponding to a sleeping strategy as the arm’s reward function, the CSC sub-
problem is transformed to a multi-state multi-arm bandit (MSMAB) problem, and a modified
Q-learning algorithm is proposed for solving it. The convergence of the modified Q-learning
algorithm is theoretically proven, and the computational complexity of proposed algorithm
is theoretically analyzed. Finally, numerical results show proposed mechanism has a low
computational complexity and can significantly reduce the total energy consumption of all
SBSs, subject to the transmission rate requirements compared with existing methods.
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Chapter 1

Introduction

Overview

The data demand for the wireless networks is experiencing an explosive growth. According
to a Ericsson study [2], the global mobile data traffic is expected to increase by around five
times between 2019 and 2025, from 33 exabytes per month in 2019 to 164 exabytes per
month in 2025, shown in Fig.1.1. The annual global mobile data traffic in 2025 will reach
almost two zettabytes. Furthermore, the number of mobile-connected devices (including
machine-to-machine modules) also experienced a rapid increase. It is expected that the
number of mobile-connected devices will be three times of global population by 2023 [8].
The increasing data demand and number of mobile devices both bring new challenges to
communication networks.

1.1 Background

1.1.1 Evolution of Cellular Networks

In 1983, an analog mobile cell phone system, Advanced Mobile Phone System (AMPS),
which is the first-generation (1G) cellular technology, was officially introduced in the America.
Analogue circuit-switched technology and Frequency Division Multiple Access (FDMA)
were employed in these systems. The frequency bands in 1G was 800-900 MHz. Only voice
calls were allowed at that time with a channel capacity of 30KHz and a speed of 2.4kbps. 1G
networks had a poor security, poor voice quality, unreliable handover, low traffic capacity.

In 1991, the second-generation (2G) digital cellular networks were commercially launched
in Finland. 2G networks were deployed in different parts of the world through various dig-
ital technologies, such as Global System for Mobile Communications (GSM) [9], Digital
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Advanced Mobile Phone System (D-AMPS) and Interim Standard 95 (IS-95). Based on
digital signalling technology, 2G networks offered bandwidths of 30KHz to 200KHz and
enabled highly secure voice, text messages (SMS) and multimedia messages (MMS), as
well as limited data services at low speeds, up to 64kbps. 2G introduced two new access
technologies: Time Division Multiple Access (TDMA) and Code Division Multiple Access
(CDMA). Continuous improvement of GSM technology led to the introduction of General
Packet Radio Service (GPRS) and Enhanced Data for Global Evolution (EDGE) to provide
mobile data services. GPRS and EDGE are also referred to as 2.5G and 2.75G respectively.
They enabled data rates up to 144kbps, and allowed users to send/receive e-mail messages
and browse the web [10].

Subsequently, the 3GPP developed third-generation (3G) of mobile networks in 2001. 3G
have two key tracks, both of which are based on CDMA technology. The first is Universal
Mobile Telecommunications Systems (UMTS), and the other is CDMA2000. UMTS is used
to migrate the GSM networks to 3G, while CDMA2000 is used for D-AMPS and IS-95
[11]. UMTS employs Wideband CDMA (WCDMA) as the access method and provides peak
downlink speeds of up to 2 Mbps. The UMTS network can achieve data rate enhancements
through High-Speed Packet Access (HSPA), which can provide peak downlink speeds of
up to 14.4 Mbps. As to CDMA2000, it can provide peak downlink and uplink speeds of up
to 153 kbps. The CDMA2000 network achieves data rate enhancements through EVolution
Data Optimized (EVDO), which can provide peak downlink speeds of up to 14.7 Mbps. The
operating frequency range of 3G is 2100MHz and the bandwidth is 15-20MHz. Based on 3G
networks, send/receive large emails and texts, video streaming, fast web browsing become
available.

The fourth generation (4G) digital cellular network was officially launched in 2008. 4G
is designed to provide users with high speed, high capacity and high-quality service while
reducing the latency and improving security. Contrary to previous generations, 4G systems
do not support traditional circuit-switched telephone service, but rely on the full Internet
Protocol (IP). 4G uses Orthogonal frequency-division multiple access (OFDMA) as the
access method, and provides a scalable bandwidths of 5–20MHz. There are two important
4G standards: Long Term Evolution (LTE, widely deployed) and World Interoperability for
Microwave Access (WiMAX, now obsolete). LTE is a series of upgrades to the existing
UMTS technology. When the device is moving, 4G can provide peak downlink speed of up
to 100 Mbps. As to low mobility communication scenarios such as stationary or walking, the
peak downlink speed will be up to 1 Gbps [12].

5G is the fifth-generation technology standard for broadband cellular networks, which
began to be globally deployed in 2019. 5G is expected to significantly increase data transmis-
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sion speed, increase connection density, and reduce waiting time [13]. 5G uses the rarely
used radio millimeter wave frequency bands in the range of 30 GHz to 300 GHz range and
provides a huge unlicensed bandwidth (up to 7 GHz)[14]. 5G uses OFDMA for the access
part and provides a peak downlink speed of 10 Gbps, which is more than 10 times faster than
4G. A comparison of the evolutions of cellular network is summarized in Table 1.1.

Table 1.1 Comparison of different generations of cellular networks

Generation 1G 2G 3G 4G 5G
Period 1983-1991 1991-2001 2001-2008 2008-2020 Upcoming

Frequency 800-900MHz 900/1800MHz 1.6-2GHz 2-8GHz 3-300GHz
Bandwidth 30KHz 30KHz-200KHz 5-20MHz 5-20MHz 100MHz/400MHz

Access FDMA TDMA/CDMA CDMA OFDMA OFDMA
Peak Speed 2.4kbps 144kbps 14.4Mbps 1Gbps >10Gbps

Examples AMPS
GSM,

D-AMPS,
IS-95

WCDMA,
CDMA2000,
TD-SCDMA

LTE-A,
WiMAX 5G NR

1.1.2 Introduction of Key Technologies in 4G and 5G

OFDMA

OFDMA is a multi-user version of orthogonal frequency-division multiplexing (OFDM). It is
a digital transmission method which encodes digital data on multiple carrier frequencies. By
allocating a subset of subcarriers to each user, multiple access can be achieved in OFDMA.
which makes simultaneous low data rate transmission from multiple users possible.

The basic concept of OFDMA is: The whole channel can be divided into multiple
orthogonal sub-channels. High-speed data signals can be converted into parallel low-speed
streams. The low-speed streams can be modulated and transmitted on each sub-channel. At
the receiver, the streams can be separated by quadrature signals. Since the channel bandwidth
is greater than the relevant signal bandwidth of each sub-channel, it can be regarded as flat
fading on each sub-channel, which can eliminate inter-symbol interference. And channel
equalization also becomes relatively easy since the bandwidth of each sub-channel is only a
small part of the original channel bandwidth [15].

MIMO

Multiple input multiple output (MIMO), which has been widely used in 4G, is a term related
to Single-Input Single-Output (SISO), which uses a single antenna at the transmitter and
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receiver in 3G networks. MIMO uses multiple antennas at both the transmitter and the
receiver to form an antenna system with multiple channels between receiving and sending,
so that the signals can be transmitted and received through multiple antennas, thereby
improving the communication quality [16]. Without increasing spectrum resources and
antenna transmission power, it can double the system channel capacity by making full use of
space resources.

It is also known as multiple input single outputs (MISO), when multiple antennas are
utilized at the transmitter and a single antenna at the receiver. In this way, the transmit
diversity gain can be achieved. Similarly, single input multiple output (SIMO) has multiple
antennas at the receiver and a single antenna at the transmitter, resulting a receive diversity
gain.

MIMO also faces challenges. The correlations between different channel paths in the
MIMO system may degrade the achievable capacity and the channel diversity. To overcome
this problem, a minimum spacing between the antennas at the transmitter has to be greater
than 10 times of the frequency waves, while it has to be greater than a half of the frequency
waves at the mobile ends.

NOMA

All current cellular networks implement orthogonal multiple access (OMA) technologies such
as FDMA, TDMA, CDMA, etc. The characteristics of the OMA scheme can be summarized
as follows. For FDMA implementations, like OFDMA, each user’s information is allocated to
a subset of orthogonal subchannels [17]. As to TDMA, each user’s information is sent in non-
overlapping time slots [17], so TDMA-based networks need accurate timing synchronization,
which may bring challenges especially in the uplink. In CDMA, orthogonal codes are utilized
to modulate data signals from users in the same frequency channel. NOMA is fundamentally
different from the above access schemes which provide users with orthogonal access in
frequency, time, code, etc. As to NOMA, each user works in the same frequency band and is
distinguished by power level at the same time. Superposition coding is utilized in NOMA at
the transmitter so that the successive interference cancellation (SIC) receiver can separate the
users in the downlink and uplink channels. According to literature [1, 18], NOMA was also
proposed to be a candidate for 5G.

A comparison of the spectrum sharing for NOMA and OFDMA is shown in Fig.1.1. It
can be seen that different users use different subchannels in OFDMA, while different users
can use the same subchannels.
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Fig. 1.1 Comparison of OFDMA and NOMA [1].

Massive MIMO

For most MIMO implementations, the BS typically employs only a few (i.e., fewer than 10)
antennas, and the corresponding improvement in spectral efficiency is still relatively modest.
In this way, massive MIMO were proposed in [19, 20] in order to achieve more dramatic
gains, where a lot more antennas, e.g., 100 or more will be equipped with each BS.

There are many advantages for Massive MIMO compared with traditional MIMO. The
first one is that it can significantly increase the network capacity due to the increasing number
of signal paths resulting from more antennas at the transmitter/receiver. Secondly, with the
massive number of antennas at the transmitter, the thermal noise, the effects of fading, and
intra-cell interference can all be averaged out, thereby the channel variations decrease and
the so-called channel hardening effect appears[21]. Hence, the robustness of massive MIMO
is much better than MIMO whose channel varies over time and frequency resulting from
small-scale and frequency-selective fading. Thirdly, beamforming will be utilized in Massive
MIMO to improve the spectrum efficiency, data rates and latency. Meanwhile, beamforming
also enables each antenna to transmit signals only at a low power, thereby increasing energy
efficiency and reducing hardware costs.

Since there are so many advantages for massive MIMO, it has been regarded as one of
key technologies in 5G.
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mmWave

Current wireless networks face a serious problem: More people and devices are consuming
more data than ever before, but it is still squeezed on the same radio frequency spectrum
that mobile operators always use. This means the bandwidth for everyone is becoming less
and less, leading to reduced service speeds and increased connection loss. The problem of
global bandwidth shortage has prompted people to explore underutilized millimeter wave
(mmWave) spectrum for future cellular networks.

In contrast to the sub-6 GHz frequency bands used in the past for mobile devices,
mmWaves are broadcast at frequencies between 30 and 300 GHz. They are called mmWaves
because their length varies from 1 to 10 mm, while the length of current radio waves is tens of
centimeters. Since this technology can provide up to Gb/s capacity under a huge unlicensed
bandwidth (up to 7 GHz), it can be used for high-speed wireless communication [14].

Fig. 1.2 Global mobile data traffic (EB per month) [2]
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1.1.3 Heterogeneous network

According to the evolution of communication technology, it can be found mobile operators
generally have three methods to improve the capacity and transmission rate: 1) improve the
spectral efficiency through coding and modulation in physical layer; 2) increase the spectrum
resources; 3) increase the number/density of base stations to improve the transmission rate by
shortening the distance between base stations (BSs) and user equipments (UEs), and enlarge
the system capacity by frequency reuse. For the first method, the improvements of coding and
modulation in physical layer generally means a new generation for cellular network, which
may take 10 years or longer. For the second method, the increase of spectrum resources will
result to high cost due to the scarcity of spectrum resources and intense competition between
mobile operators. Therefore, the third method is the most promising solution for existing
networks.

Although deploying macro base stations can increase the system capacity and transmis-
sion rate, it faces several challenges: high cost, unbalanced traffic load, poor coverage of edge
users, and great energy waste. In this case, LTE standards [22] and WiMAX standards [23]
have proposed another solution: based on the existing macro base stations, some low-power
nodes (LPNs) can be introduced to expand the system capacity, offload the traffic of hotspots,
enhance indoor coverage, improve the quality of service (QoS) of edge users, and improve the
energy efficiency. This network architecture composed of macro base stations (MBSs) and
low-power nodes (also called small cells/small base stations) is called heterogeneous network
(HetNet), while the traditional macro-cellular network is called homogeneous network. For
a common HetNet, the MBSs can be used to provide coverage, while small base stations
(SBSs) can be used to provide capacity in busy areas such as shopping malls, train stations,
and city centers, etc. It is demonstrated that hyper dense HetNets can improve the throughput
by 10-100 times [24], and significantly improve the energy efficiency [25–27].

The introductions of different base stations are stated below and summarised in Table 1.2.
For ease of description, unless stated, the low power nodes are all referred to as small base
stations (SBSs) with respect to MBSs in this thesis.

• MBS: MBS is a high-power BSs that serves conventional cellular networks. MBSs
use high transmit power ranging from 5W to 40W to cover large-area macro cells
over 30 kilometres [28]. Due to the high transmit power and operating power, air
conditioners are usually required for MBSs to cool its surrounding environment to
maintain a proper temperature. Considering the huge cost, large sizes, and high-power
consumption of MBSs, it is not suitable for large scale MBS deployment. On the other
hand, MBSs still have the value of coexisting with future cellular networks due to their
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Table 1.2 Characteristics of different base stations

Base Station Type Transmit Power Coverage Radius Scenarios
MBS 43 dBm 1−35km Provide outdoor coverage
PBS 23-30 dBm < 300m Provide indoor/outdoor cover-

age and capacity
FBS 20 dBm < 50m Provide indoor coverage and

capacity
RN 30 dBm 300m Provide outdoor capacity and

coverage consolidation

wide coverage. MBSs can be used to provide basic coverage in rural areas. Moreover,
compared with SBSs, the MBSs require a reduced handover frequency, which has an
unparalleled advantage in handling users with high mobility.

• Micro BS and pico BS: Both micro BSs (MiBSs) and pico BSs (PBSs) are simplified
MBSs with reduced transmit and operation power, smaller BS size and smaller coverage
area. Compared with MiBS, PBS usually provides service for a smaller area (a radius
of 200 meters or less) with lower transmit power. However, the differences between
them are sometimes unclear. Operators usually carefully plan and deploy them in
outdoor or indoor environments with open access to all users. Specifically, for outdoor
deployment, the transmit power of PBS ranges from 250 mW to about 2 W, while in
indoor situations, it is usually 100 mW or less [28].

• Femto BS: Femto BSs (FBSs) are often used to denote the unplanned indoor nodes
which are deployed by consumers according to their needs. The coverage radius of
FBSs is 10 to 50 metres, and the transmit power is 100 mW or less [28]. They can be
further classified according to whether they allow access to all subscribers. Closed
access FBSs only grant access to closed user groups, while the open access FBSs
works similarly to PBS. A hybrid method is also possible for which all devices have
the access to FBSs, but the designated user group has a higher priority.

• Relay node: The Relay node (RNs) is similar to the PBS, but is usually deployed at the
coverage hole or at the edge of a cell to provide coverage consolidation or throughput.
The RNs use the air interface spectrum for the wireless backhaul. If the backhaul link
and the access link share the same frequency, it will bring challenges to the system.
Another method to avoid interference is to use additional dedicated frequencies for
wireless backhaul.
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1.2 Motivation

1.2.1 Green Communication

To satisfy the explosive growth of traffic demand, mobile operators deployed more and
more MBSs, introduced a large number of SBSs, and added supporting facilities such as
data centers. According to Global Times, it is estimated that there were approximately 6
million 4G base stations worldwide in 2019 [29], and the number of SBSs is explosively
increasing along with the commercial operation of 5G. While providing better service,
it also leads to a rapid increase of energy consumption in cellular networks. Research
shows that the energy consumption of information and communication technology (ICT)
infrastructure is increasing at a rate of 15%-20% per year and accounted for nearly 4%
of the total worldwide energy consumption in 2020 [30]. In [31], it has been shown that
around 1.4% of global carbon emissions are from cellular networks. On the one hand, the
huge energy consumption has brought high costs to cellular operators. On the other hand,
the large amount of carbon emissions has a negative impact on the environment, making
the greenhouse effect more and more serious. It is of great significance to study how to
reduce the energy consumption of cellular networks. This is why green communication
has drawn more and more attention recently in both industry and academia. The power
proportion for different elements in cellular network is shown in Fig.1.3. It can be found
that BSs consume the highest proportion (nearly 60%) of energy in cellular networks [3],
while the other elements including mobile switching, core transmission, data center and retail
account for approximately 40%. Therefore, optimizing the energy efficiency of BSs and
achieving green cellular networks are becoming a necessity to bolster environmental, social
and economic sustainability [32, 33].

Generally, there are five technologies to achieve green communication [34]:

• Design and implement new hardware components to improve energy efficiency.

• Optimize the transmission process.

• Introduce renewable energy resources.

• Plan and deploy HetNets.

• Switch off some components of BSs.

The first category aims to improve hardware components (such as power amplifiers) to
obtain energy savings [35–38]. Current hardware solutions include high-efficiency power
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Fig. 1.3 Breakdown of energy consumption in cellular networks (Source: Vodafone [3]).

amplifiers, low-loss antennas, antenna shielding, adaptive sectors, etc. Although these
methods can significantly reduce energy consumption, they have the disadvantage of high
investment for the hardware replacement and hardware implementation.

As to the second category, renewable energy for power supply has attracted considerable
attention from academia and industry in recent years. Compared with the energy widely used
at present, such as oil and gas resources that produce greenhouse gases, renewable resources,
such as hydropower, wind power and solar power, are sustainable and environmentally
friendly [39, 40]. Despite the potential of renewable energy, the safety and stability of
renewable energy still face some challenges.

The third category is energy efficiency optimization of wireless transmission, which
mainly focuses on physical layer or MAC layer. Current solutions include MIMO technology,
cognitive radio, cooperative relay, resource allocation and other technologies[41–47]. This
kind of category mainly achieves the purpose of energy saving by improving the utilization
of time and frequency, and generally does not need to upgrade the hardware components in
the system. These methods need to consider the balance between network energy efficiency
and other network performance. Actually, there has been many researches focusing on this
field. Various tradeoffs have been studied in the literature, e.g. spectrum efficiency and
energy efficiency, bandwidth and energy consumption, and delay and energy consumption
[44, 46, 48]. However, since these methods focus on the transmission optimization, the
energy savings for this category may be limited.
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The fourth category includes microcellular, picocellular and femtocellular network de-
ployment [49–54]. These low-power SBSs serve high-load areas and provide higher data
rates by shortening transmission distances. Compared with traditional macrocellular network
deployment, one of the main advantages of HetNet deployment is the increased energy effi-
ciency by introducing SBSs [55–57]. However, the deployment of a large number of SBSs
still brings additional deployment costs and unexpectable energy consumptions. Therefore,
the number and locations of small base stations need to be carefully determined, which
motivates the energy efficient BS deployment.

As to the fifth category, BS sleeping is to selectively open and close some components
for a period of time (minutes to hours) under some off-peak periods [58–61]. This kind of
category usually monitors the network traffic load and then decides whether to switch off (or
transfer to sleep mode, also called idle mode or low power mode) or switch on (or transfer
to ready mode or active mode) some network elements. The mechanism adopting sleeping
mode can avoid unnecessary energy consumption of low-load base stations. The network
element involving the sleeping mode can be the power amplifier, the signal processing unit,
the cooling device, the entire base station, or the entire network [62]. In most cases, sleeping
strategies aim to save energy by selectively shutting down base stations during off-peak
periods. The intensive deployment of base stations and random load changes provide strong
feasibility for this sleep mode operation.

Although the first three approaches are effective for improving energy efficiency, they
have some limitations, such as high investment, unstable, or limited potential. Energy-
efficient BS deployment and BS sleeping methods, on the other hand, have great potential for
energy savings at the deploying stage and the operating stage of cellular networks. Besides,
energy-efficient BS deployment and BS sleeping methods, especially based on social network
data and machine learning techniques have not yet been fully investigated. That is why these
two categories are the focus of this thesis.

1.2.2 BS deployment

Energy efficient BS deployment is one of key technologies in 4G and 5G, which is promising
to uncover blackspots, offload traffic from existing networks, and reduce energy consumption.
Existing BS deployment models can be classified as grid based models, stochastic models,
and heuristic models, which are summarized below.

• Grid Based Models: Grid based models refer to a class of models where BSs are
placed based on 2D grids. The grids can be hexagonal, square, etc. One of the most
commonly used grid based models is the hexagonal grid model, which is developed
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based on geometrical analysis. Grid based models are widely used by both the industry
and the academia to model traditional MBSs for theoretical analysis and simulations
[63].

• Stochastic Models: Stochastic models refer to the techniques which employ stochastic
geometry to capture the randomness of BS distribution. Stochastic geometry is a
mathematical and statistical tool which can provide traceable insights into simulation
results [64, 65]. Based on stochastic geometry, the results in simulations generally
represent the average over different network realizations. or over multiple BSs or users
at different locations. As to a specific BS or user, the results can also be regarded as
the expectations weighted by probabilities [64].

• Heuristic Model is a general term for a class of models which determine the locations
of BSs by iteratively searching and converging process. Unlike the grid-based models
and stochastic models, heuristic models are usually untraceable. Besides, heuristic
models generally take environmental conditions into consideration, such as existing
networks, user distribution, etc., hence achieve better results in terms of different
tradeoffs.

Grid based models and stochastic models were widely used for theoretical analysis
computer simulation, network performance prediction, and have achieved remarkable results.
However, with the development of communication technologies and the explosive increase
of traffic demand, the user distribution, which has an obvious agglomeration phenomenon,
has an increasing influence on the BS distribution. These models are not sufficient to capture
the traffic demand and the spatial characteristics of BSs in the current cellular networks
since these models are based on the assumption that BS is ideal or evenly distributed. It is
concluded that SPPP is suitable only in urban and suburban regions but not for dense urban
regions [66]. Therefore, the performance of these models for energy efficiency maximization
is not good. Heuristic models, on the other hand, can achieve a better performance at the cost
of increased complexity. However, existing heuristic models do not consider the accurate
user distribution. And the high complexity of existing heuristic models also limits their
practicability. In this thesis, these problems are overcame by social network data and machine
learning techniques.

1.2.3 BS sleeping

BS sleeping control is widely seen as an effective way to enhance the energy efficiency of
mobile networks [41]. For an active BS, about 60% of its energy consumption is due to its
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functional modules like the radio frequency (RF) module, the processing module, and the
cooling module, etc. [58]. In practice, the distribution of mobile traffic load is extremely
uneven in both the temporal and spatial dimensions [67]. Thus, when/where the traffic load is
low, the SBS can be set into a ’sleeping’ mode by turning off most of the functional modules
to reduce the energy consumption [68–70] .

Researchers have proposed various BS sleeping solutions. In [59], the authors proposed
two sleeping algorithms for single BS where each single BS decides whether to switch
on or off according to its own status. However, due to the lack of coordination between
neighboring BSs, these algorithms may degrade the QoS of the network since the BSs in the
same region may be switched off at the same time. Neighbor-aware BS sleeping algorithms
were proposed in [71–73], where adjacent BSs exchange information and each BS decides
its sleeping strategy based on its own and the neighboring BSs’ conditions. However, since
the information exchange only happens among adjacent BSs, a global optimization cannot
be guaranteed in these works. To reach a global optimal sleeping strategy, the authors in
[69, 74–76] proposed centralized BS sleeping algorithms, where the BSs in a given region
are controlled by a central controller. The controller has the network’s global information
and determines which BSs are to be switched on or off periodically. Nevertheless, these
algorithms are model driven, and their complexity increases significantly as the number of
considered BSs expands, which may limit their application in dense networks.

Recent years, the emerging machine learning techniques, including reinforcement learn-
ing, deep learning and data analysis are widely used in various fields, and has achieved good
performance. Authors in [77, 78] applied reinforcement learning algorithms for BS sleeping,
but these approaches have not considered the BS sleeping control jointly with the bandwidth
allocation for the active BSs. To the best of author’s knowledge, the application of advanced
machine learning techniques to energy efficiency BS sleeping is still at a relatively early
stage.

In this thesis, different machine learning techniques are introduced to improve the energy
efficiency of cellular networks based on BS deployment and BS sleeping, and fill the gaps
mentioned above.

1.3 Contributions of the Thesis

In this chapter, the contributions of this thesis are summarised as follows:

• In Chapter 1 and Chapter 2, different energy efficient technologies for green com-
munications are discussed. According to the discussions, it can be found that BS
deployment and BS sleeping are promising for energy minimization. The limitations
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of existing works for BS deployment and BS sleeping are also discussed in Chapter 2.
The high complexity, low accuracy, and relatively poor performance of existing works
motivate the author to investigate more efficient methods.

• In Chapter 3, the author propose two novel k-means based SBS deployment meth-
ods subject to different constraints based on Twitter data to improve the network
performance in terms of power consumption, coverage and capacity. For a HetNet
scenario where existing networks provide poor coverage, the proposed algorithm aims
to minimize the power consumption while guaranteeing the coverage. For a dense
urban scenario, the power consumption can be minimized by proposed algorithm while
satisfying the traffic requirements. Simulation results show the performance can be
significantly improved by proposed algorithms, with smaller power consumptions and
better QoS under different number of BSs.

• In Chapter 4, a joint sleeping control and bandwidth allocation (SCBA) optimization
problem is considered, and it is expressed as a mixed integer nonlinear programming
problem constrained by the transmission rate requirements. Then the joint optimization
problem is decomposed into two sub-problems: the centralized bandwidth allocation
(CBA) sub-problem which minimizes the power consumption of the system by opti-
mizing the allocated bandwidth of the active SBSs; the centralized sleeping control
(CSC) sub-problem which aims to obtain the optimal SBS sleeping strategy among
all possible ones. On the basis of historical datasets, KNN-based algorithm and CNN-
based algorithm are proposed to reduce the complexity and achieve good performances.
Numerical results show that, compared with other approaches, both algorithms have
good performances, and the CNN-based algorithm has a superiority over KNN-based
algorithm at the cost of pre-training.

• In Chapter 5, a similar joint SCBA optimization problem is considered. On the
basis of few or no historical datasets, Q learning based algorithm is proposed to be
trained online. The convergence of the proposed Q-learning algorithm is theoretically
analyzed and proved in this chapter. Numerical results for this work confirm the
effectiveness of the proposed algorithm with convergence, greater accuracy, smaller
energy consumption, greater served rate, and lower computational complexity.

1.4 Structure of the Thesis

The remainder of this thesis is organised as follows:
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Chapter 2: Literature Review

In this chapter, an overview of the energy efficiency optimization technologies is given
in Sect.2.1, including the introduction of power consumption model of BSs, the traffic
patterns and different energy efficient technologies for green communication. In Sect.2.2,
the related energy efficient BS deployment strategies are presented, including the grid-based
deployment models, stochastic deployment models, and heuristic deployment models. In
Sect.2.3, the related energy efficient sleeping strategies are presented, including the distributed
sleeping strategies and centralized sleeping strategies. In Sect.2.4, the common used machine
learning techniques are introduced, including supervised learning, unsupervised learning,
reinforcement learning and deep learning. Finally, the state-of-art related works based on
machine learning techniques are introduced In Sect.2.5.

Chapter 3: Data-driven Energy Efficient SBS Deployment

In Chapter 3, data-driven energy efficient SBS deployment methods are investigated. A brief
introduction of existing models and the potential of online social network data is given in
in Sect.3.1. In Sect.3.2, a HetNet scenario where existing networks provide poor coverage
is considered. A data-driven SBS deployment method is proposed to minimize the power
consumption while guaranteeing the coverage in this section. The performance evaluation
is presented in Sect.3.2.3. Another scenario where existing network is not available or
non-existent is discussed in Sect.3.3. The data-driven SBS deployment method proposed in
Sect.3.3.2 aims to minimize the power consumption while satisfying the traffic requirements.
The performance of proposed method is evaluated in Sect.3.3.3. Finally, a summary of this
chapter is given in Sect.3.4.

Chapter 4: Centralized Sleeping Control and Bandwidth Allocation for Small Base
Stations Based on KNN and CNN

In Chapter 4, a joint sleeping control and bandwidth allocation problem is introduced and
formulated as a mixed integer non-linear programming problem subject to the transmission
rate requirements in Sect 4.2. The joint optimization problem is then decoupled into two sub-
problems: a centralized bandwidth allocation (CBA) sub-problem that minimizes the power
consumption of the system by optimizing the allocated bandwidth of the active SBSs; and a
centralized sleeping control (CSC) sub-problem that finds the optimal SBS sleeping strategy
among all the possible ones. To solve the CSC sub-problem, two different algorithms based
on KNN and CNN are presented in Sect 4.3 and Sect 4.4, respectively. For the KNN-based
algorithm, the effectiveness of the algorithm is theoretically proven in Sect 4.3.1, and the



16 Introduction

simulation results are given in Sect 4.3.2. As to CNN-based algorithm, the CSC problem is
transformed to a classification problem and solved by a CNN model presented in Sect 4.4.1.
For this algorithm, the CNN model is firstly trained by training data, and tested by testing
data. The comparison of proposed CNN-based algorithm with other approaches, including
proposed KNN-based algorithm, are given in Sect 4.4.2. Finally, a summary of this chapter
is given in Sect.4.5.

Chapter 5: Energy Efficient Centralized Sleeping Control and Bandwidth Allocation
for Small Base Stations based on Reinforcement Learning

In this chapter, the system model and the formulation of the optimization problem is presented
in Sect 5.1. Then a reinforcement learning based mechanism is proposed in Sect 5.2. By the
transforming the CSC sub-problem to a multi-state multi-arm bandit (MSMAB) problem,
a modified Q-learning algorithm is proposed to solve it. The convergence of the modified
Q-learning algorithm is theoretically proven. The performance of proposed mechanism is
evaluated in terms of various metrics in Sect 5.3. Finally, a summary of this chapter is given
in Sect.5.4.

Chapter 6: Conclusions and Future Work

The conclusions of this thesis and the future directions for research are discussed in this
chapter.



Chapter 2

Literature Review

Overview

In this chapter, the topics related to energy saving are reviewed. Specifically, an introduction
of different energy efficient technologies is provided first, followed by the review of energy
efficient BS sleeping strategies, including distributed sleeping strategies, centralized sleeping
strategies. Finally, the state-of-art machine learning based related work are presented.

2.1 Review of Energy Efficiency Optimization Technolo-
gies

2.1.1 Power Consumption Model

Since BSs accounts for approximately 60% of the total power consumption as shown in Fig.
1.3, a convenient BS power consumption model is required for the simulations of energy
reduction researches in different scenarios. Table.2.1. shows different models for different
BSs types.

For a base station, the power consumption consists of signal processing, power amplifier,
A/D converter, antenna, feeder, power supply, backup battery, cooling etc. Generally, these
components can be divided into two parts. The first part is the static power consumption,
which is independent of the load situation and is consumed in an idle base station. The
second part is the dynamic power consumption, which depends on the load situation. The
total power consumption is the sum of these two parts. A simplified block diagram of a BS is
shown in Fig.2.1. This diagram can be generalized to different BS types, such as MBS, PBS,
FBS, etc.
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Table 2.1 Summary of different power models.

Model Characteristics References
Ideal MBS model The BS consumes no power when it is idle. [69]

Realistic MBS model The model includes static part and load-
dependent dynamic part.

[4, 69, 79–82]

Load-independent SBS model The power consumptions of BSs are load-
independent, and are constant throughout
time.

[74, 83]

Load-dependent SBS model The power consumptions of BSs are load-
dependent, and relies on packet size and
traffic load.

[84]

General model with sleep mode The power consumption model is nearly
linear, and suitable for different BS types
based on different parameters.

[4, 85, 86]

Macro Base Station Power Model

Many models for representing the power consumption of MBSs have been proposed in
previous research. In [69], the authors proposed a load dependent power model based on
ideal assumptions. This model assumes the power consumption of BS is zero when it is in an
idle state, thus the BS only includes load dependent components. The power consumption is
formulated as:

PBS = ρPT X (2.1)

where ρ and PT X denote the traffic load factor and the transmitted power, respectively.
However, since the power consumption of some components in a MBS is independent

with the traffic load, the above model is not realistic. A more sophisticated power consump-
tion model is proposed in [35], which capture captures the power consumption of different
components. The formula of this model is given by:

PBS = NSector ·NPApSec · (
PT X

µPA
+PSP) · (1+Cc) · (1+CPSBB) (2.2)

where PBS refers to the total power consumption of BS. NSector denotes the number of sectors.
NPApSec denotes the number of power amplifiers per sector. PT X denotes the transmit power.
µPA refers to the power amplifier efficiency. PSP refers to the power consumption for signal
processing. Cc is the cooling loss, and CPSBB is the power supply and battery backup loss.

According to researches [4, 69, 79–82], the model (2.2) can be further simplified to a
linear model for convenience. The simplified model can be divided into two parts. The
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Fig. 2.1 Block diagram of a BS [4]

first part captures the static power consumption which is load-independent. The second part
captures the load-dependent power consumption. The linear model is expressed as

PBS = ∆p ·PT X +Pstatic (2.3)

where ∆p refers to the slope of the load dependent power consumption. ∆p ·PT X denotes the
load-dependent dynamic power consumption. Pstatic denotes the load-independent power
consumption.

Small Base Station Power Model

In [83], the power consumption model of a SBS is expressed as

PBS = Pmp +PFPGA +PT X +Pamp (2.4)

where Pmp, PFPGA, PT X , and Pamp denote the power consumption of the microprocessor,
FPGA, transmitter, and power amplifier. Since the power consumption of each part in (2.4)
is constant throughout time, the PBS is a fixed number[74] without any dependence on the
cell traffic load.

Experimental results in [84] have illustrated the dependence of the SBS power consump-
tion on the offered load and the data packet size. Hence, the power consumption model for a
SBS is given by:

PBS = Pdynamic(q,s)+Pstatic (2.5)
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Table 2.2 Parameters for the power models of different BS types

BS type ∆p Pstatic (W) Psleep (W)
Macro 4.7 780 450
Micro 2.6 112 78
Pico 4.0 13.6 8.6
Femto 8.0 9.6 5.8

where Pdynamic(q,s) and Pstatic denote the BS power consumption that relies on the traffic
load q (expressed in Mbps) and packet size s (expressed in bytes) and the static power
consumption component, respectively.

According to previous research [4, 85, 86], it can be found the relations between cell load
and BS power consumption are generally assumed to be linear. By introduce sleep mode, a
commonly used power consumption model is given by:

PBS =

∆p ·PT X +Pstatic

Psleep

(2.6)

where Psleep denotes the power consumption when a BS is switched off. Note that the values
of ∆p, Pstatic and Psleep depend on the BS technology and type. The parameters for different
BS types are listed in Table 2.2.

2.1.2 Traffic Pattern

Because of the convergence of user behaviour, the traffic distribution exhibits a strong
inhomogeneous character. For example, the total traffic in dense urban area is greatly larger
than that in rural areas. According to [5], real traffic profile for one week is presented, shown
in Fig.2.2. It can be seen that the traffic load changes periodically within one day or one
week. The temporal uneven traffic pattern leads to considerable energy waste in the off-peak
periods. Besides, the spatial traffic pattern is also uneven. During the working days, people
mainly use mobile phones in urban commercial districts. At night or on weekends, most
people are in residential districts. Generally, there are fewer phone calls at night than during
the day, but a larger amount of data traffic due to the use of mobile applications, such as social
networks, web browsing, video and video chat, etc. Therefore, an accurate and convenient
traffic pattern is required to capture the spatial and temporal characteristics of the mobile
subscribers and their associated traffic requirements for the simulations of energy reduction
researches in different scenarios.
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Many studies have been carried out to characterize to the traffic pattern. Generally, the
traffic pattern can be characterized in different domains: time domain, and spatial domain.
Different models for these two domains will be introduced in this section.

Fig. 2.2 Normalized real traffic load for one week [5]

Temporal Traffic Model

A real traffic profile for one week is presented in Fig.2.2. It can be found the main character-
istic of traffic volume in time domain is that it changes with time periodically resulting in
low traffic period and high traffic period.

Various methods have been proposed to model the temporal traffic distribution. In
[68], the authors propose a trapezoidal model to characterize the daily traffic pattern. With
maximum of the model equal to 1 at the peak traffic and different slopes for non-peak one,
the proposed model can capture the traffic variation in a day. Since this model is based on
ideal assumptions, it is not suitable for long-term traffic distribution modelling. A periodic
sinusoidal model is proposed in [87] to represent the traffic profile in multiple days. The
different loads in the traffic profile are obtained by adjusting different mean and variance
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parameters in the sinusoidal function for the proposed model. Numerical results show this
model can achieve a good performance. However, this model is not realistic since it does
not take the randomness into consideration. A more practical model is proposed in [88, 89]
on the basis of the model in [87]. The authors capture the random fluctuations in the traffic
profile by adding a Poisson distributed random process to a periodic sinusoidal model.

Spatial Traffic Model

In spatial domain, the inhomogeneity of traffic distribution can also be captured by different
models. Similar to BS deployment, Homogeneous spatial Poisson point process (SPPP) is
also widely used to model the users’ distribution [90, 91]. The SPPP model can provide
tractable insights into theoretical analysis, and it is shown that the SPPP model can capture
the randomness of user distribution well. However, along with the development of com-
munication technologies, the agglomeration phenomenon of user behaviour and traffic is
becoming more and more obvious. Hence, the SPPP model may be no longer suitable. In
[92], an exponential model is proposed to model the traffic density. It is shown that with the
decrease of distance from the central urban area, the traffic density increases exponentially
based on the traffic data collected in Lisbon and Portugal. In [93], a 2-dimensional Gaussian
model is utilized for modelling the user distribution. By adapting the mean values and the
standard deviations in this model, the proposed model can output different user distributions,
such as hotspot clusters, uniform distribution, etc. The traffic in an urban area is proposed to
be modelled by a lognormal distribution in [94]. And in [95], the lognormal model is further
verified by comparing with the distribution of real traffic data for different regions. Simulation
results show that the lognormal distribution is suitable for spatial traffic modelling.

According to the previous researches, it can be concluded that the uneven spatial charac-
teristics and periodical temporal characteristics of traffic pattern both offer new possibilities
for energy efficient solutions, especially for energy efficient BS deployment, and energy
efficient BS sleeping.

2.1.3 Energy Efficiency Optimization Technologies

According to the above power consumption model, the energy efficiency optimization
technologies can be divided into three categories:

• Improve ∆ and Pstatic by designing and implementing new hardware components.

• Reduce PT X by designing energy-aware transmission and resource management strate-
gies.
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• Reduce the number or density of base stations in the system through energy efficient
BS deployment.

• Reduce the power consumption through BS sleeping.

Energy Efficient Hardware Components

The first category aims to obtain energy savings by improving the energy efficiency of
hardware components, such as power amplifiers [36–38, 96, 97], antennas [98, 99], etc.

There are various studies in this field. As to power amplifiers, the authors in [96]
employed a breakdown voltage of 27 V to improve GaAs heterobipolar transistors (HBTs).
Simulation results show the proposed scheme has a good performance on unthinned wafers. A
high voltage InGaP/GaAs HBT technology for 28V operation is reported in [97] with aspect
of reliability and device process. In [36], the authors proposed a high-voltage GaAs HBT
based power amplifier to achieve linearity and high efficiency. In [37], a high-power Doherty
amplifier is proposed to improve the efficiency of a linear amplifier in WCDMA networks.
Authors in [38] demonstrate a high linearity and high efficiency power amplifier in a InGaP
HBT integrated circuit technology. As to energy efficient antennas, authors in [98] improve
the energy efficiency of the networks through antenna sharing, which means distributed radios
are coordinated to process transmission. In [99], opportunistic beamforming is employed for
dumb antennas to improve the network performance.

Although these methods can reduce energy consumption, they have the disadvantage
of high investment for the hardware replacement and hardware implementation. Besides,
renewable energy for power supply has attracted considerable attention from academia and
industry in recent years. Compared with the energy widely used at present, such as oil and
gas resources that produce greenhouse gases, renewable resources, such as hydropower, wind
power and solar power, are sustainable and environmentally friendly [39, 40]. Despite the
potential of renewable energy, the safety and stability of renewable energy still face some
challenges.

Energy Efficient Transmission Optimization

The second category is energy efficiency optimization of wireless transmission, which mainly
focuses on physical layer or MAC layer. Current solutions include MIMO technology,
cognitive radio, cooperative relay, resource allocation, etc [41–47]. This kind of category
mainly achieves the purpose of energy saving by improving the utilization of time and
frequency, and generally does not need to upgrade the hardware components in the system.
In [42], MIMO and cooperative MIMO based on Alamouti diversity schemes are employed
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to minimize the total energy consumption while satisfying given throughput and delay
requirements in sensor networks. In [44], the tradeoff between energy efficiency and spectral
efficiency, which is named as resource efficiency in this work, is investigated for OFDMA
networks. Authors try to maximize the resource efficiency by using water-filling algorithm
and provide an upper bound near optimal method to solve the jointly optimization problem.
In [45], network cooperation is employed for energy consumption minimization. Simulation
results in this work show the effectiveness of proposed cooperation scheme. Besides, the
tradeoffs between bandwidth and energy consumption are investigate in [46], while the
tradeoffs between delay and energy consumption are studied in [48].

Although the methods for this category is effective for energy savings, this category faces
some challenges. According to the discussions, it can be found that the energy efficiency
gains are generally obtained at the expenses of the loss of other network performance.
Therefore, the balance between energy efficiency and other network performances need to be
considered. Besides, the complexity for this kind of category is generally high because of the
complicated optimization problem.

Energy Efficient BS deployment

The network deployment includes microcellular, picocellular and femtocellular network
deployment [49–54]. These low-power SBSs serve high-load areas and provide higher
data rates by shortening transmission distances. Compared with traditional macrocellular
network deployment, the main constraint of heterogeneous cellular network deployment is
the additional radio jamming brought by a large number of SBSs, which may have a negative
impact on the user experience. Meanwhile, the deployment of a large number of SBSs also
increases additional deployment costs and energy consumptions. Therefore, the number and
locations of small base stations will affect the overall energy consumption and cost of the
cellular network. Previous studies have shown that heterogeneous cellular networks have
significant gain in energy saving [55–57].

Energy Efficient BS sleeping

BS sleeping is to selectively open and close some components for a period of time (minutes
to hours) under some off-peak periods [58–61]. This kind of category usually monitors the
network traffic load and then decides whether to switch off (or transfer to sleep mode, also
called idle mode or low power mode) or switch on (or transfer to ready mode or active mode)
some network elements. The mechanism adopting sleeping mode can avoid unnecessary
energy consumption of low-load base stations. The network element involving the sleeping
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Table 2.3 Comparison of different energy efficiency optimization technologies

Methods Examples Advantages Limitation Literature
Hardware compo-
nents improvements

High-efficiency
power amplifiers

Most energy effi-
cient

High cost, difficult
implementation

[35–38, 96–
99]

Renewable re-
sources

Wind power, solar
power

Sustainable, envi-
ronmentally friend-
ly

Unsafe, unstable [39, 40]

Radio transmission
optimization

Cognitive radio,
cooperative relay,
resource allocation

Low cost, various
applications

Tradeoffs between
energy consump-
tion and other per-
formance metrics

[42–47]

Network planning
and deployment

HetNet High potential for
energy savings,
user-oriented

Additional interfer-
ence and radio jam-
ming

[49–54].

BS sleeping Selectively turn on
and off some com-
ponents of a net-
work element

Low cost, easy for
testing and imple-
mentation

Tradeoffs between
energy consump-
tion and other per-
formance metrics

[58–61]

mode can be the power amplifier, the signal processing unit, the cooling device, the entire
base station, or the entire network [62]. In most cases, sleeping strategies aim to save energy
by selectively shutting down base stations during off-peak periods. The intensive deployment
of base stations and random load changes provide strong feasibility for this sleep mode
operation.

A summary and comparison between different energy efficiency optimization technolo-
gies is given in Table 2.3.

2.2 Review of Energy Efficient BS Deployment

Although the additional deployed BS are able to provide higher data rate, they inevitably incur
the increasing the energy consumption. As such, it is imperative to take the energy efficiency
into account in the base station deployment stage, thereby reducing energy consumption as
well as remaining profitability for network operators. There are various studies working on
reducing the energy consumption at the stage of network deployment [63, 70, 86, 90, 100–
105]. Generally, the network deployment methods can be categorized into two categories:
grid-based models, stochastic models, and heuristic models.
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2.2.1 Grid-based BS Deployment Models

Grid based models refer to a class of models where BSs are placed based on 2D grids. The
grids can be hexagonal, square, etc. One of the most commonly used grid based models is
the hexagonal grid model, which is developed based on geometrical analysis. An example of
hexagonal grid model is shown in Fig. 2.3. Grid based models are widely used by both the
industry and the academia to model traditional MBSs for theoretical analysis and simulations
[63].

Fig. 2.3 An example of hexagonal grid model.

The benefit of HetNet deployment based on hexagonal grid model is investigated in
[102, 103]. It is shown that the proposed model achieves a good performance in terms of
different QoS. In [86], the impact of hexagonal grid deployment model is investigated. By
deploying different number of SBSs on the existing MBS network, the energy consumption
and the capacity are evaluated. Simulation results show the large gain of power savings can
be obtained when the traffic load is relatively low. Unlike only considering peak traffic load,
the authors in [104] take the traffic variation process into consideration and minimize the
energy consumption by a grid based model. Numerical results show the proposed model has
superiority over other models. A framework called TANGO is proposed in [70]. In this work,
hexagonal grid structure and cell zooming are employed to maximize the energy efficiency
of the network while guaranteeing the coverage threshold. In [105], the tradeoff between
the system performance and energy efficiency by deploying femtocell in macrocell networks
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was investigated. In this work, the macrocell networks was modelled by hexagonal grids,
while the femtocells were dropped based on uniform distribution.

The results in the aforementioned papers are mainly based on Monte Carlo simulations
by using regular hexagonal grid models. However, the grid models were based on ideal
assumptions, which cannot sufficiently capture the randomness in the spatial distribution of
BSs, especially for the SBSs such as PBSs and FBSs. To fill the gap, stochastic geometry
theory is introduced in cellular networks for network modelling. It is proved that stochastic
deployment models are close to that in actual networks[90].

2.2.2 Stochastic BS Deployment Models

Stochastic models refer to the techniques which employ stochastic geometry to capture
the randomness of BS distribution. An example of stochastic model is shown in Fig.2.4.
Stochastic geometry is a mathematical and statistical tool which can provide traceable insights
into simulation results [64, 65]. Based on stochastic geometry, the results in simulations
generally represent the average over different network realizations. or over multiple BSs or
users at different locations. As to a specific BS or user, the results can also be regarded as the
expectations weighted by probabilities [64]. Compared with grid based models, stochastic
models usually have a better performance and can characterize more general cellular networks
since it can capture the randomness in spatial distribution.

The most commonly used stochastic models is spatial Poisson point processes(SPPP)
model [106]. Considering a 2D Euclidean plane R , and a bounded open or closed (or more
precisely, Borel measurable) region B of the plane. The number of points N in this region
B⊂ R is a random variable, denoted by N(B). The expectation of N(B) can be expressed as:

E[N(B)] = λA(B) (2.7)

where A(B) denotes the area of the region B. λ denotes a Poisson factor, and N(B) follows
Poisson distribution with the intensity λA(B).

The probability of k points existing in region B is thus given by:

Pr(N(B) = k) =
(λA(B))k

k!
e−λA(B) (2.8)

In [90], the authors proposed a tractable homogeneous Poisson point process (PPP) based
algorithm to model BS deployment. By comparing with grid based algorithm, it is shown
that the proposed algorithm can better capture dense BS deployment in future networks.
This work was extended in [107] to optimal BS density design for cellular network planning
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Fig. 2.4 An example of stochastic model.

and dynamic BS sleeping. The study in [80] investigated the energy efficiency of cellular
networks by jointly considering homogeneous PPP model and BS sleeping. In [91], the
authors investigated the performance of HetNets in terms of coverage probability based on
stochastic model, while in [108], the outage probability is evaluated for a stochastic model.
In [109], the distributions of the two-tier BSs are modelled by PPPs, and the performance
of energy efficiency is addressed but without considering the traffic variation. The authors
in [110] developed a K-tier HetNet model whereby the locations of BSs of each tier are
assumed to form a homogeneous PPP. The authors in [111] analyzed the minimal BS density
with service outage constraint to minimize the network energy cost in HetNets based on PPP
model. The authors in [112] investigated the impact of BS deployment, especially BS density
on energy efficiency in ultra dense HetNets using the stochastic geometry theory. Simulation
results confirm the accuracy and superiority of the proposed model over other algorithms in
terms of energy efficiency maximization. The relationship between the QoS and the power
consumption was discussed in [113], and the simulations were based on a sum of multiple 2D
normal distributions for the femtocell networks. Results showed that the network deployment
combining with femtocells offers high QoS and low power consumption.

Based on aforementioned researches, it can be found stochastic BS deployment models
can capture the randomness of BS distribution, and provide a tractable insights for simula-
tions and analysis. However, with the development of communication technologies and the
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explosive increase of traffic demand, the user distribution, which has an obvious agglom-
eration phenomenon, has an increasing influence on the BS distribution. Therefore, these
models are not sufficient to capture the traffic demand and the spatial characteristics of BSs
in the current cellular networks since these models are based on the assumption that BS is
uniformly distributed. Heuristic BS deployment models were thus developed in this situation.

2.2.3 Heuristic BS Deployment Models

Heuristic Model is a general term for a class of models which determine the locations of BSs
by iteratively searching and converging process. Unlike the grid-based models and stochastic
models, heuristic models are usually untraceable. Besides, heuristic models generally take
environmental conditions into consideration, such as existing networks, user distribution,
etc., hence achieve good results in terms of different tradeoffs.

The authors in [114] aim to minimize the total energy consumption by jointly optimizing
the transmit power and micro BS deployment while guaranteeing the area spectral efficiency.
Numerical results show the proposed algorithm can achieve a good performance in terms
of energy savings. A heuristic BS deployment model is proposed in [115]. In this work,
a specific number of BSs is initialized to be located at pre-selected locations, then the
locations of BSs are iteratively updated to minimize the outage of the network. Simulation
results show that the proposed model works sufficiently well for the testing scenarios. In
[116], the authors proposed a heuristic BS deployment method over the existing MBSs to
find the appropriate locations of SBSs among the candidates by iteratively choosing the
candidates which provides the highest gain in terms of energy efficiency. In [117], a heuristic
co-deployment algorithm of micro and macro BSs based on the inhomogeneous spatial traffic
modelling was proposed to improve the performance of energy efficiency. The idea of the
algorithm is that some SBSs are deployed for providing sufficient capacity with lower power
consumption if the MBS cannot satisfy all the traffic demand around it. The authors in
[118] proposed a heuristic small cell planning scheme considering different traffic states
to maximize the energy efficiency while satisfying the QoS requirements according to the
predefined candidate locations for base stations (BSs) in a geographical area.

According to the researches above, it can be found heuristic models can be used to
identify potential locations for additional BSs which provide highest gain of the network
performance. Compared with grid-based models and stochastic models, heuristic models can
achieve a better performance since they take environmental conditions into consideration,
such as existing networks, user distribution.
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Table 2.4 Comparison of different types of BS deployment strategy

Type Grid-based Models Stochastic Models Heuristic Models
Tractability Traceable Traceable Untraceable
Performance Poor Medium Good
Scenarios MBS deployment,

basis for other sim-
ulations

MBS/SBS deploy-
ment, theoritical
analysis

SBS deployment,
maxmize network
performance

Literature [63, 70, 86, 90,
100–105]

[64, 65, 80, 90, 91,
108–113]

[114–118]

2.2.4 Summary

As presented in previous sections, a lot of literature about BS deployment models are
reviewed. By categorizing the BS deployment models into grided-based, stochastic and
heuristic ones, the characteristics of them are analyzed and compared in Table 2.4. Generally,
grided-based models are the simplest models since they assume the BSs are evenly distributed
in grids. However, the actual spatial distribution of BSs contains randomness according to
realistic conditions, especially for SBSs. Thus, grid-based models are no longer suitable
for SBS deployment modelling. Stochastic models, on the other hand, are introduced to fill
the gap. These models can capture the randomness of BSs based on the assumption that
BSs are uniformly distributed. Besides, stochastic models can provide tractable analytical
results and insights for theoretical analysis, which is very important for academia. However,
with the development of communication technologies and the explosive increase of traffic
demand, the user distribution, which has an obvious agglomeration phenomenon, has an
increasing influence on the BS distribution. In this situation, heuristic models, which take
environmental conditions into consideration, such as existing networks, user distribution,
etc., are introduced. Generally, the complexity of heuristic models is higher, and the results
are untraceable. On the other hand, the performance of heuristic models is much better than
grid-based models and stochastic models. Note that these three types of BS deployment
models can be utilized together for different tier of networks.

2.3 Review of Energy Efficient BS Sleeping Strategies

For network elements involving sleep mode (mainly base stations), they may reside in two
states at any given time:
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• Ready state (RE): In this state, the network element does not perform energy-saving
function, and network element operate normally with all hardware components turned
on.

• Sleep state (SL): In this state, some hardware components of the network element are
either operated in low-power modes or completely shut down.

It should be noted that the control part of the element will remain active in SL state to
ensure the network element can be quickly switched to the RE state when necessary. Based
on the above states, a complete sleeping strategy includes two basic processes:

• Sleep Activation: In this process, some hardware components of the network element
are either operated in low-power modes or completely shut down, thus achieving the
purpose of energy saving. As a result, specific network elements transfer to SL state.

• Sleep Deactivation: In this process, all hardware components in the network element
are turned on. As a result, specific network elements transfer from SL state to a RE
state.

Researchers have done quite a lot of work on BS sleeping strategies. Based on the
controller for sleeping operation in the network, the sleeping strategies are divided into two
categories: distributed sleeping strategies (DSS) and centralized sleeping strategies (CSS), in
this thesis.

2.3.1 Distributed Sleeping Strategies

Distributed sleeping strategies, also named decentralized sleeping strategies, refer to the
sleeping strategies that the sleeping operation of a BS is determined by its own. According to
whether BS cooperates with other BSs, the DSS can be further divided into non-cooperative
distributed sleeping strategies (NDSS) and cooperative distributed sleeping strategies(CDSS).

Non-cooperative Distributed Sleeping Strategies

NDSS, also called single base station sleeping strategies, refers to a group of sleeping
strategies that BSs do not cooperate or exchange information with neighbouring BSs. BSs
make the decision of switching on or off by its own status. There are many researches about
NDSS considering different tradeoffs or scenarios [59, 119–125].

In [59], the authors jointly optimize power matching and sleeping control considering
the energy-delay tradeoffs of the communication system. three sleeping control schemes
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are proposed to minimize a cost function which combines the average delay and the power
consumption. For each sleeping scheme, the authors give several interesting results about
when and where the sleeping scheme can be used for energy saving. In [119], the authors
study sleeping control method considering the balance between energy consumption and
mean response time, and propose a hysteretic sleep structure. In [120], the authors minimize
the total power consumption by jointly optimizing the sleeping control and transmit power for
a single BS subject to the delay requirement. The power consumption and delay performance
of the proposed algorithm is evaluated based on transmit power and sleeping threshold. In
[121], queueing models are utilized to characterize the overall delay and energy consumption
for a sleeping BS. Total power consumption considered in this paper includes static power,
transmit power, and switch-over power rather than only transmit power, and the overall delay
consists of transmission delay and queueing delay. In [122], hysteretic sleep structure and
three typical wake-up schemes are considered, and an energy minimization problem based
on sleeping strategy subject to delay requirements is proposed. In this paper, the counting
or detection cost of a BS during the sleep mode is considered. The works mentioned above
mainly focus on the tradeoffs between delay and energy consumption, and homogeneous
networks.

In [123], the authors propose a 3-D model based sleeping strategy to minimize the energy
consumption of the system. In this work, the sleeping probability of a single small cell is
subject to average connection ratio and rate constraints. Different depths sleep mode are
introduced in [124]. In this paper, the authors optimize energy efficiency with ’bits/joule’ as
the metric based on a heterogeneous cellular network model under either a strategic sleeping
policy or a random sleeping policy. In [125], according to if any users exist in the coverage
of the BS, a two-stage (light and deep) base station sleeping strategy is proposed. The
performance of the proposed strategy are evaluated by the average power consumption, the
average traffic delay, and the average deep sleeping rate.

Since the BSs make the decisions about switching ON/OFF based on its own status,
and the traffic of sleeping BSs will not be offloaded by other BSs for all the existing works
mentioned above, the overall network performance cannot be guaranteed, i.e. it is possible
that all BSs in a region go to sleep state, leading to a great reduced network performance.
Thus, queueing theory and delay tolerable networks are mainly considered for NDSS, and
the switching ON/OFF for NDSS is generally activated by certain threshold of number of
users or traffic in the queue.
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Cooperative Distributed Sleeping Strategies

To improve the network performance reduction problem in NDSS, CDSS are introduced.
Generally, CDSS refers to a group of sleeping strategies where the traffic load of sleeping
BSs will be served by other active BSs, including BSs in the same tier or different tier.
For the implementation of CDSS, extra signalling and information exchange are necessary
between cooperative BSs to achieve a good performance. Without information exchange, the
network performance can still not be guaranteed because of the same reason for NDSS. Thus,
BSs in CDSS generally not only consider its own status, but also consider their neighbors
status when they make decisions about switching ON/OFF. Specifically, a BS will only
be switched OFF if its traffic load can be served by other active BSs. Based on different
types of exchange information, load-aware sleeping strategies where the sleeping operation
of a BS is determined on the traffic load of itself and its cooperative BSs [126–130], and
distance-aware sleeping strategies where the switching operation of a BS is decided according
to their distances to the MBS or UEs [131, 132] are studied in many existing works. In recent
years, there has been many researches about CDSS considering different metrics or tradeoffs
[133–140, 107, 141–143, 80, 104, 144, 145].

In [133], the authors propose a cooperative sleeping strategy where the macro BS will
serve the traffic when micro BS goes to sleep state. The tradeoffs between power consumption
and delay are investigated in this paper. In [134], the authors propose two sleeping strategies
(random and repulsive strategy) for a hyper-cellular network, where the traffic of sleeping
SBSs are served by macro BSs. It is obtained that 50% SBSs can be turned off for the
given traffic pattern. In [135, 136], the energy efficiency is optimized by jointly considering
SBS sleeping and transmission power management for MBS based on traffic prediction. In
[137], the authors propose a traffic prediction based sleeping strategy using Markov Decision
Process (MDP) in femtocell networks. The tradeoffs between the energy consumption and
blocking probability are investigated in this paper. In [138], sleeping strategies based on
different cases of traffic load and user localization information are proposed at flow-level
using Markov Decision Process (MDP). The tradeoffs between energy consumption and QoS
are investigated in this paper. In [139], the authors consider a separation architecture for
the control plane and data plane, and propose a probabilistic sleeping strategy for data base
stations to minimize the power consumption by jointly optimizing the sleeping probability
and spectrum resource allocation.

All the existing works mentioned above are so called vertical offloading [134], which are
based on multi-tier HetNets. For these algorithms, the traffic of sleeping SBSs are served by
MBSs. Specifically, a SBS decides to sleep only if its traffic can be handled by MBSs. In
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contrast, the algorithms where the traffic of sleeping SBSs are served by neighboring SBSs in
the same tier are called horizontal offloading [134], which is discussed in the following part.

In [140], a load based sleeping strategy is proposed based on a separation architecture
where the data plane and control plane are separated, and energy gain is investigated as the
metrics. In [107], the authors aim to minimize energy consumption by optimizing the BS
densities for two-tier HetNet. In this paper, it is shown that by deploying SBSs with sleep
mode, the energy consumption can be reduced by 75% compared with tradition macrocellular
network. In [141], the authors propose two sleeping strategies, including centralized and
decentralized, based on the network traffic. The tradeoffs between energy saving and coverage
guarantee are demonstrated. In [142], the authors present two sleeping strategies for which
the BS sleeping operation is based on the traffic threshold and the received BS interference
level. In [143], a sleeping strategy is proposed to minimize the power consumption subject
to certain blocking probability requirements. In [80], the authors aim to maximize the energy
efficiency by jointly considering BS sleeping and SBS deployment in different scenarios.
And the sleeping strategy in [104] is proposed while the BS deployment is jointly considered
based on the whole traffic variation rather than the peak traffic load only. In [144], the
authors propose dynamic sleeping strategies based on a simplified traffic model for three
different UMTS scenarios. The performance of proposed strategies is evaluated based on
different constraints including propagation, link-budget, quality of service guarantees, and
electromagnetic exposure. The proposed sleeping strategy in [145] tries to maximize the
energy saving by matching the traffic demand with the offered capacity in a flexible manner
based on the exchange information about load and coverage.

To summarize, CDSS is regarded as a promising technology for self-organizing networks
(SON). Generally, it has a better performance for energy savings without degrading the
QoS compared to NDSS. However, the complexity for CDSS is increased because more
information is considered for decision-making.

2.3.2 Centralized Sleeping Strategies

Compared with DSS, the decision of BSs’ switched ON/OFF in CSS is determined by a
central controller rather than itself. By collecting the global information in a region at a given
time, a central controller, which can be integrated with a BS, core network, or standalone,
analyzes and decides which BS to be switched ON/OFF. Since the global information in the
region are fully analyzed, the CSSs have the advantage to reach a global optimum instead of
a local optimum for CDSS. Extra signalling between the central controller and controlled
BSs are necessary for this type of sleeping strategy. Many researches about CSS considering
different system models and metrics are proposed in recent years [73–75, 146–155].
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In [73], the authors propose a traffic-aware centralized sleeping strategy associated
with clustering problems to maximize the energy savings and show the superiority of the
proposed algorithm in low-load situation. In [74], a core network controlled sleep strategy
is proposed to minimize the energy consumption of the network. The performance of the
proposed algorithm is evaluated with adjusted MBS configuration. In [75], a novel user
association scheme for which users are connected to BSs with maximal energy-efficiency
rather than maximal RSRP, and a centralized sleeping strategy which minimizes the total
power consumption of the network while guaranteeing traffic requirements and ensuring
coverage are proposed. In [76], energy minimization problem with multi-objective are
investigated in OFDMA networks. The combinatorial optimization problem in this paper is
proposed to be solved by a genetic algorithm in a centralized way.

User association and sleeping strategy are jointly optimized for two-tier open access
femto networks in [146]. The sleeping strategies of femtocells in this work were controlled
by a central femtocell management system. In [147], the authors take the state stability which
is defined as the number of state transitions for BSs into consideration and propose a specific
centralized sleeping strategy to balance the BS state stability and the energy consumption. A
sleeping strategy based on centralized RAN architecture is proposed in [148]. The potential
of centralized RAN architecture for energy saving is also investigated in this paper. Also
based on centralized RAN, the authors in [149] propose a BBU (baseband unit)-RRH (remote
radio head) switching algorithm in a centralized way to minimize the energy consumption. In
[150], the authors try to minimize the energy consumption while guaranteeing the coverage
based on associated BS sleeping and cell expansion. Then, both centralized and distributed
sleeping strategies are proposed and compared in this work. In [151], a QoS aware user
association scheme handled by the core network is proposed. Then a heuristic algorithm is
proposed considering the tradeoffs between QoS and energy saving. An offline-optimized
centralized sleeping strategy that considers the balance between the energy consumption and
QoS is proposed in [152]. In [153], load based sleeping strategies, including centralized and
distributed strategy, are proposed for delay-tolerant 5G networks considering the tradeoffs of
energy consumption and average throughput.

Besides the above researches for radio access networks, centralized sleeping strategies
can also be used for cognitive radio network [154], wireless sensor networks [155], etc.

To summarize, CSS is a promising technology for energy consumption minimization
under various scenarios. Since the global information is collected and analyzed for decision-
making, the performance of it is significant for various tradeoffs, whereas the computation
complexity is high.
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Table 2.5 Comparison of different types of BS sleeping strategy

Type NDSS CDSS CSS
Interaction overhead None High Medium
Performance Poor Medium Good
Complexity Low Medium High
Literature [59, 119–125] [80, 104, 107, 133–

145]
[73–75, 146–155]

2.3.3 Summary

As presented in previous section, a lot of literature are reviewed. By categorizing the sleep-
ing strategies into centralized and distributed ones according to whether the BS sleeping
operation is controlled by itself, the characteristics of them are analyzed and compared in
Table 2.5. Generally, NDSS has the lowest computation complexity, since it only considers
the information from itself. Meanwhile, the performance of this type of sleeping strategy is
relatively poor because it may cause coverage holes when multiple BSs in the same region
go to sleep state at the same time. CDSS, on the other hand, is an improved technology
to improve the network performance during BS sleeping period by offloading the traffic of
sleeping BSs to other active BSs. To guarantee a better performance, information exchange
between cooperative BSs are necessary which leads to extra signalling. Besides, the com-
plexity increases compared with NDSS since a lot more information from cooperative BSs
need to be analyzed. For CSS, BS sleeping operation is controlled by a central controller,
which can be standalone, or integrated with existing network elements, such as core network,
MBSs. The central controller in this type of sleeping strategy collects the global information
from its controlled BSs and determines how many and which BSs can be switched OFF by
analyzing the global information. Thus, the computation complexity for CSS will be high
when the number of the BSs handled by a central controller is large. On the other hand,
since the information exchange is not required for CSS, it has a lower interaction overhead
compared to CDSS [150]. Besides, the performance for CSS is generally the best, since it
can reach a global optimum rather than local optimum in CDSS.

2.4 Machine Learning Techniques

As the era of big data arrives, machine learning (ML) [156] has attracted more and more
attention from academia and industry. Tom M. Mitchell gave a widely quoted definition of
machine learning in his book [157] by: “A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance at
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tasks in T , as measured by P, improves with experience E.” According to the definition of
machine learning, the experience E, also known as training data, is acquired for the learning
process. Based on the learning process, the machines can acquire new knowledge or update
existing knowledge like human beings.

The development process of ML is generally divided into three stages:

• First stage(mid-1950s to the mid-1970s): During this period, people tried to control
computers to complete a series of logical reasoning functions through software pro-
gramming, thus making the computer have a certain degree of intelligent thinking
ability as human beings. The representative work at this stage includes: Samuel’s
checkers player, which is the world’s first successful self-learning programs and
now known as reinforcment learning, the invention of perceptron [158] which is the
foundation of neural network (NN) and support vector machine(SVM), automatic
differentiation (AD) which is corresponding to the modern version of backpropagation
(BP). Despite many exciting discoveries in this period, the results in this period were
far from meeting people’s expectations. Researchers began to believe that a large
amount of prior knowledge is necessary for making machines intelligent. Besides,
several fundamental limits that could not be overcome at that time were encountered
in late 1970s, including limited computer power[159], common sense knowledge and
reasoning[160], intractability and the combinatorial explosion[161], etc. Thus, it went
to the first AI winter.

• Second stage(mid-1980s-late-1980s): In this period, people tried to use the rules
extracted from their own thinking to "teach" computers to execute decision-making
mechanism. The representative work at this stage is various expert systems, the discov-
ery of Hopfield networks (a type of recurrent neural network) [162], and the proposition
of backpropagation (also known as the reverse mode of automatic differentiation)[163].
However, these expert systems always face the problem of sparse knowledge, that is,
in the face of endless knowledge and information, people cannot summarize the rules
that are foolproof. Therefore, the idea of autonomous learning by machines naturally
surfaced.

• Last stage(late-1980s-present): Due to the emergence of big data and hardware GPU
during this period, machine learning has broken away from the bottleneck period.
Machine learning has begun to develop explosively and has become an independent
and popular subject which has been applied to various fields. Various machine learning
algorithms are constantly emerging, and deep learning are further developed.
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According to the definition of machine learning, the experience E, also known as training
data, is acquired for the learning process. Machine learning is generally divided into super-
vised learning and unsupervised learning according to whether there is artificial labelling of
the training data. In addition, the reinforcement learning and deep learning are regarded as
independent branches of machine learning in this work due to their rapid development.

2.4.1 Supervised Learning

For supervised learning, the training data is labelled, which can be data categories, data
attributes and feature point locations, etc. These labels are used as the expected results for
machines to continuously correct the predicted results. The specific process for a supervised
learning method with a large number of labelled data is: 1) predict results based on given
model and given parameters; 2) compare the predicted results with the expected results; 3)
update the parameters of the model based on the comparison results, then to step 1. The
process will repeat until converge. Finally, a model with certain robustness to achieve the
ability of intelligent decision-making will be generated. Typical algorithms of supervised
learning include regression, K Nearest Neighbors (KNN), Support Vector Machine (SVM),
etc.[164].

Regression

In statistics, regression refers to a statistical analysis method that determines the relationships
between two or more variables. According to the type of dependent variables, regression can
be further divided into linear regression, and logistic regression.

• Linear regression: In this method, the dependent variable is continuous, the inde-
pendent variables can be continuous or discrete, and the property of the regression
line is linear. For more than one independent variables, it can also be called multiple
linear regression [165], while it is called simple linear regression when the number
of independent variables is one. Linear regression models are usually fitted by least
squares approach to establish a relationship between dependent variable and one or
more independent variables. Generally, linear regression is widely used for prediction
or forecasting [166].

• Logistic regression: In this method, the dependent variable is discrete (usually binary),
the independent variables can be continuous or discrete. For a implementation of binary
logistic regression, a sigmoid function can be added to a linear regression, thus transfer
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continuous results to a binary one. Generally, logistic regression is widely used for
classification in various fields [167].

Since the principle of regression is quite basic, it has been the foundation of many other
machine learning techniques, such as convolution neural network.

Fig. 2.5 An illustration of the KNN model [6]

K Nearest Neighbors

K Nearest Neighbor (KNN) algorithm is a nonparametric lazy learning algorithm for clas-
sification and regression. It does not need to make assumptions about data distribution. In
KNN classification, the output is a class label which can be obtained by the most common
class label of its K nearest neighbors through voting. An example of KNN classification is
shown in the Fig 2.5. If K = 1, then the class of the test sample will be the class of its nearest
neighbor. When K = 3, the label of the test sample in Fig 2.5 will be 2, since there are two
samples of class 2 in its K-neighborhood. Similarly, when K = 5, the label of the test sample
in Fig 2.5 will be 1. As to KNN regression, the output of the test sample will be a value
which can be obtained by the average of the values of k nearest neighbors. Consider that
the nearer samples have a greater influence on the test sample, the KNN algorithm can be
modified by adding a weight factor which is inversely proportional to the distances between
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Fig. 2.6 An illustration of a basic SVM model [6]

the neighbors and the test sample. Meanwhile, parameter K is the most important factor in
KNN, which can significantly affect the performance of KNN algorithm [168].

Support Vector Machine

The basic model of Support Vector Machine (SVM) is a linear classifier whose purpose is to
separate data points into p-dimensional vectors using p−1 hyperplanes, which is illustrated
in Fig. 2.6. The best hyperplane is called maximum margin hyperplane which results in the
maximum distance or margin between two given classes. However, datasets in the original
space are usually not linearly separable. To classify the non-linear datasets, kernel functions,
such as Gaussian kernels or polynomials can be employed to transform the original space to
a higher dimensional space. More details about SVM can be found in [169].

2.4.2 Unsupervised Learning

Contrast to supervised learning, unsupervised learning [170] refers to a group of machine
learning techniques where the training data is unlabelled. Unsupervised learning is mainly
used to find or capture the unknown patterns in training data without need of manual
intervention. A typical algorithm of unsupervised learning is clustering which includes
k-means, density-based spatial clustering of applications with noise (DBSCAN), etc.
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k-means clustering

k-means clustering is a popular data analysis method based on vector quantization. It is
developed originally from signal processing. Given a set of observations (x1,x2, ...,xn),
where each observation is a d-dimensional real vector, k-means is aiming to divide the n
observations into k clusters C = {c1,c2, ...,ck} so that the minimization of the within-cluster
sum of squares (WCSS) [171] can be got. The WCSS formula is shown below:

min
k

∑
i=0

∑
x∈ci

||x−µi||2 (2.9)

where µi is the mean of observations in cluster ci .
In k-means algorithm, k centroids are firstly initialized to define clusters by randomly

selecting from the n observations. Then, each observation is allocated to a particular cluster
when it is closest to that cluster’s centroid. After the allocation, the k centroids are updated
by the means of the observations in different clusters. The k centroids will converge and
reach the best by iteratively executing allocation process and updating process.

Fig. 2.7 An example of k-means algorithm
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DBSCAN clustering

Similar to k-means algorithm, DBSCAN is another common clustering algorithm proposed
in 1996 [172]. Compared with k-means, DBSCAN is a clustering algorithm based on density
rather than spatial extent. The basic concept of DBSCAN is: given a set of points in some
space, it groups points that are closely packed together (points with many nearby neighbours),
marking as outlier points that lie alone in low-density regions (whose nearest neighbours are
too far away). There are three inputs in DBSCAN algorithm, including database and two
adjustable parameters: distance eps and minpoints MinPts.

For the purpose of DBSCAN clustering, the input database can be classified into three
categories: core points, boundary points and noise points following the below rules:

• A point a is a core point if there are at least MinPts points within distance eps from
point a including itself. The distance eps represents the radius of the neighbourhood
from a. And those points within distance eps from point a are called to directly
density-reachable from a.

• Given a path p1, ..., pi, ..., pn with p1 = a and pn = b, point b is said to be density-
reachable from point a if each pi+1 is directly density-reachable from pi. And each
pi must be core points except point b. If point b isn’t a core point, it is said to be a
boundary point.

• A point c is said to be a noise point if it is not density-reachable from any other points.

The aim of DBSCAN algorithm is to find the largest dataset of density-reachable points.
An example of those points is shown as follows:

Given the distance eps = 3, MinPts = 3, and dataset D = {o, p,q,s,m, p1, p2,m1,m2,s1}.
The neighbourhood of point p is {m, p, p1, p2,o}. The neighbourhood of point m is {m,q, p,m1,m2}.
The neighbourhood of point q is {q,m}. The neighbourhood of point o is {o, p,s}. The
neighbourhood of point s is {o,s,s1}.

Then the core points in dataset D is {p,m,o,s} (point q isn’t a core point since the number
of points in its neighbourhood is smaller than eps); Point m is directly density-reachable
from point p since it is contained in the neighbourhood of point p and point p is a core
point; Point q is density-reachable from p because point q is directly density-reachable from
point m and point m is directly density-reachable from point p. An example of DBSCAN
algorithm is shown in Fig.2.8.
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Fig. 2.8 An example of DBSCAN algorithm

2.4.3 Reinforcement Learning

Reinforcement learning [7] is a group of machine learning techniques which simulate the
learning process of human beings. A basic diagram of reinforcement learning is illustrated in
Fig.2.9. For reinforcement learning, an agent can learn by trial and error through interacting
with the environment. Specifically, the agent observes a state s from the environment and
takes an action a based on the accumulated knowledge from historical learning and a specific
action selecting policy. After the action a is carried out, the environment will give the agent a
reward r, then go to the new state. After enough iterations, the agent can learn which action
is the best for a specific state to achieve a goal, such as maximizing the instantaneous reward
in this iteration or the accumulative rewards in some future successive iterations. Typical
algorithms for reinforcement learning include Q-learning, actor-critic, etc.

Q-learning

One of the most commonly adopted reinforcement learning algorithms is Q-learning. In
iteration t, the agent observes the state St from the environment, and takes an action At based
on the accumulated knowledge from historical iterations and a specific action selecting policy.
After the action At is carried out, the environment will be transformed into a new state St+1,
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Fig. 2.9 A basic diagram of reinforcement learning[7].

and give the agent a reward Rt+1, which may be affected by the state transformation and
action adopted by the agent. After enough iterations, the agent can learn which action is the
best for a specific state to achieve a goal, such as maximizing the instantaneous reward in this
iteration or the accumulative rewards in some future successive iterations. The key concept
of Q-learning is a Bellman equation for Q value iteration update, using the weighted average
of the old value and the new information:

Qnew(st ,at)← Qold(st ,at)+α ∗ (rt + γ ·max
a

Q(st+1,a)−Qold(st ,at)) (2.10)

where rt is the reward received when moving from the state st to the state st+1, and α (
0 < α ≤ 1) and γ is the learning rate and discount factor, respectively.

Note that Qnew(st ,at) is the addition of three factors:

• (1−α)Qold(st ,at): the current value weighted by the learning rate. Values of the
learning rate near to 1 made faster the changes in Q.

• αrt : the reward rt = r(st ,at) is obtained if action at is taken when in state st (weighted
by learning rate).
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• αγ maxa Q(st+1,a): the maximum reward that can be obtained from state st+1 (weight-
ed by learning rate and discount factor).

More details about Q learning can be referred to [7]. In addition, to handle continuous
state spaces, fuzzy Q learning can be used [173].

2.4.4 Deep Learning

Deep learning [7] was a development of neural network at first. In recent years, with the
introduction of supervised learning and unsupervised learning, deep learning has been used
to refer various machine learning models based on multi-layer network structures, through
which more complex functional relationships can be realized. Generally, deep learning takes
the original observation data as input, and carries out step-by-step feature extraction and
transformation through the multi-layer model to realize more effective feature representation.
On this basis, a shallow model, such as Softmax classifier, multi-layer perceptron (MLP)
neural network, SVM, etc., is often connected at the last layer to achieve better classification
performance. Deep learning has been applied to various fields including computer vision
(CV), pattern recognition, natural language processing (NLP), etc. Typical models for
deep learning include deep neural networks (DNN), recurrent neural networks (RNN) and
convolutional neural networks (CNN). In the field of energy efficiency optimization, deep
learning is often associated with reinforcement learning, forming deep reinforcement learning
[174–176], to reduce the training complexity of traditional reinforcement learning models.

Deep Neural Network

Deep neural network (DNN) is a neural network with multiple layers between the input and
output layers, shown as Fig. 2.10. The basic component of a DNN is a neuron corresponding
with weights for the input and an activation function for the output. The input in DNN is
transformed from the input layer to hidden layers, and then to output layer. There is no direct
connection between two non-adjacent layers, while the adjacent layers are fully connected. It
means any neurons in layer i must be connected to any neurons in layer i+1. Take a neuron
in layer i+1 as an example. The input for this neuron can be expressed as:

z = ∑wixi +b (2.11)

where xi denotes the output from neurons in layer i, and wi refers to the corresponding
weights. b is a bias.
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Since (2.11) is a linear equation, activation functions, such as tanh, Relu, etc., are applied
to model complex non-linear relationships. Thus, the output of this neuron can be represented
by σ(z). For the parameter optimization, backpropagation together with different gradient
descent (GD) methods such as Adam, Momentum, etc. can be employed [177].

Fig. 2.10 The architecture of a DNN [7].

Convolutional Neural Network

CNN is a class of deep neural network which is particularly suitable for learning tasks with
large dimensions of input features. Due to the deep neural network structure and the sharing
of neuronal connection weights, CNN can capture the complex dependencies at different
levels from input features and significantly reduce the complexity in training process.

An illustration of CNN is shown in Fig.2.11. the CNN consists of convolutional layers,
pooling layers, and a fully connected hidden layer. In each convolutional layer, convolution
filters are used to produce feature maps for each input map of this layer. Convolutional
layer is followed by a pooling layer, which reduces the dimensions of feature maps by
sub-sampling them with pooling kernels, in order to combat overfitting as well as shorten
the training complexity. By stacking convolutional layers and pooling layers alternately, the
CNN can learn rather complex models based on progressive levels of abstraction. Finally, a
fully connected hidden layer is used to transform the final feature maps into the output vector.
Different from dense layers in DNNs that learn global patterns of the input, convolutional
layers can learn local patterns. Meanwhile, CNNs can learn spatial hierarchies of patterns.
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Fig. 2.11 The architecture of a CNN.

Recurrent Neural Network

Recurrent Neural Network (RNN) refers to a class of feedforward neural networks which
have memories. RNN is called recurrent since it executes the same function for each data
input and the output of the past one computation. The output of the current computation will
then be copied and entered into the next computation process. An unrolled architecture of
RNN is given in Fig. 2.12. First, it takes the X0 from the input sequence and then it outputs
h0. Then the input for the next step is X1 and h0. Similarly, h1 and X2 will be the inputs for
the third step.

The formula for the adjacent steps can be expressed by:

ht+1 = σ(ht ,Xt+1) (2.12)

where σ refers to an activation function.
Compared with other neural networks, the inputs of RNN are related to each other. Unlike

DNN and CNN, RNNs are capable of remembering, which makes them applicable to deal
with the sequence datasets, such as speech recognition, handwriting recognition, etc.

Fig. 2.12 The architecture of a RNN.
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2.5 State-of-Art Machine Learning Based Energy Efficient
Strategies

The applications of machine learning have spread to many fields, such as expert system,
automatic reasoning, natural language processing (NLP), natural language understanding
(NLU), pattern recognition, computer vision (CV), intelligent robots and other fields. As to
communication fields, machine learning also gives researchers a chance to re-think about
the original problems, such as the network optimization problems, and improve the network
performance because of their capability for solving complex problems without explicit pro-
gramming. As shown in a survey[6], plenty of applications of machine learning have been
applied to wireless networks such as for resource management, backhaul management, spec-
trum management, power control, BS sleeping, etc., and have led to significant improvement
on the network performance. Specifically, the energy efficient researches based on machine
learning techniques will be discussed in this section.

2.5.1 Machine Learning Based BS Deployment Strategies

In [178], the relationship between online social network data and realistic traffic demand is
investigated. A log-linear relationship between Twitter activity level (Tweets/s) and the traffic
load (kbps) is obtained in this paper. The high correlation between Twitter data and traffic
load makes prediction and estimation of traffic demand using Twitter data available, which
may be quite useful for energy efficient SBS deployment, and proactive network optimization.
In [179], authors investigated the received signal power of users in HetNet, and proposed a
DBSCAN based SBS deployment method. Simulation results in this work show the proposed
algorithm has a better performance compared with other existing approaches. In [180], the
authors firstly propose a machine learning based model to predict the received signal strength
(RSS), then optimizes the coverage performance of BS deployment through heuristic models.
Based on the well-trained ML models, the number of deployed BSs can be minimized while
satisfying the coverage constraint.

Recent years, aerial base station (ABS) has drawn more and more attention, since it can
assist existing networks, and it is flexible for various emergency scenarios. As to ABSs,
the energy efficient placement is one of the key issues. In [181], the authors proposed a
multi-agent Q-learning-based algorithm to determine the optimal positions of the ABSs based
on the locations of the users. In this algorithm, multiple ABSs act as agents to find optimal
actions by interacting with environment and learning from their mistakes. Numerical results
in this work show the proposed algorithm can significantly improve the network performance.
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In [182], a deep reinforcement learning (DRL) method was proposed for ABSs placement.
In this work, the coverage bitmap which capture the spatial correlation between ABSs and
users is used as the state, while the propagation conditions are used as the environment. By
interacting with the environment, the agent effectively learns how to place ABSs in order
to maximize the reward. Numerical results show that the proposed approach significantly
improves the performance in complex environment. Authors in [183] proposed a Q-learning
based algorithm for ABS placement, user mobility is taken into account. Simulation results
show proposed algorithm can find the optimal ABS placement in discrete environments and
significantly improve the QoS.

2.5.2 Machine Learning Based BS Sleeping Strategies

In [184], a k-means-based SBS sleeping strategy is proposed to maximize the energy effi-
ciency of the network. By dividing the SBSs into clusters based on the load and location,
the cost function involving energy efficiency and flow level performance is minimized by
proposed sleeping strategy. Simulation results show the superiority of the algorithm over
other conventional methods. In [185], k-means is used to partition users into clusters at
the first stage depending on the corresponding RSRQ values. The results will be entered
into Q-learning algorithm as the system state to obtain the optimal BS sleeping strategies.
Simulation results show the proposed algorithm has a better performance in terms of energy
saving and QoS with the help of k-means, compared with the algorithms without k-means.

In [186], the authors take the transition cost between ON and OFF into account and
propose a Q-learning based sleeping strategy. For this algorithm, the actions are defined by
pairs of lower user threshold and upper user threshold to avoid frequent transition between
ON and OFF. The performance shows that the energy consumption including the cost for
transition can be reduced by this algorithm. The authors propose an actor-critic learning
based BS sleeping strategy in [187]. By defining the traffic load of BSs as states, defining
BSs’ status of sleeping as actions, the proposed algorithm can minimize the overall energy
consumption and achieve a better performance compared with other algorithms after it has
converged. In [188], a Q-learning based sleeping strategy is proposed to minimize the energy
consumption. For this algorithm, the state is defined as a tuple which involves the number of
active BSs and the number of users, while the actions are defined as BSs’ status of sleeping.
Numerical results confirm the effectiveness of the proposed algorithm when it has converged.
In [189], distributed Q-learning based sleeping strategy is proposed to maximize the energy
efficiency for an energy harvesting small cell network. The proposed algorithm considers a
tuple of BS load, the battery level and energy harvested as state, and the sleeping operation
of a BS as action. Simulation results show the proposed algorithm can gain higher energy
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efficiency and greater throughput. In [190], the authors proposed a Q-learning based sleeping
strategy for K-tier heterogeneous networks. In this work, the MBSs were assumed to be
always active, while the SBSs went to sleep when there are no active users. Numerical results
show the proposed algorithm can improve the energy efficiency while maintaining network
capacity and coverage probability. An online reinforcement learning algorithm without
need of training phase was proposed in [191] to maximize energy saving. In this work, the
proposed algorithm can continuously adapt to the changing network traffic, thus decide which
action to take. Numerical results showed that proposed algorithm can significantly improve
the energy saving without degrading QoS.

In [175], a deep Q-network based sleeping strategy is proposed to maximize the energy
efficiency based on un-quantized systems state vectors or high-dimensional raw observations.
Since deep learning techniques are employed to improve Q-learning in deep Q-network,
the performance of proposed algorithm outperforms the traditional Q-learning algorithm.
Authors in [176] propose a deep actor-critic learning based sleeping strategy which aims to
minimize the energy consumption without degrading the QoS. The results in this paper show
the proposed algorithm has higher computational efficiency and energy efficiency compared
with existing methods.

2.5.3 Summary

As presented in previous sections, a lot of literature about machine learning based energy
efficient BS deployment and BS sleeping are reviewed. The characteristics of them are
analyzed and compared in Table 2.6. According to the discussions, it can be found that
how to energy-efficiently deploy BSs is an open issue. To the best of author’s knowledge,
utilizing machine learning techniques for energy efficient BS deployment is still at a relatively
early stage. Various algorithms of machine learning have not been investigated for energy
efficient BS deployment. Recent years, with the availability to online social network data,
the clustering algorithms can offer another perspective to the BS deployment problem since
it is quite suitable for dealing with multiple dimensional locating. In this thesis, the author
investigates the potential of k-means algorithm for energy efficient BS deployment since
k-means is based spatial extent with low complexity. It should be noted that other clustering
algorithms and even other machine learning techniques may also be promising, which worth
of further investigation.

As to energy efficient BS sleeping, it can be concluded that reinforcement learning has
been widely used. However, the aforementioned literature are mostly based on offline train
phase, which may not be practical for realistic scenarios. Besides, the system states for these
works are generally based on traffic load, which is not suitable for BS sleeping process due
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to the variations caused by the sleeping BSs. Meanwhile, many models of deep learning have
not been investigated for energy efficient BS sleeping, such as CNN, which are also worth of
investigation.
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Table 2.6 Summary of machine learning based energy efficient strategies

Scenario Machine Learning
Techniques

Characteristics Literature

Traffic load pre-
diction

Regression A log-linear relationship between Twitter ac-
tivity level (Tweets/s) and the traffic load is
obtained, which form the basis of BS deploy-
ment

[178]

SBS deployment DBSCAN Propose a DBSCAN based SBS deployment
method based on the results in [178]

[179]

BS deployment Multiple tech-
niques

An integrated machine learning algorithm and
herustic method is proposed to minimize the
number of deployed BSs

[180]

ABS placement Q-learning A multi-agent Q-learning-based algorithm was
proposed based on the locations of the users.

[181]

ABS placement Deep reinforce-
ment learning

The proposed algorithm maximize the reward
by interacting with environment which is rep-
resented by propagation conditions.

[182]

ABS placement Q-learning Take user mobility into consideration. [183]
BS Sleeping k-means Maximize the energy efficiency of the network

based on the load and location.
[184]

BS Sleeping k-means and Q-
learning

The results of k-means are entered into Q-
learning algorithm as the system state to obtain
the optimal BS sleeping strategies.

[185]

BS Sleeping Q-learning The cost for transition between ON/OFF is
taken into account

[186]

BS Sleeping Actor-critic learn-
ing

Traffic load of BSs are regarded as states. [187]

BS Sleeping Q-learning The state is defined as a tuple which involves
the number of active BSs and the number of
users.

[188]

BS Sleeping Q-learning Energy harvesting is considered. [189]
BS Sleeping Q-learning Sleeping strategy for K-tier heterogeneous net-

works
[190]

BS Sleeping Reinforcement
learning

An online reinforcement learning algorithm
without need of training phase

[191]

BS Sleeping Deep Q-network Based on unquantized systems state vectors or
high-dimensional raw observations.

[175]

BS Sleeping Deep actor-critic
learning

Minimize the energy consumption without de-
grading the QoS

[176]



Chapter 3

Data-driven Energy Efficient SBS
Deployment

Overview

SBS deployment is one of key technologies in 4G and 5G, which is promising to uncover
blackspots, and offload traffic from existing networks. However, existing models, like
SPPP model, hexagonal grid model, are not suitable to capture the spatial characteristics of
SBSs in dense urban regions. In this chapter, data-driven energy efficient SBS deployment
methods are proposed based on k-means. These methods aim to minimize the total power
consumption of the system subject to different constraints, i.e., the coverage, and the traffic
demand. Moreover, two different network models, i.e., HetNet, SCN, are used, respectively.
Simulation results show that the proposed SBS deployment method is energy-efficient to
provide coverage and provide traffic, compared with SPPP model.

3.1 Introduction

The system performance for a cellular network is intensively influenced by the spatial
characteristics of base stations (BSs). To characterize the spatial distribution, many interesting
models were proposed including spatial Poisson point process (SPPP) model, traditional
hexagonal grid model, etc. These models were widely used for theoretical analysis computer
simulation, network performance prediction, and have achieved remarkable results. However,
with the development of communication technologies and the explosive increase of traffic
demand, the user distribution, which has an obvious agglomeration phenomenon, has an
increasing influence on the BS distribution. Therefore, these models are not sufficient
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to capture the traffic demand and the spatial characteristics of BSs in the current cellular
networks since these models are based on the assumption that BS is ideal or evenly distributed.

According to [66], it is concluded that SPPP is suitable only in urban and suburban
regions but not for dense urban regions. Since the dataset in that work is only collected
from a mobile operator in one city of China, the generality of this conclusion needs to be
considered. Therefore, the spatial characteristics of London BSs is analyzed based on a
dataset in 2012. Based on the analysis, similar results are obtained. The detailed analysis is
shown in Appendix A. The reason why SPPP is suitable in urban and suburban regions but
not for dense urban regions is because the number of SBSs is considerable in dense urban
regions, but small in urban and suburban regions. Therefore, more precisely, SPPP model is
suitable for MBS deployment, which is mainly used to provide coverage, but not for SBS
deployment, which is mainly used to provide traffic.

With the rapid development of mobile technologies, various online social networks (OSN)
are available on mobile phones. Massive data have been produced in daily life [192, 193].
According to a statistics accounting, the monthly active users for the two most commonly
used social networks, i.e. Twitter and Facebook, are more than 310 million and more than 1.7
billion, respectively. There have been several studies for analyzing social network data, which
are mainly focus on information predicting, the hot degree of online topics, and correlation
between different social networks [193, 194]. Very few works about social networks focus on
BS deployment. Actually, online social networks, such as the Facebook and Twitter, usually
contains accurate GPS information, which has a great significance for BS deployment. By
comparing the data structures for Facebook and Twitter, it can be found Twitter data has a
relatively simpler structure than Facebook [193]. In other words, it is more convenient to
collect and analyze the data from Twitter, which is of great significance at the early stage of
the research.

A typical data collected from Twitter contains GPS (longitude, latitude), upload date, the
text, etc. That information can provide network operators with a chance to understand and
improve the network performance in another way. Compared with traditional Call Detail
Record(CDR) data based network optimization, the OSN data have the following advantages:
1) it is operator-neutral, providing operators chances to understand the potential customers;
2) it contains text information, which can used for event prediction, blackspots identification
[195]; 3) it contains accurate GPS information which can be used for BS deployment, and
traffic demand prediction [178].

According to previous research [178], a log-linear relationship between Twitter activity
level (Tweets/s) and the traffic load (kbps) is obtained. The high correlations between Twitter
data and traffic load gives the feasibility of Twitter data based SBS deployment method. In
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this chapter, the author proposes data-driven energy efficient SBS deployment methods to
minimize the total power consumption guaranteeing the QoS of users. Different scenarios,
HetNet, and small cell network (SCN), are considered subject to different constraints.

Fig. 3.1 Actual BSs deployment in London depicting dense urban (red), urban (blue) and
suburban regions (black).

3.2 SBS Deployment for Energy-Coverage Tradeoffs

In this section, a HetNet scenario of Greater London is considered. Two datasets are utilized:

• Base Station Data: An operator’s BS location information in 2012 for London, shown
in Fig.3.1.

• Online Social Network Data: Twitter data over a period of 2 weeks in 2012 for
London, shown in Fig. 3.2.
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Fig. 3.2 Twitter data distribution in London

3.2.1 System Model and Problem Formulation

System model

Consider the existing network contains NM MBSs and NMi Micro Base Stations (MiBSs).
M users is simulated by Twitter data based on its location information. Suppose NS SBSs
are needed to be further deployed to uncover the blackspots in the scenario. Assume the
BSs in the same tier have the same transmit power, denoted by PT XM, PT XMi, and PT XS,
respectively. For analytical tractability, the total number of BSs in this scenarios is denoted
by N, and the whole BSs are indexed by [1, ...,N], where the first NM in the index denote
MBSs, the last NS in the index denote SBSs, and the others denote MiBSs.

The received power (dBm) of user j from BS i can be calculated as:

PRXi, j = PT Xi +GT Xi−Ltx−Lp−Lm +GRX j−Lrx (3.1)

where PT Xi (dBm) denotes the transmit power of BS i. GT Xi and GRX j (dBi) denote the
transmitter antenna gain and receiver antenna gain, respectively. Ltx and Lrx (dB) denotes
transmitter losses and receiver losses, respectively. Lm (dB) denotes other losses, including
body loss, fading margin, penetration loss, etc. Lp (dB) denotes the path loss.
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There are various propagation models for mobile communication [196], including Oku-
mura et al. Model, Hata Model, etc. In this section, COST-231-Walfisch-lkegami Model is
employed to calculate the path loss, which is given by:

Lp =

42.6+26log(di, j)+20log( f ), d ≤ 20m

L0 +max{0,Lrts +Lmsd}, d > 20m
(3.2)

where di, j (km) denotes the distance between BS i and user j. f refers to the frequency band.
The detail information about COST-231-Walfisch-lkegami Model is shown in Appendix B.

The maximum received power for a typical user j is then given by:

RX j = max
i

PRXi, j (3.3)

Problem Formulation

The total power consumption of the system is given by:

Ptotal =
N

∑
i

PT Xi +Pstatic (3.4)

where Pstatic denotes the static power consumption of a SBS including the power consumption
of signal processing, battery backup and power supply, cooling etc. It is assumed that the
static power consumption for each SBS is the same.

The coverage probability is defined as:

Pr[RX j > Rs] = Pr[max
i

PRXi, j > Rs] (3.5)

where Rs denotes the receiver sensitivity. It should be noted that this model is for link
budgeting only (ignore fading).

Subject to a certain coverage probability threshold, the author aims to find the best
deployment of SBSs (smallest number of SBSs) to minimize the total power consumption.
The optimization problem can be formulated as:

argmin
N

Ptotal

s.t. Pr[RX j > Rs]> ρ (3.6)
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where (3.6) is the objective of the optimization problem, which aims to minimize the total
power consumption of the network guaranteeing the coverage probability. The constraint
denotes that coverage probability should be greater than a certain threshold ρ . It should be
noted that the larger ρ is, the better coverage performance is expected.

3.2.2 Proposed SBS Deployment Method

The optimization problem in (3.6) is hard to solve, since the possible number of SBSs is
discrete and the locations of SBSs in spatial domain are continuous. To address this problem,
the received power of users based on existing network are firstly evaluated according to (3.2).
For a given receiver sensitivity Rs, the coverage probability and users suffering from poor
coverage can be obtained. Since k-means can divide the observations or points into k clusters
based on the principle that each point is allocated to the cluster with the nearest mean, it is
an appropriate method for SBS deployment in this work by efficiently analyzing geographic
location information. The author proposes a heuristic k-means based SBS deployment
algorithm to determine the number and the locations of SBSs.

The pseudo code of proposed algorithm is given in Algorithm 1. Given the locations of
users M and existing BSs B, the receiver sensitivity Rs, coverage probability threshold ρ

and the maximum number of iterations Nmax, the first step in Algorithm 1 is to evaluate the
received power of users based on existing BSs according to (3.3). Then the users suffering
from poor coverage can be identified as U = {u1, ...,u j∗ , ...,um} ∈M with u j∗ satisfying
RXu j∗ < Rs. Step 3 - step 4 for this algorithm are to initialize a small number of SBSs kinit

and initialize the count number of iterations n with zero, respectively. While n < Nmax,
k-means will be employed to determine the locations of kinit SBSs in each iteration from
Step 6 to Step 16. Step 6 - Step 8 are used to initialize k-means algorithm. In Step 6, the kinit

was initialized as k in this iteration. Step 7 initializes C = {c(1), ...,c( j∗), ...,c(m)} to store
the index cluster number of user u j∗ , c( j∗) ∈ {1, ..., i, ...,k}. Step 8 initializes k centroids as
X = {x1, ...,xi, ...,xk}, which are randomly choose from U. From step 10 to step 12, each
user is allocated to a particular cluster when it is closest to that cluster’s centroid. Then the
k centroids are updated with the mean of users in each cluster by step 13 - step 15. Step
10 - step 15 will be repeated until k centroids reach the best. Then the locations of k SBSs
can be obtained. Given the locations of k SBSs and existing BSs, the users suffering from
poor coverage is identified in step 17. Then the coverage probability Pk

r is calculated based
on (3.7). It will be estimated that if Pk

r is smaller than the coverage probability threshold
or not in step 19. If smaller, kinit and n will be updated by kinit +1 and n+1, respectively.
Then the algorithm will go to step 6 and repeat the steps until Pk

r is greater than the coverage
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Algorithm 1 Proposed algorithm for SBS deployment
Input: The dataset of users M; the dataset of existing BSs B; the parameters for (3.1),

receiver sensitivity Rs, coverage probability threshold ρ , the maximum number of
iterations Nmax.

Output: The minimal number and locations of SBSs.
1: Evaluate the received power of users based on existing BSs according to(3.3)
2: Identify the set of users suffering poor coverage by U= {u1, ...,u j∗, ...,um,} ∈M, each

user u j∗ satisfying RXu j∗ < Rs.
3: Initialize the number of SBSs kinit .
4: Initialize the count number of iterations n with zero.
5: while n < Nmax do
6: k = kinit
7: Initialize C = {c(1), ...,c( j∗), ...,c(m)} to store the index cluster number of user u j∗ ,

c( j∗) ∈ {1, ..., i, ...,k}.
8: Initialize k centroids by X = {x1, ...,xi, ...,xk}, which are randomly choose from U.
9: repeat

10: for j∗ = 1 to m do
11: c( j∗) := argmin

i

∥∥u j∗− xi
∥∥;

12: end for
13: for i = 1 to k do

14: u j∗ :=

m
∑

j∗=1
I{c( j∗) = i} ·u j∗

m
∑

j∗=1
I{c( j∗) = i}

;

15: end for
16: until Minimize the within-cluster sum of squares (WCSS) for the k clusters.
17: Identify users suffering from poor coverage based on existing BSs and the k SBSs.
18: Calculate the coverage probability Pk

r based on (3.7).
19: if Pk

r < ρ then
20: kinit = kinit +1
21: n = n+1
22: else
23: return the k SBSs
24: end if
25: end while
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Table 3.1 Parameters for SBS deployment based on energy-coverage tradeoffs

Parameter Symbol Value

Area of region R 5.8km×6.4km
Frequency band f 2100 MHz
MBS transmitted power PT XM 43 dBm
MiBS transmitted power PT XMi 38 dBm
SBS transmitted power PT XS 23 dBm
User distribution Twitter distribution
Propagation model Cost 231 WI model
Gain of MBS antenna GT XM 18 dBi
Gain of MiBS antenna GT XMi 5 dBi
Gain of SBS antenna GT XS 0 dBi
MBS height hM 30 m
MiBS height hMi 3m
SBS height hS 3m
Average building height hroo f 18m
Mobile height hm 1.5m
Average building separation b 25m
Average street width w 12.5m
Angle of incidence ϕ 90◦

Gain of mobile antenna GRX 0 dBi
Transmitter loss Ltx 6 dB
Other losses Lm 18 dB
Receiver loss Lrx 0 dB
Receiver sensitivity Rs -90 dBm

probability threshold or n = Nmax. The minimal number and locations of SBSs can thus be
obtained by Step 23.

3.2.3 Testing and Results

An urban region (5.8km×6.4km) is chosen as the scenario in this work. There are 23 BSs,
including 18 MBSs and 5 MiBSs, respectively, and 6919 users simulated by Twitter data in
this scenario, shown in Fig.3.3. The parameters used in this section is given in Table 3.1.
Similar simulations are applied to suburban region and dense urban region, the experimental
results were shown in Appendix C.

Fig.3.4 (a) shows the heatmap of the received power for users in the region based on
existing BSs. Fig.3.4 (b) shows the probability density function (PDF) of received power.
According to Fig.3.4 (b), 11.53% of the users are suffering from poor coverage since their
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(a) (b)

Fig. 3.3 (a)MBSs and MiBSs in the region. (b) Users in the region.

(a) (b)

Fig. 3.4 (a)The heatmap of the received power (dBm) of users. (b) The PDF of the received
power.
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Fig. 3.5 Users suffering from poor coverage.

received power is below the receiver sensitivity, which is given by -90 dBm in this work. The
distribution of the users suffering from poor coverage, referred to as poor users, is given in
Fig.3.5. To improve the network performance, several SBSs need to be deployed.

Based on the poor users shown in Fig.3.5, k-means is employed for SBS deployment. To
evaluate the performance of proposed SBS deployment method, a SPPP model is employed
for comparison. The metrics of these two models are based on the coverage probability, Pr,
which is calculated by (3.7), and the power consumption for the same coverage probability
threshold. Notably, the density λ in SPPP model is calculated based on K which is the input
of k-means based algorithm and represents the number of SBSs, and the area of the region B.

Fig.3.7 presents the coverage probability Pr of the proposed model and SPPP model
under different value of K. It can be seen that as the number of SBSs increases, the Pr of
the proposed model increases rapidly and gradually converges to 100% percent when K is
greater than 95, while the Pr of SPPP model does not change much when K is smaller than
38, and experiences an irregular fluctuation after that. This phenomenon is caused by the
randomness in SPPP model, and is consistent with the analyses in Appendix A.
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Fig. 3.6 Comparison of coverage probability for two models under different number of SBSs.

Fig. 3.7 Comparison of the additional power consumption for two models under different
coverage probability threshold.
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Pr =
The number of users whose received power greater than Rs

The total number of users in this region
(3.7)

The additional power consumption of the SBSs under different coverage probability
threshold ρ is shown in Fig.3.7. Since the sleep mode is not considered in this work, the
total power consumption of a SBS is represented by its transmit power for simplicity. It can
be seen that as coverage probability threshold ρ increases from 90% to 99%, the additional
power consumption for two models have a similar growth trend. But the additional power
consumption for SPPP model is almost 30 times of that of proposed model under the same ρ .
Notably, for a typical coverage probability threshold, 95%, the additional power consumption
for the proposed model is 3.4 W, while it is 109.8W for SPPP model.

3.2.4 Conclusion

In this section, the author formulates the power consumption minimization problem subject to
the coverage probability, and propose an energy-efficient heuristic SBS deployment algorithm
based on k-means and Twitter data. Numerical results show that, compared with existing
SPPP model, the coverage probability can be significantly improved under the same number
of SBSs, and the power consumption can be significantly reduced by almost 30 times under
the same coverage probability threshold.
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3.3 SBS Deployment for Energy-Traffic Tradeoffs

3.3.1 System Model and Problem Formulation

System model

In this section, an orthogonal frequency division multiple access (OFDMA) radio access
network (RAN), where N SBSs cover a region B is considered. Similar to the previous
section, the users in the region are simulated by Twitter data based on its location information,
which is denoted by M. Transmission rate requirement of user j is denoted by r j. According
to coordinated multiple point (CoMP), it is assumed that each SBS may serve the transmission
rate requirements of different users while each user may also be served by multiple SBSs
simultaneously. Note that the detailed optimization about CoMP is out of scope for this work.
Assume the transmission power per unit bandwidth of each SBS is fixed as Ptx and SBSs
use the same downlink frequency band with the same bandwidth of BW . Considering the
worst interference scenario that all the SBSs are transmitting data using the same spectrum
resources and will generate interference to each other, the signal to interference plus noise
ratio (SINR) for a type user j from SBS i can be formulated as:

SINRi, j =
PRXi, j

N
∑

k=1,k ̸=i
PRXk, j +σ2

(3.8)

where PRXi, j (W) denotes the received power of user j from SBS i, which can be calculated
based on (3.1). It should be noted that a unit conversion is needed since the unit of PRXi, j

in (3.1) is dBm, while it is watt in (3.8). And this model is for link budgeting only (ignore

fading).
N
∑

k=1,k ̸=i
PRXk, j denotes the interference generated by other SBSs, and σ2 denotes the

noise.
Assume the bandwidth allocated from SBS i to user j is bwi, j. The transmission rate

between SBS i and user j is given by ti, j, shown as:

ti, j = bwi, j · log2(1+SINRi, j) (3.9)

Based on power consumption model proposed in [4], the power consumption of a BS is a
linear function of the load, which is given by:

Pi = P0 +Ptx ·
M

∑
j=1

bwi, j (3.10)
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where P0 denotes the static power consumption of a SBS, including the power consumption of

radio frequency (RF) circuit, processing, cooling etc.
M
∑
j=1

bwi, j denotes the overall occupied

bandwidth of SBS i. Since Ptx is the transmit power density over the whole bandwidth, the
last term denotes the load-dependent dynamic power consumption of an SBS.

The total power consumption of the N SBSs can be expressed as:

Ptotal =
N

∑
i=1

Pi (3.11)

Problem Formulation

In this section, the author aims to minimize the total power consumption of the network
subject to the transmission rate requirements of M users. The optimization problem can be
formulated as:

argmin
N,di, j,bwi, j

Ptotal

s.t. C1:
M

∑
j=1

bwi, j ≤ BW , ∀i ∈ {1, ...,N} (3.12)

C2:
N

∑
i=1

ti, j ≥ r j, ∀ j ∈ {1, ...,M}

C3: bwi, j ≥ 0, ∀i, j

where C1 is a constraint of the available bandwidth of each SBS. C2 is a constraint to
guarantee the transmission rate requirements of users, which is relevant to N and di, j. C3
denotes that the allocated bandwidth from any SBS to any user is non-negative. Since
the objectives in this problem contain not only the number and the location of SBSs, but
also the bandwidth allocation between SBSs and users, (3.12) is a mixed integer non-linear
programming (MINLP) problem containing both discrete and continuous variables, which is
NP-hard to solve.

3.3.2 Proposed SBS Deployment Method

Since the optimization problem in (3.12) is arduous to solve and bandwidth optimization is
required for a given number of SBSs, the joint optimization problem can be decoupled into a
bandwidth allocation (BA) sub-problem which minimizes the power consumption for a given
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SBS deployment; and a SBS deployment (SD) sub-problem that finds the optimal number
and locations of SBS to satisfy the transmission rate requirements of users.

BA Sub-problem

The BA sub-problem tries to find the optimal solution of variables bwn,m (n = 1, ...,N,m =

1, ...,M2) to minimize the total power consumption for the given number and locations
of SBSs. Subject to transmission rate requirements of M users, this sub-problem can be
formulated as:

argmin
bwi, j

Ptotal,

s.t. C1, C2, C3 (3.13)

For the BA sub-problem, the following Corollary is given.
Corollary 1. The problems in (3.13) are linear programming problems, which can be

solved in polynomial time by many existing software tools.
Proof:
As to (3.13), it can be re-written as (3.14) according to (3.10). Transparently, when the

number and locations of SBSs are given, the objective function of problem (3.13) is a linear
function of bwi, j(i = 1, ...,N, j = 1, ...,M)

argmin
bwi, j

Ptotal = argmin
bwi, j

N

∑
i=1

(P0 +Ptx ·
M

∑
j=1

bwi, j)

= argmin
bwi, j

N

∑
i=1

(Ptx ·
M

∑
j=1

bwi, j) (3.14)

Transparently, C1 and C3 are linear inequalities about bwi, j. According to (3.9), C2 can
be re-written as:

N

∑
i=1

ti, j ≥ r j, ∀ j ∈ {1, ...,M}⇒

N

∑
i=1

bwi, j · γi, j ≥ r j, ∀ j ∈ {1, ...,M} (3.15)
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where each γi, j = log2(1+SINRi, j) is a constant according to (3.8).
Thus, C2 is also a linear inequality about bwi, j for a given SBS deployment. Therefore,

(3.13) is a LP problem about bwi, j, which can be solved in polynomial time by many existing
software tools.

SD Sub-problem

To solve the SD sub-problem, a heuristic k-means based algorithm is proposed to find the
optimal number and the locations of SBSs. The pseudo code of the proposed algorithm for
SD sub-problem is given in Algorithm 2.

Given the locations of users M = {u1, ...,u j, ...,uM} and the transmission rate require-
ments of users T, the first two steps for this algorithm are to initialize a relatively large
number of SBSs kinit and initialize two clusters N and L to store the number and locations of
SBSs, respectively. While kinit > 0, k-means will be employed to determine the locations
of kinit SBSs in each iteration from Step 4 to Step 14. Step 4 - Step 6 are used to initialize
k-means algorithm. In Step 4, the kinit was initialized as k in this iteration. Step 5 initializes
C = {c(1), ...,c( j), ...,c(M)} to store the index cluster number of user u j, c( j) ∈ {1, ..., i, ...,k}.
Step 6 initializes k centroids as X = {x1, ...,xi, ...,xk}, which are randomly choose from M.
From step 8 to step 10, each user is allocated to a particular cluster when it is closest to that
cluster’s centroid. Then the k centroids are updated with the mean of users in each cluster by
step 11 - step 13. Step 8 - step 13 will be repeated until k centroids reach the best. Then the
locations of k SBSs can be obtained. Given the locations of k SBSs, it will be estimated that
if the k SBSs can satisfy users’ traffic requirements or not in step 15. If possible, the kinit will
be updated by kinit−1, and the k SBSs will be stored in clusters N and L. Then the algorithm
will go to step 4 and repeat the steps until kinit = 0 or the k SBSs cannot satisfy users’ traffic
requirements. Finally, the minimal number and locations of SBSs can be obtained by Step
23 and 24.

The pseudo code of the overall algorithm is given in Algorithm 3. The first 15 steps are
almost the same as those in Algorithm 2 except step 2. In Algorithm 3, step 2 is to initialize
a cluster P to store the total power consumption of SBSs. After the locations of k SBSs are
obtained, it will be estimated that if the k SBSs can satisfy users’ traffic requirements or not
in step 15. If possible, the corresponding BA sub-problem for the k SBSs will be solved
based on (3.13), and bwk

i, j will be obtained in step 16. Then the total power consumption
Pk

total for the k SBSs will be calculated based on (3.11) in step 17. Pk
total will then be stored

in cluster P, and kinit will be updated by kinit−1. Then the algorithm will go to step 4 and
repeat the steps until kinit = 0 or the k SBSs cannot satisfy users’ traffic requirements. Finally,
the minimal power consumptions of SBSs can be obtained by Step 24.
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Algorithm 2 Proposed algorithm for SD sub-problem

Input: The locations of users M= {u1, ...,u j, ...,uM}; the transmission rate requirements
of users T; the parameters for (3.1).

Output: The minimal number and locations of SBSs.
1: Initialize the number of SBSs kinit .
2: Initialize clusters N and L to store the number and locations of SBSs, respectively.
3: while kinit > 0 do
4: k = kinit
5: Initialize C = {c(1), ...,c( j), ...,c(M)} to store the index cluster number of user u j,

c( j) ∈ {1, ..., i, ...,k}.
6: Initialize k centroids by X = {x1, ...,xi, ...,xk}, which are randomly choose from M.
7: repeat
8: for j = 1 to M do
9: c( j) := argmin

i

∥∥u j− xi
∥∥;

10: end for
11: for i = 1 to k do

12: u j :=

M
∑
j=1

I{c( j) = i} ·u j

M
∑
j=1

I{c( j) = i}
;

13: end for
14: until Minimize the within-cluster sum of squares (WCSS) for the k clusters.
15: if the k SBSs can satisfy users’ traffic requirements then
16: kinit = kinit−1
17: N← k
18: L← Xk
19: else
20: break
21: end if
22: end while
23: Nmin = minN.
24: Lmin = XNmin .
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Algorithm 3 Overall algorithm for SBS deployment

Input: The locations of users M= {u1, ...,u j, ...,uM}; the transmission rate requirements
of users T; the parameters for (3.1).

Output: The minimal power consumptions SBSs.
1: Initialize the number of SBSs kinit .
2: Initialize a cluster P to store the total power consumption of SBSs.
3: while kinit > 0 do
4: k = kinit
5: Initialize C = {c(1), ...,c( j), ...,c(M)} to store the index cluster number of user u j,

c( j) ∈ {1, ..., i, ...,k}.
6: Initialize k centroids by X = {x1, ...,xi, ...,xk}, which are randomly choose from M.
7: repeat
8: for j = 1 to M do
9: c( j) := argmin

i

∥∥u j− xi
∥∥;

10: end for
11: for i = 1 to k do

12: u j :=

M
∑
j=1

I{c( j) = i} ·u j

M
∑
j=1

I{c( j) = i}
;

13: end for
14: until Minimize the within-cluster sum of squares (WCSS) for the k clusters.
15: if the k SBSs can satisfy users’ traffic requirements then
16: Solve the corresponding BA sub-problem in (3.13), and obtain bwk

i, j

17: Calculate the total power consumption Pk
total for the k SBSs based on (3.11).

18: P← Pk
total

19: kinit = kinit−1
20: else
21: break
22: end if
23: end while
24: Pmin = minP.
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Table 3.2 Parameters for SBS deployment based on energy-traffic tradeoffs

Parameter Symbol Value

Area of region B 200m×200m
Frequency band f 2100 MHz
SBS static power P0 38 dBm
SBS transmitted power Ptx 23 dBm
User distribution Twitter distribution
Propagation model Cost 231 WI model
Gain of SBS antenna GT XS 0 dBi
SBS height hS 3m
Average building height hroo f 18m
Mobile height hm 1.5m
Average building separation b 25m
Average street width w 12.5m
Angle of incidence ϕ 90◦

Gain of mobile antenna GRX 0 dBi
Transmitter loss Ltx 6 dB
Other losses Lm 18 dB
Receiver loss Lrx 0 dB
Transmission rate requirements r 10-100 kbps

3.3.3 Testing and Results

In this work, a dense urban region (200m×200m) with 1797 users distributed in this scenario
is considered, shown in Fig.3.8. The parameters used in this section is given in Table 3.2. It
is assumed that users in this scenario have the same transmission rate requirements, given by
r.

Based on the users shown in Fig.3.8, and a given number for SBSs, k-means is employed

for SBS deployment. To evaluate the performance of proposed SBS deployment method, a

SPPP model is employed for comparison. Notably, it is possible that the BA sub-problem

has no feasible solution for the SBS deployment given by a specific algorithm. In the

situation where constraint C2 cannot be satisfied, (3.13) is modified to a best-effort solution
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Fig. 3.8 Users in the region.
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Fig. 3.9 Comparison of the total power consumption for different algorithms under different
number of SBSs.

to maximize the served traffic, given by (3.16).

argmax
bwi, j

M

∑
j=1

N

∑
i=1

ti, j

s.t. C1, C3 (3.16)

For a specific transmission rate requirement, and a specific SBS deployment, the total power

consumption can be calculated as:

PC =


min
bwi, j

Ptotal, if C2 is satisfied

N · (P0 +Ptx ·BW ), if C2 is not satisfied
(3.17)
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Fig. 3.10 Comparison of the percentage of served traffic for different algorithms under
different number of SBSs.

Fig. 3.11 Comparison of the optimal power consumption for different algorithms under
different traffic requirements.
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And the percentages of served traffic over the total traffic (referred to as the served rate, SR)

can be calculated as:

SR(%) =



100%, if C2 is satisfied

max
bwi, j

M
∑
j=1

N
∑

i=1
ti, j

M
∑
j=1

r j

×100%, if C2 is not satisfied
(3.18)

Fig.3.9 shows the comparison of total power consumption for different algorithms under
different number of SBSs with r = 70kbps. It can be seen that with r = 70kbps, the total
power consumption for the proposed model and SPPP model both increase as the number
of SBSs increases. Besides, the total power consumption of proposed model will always be
equal to or smaller than that of SPPP model under the same number of SBSs.

Fig.3.10 shows the comparison of the percentage of served traffic for different algorithms
under different number of SBSs with r = 70kbps. The percentage of served traffic is
calculated by (3.18). It can be seen that as k increases, the percentage of served traffic for
proposed model increases rapidly, and reaches 100% when k ≥ 9. As to SPPP model, it can
be seen that it has a similar trend with some fluctuations caused by its randomness. It should
be noted that when k ≥ 2, the percentage of served traffic for proposed model will always be
greater than that of SPPP model under the same number of SBSs.

The comparison of the optimal power consumption for different algorithms under different
traffic requirements is shown in Fig.3.11. The optimal power consumption refers to the
minimal power consumption to satisfy the total traffic requirements. It can be seen that as the
traffic requirements r increases, the optimal power consumptions for both models increase.
For any given traffic requirements r, the optimal power consumption for the proposed model
is always smaller than that of SPPP model , which is consistent to the previous analysis.

3.3.4 Conclusion

In this paper, the author formulates a tradeoffs between power consumption and percentage
of served traffic and proposes a data-driven SBS deployment algorithm based on k-means.
Numerical results show that, compared with existing SPPP model, the power consumption
can be significantly reduced under the same number of SBSs, the optimal power consumption
for proposed model will always be smaller than that of SPPP model under the same traffic
requirements.
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3.4 Summary

In this chapter, existing models and the potential of OSN data are briefly introduced at first.
The performance of SPPP model in different scenarios, i.e., dense urban, urban, suburban,
are evaluated in Appendix A. Then, two different data-driven SBS deployment methods are
proposed subject to different constraints. For the first method, the author aims to minimize
the total power consumption in a HetNet subject to a coverage probability threshold. It
can be obtained that the coverage probability can be significantly improved under the same
number of SBSs, and the power consumption can be significantly reduced under the same
coverage probability threshold by the proposed method compared with SPPP model. For
the second method, a tradeoff between the power consumption and the percentage of served
traffic is investigated. The author thus aims to minimize the power consumption in a SCN.
The performance of the algorithm is evaluated in various scenarios. Simulation results show
that the power consumption can be significantly reduced under the same number of SBSs,
the optimal power consumption for proposed model will always be smaller than that of SPPP
model under the same traffic requirements. For the future work, the sleeping mode will be
considered for further power consumption reduction.



Chapter 4

Centralized Sleeping Control and
Bandwidth Allocation for Small Base
Stations Based on KNN and CNN

Overview

The deployment of small base stations (SBSs) has led to the rising power consumption of
mobile networks. In this section, a centralized sleeping control and bandwidth allocation
(SCBA) problem for multiple SBSs controlled by a central controller to minimize the total
power consumption is studied. Subject to the transmission rate requirements, the optimization
problem is formulated as a mixed integer non-linear programming (MINLP) problem and
addressed by decoupling into two sub-problems: a centralized bandwidth allocation (CBA)
sub-problem that minimizes the power consumption by optimizing the bandwidth allocation
of the active SBSs; and a centralized sleeping control (CSC) sub-problem that finds the
optimal sleeping strategy among all the possible ones. It is proven that the CBA sub-problem
is a linear programming (LP) problem which can be solved by many existing software tools.
Two different methods, based on k-nearest-neighbor (KNN) and convolutional neural network
CNN, respectively, are proposed to solve the CSC sub-problem. Simulation results show
that the proposed schemes have superior performance compared with existing approaches in
terms of complexity, power consumption, and the percentage of unserved traffic (referred to
as unserved rate).
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4.1 System Model

Consider an orthogonal frequency division multiple access (OFDMA) radio access network
(RAN) where N SBSs covering a region B and these SBSs are controlled by a central
controller. The SBSs are fixed and randomly distributed following a homogeneous Poisson
point process. Region B is further divided into M×M grids, which are small enough so that
different mobile users in the same grid are assumed to have equal distances from an arbitrary
SBS. Since the downlink traffic is much higher than the uplink one in usual multimedia
communications [197], this work focuses on the downlink transmission. The RAN works
in time intervals and the central controller has the global information. At the beginning
of each time interval, the central controller collects the knowledge about transmission rate
requirements in M×M grids during this time interval and then controls the N SBSs to
switch on/off as well as allocates the bandwidth to the active SBSs in a centralized way.
Transmission rate requirements generated in region B are assumed to be entirely served by
the N SBSs.

4.1.1 Received SINR and Achievable Rate at the Grid End

For analytical tractability, it is assumed that users in each grid see the same external-

interference environment and have a constant spectral noise power density of σ2. It is

also assumed that the SBSs use the orthogonal downlink frequency band with the same

bandwidth of BW [198], and the transmission power per unit bandwidth of each SBS is fixed

as Ptx. Each SBS may serve the transmission rate requirements in different grids while the

transmission rate requirement generated in a single grid can be simultaneously served by

multiple SBSs. The sleeping state of SBS n is denoted by an ∈ {0,1}, and bwn,m denotes the

bandwidth allocated from SBS n to grid m. The signal to interference plus noise ratio (SINR)

at grid m from SBS n can be formulated as:

SINRn,m =
an ·Ptx ·gn,m

σ2 (4.1)

where gn,m denote the channel power gains from SBS n to grid m. In this work, the Rayleigh
fading channel model is considered. gn,m is calculated as: gn,m = d−α

n,m · |hn,m|2, where dn,m is
the distance between SBS n and grid m, α (α > 2) is the path loss exponent, hn,m denotes
the complex Gaussian channel coefficients following h∼CN(0,1).
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The expected data transmission rate provided by SBS n to grid m is calculated according
to Shannon’s theory:

tn,m = bwn,m ·Ehn,m[log2(1+SINRn,m)] (4.2)

4.1.2 Power Consumption Model

Based on power consumption model proposed in [4], the power consumption of an SBS can

be expressed as:

Pn =

P0 +Ptx ·
M2

∑
m=1

bwn,m if an = 1 ,

Ps if an = 0 .
(4.3)

where P0 denotes the static power consumption of an active SBSs, including the power

consumption of radio frequency (RF) circuit, processing, cooling etc.
M2

∑
m=1

bwn,m denotes the

overall occupied bandwidth of SBS n. Since Ptx is the transmit power density over the whole

bandwidth, the Ptx
M2

∑
m=1

bwn,m denotes the load-dependent dynamic power consumption of a

SBS. Ps denotes the power consumption of an SBS when it is in sleep state.

The total power consumption of the N SBSs is thus given by:

Ptotal =
N

∑
n=1
{an · (P0 +Ptx ·

M2

∑
m=1

bwn,m)+(1−an) ·Ps} (4.4)

4.1.3 Traffic Model

The transmission rate requirements in M×M grids are simulated by lognormal distribution

[95] as shown in (4.5). To capture the traffic distribution in the region, different σ and µ

are used to reflect the spatial characteristics of traffic demand and the average traffic load
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condition in the region, respectively. For each pair of µ and σ , TW samples are generated.

R(µ,σ) = lognrnd(µ,σ , [TW,M×M]) (4.5)

4.2 Problem Formulation and Solution

4.2.1 Problem Formulation

In this work, the author aims to minimize the total power consumption of the system subject
to the transmission rate requirements in the M×M grids. Given the transmission rate
requirements rm in each grid m, the joint optimization problem can be formulated as:

argmin
an,bwn,m

Ptotal

s.t. C1:
M2

∑
m=1

bwn,m ≤ an ·BW, ∀n ∈ {1, ...,N}

C2:
N

∑
n=1

tn,m ≥ rm, ∀m ∈ {1, ...,M2} (4.6)

C3: an ∈ {0,1}, ∀n ∈ {1, ...,N}

C4: bwn,m ≥ 0, ∀n,m

C1 is a constraint of available bandwidth of each SBS. C2 is a QoS constraint to satisfy
the transmission rate requirements in each grid. C3 denotes that each SBS can either be
active or sleeping, while C4 denotes that the allocated bandwidth from any SBS to any grid is
non-negative. Obviously, (4.6) is a mixed integer non-linear programming (MINLP) problem
containing both discrete and continuous variables, which is NP-hard to obtain the global
optimal solution.
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4.2.2 Problem Solution

Since the bandwidth allocation is required for active SBSs only, the original optimization
problem in (4.6) can be decoupled into two sub-problems: a centralized bandwidth allocation
(CBA) sub-problem that minimizes the power consumption by optimizing the bandwidth
allocation of the active SBSs, which can be solved by linear programming (LP); and a
centralized sleeping control (CSC) sub-problem that finds the optimal SBS sleeping strategy
among all the possible ones, which can be solved by KNN or CNN, shown in the Sect 4.3
and Sect 4.4, respectively. Then by coupling the solutions of CSC and CBA, the overall
power consumption minimization in the system can be obtained.

Solution of the CBA Sub-problem

The CBA sub-problem tries to find the optimal solution of variables bwn,m (n = 1, ...,N,m =

1, ...,M2) to minimize the total power consumption for a given sleeping strategy of the N
SBSs. Subject to transmission rate requirements in M×M grids, this sub-problem can be
formulated as:

argmin
bwn,m

Ptotal

s.t. C1, C2, C4 (4.7)

To solve the CBA sub-problem, the following corollary is given:
Corollary 1. The problem (4.7) is a LP problem, which can be solved in polynomial time

by many existing software tools.
Proof:
According to (4.4), (4.7) can be re-written as:

argmin
bwn,m

Ptotal = argmin
bwn,m

N

∑
n=1
{an · (P0 +Ptx ·

M2

∑
m=1

bwn,m)+(1−an) ·Ps}

= argmin
bwn,m

N

∑
n=1

(an ·Ptx ·
M2

∑
m=1

bwn,m) (4.8)
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Transparently, when an,(n = 1, ...,N) is given, the objective function of problem (4.7) is
a linear function of bwn,m,(n = 1, ...,N,m = 1, ...,M2).

According to (4.2), C2 can be re-written as:

N

∑
n=1

tn,m ≥ rm, ∀m ∈ {1, ...,M2}⇒

N

∑
n=1

bwn,m · γn,m ≥ rm, ∀m ∈ {1, ...,M2} (4.9)

where each γn,m = Ehn,m [log2(1+SINRn,m)] is a constant which can be calculated as:

γn,m =
∫

Ψn

log2(1+
an ·Ptx ·d−α

n,m · |hn,m|2

σ2 )dhn,m (4.10)

where Ψn denote the ranges of hn,m.
Thus, C2 can be transformed into a linear inequality about bwn,m when an (n = 1, ...,N)

are given. Meanwhile, C1 and C4 are also linear inequalities about bwn,m.
Therefore, the problem (4.7) is a LP problem about bwn,m, which can be solved in

polynomial time by many existing software tools.

4.3 KNN-based Centralized Sleeping Control and Band-
width Allocation Scheme

4.3.1 KNN-Based Solution of the CSC Sub-problem

In this section, KNN is employed to handle the CSC sub-problem. For the convenience

of representation, the author uses A = {A1, ...,Ai, ...,A2N} to denote the set of all possible

sleeping strategies, where i is used to represent the index of sleeping strategy. For a specific

sleeping strategy Ai, the sleeping choices of all the N SBSs are contained, given by Ai =
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[ai
1, ...,a

i
n, ...,a

i
N ]. The index of this sleeping strategy is expressed by:

i =
N

∑
n=1

an ·2n−1 +1 (4.11)

For the KNN algorithm, the distance between two samples of transmission rate require-

ments Rk = [rk
1, ...,r

k
m, ...,r

k
M2] and Rl = [rl

1, ...,r
l
m, ...,r

l
M2 ] is defined as:

Dk,l = max
m

∣∣∣rk
m− rl

m

∣∣∣ (4.12)

Lemma 1. Assume sleeping strategy Ai is the optimal sleeping strategy for sample Rk, which
means Pk

total(A
i)−Pk

total(A
i
′
) = ω ≤ 0,∀Ai

′
∈ A\Ai. Assume Rk and Rl simultaneously have

feasible solutions or not to the CBA sub-problem for any given action, then Pl
total(A

i) ≤
Pl

total(A
i
′
),∀Ai

′
∈ A\Ai, when the distance between Rk and Rl is small enough.

Proof:
For any sample of transmission rate requirements, the optimal solution of the CBA sub-

problem can be obtained if it exists. If the samples of transmission rate requirements Rk and
Rl do not have feasible solution for the CBA sub-problem, the transmission rate requirements
cannot be satisfied. Thus, this situation is not considered in this work.

If both of them have feasible solution for the CBA sub-problem, the optimal solution can

and only can be obtained when the equality is established according to the characteristics of

linear programming. Therefore, the optimal solutions of Rk and Rl for action Ai will satisfy:

N

∑
n=1

bwk,i
n,n · γ i

n,m = rk
m, ∀m ∈ {1, ...,M2}

N

∑
n=1

bwl,i
n,m · γ i

n,m = rl
m, ∀m ∈ {1, ...,M2} (4.13)
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According to the definition of distance between two samples in (4.12),∣∣∣rk
m− rl

m

∣∣∣= ∣∣∣∣∣ N

∑
n=1

bwk,i
n,m · γ i

n,m−
N

∑
n=1

bwl,i
n,m · γ i

n,m

∣∣∣∣∣
=

∣∣∣∣∣ N

∑
n=1

(bwk,i
n,m−bwl,i

n,m) · γ i
n,m

∣∣∣∣∣
=

∣∣∣∣∣ N

∑
n=1

bw∆,i
n,m · γ i

n,m

∣∣∣∣∣≤ Dk,l, ∀m ∈ {1, ...,M2} (4.14)

Thus, ∣∣∣∣∣ N

∑
n=1

bw∆,i
n,m

∣∣∣∣∣≤ Dk,l

min
n

γ i
n,m

, ∀m ∈ {1, ...,M2} (4.15)

where each γ i
n,m is a constant according to (4.10) and bw∆,i

n,m = bwk,i
n,m−bwl,i

n,m, ∀n,m.

Consider that both samples of transmission rate requirements have an optimal solution,

then substitute (4.4) to the problem,∣∣∣Pk
total(A

i)−Pl
total(A

i)
∣∣∣

=

∣∣∣∣∣
{

N

∑
n=1

[an · (P0 +Ptx ·
M2

∑
m=1

bwk,i
n,m)+(1−an) ·Ps]

}

−

{
N

∑
n=1

[an · (P0 +Ptx ·
M2

∑
m=1

bwl,i
n,m)+(1−an) ·Ps]

}∣∣∣∣∣
= Ptx ·

∣∣∣∣∣ N

∑
n=1

an · (
M2

∑
m=1

bwk,i
n,m−

M2

∑
m=1

bwl,i
n,m)

∣∣∣∣∣= Ptx ·

∣∣∣∣∣ M2

∑
m=1

N

∑
n=1

an ·bw∆,i
n,m

∣∣∣∣∣ (4.16)
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To find the boundary of
∣∣Pk

total(A
i)−Pl

total(A
i)
∣∣, (4.17) is given:

∣∣∣Pk
total(A

i)−Pl
total(A

i)
∣∣∣= Ptx ·

∣∣∣∣∣ M2

∑
m=1

N

∑
n=1

an ·bw∆,i
n,m

∣∣∣∣∣
≤ Ptx ·

∣∣∣∣∣ M2

∑
m=1

N

∑
n=1

bw∆,i
n,m

∣∣∣∣∣≤ Ptx ·
M2

∑
m=1

Dk,l

min
n

γ i
n,m

= fAi(Dk,l)

(4.17)

Thus, fAi(Dk,l) is a linear function of Dk,l and the coefficients are dependent on the parame-
ters calculated by (4.10). As Dk,l approaching zero, fAi(Dk,l) will approach zero.

For any other action Ai
′
, similar results can be obtained. Then,

∣∣∣Pk
total(A

i)−Pl
total(A

i)
∣∣∣≤ fAi(Dk,l)⇒

− fAi(Dk,l)≤ Pk
total(A

i)−Pl
total(A

i)≤ fAi(Dk,l)⇒

Pk
total(A

i)− fAi(Dk,l)≤ Pl
total(A

i)≤ Pk
total(A

i)+ fAi(Dk,l) (4.18)

Similarly, it can be obtained that

−Pk
total(A

i
′
)− f

Ai′ (Dk,l)≤−Pl
total(A

i
′
)≤−Pk

total(A
i
′
)+ f

Ai′ (Dk,l) (4.19)

Therefore,

Pl
total(A

i)−Pl
total(A

i
′
)≤ Pk

total(A
i)−Pk

total(A
i
′
)+ fAi(Dk,l)+ f

Ai′ (Dk,l)

= ω + fAi(Dk,l)+ f
Ai′ (Dk,l) (4.20)

Therefore, as long as the distance Dk,l between Rk and Rl is small enough satisfying that
ω + fAi(Dk,l)+ f

Ai′ (Dk,l)≤ 0, the optimal action for Rl will be the same as that of Rk.
Based on Lemma.1, a KNN-based centralized sleeping control method is proposed. The

pseudo code of the proposed method for CSC sub-problem is given in Algorithm 4. Given
historical dataset H= {H1, ...,Hθ , ...,HΘ} and the test sample Rδ , the first three steps for
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this algorithm are to initialize the number of k and initialize two clusters Cd and Ck to store
the distances and the labels of k nearest neightbors, respectively. Step 4 - Step 7 are used to
calculate the distances between the test sample and every sample in historical dataset based
on (4.12). After going through all the historical samples, the distances are stored in cluster
Cd . Step 8 then sort the distances in cluster Cd . Step 9 obtain the k nearest neightbors in the
sorted cluster Cd , and store the labels of the k nearest neightbors in cluster Ck. Then the label
which appears most often in cluster Ck will be outputted as the predicted result in step 10.

Algorithm 4 KNN-based algorithm for the CSC sub-problem

Input: The historical dataset H= {H1, ...,Hθ , ...,HΘ}; the test sample Rδ .
Output: The predicted sleeping strategy Predδ

1: Initialize the number of k.
2: Initialize a cluster Cd to store the distances.
3: Initialize a cluster Ck to store the labels of k nearest neightbors.
4: for θ = 1 to Θ do
5: Dθ ,δ = max

m

∣∣∣hθ
m− rδ

m

∣∣∣
6: Cd ← Dθ ,δ

7: end for
8: Sort the cluster Cd
9: Obtain the k nearest neighbors, and store the labels in Ck.

10: Predδ = mode(Ck)

The overall KNN-based algorithm is given in Algorithm 5. The first 10 steps are the
same as those in Algorithm 4. After the predicted sleeping strategy for the test sample is
obtained in Step 10, it will be estimated that if the sleeping strategy Predδ can satisfy users’
traffic requirements or not in step 11. If possible, the corresponding CBA sub-problem for
sleeping strategy Predδ will be solved based on (4.7), and bwk

i, j will be obtained. Then the
total power consumption Pk

total for the sleeping strategy Predδ will be calculated based on
(4.4) in step 13, and be outputted in step 14. If the predicted sleeping strategy Predδ cannot
satisfy users’ traffic requirements, the algorithm will break in step 16.

Suppose large enough dataset is available, and each sample in the dataset is labeled by
the index of its optimal sleeping strategy, denoted by H= {H1, ...,Hθ , ...,HΘ}, and Hθ is a
M2-dimensional vector. This dataset is called historical dataset in this work. For a specific
sample of transmission rate requirements, KNN-algorithm will identify k nearest samples in
the historical dataset based on the distance calculated by (4.12). Then the prediction result of
this specific sample is given as the label which appears most often for the k nearest neighbors.
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Algorithm 5 Overall KNN-based algorithm

Input: The historical dataset H= {H1, ...,Hθ , ...,HΘ}; the test sample Rδ .
Output: The predicted power consumption Pk

total
1: Initialize the number of k.
2: Initialize a cluster Cd to store the distances
3: Initialize a cluster Ck to store the k-nearest neightbors
4: for θ = 1 to Θ do
5: Dθ ,δ = max

m

∣∣∣hθ
m− rδ

m

∣∣∣
6: Cd ← Dθ ,δ

7: end for
8: Sort the cluster Cd
9: Obtain the k nearest neighbors, and store the labels in Ck.

10: Predδ = mode(Ck)
11: if the sleeping strategy Predδ can satisfy users’ traffic requirements then
12: Solve the corresponding CBA sub-problem in (4.7), and obtain bwk

i, j

13: Calculate the total power consumption Pk
total for the sleeping strategy Predδ based on

(4.4).
14: Output Pk

total .
15: else
16: break
17: end if
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Table 4.1 Parameters for KNN-based algorithm

Parameter Symbol Value

Region of Area B 100×100m2

No. of BSs N 3, 5, 8
No. of grids M×M 25×25
Bandwidth BW 5MHz
Transmit power of SBSs Ptx -30dBm/Hz
Static power consumption P0 38dBm
Sleep power consumption Ps 27dBm
Path loss exponent α -4
Noise σ2 -174dBm/Hz
No. of samples for each pair of µ and σ TW 1000
Proportion of training set η 0.7
Spatial inhomogeneity factor σ 0.1−1
Mean traffic load factor µ 3.5−5.4

4.3.2 Testing and Results

In this section, the performance of the proposed scheme is evaluated under different scenarios.
Consider a 100×100m2 region where five SBSs are randomly but fixedly located. The region
is evenly divided into 25×25 grids. The transmission rate requirements in 25×25 grids are
simulated by lognormal distribution as shown in (4.5). For each pair of µ and σ , TW samples
are generated, and randomly divided into two parts. Samples in the first part (η×TW ) are put
into the historical dataset, H, the other samples are put into the test dataset, W. Parameters
used in this work are summarized in Table.4.1. In this work, a most commonly used ratio
(70/30) for the training set and testing set is employed [199].

Assume there will always be a sleeping strategy that can satisfy the traffic requirements
in the whole dataset, which means the traffic requirements can always be satisfied if all
SBSs are switched on. By exhaustively searching all the possible sleeping strategies, the
optimal sleeping strategy with minimum power consumption while satisfying the traffic
requirements can be obtained. The whole samples in both historical dataset and test dataset
are thus labelled by their optimal sleeping strategy.

Four benchmarks, non-sleep (ALLON), probability-based strategic sleeping control
(SSC) [200], greedy sleeping control (GSC) [201], and optimal sleeping control (OSC)
are presented. In specific, in ALLON scheme, all SBSs remain active all the time. For
SSC, each SBS determines its own switch on/off status in a distributed way according to
the traffic load in the SBS’s neighbor grids, and the transmission rate requirement in each
grid is served by the active SBS which provides the maximum SINR. For GSC, since the
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system model in [201] is not the same as the model in this work, the author only adopts the
centralized SBS sleeping control scheme in [201] and the bandwidth allocation for active
SBSs is handled by the solution of CBA sub-problem proposed in this work for comparison
reason. As the solution of CBA sub-problem is proved to achieve the optimal bandwidth
allocation for active SBSs, the performance of GSC in this experiment will be equal to or
greater than the original performance in [201]. For OSC, the sleeping strategy is obtained
during the labelling process. After the prediction results (sleeping strategies) are obtained
by these algorithms, the bandwidth allocation for the active SBSs will then be obtained by
solving the corresponding CBA sub-problem, except SSC algorithm. Thus, the overall power
consumption minimization of the system can be obtained.

Notably, it is possible that the CBA sub-problem has no feasible solution for the sleeping

strategy given by a specific algorithm. In the situation where constraint C2 cannot be satisfied,

(4.7) is modified to a best-effort solution to maximize the served traffic, given by (4.21).

argmax
bwn,m

M2

∑
m=1

N

∑
n=1

tn,m

s.t. C1, C3 (4.21)

For a specific transmission rate requirement, and a specific sleeping strategy, the total power

consumption can be calculated as:

PC =


min
bwn,m

Ptotal, if C2 is satisfied

N
∑

n=1
{an · (P0 +Ptx ·BW )+(1−an) ·Ps}, if C2 is not satisfied

(4.22)
And the percentages of served traffic over the total traffic (referred to as the served rate, SR)

can be calculated as:

SR(%) =



100%, if C2 is satisfied

max
bwn,m

M2

∑
m=1

N
∑

n=1
tn,m

M2

∑
m=1

rm

×100%, if C2 is not satisfied
(4.23)
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Fig.4.1 presents the average total power consumption (APC) for different algorithms under
different values of µ when σ = 0.2. The PC for each sample is calculated by (4.22). It can
be seen that as µ increases, the average total power consumptions of all algorithms increase,
which is because greater power consumption is needed to serve the traffic requirements as
the mean traffic load in the region increases. APC for the ALLON algorithm is always the
greatest, while APC for GSC is greater than other algorithms when µ > 3.9. APC for the
proposed algorithm under different k are the same as that in GSC and OSC when µ ≤ 3.9.
The proposed algorithm under different k have similar performance compared with OSC
considering APC. And when k increases, the performance of proposed algorithm will be
better with smaller power consumption. Specifically, there are some values of µ under which
SSC have smaller APC than that of OSC. These phenomena are at the expense of low served
rate, which is not recommended in this work.

Fig. 4.1 Comparison of average total power consumption for different algorithms under µ

with fixed σ = 0.2.

The served rate (SR) for different algorithms under different values of µ when σ = 0.2 is
shown in Fig.4.2. Based on the assumption that there will always be a sleeping strategy to
satisfy the traffic requirements, it is explicit that the SR for ALLON and OSC will always be
100%. Therefore, they will not be shown for this metrics. From Fig.4.2, it can be seen that
the SR of SSC rapidly decreases as µ increases. As to proposed algorithm with different k
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Fig. 4.2 Comparison of served rate for different algorithms under µ with fixed σ = 0.2.

Fig. 4.3 Comparison of average total power consumption for different algorithms under σ

with fixed µ = 4.5.
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Fig. 4.4 Comparison of served rate for different algorithms under σ with fixed µ = 4.5.

and GSC, the SR remains 100% under different values of µ . Combining the results in Fig.4.1
and Fig.4.2, it can be concluded the proposed algorithm will have a better performance than
existing algorithms, the APC can be significantly reduced, and the traffic requirements can
be guaranteed.

Fig.4.3 shows the APC for different algorithms under different values of σ when µ = 4.5.
From Fig.4.3, it can be found that as σ increases, the APC of all algorithms increase.
Specifically, the APC for the proposed algorithm with different k are smaller than that of
GSC when σ < 0.4 and σ ≥ 0.8, while they are greater than that of GSC when 0.4≤ σ <

0.8. These phenomena are caused by the neighbor-identifying mechanism in the proposed
algorithm. If σ < 0.4 or σ ≥ 0.8, the spatial characteristics of traffic requirements in the
region will be relatively uniform, thus the prediction results of proposed algorithm have more
chance to be accurate. When 0.4≤ σ < 0.8, the spatial characteristics of traffic in the region
will be uneven, leading to some inaccurate prediction results. It is consistent to the results in
Fig.4.1. Besides, increasing k can reduce the APC and improve the performance of proposed
algorithm. Notably, the smaller APC for SSC is at the expense of unserved traffic, which is
not recommended in this work.

The SR for different algorithms under different values of σ when µ = 4.5 is given in
Fig.4.4. Similar to that of Fig.4.2, it can be seen that the SR of GSC and proposed algorithm
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Fig. 4.5 Overall performance for different algorithms about average total power consumption.

remains 100% under different values of σ . As to SSC, the SR remains low (about 75%),
which is consistent to previous analysis about Fig.4.3.

An overall evaluation of different algorithms about APC and SR are given in Fig.4.5
and Fig.4.6, respectively. According to the results, it can be found that increasing k can
significantly improve the performance of proposed algorithm, with decreasing APC and
increasing SR. Specifically, when k ≥ 5, the SR of proposed algorithm will be 100%. The
APC of it is significantly improved compared with GSC. Besides, the small SR of SSC
(77.61%) is intolerable in this work.

Table.4.2 demonstrates the complexity and prediction accuracy of different algorithms
for different number of BSs. Results are achieved on an Intel i5 2.90GHz 16GB computer.
It can be observed that the prediction accuracy of the proposed algorithm is significantly
improved compared to other algorithms for any number of SBSs. And the complexity of
the proposed algorithm has a better performance when the number of SBSs is equal to or
greater than 5. Besides, increasing k for the proposed algorithm can further improve the
prediction accuracy with almost the same complexity. Moreover, as the number of BSs
increases, the complexity for proposed algorithm is more and more superior compared with
existing approaches. Notably, the lowest complexity for SSC is at the cost of low prediction
accuracy, which is not recommended in this work.
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Fig. 4.6 Overall performance for different algorithms about served rate.

Table 4.2 Comparison for KNN-based algorithm under different No. of BSs

No. BSs Algorithms Complexity(s) Prediction accuracy(%)

N =3

Proposed k = 2 1.3 85.8%
Proposed k = 4 1.4 89.3%
Proposed k = 6 1.4 92.6%
GSC 13.3×10−3 56.3%
SSC 0.6×10−3 15.8%
OSC 33.6×10−3 100%

N =5

Proposed k = 2 1.4 78.6%
Proposed k = 4 1.3 83.7%
Proposed k = 6 1.4 85.5%
GSC 3.1 33.4%
SSC 2.6×10−3 6.5%
OSC 17.6 100%

N =8

Proposed k = 2 1.4 70.2%
Proposed k = 4 1.4 73.5%
Proposed k = 6 1.5 76.3%
GSC 59.1 21.8%
SSC 12.8×10−3 4.8%
OSC 386.5 100%
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4.3.3 Conclusion

In this section, the author proposes a KNN-based centralized sleeping control and bandwidth
allocation scheme to minimize the power consumption while satisfying the transmission
rate requirements. A central controller, which can be standalone or integrated with an
SBS, determines the sleeping strategy of the considered SBSs via a KNN-based algorithm.
Simulation results show that the proposed algorithm has a better performance compared with
existing approaches in terms of average total power consumption, served rate, prediction
accuracy and complexity.

4.4 CNN-based Centralized Sleeping Control and Band-
width Allocation Scheme

4.4.1 CNN-Based Solution of the CSC Sub-problem

For any given transmission rate requirements in M×M grids, it is a straightforward thinking
to solve the CBA sub-problems successively corresponding to all the possible sleeping
strategies and then find the best one that makes the optimal problem in (4.7) have feasible
solutions and the optimal solution in (4.7) achieve the lowest value among all the possible
sleeping strategies. However, the computational complexity of exhaustively searching the
strategy space increases exponentially as the number of considered SBSs gets larger. In order
to reduce the computational complexity, the author utilizes the generalization ability of the
state-of-art deep learning technology to generate approximately optimal sleeping strategy
for any new given transmission rate requirements based on the knowledge about well-solved
CSC sub-problems.

Regarding the transmission rate requirements in M×M grids as input features, regarding
the theoretically optimal sleeping strategy for the N SBSs as the class related to input features,
the CSC sub-problem is transformed into a classification problem and can be handled by
CNN. Obviously, the class number in this scenario is 2N .

CNN is a class of deep neural network which is particularly suitable for learning tasks
with large dimensions of input features. Due to the deep neural network structure and
the sharing of neuronal connection weights, CNN can capture the complex dependencies
at different levels from input features and significantly reduce the complexity in training
process. CNN has already been widely used in many fields like pattern recognition and image
classification. The architecture of CNN used in this section is illustrated in Fig.4.7. The
inputs of the CNN is a tensor with shape M×M representing the normalized transmission rate



96
Centralized Sleeping Control and Bandwidth Allocation for Small Base Stations Based on

KNN and CNN

Fig. 4.7 CNN structure used in this paper.

requirements in the M×M grids (each element is calculated as the ratio of actual transmission
rate requirement in a grid to the possibly maximum transmission rate in a grid). The output
of the CNN is a 2N-dimension vector representing the 2N possible sleeping strategies for
the N SBSs. If the i-th element has the largest value among CNN’s output vector, the i-th
sleeping strategy will be selected as the solution of the CSC sub-problem related to the
specific transmission rate requirements in the M×M grids. The matching of strategy i with
the statuses of the N SBSs is a inverse transformation of (4.11), which will not be given here.

As shown in Fig.4.7, the CNN consists of L convolutional layers, L pooling layers, and a
fully connected hidden layer. In each convolutional layer l, Fl convolution filters are used
to produce Fl feature maps for each input map of this layer. The convolution filters in the
convolutional layer l have the same size of fl× fl . Convolutional layer l is followed by a
pooling layer, which reduces the dimensions of feature maps by sub-sampling them with the
same pooling kernel (pl× pl), in order to combat overfitting as well as shorten the training
complexity. Finally, a fully connected hidden layer with k f c neurons is used to transform the
final feature maps into the output vector.

The proposed CNN is trained via examples in a training set H. Each training example
H in H is constructed by labelling the specific normalized transmission rate requirements
in the M×M grids, T (H), with a 2N-dimension vector, v(H). Besides the i(H)

best-th element,
which equals 1 and represents the theoretically optimal SBS sleeping strategy corresponding
to T (H), other elements in v(H) have the same value of 0. Particularly, for any T (H), the
theoretically optimal sleeping strategy can be found through exhaustively searching method,
which solves the CBA sub-problems related to all the 2N possible sleeping strategies, then
finds the strategy making (4.7) have a feasible solution and the minimal value.
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4.4.2 Testing and Results

In this section, the performance of proposed CNN-based scheme is evaluated under different
scenarios. The region, and the dataset generation considered in this work are the same
as that in Sect 4.3.2, which will not be described here. The CNN structure in this work
consists of two convolutional layers and two pooling layers. The activation functions for
convolutional-layer neurons are ReLU, while each neuron in the output layer is activated
by a softmax function. As a standard procedure, back-propagation of an adaptive moment
estimation (Adam) optimizer is used for training, and the categorical cross-entropy is taken as
the cost function. Notably, other CNN structures can also be adopted in the proposed scheme.
However, the optimization of CNN structure is out of scope for this work. Parameters used
in this work are summarized in Table 4.3.

For this work, five benchmarks, non-sleep(ALLON), probability-based strategic sleeping
control (SSC) [200], greedy sleeping control (GSC) [201], optimal sleeping control (OSC),
and the KNN-based algorithm proposed in the previous section are employed for compari-
son. After the prediction results (sleeping strategies) are obtained by these algorithms, the
bandwidth allocation for the active SBSs will then be obtained by solving the corresponding
CBA sub-problem, except SSC algorithm, for which the transmission rate requirement in
each grid is served by the active SBS which provides the maximum SINR. Thus, the overall
power consumption minimization of the system can be obtained.

If the CBA sub-problem has no feasible solution for the sleeping strategy given by a
specific algorithm, a best-effort solution will be employed to maximize the served traffic,
given in (4.21).

Fig.4.8 presents the average total power consumption (APC) for different algorithms
under different values of σ when µ = 4.5. It can be seen that as σ increases, the average total
power consumptions of all algorithms increase, which is because greater power consumption
is needed to serve the traffic requirements as the spatial inhomogeneity of traffic increases.
The APC for the ALLON algorithm is always the greatest. Compared to KNN-based
algorithm, the APC for the proposed scheme is always smaller, and is almost the same as
that of OSC, achieving near-optimal performance because of the generalization ability of
CNN and acquired knowledge. Specifically, the APC of SSC are equal to or smaller than that
of OSC, because the traffic requirements are not guaranteed by SSC. Therefore, the smaller
APC in SSC is achieved at the expenses of small served rates, which is not recommended in
this work.

The served rate (SR) for different algorithms under different values of σ when µ = 4.5
is shown in Fig.4.9. Since there will always be a sleeping strategy to satisfy the traffic
requirements, it is explicit that the SR for ALLON and OSC will always be 100%. Therefore,
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Table 4.3 Parameters for CNN-based algorithm

Parameter Symbol Value

Region of Area B 100×100m2

No. of BSs N 3, 5, 8
No. of grids M×M 25×25
Bandwidth BW 5MHz
Transmit power of SBSs Ptx -30dBm/Hz
Static power consumption P0 38dBm
Sleep power consumption Ps 27dBm
Path loss exponent α -4
Noise σ2 -174dBm/Hz
No. of filters for convolution layers F1/F2 32/64
Kernel size for convolution layers f1/ f2 3/3
Kernel size for pooling layers p1/p2 2/2
No. of units in fully connected layer k f c 512
No. of samples for each pair of µ and σ TW 1000
Proportion of training set η 0.7
Spatial inhomogeneity factor σ 0.1−1
Mean traffic load factor µ 3.5−5.4

it will not be shown for this metrics. From Fig.4.9, it can be seen that the SR of SSC remains
small as σ increases, which is consistent to previous analysis. Meanwhile, the SR of the
proposed algorithm, GSC, and KNN-based algorithm remain 100% under different values of
σ . Combining the results in Fig.4.8 and Fig.4.9, it can be concluded the proposed scheme
always achieves near-optimal performance with near-optimal APC and 100% SR under
different values of σ , while KNN-based algorithm and GSC have an abundant waste of power
consumption and SSC experiences low SR.

Fig.4.10 shows the APC for different algorithms under different values of µ when
σ = 0.2. From Fig.4.10, it can be found that as the mean traffic load increases, the APC of
all algorithms increase rapidly to serve greater traffic requirements. As µ increases, the APC
for the ALLON algorithm is always the greatest. When the traffic load in the region is low
(µ < 4.0), it can be seen that the APC of GSC, KNN-based algorithm, proposed algorithm,
and OSC are almost the same. Notably, APC for proposed algorithm is slightly smaller than
that of OSC when µ = 4.0 at the expense of unserved traffic. When the traffic load gets
high (µ > 4.0), GSC and KNN-based algorithm will have an abundant waste of power. As
to SSC, it can be seen that it has an abundant waste of power when the traffic load is low
(µ < 4.0) and has smaller APC at the expense of unserved traffic when the traffic load is
high (µ ≥ 4.0).
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Fig. 4.8 Comparison of average total power consumption for different algorithms under σ

with fixed µ = 4.5.

The SR for different algorithms under different values of µ when σ = 0.2 is given in
Fig.4.11. Similar to that of Fig.4.9, it can be seen that the SR of GSC, KNN-based algorithm,
and proposed algorithm remains almost 100% under different values of µ . Specifically, the
SR of proposed algorithm for µ = 4.0 is 99.98%, which is consistent to the phenomenon in
Fig.4.10.

Table.4.4 demonstrates the complexity, prediction accuracy and training time of different
algorithms for different number of SBSs. Results are achieved on an Intel i5 2.90GHz 16GB
computer. It can be observed that the complexity and the prediction accuracy of the proposed
algorithm are significantly improved compared to other algorithms for any number of SBSs,
while the offline training time is also acceptable. Moreover, as the number of SBSs increases,
the complexity and prediction accuracy for proposed algorithm is more and more superior
compared with existing approaches. Notably, the lowest complexity for SSC when N = 3 is
at the cost of low prediction accuracy, which is not recommended in this work.

4.4.3 Conclusion

In this section, a CNN-based centralized sleeping control and bandwidth allocation scheme
is proposed to minimize the power consumption while satisfying the transmission rate
requirements in a given region. A central controller determines the sleeping strategy of the
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Fig. 4.9 Comparison of served rate for different algorithms under σ with fixed µ = 4.5.
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Fig. 4.11 Comparison of served rate for different algorithms under µ with fixed σ = 0.2.

Table 4.4 Comparison for CNN-based algorithm under different No. of BSs.

No. BSs Algorithms Complexity(ms) Prediction accu-
racy(%)

Training
Time (s)

N =3

Proposed 1.5 99.8% 562
KNN-based k = 4 1.4×103 89.3%
GSC 13.3 56.3% /
SSC 0.6 15.8% /
OSC 33.6 100% /

N =5

Proposed 2.1 97.3% 645
KNN-based k = 4 1.3×103 83.7%
GSC 3.1×103 33.4% /
SSC 2.6 6.5% /
OSC 17.6×103 100% /

N =8

Proposed 4.4 89.6% 1288
KNN-based k = 4 1.4×103 73.5%
GSC 5.9×104 21.8% /
SSC 12.8 4.8% /
OSC 3.9×105 100% /

considered SBSs via a well-trained CNN model. Simulation results show that the proposed
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scheme has significant performance improvements compared to existing approaches in terms
of average total power consumption, served rate, complexity, and prediction accuracy.

4.5 Summary

In this chapter, a joint sleeping control and bandwidth allocation (SCBA) problem is in-
troduced and formulated. The author decouples the joint SCBA problem into centralized
bandwidth allocation (CBA) sub-problem which minimizes the power consumption by opti-
mizing the bandwidth allocation of the active SBSs, and centralized sleeping control (CSC)
sub-problem which minimizes the power consumption by optimizing the sleeping strategy of
all SBSs. The theoretically optimal bandwidth allocation method for active SBSs to serve the
traffic requirements and minimize the power consumption is given. Two centralized sleeping
control algorithms are proposed based on KNN and CNN, respectively. For the KNN-based
algorithm, it is quite simple for implementation since there is no need for training. Simulation
results show the superiority of the KNN-based algorithm compared with existing algorithms.
However, since it is a lazy learning method, the complexity of this algorithm is relatively
high. Besides, the size of historical dataset and the definition of distance in (4.12) will affect
the performance of the proposed algorithm (not discussed in this work). To fill the gap, a
CNN-based algorithm is proposed with training procedure. Simulation results show that the
complexity of this algorithm is low, and the network performance, including average total
power consumption, served rate, complexity, and prediction accuracy etc., are significantly
improved compared to existing approaches. Since these two algorithms are both based on
historical datasets, which sometimes are not available, an alternative algorithm without need
of historical datasets will be investigated in next chapter.



Chapter 5

Energy Efficient Centralized Sleeping
Control and Bandwidth Allocation for
Small Base Stations based on
Reinforcement Learning

Overview

To fill the gap mentioned in previous chapter that tremendous datasets is needed, a Q-
learning based mechanism is introduced to address the joint sleeping control and bandwidth
allocation (SCBA) problem in this chapter. Subject to the transmission rate requirements, the
joint SCBA problem is formulated into a mixed integer non-linear programming (MINLP)
problem, and decoupled into a centralized bandwidth allocation (CBA) sub-problem and a
centralized sleeping control (CSC) sub-problem. By regarding the sleeping strategies as arms,
mapping the transmission rate requirements to states, and defining the optimal CBA solution
corresponding to a sleeping strategy as the arm’s reward function, the CSC sub-problem
is transformed into a multi-state multi-arm bandit (MSMAB) problem, and solved by a
modified Q-learning algorithm. The convergence of the modified Q-learning algorithm,
and the computational complexity of the proposed mechanism are theoretically analyzed.
Numerical results show the proposed mechanism has a low computational complexity and
can significantly reduce the total energy consumption of all SBSs, subject to the transmission
rate requirements compared with existing methods.
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5.1 System Model and Problem Formulation

5.1.1 System Model

The system model is illustrated in Fig.5.1. A typical RAN scenario where N SBSs cover
a region B is considered. The focus in this chapter is on the downlink. The N SBSs are
distributed following a homogeneous Poisson point process. Region B is further divided
into M×M grids, which are small enough so that different mobile users in the same grid
are assumed to have equal distances from an arbitrary SBS. Transmission rate requirements
generated in M×M grids are entirely served by the N SBSs. Specifically, each SBS may serve
the transmission rate requirements in different grids while the transmission rate requirement
generated in a single grid may also be simultaneously served by multiple SBSs. A central
controller, which can be standalone, or integrated with a SBS, controls the N SBSs to
switch on/off and allocates bandwidth to SBSs periodically based on the system’s global
information. For analytical tractability, it is assumed that users in each grid see the same
external-interference environment and have a constant spectral noise power density. Note
that traffic prediction for mobile networks [202–204] is out of scope of this work.

Assume that the N SBSs use orthogonal spectrum resources and occupy equal downlink

transmission bandwidth of BW [198]. Each SBS can set multiple downlink connections

concurrently in an orthogonal frequency division multiple access (OFDMA) way. A constant

Ptx is used to denote the spectral transmit power density of the SBSs. The sleeping state of

SBS n is denoted by an ∈ {0,1}. an =1 represents that SBS n is active. Otherwise, the SBS n

is in the sleep state. Thus, the SINRn,m between SBS n and grid m can be formulated as:

SINRn,m =
an ·Ptx ·gn,m

σ2 (5.1)

where gn,m denote the channel power gains from SBS n to grid m. For any n ∈ {1, ...,N},
gn,m = d−α

n,m · |hn,m|2, where dn,m is the distance between SBS n and grid m, α (α > 2) is
the path loss exponent, hn,m denotes the complex Gaussian channel coefficients following
h∼CN(0,1), and σ2 denotes the constant spectral noise power density.

5.1.2 Problem Formulation

Assume the bandwidth allocated by SBS n to grid m is denoted by bwn,m. According

to Shannon’s theory, the expected transmission rate provided by SBS n to grid m can be
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Fig. 5.1 A figure of the system model includes several SBSs and a standalone controller. The
solid lines with arrows denote the transmission signals between SBSs and UEs in different
grids. The coloured dotted lines with arrow represent the interference signals caused by
different SBSs, while the black dotted lines between controller and SBSs denote the control
signals.
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formulated as:

tn,m = bwn,m ·Ehn,m[log2(1+SINRn,m)] (5.2)

Suppose that each time interval has the fixed duration of D, based on the SBS power

consumption model proposed in [4], the energy consumption (Wh) of SBS n in the considered

time interval can be expressed as:

En = an · (P0 +Ptx

M2

∑
m=1

bwn,m) ·D+(1−an) ·Ps ·D (5.3)

where P0 is the static power consumption of an active SBS, including the power consumption

of radio frequency (RF) circuit, processing, cooling etc., Ptx
M2

∑
m=1

bwn,m denotes the load-

dependent dynamic power consumption of SBS n, Ps denotes the power consumption of an
SBS when it is in sleep state.

Subject to given transmission rate requirements in the M×M grids, the author aims to

jointly solve the SCBA problem for the N SBSs to minimize the total power consumption

of the SBSs. For a considered time interval, tm is used to denote the transmission rate

requirement in grid m during this time interval. The joint optimization problem can be

formulated as:

argmin
an,bwn,m

N

∑
n=1

En (5.4)

s.t.
M2

∑
m=1

bwn,m ≤ an ·BW, ∀n ∈ {1, ...,N} (5.5)

N

∑
n=1

tn,m ≥ tm, ∀m ∈ {1, ...,M2} (5.6)

an ∈ [0,1], ∀n ∈ {1, ...,N} (5.7)

bwn,m ≥ 0, ∀n,m (5.8)
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Eq. (5.4) is the objective of the optimization problem, which aims to minimize the total
energy consumption of the SBSs during a considered time interval. Constraint (5.5) denotes
that the overall occupied bandwidth of each SBS should be smaller than the total available
bandwidth. Constraint (5.6) denotes that the total provided transmission rate from all SBSs
to each grid should be equal or greater than its transmission rate requirement. Constraint
(5.7) denotes that each SBS can either be active or sleeping, while constraint (5.8) denotes
that the allocated bandwidth from any SBS to any grid is non-negative.

5.2 Proposed Mechanism

The optimization problem (5.4) is an MINLP problem, which is hard to solve. Since the
sleeping strategy and loads of SBSs both affect the energy consumption, and the bandwidth
allocation is performed for active SBSs only, a straightforward idea to address the optimiza-
tion problem is exhaustive searching, which compares the energy consumptions of optimal
bandwidth allocation corresponding to all the possible sleeping strategies of the N SBSs and
finds the minimum. However, exhaustive searching techniques are not practical when the
network size becomes large. In this chapter, the author proposes to use Q-learning since
it is suitable for solving problems with environments that continually change, such as the
transmission rate requirements changing along with time, and can learn without need of
pre-training procedure. Furthermore, the computational complexity of a Q-learning algorithm
is low compared to other exhaustive searching algorithms. The original optimization problem
is decoupled into a centralized bandwidth allocation (CBA) sub-problem and a centralized
sleeping control (CSC) sub-problem. Since the optimal solution of CBA sub-problem has
been proved in Chapter 4, it will not be described here.

5.2.1 Transforming the CSC Sub-problem into a MSMAB Problem

A basic diagram of Q learning is illustrated in Fig.5.2. In iteration t, the agent observes the
state St from the environment, and takes an action At based on the accumulated knowledge
from historical iterations and a specific action selecting policy. After the action At is carried
out, the environment will be transformed into a new state St+1, and give the agent a reward
Rt+1, which may be affected by the state transformation and action adopted by the agent.
After enough iterations, the agent can learn which action is the best for a specific state
to achieve a goal, such as maximizing the instantaneous reward in this iteration or the
accumulative rewards in some future successive iterations.
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Fig. 5.2 A basic diagram of Q learning[7]

Consider the controller as the agent while considering the M×M grids in the region
as the environment. The state space in proposed algorithm is based on the transmission
rate requirements in the M×M grids, rather than the load of SBSs used in some other
researches[187, 189, 175]. A specific state in this work not only contains the information
of traffic load in each grid, but also captures the traffic’s spatial characteristics, which will
help the agent make global optimal decisions. Inspired by the common sense that similar
spatio-temporal distributions of traffic will lead to approximate system performances in terms
of traffic unserved rate and total power consumption if they are served by the same group of
active SBSs, a discrete state space where multiple similar transmission rate requirements are
mapped to the same state is considered. The 2N possible sleeping strategies of the N SBSs
are considered as different actions.

Specifically, the agent, the environment, the state, the action and the reward in this work
are defined as follows:

• Agent: The controller of the system.

• Environment: The M×M grids

• State: Based on the expected transmission rate requirements in the M×M grids,

the transmission rate requirement in grid m is quantized by a grid depth, β , which

represents the number of quantization levels, based on the following equation:

Stepsize =
tmax

β
(5.9)
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sm =

⌊
tm

Stepsize

⌋
(5.10)

where tmax is defined as the upper bound of the transmission rate requirement in each
grid. Stepsize refers to the quantization step size. sm denotes the quantization level in

grid m.
⌊

tm
Stepsize

⌋
represents the largest integer equal or smaller than

tm
Stepsize

.

The state of the environment is then given by

S = [s1, ...,sm, ...,sM2] (5.11)

For the convenience of representation, the author uses an index i to represent a specific

state in state space, the mapping equation is given by:

i =
M2

∑
m=1

sm ·β m−1 +1 (5.12)

• Action: An actions A is defined as one possible sleeping strategy, which contains the

sleeping choices of all the N SBSs, given by

A = [a1, ...,an, ...,aN] (5.13)

where an ={0,1}. For example, if A = [1,0,0, ...,0], it means the agent takes an action

to switch on the first SBS and switch off the other SBSs. For N SBSs, it is obvious that

there are 2N actions. For the convenience of representation, the author uses an index j

to represent a specific action as follows:

j =
N

∑
n=1

an ·2n−1 +1 (5.14)

• Reward: The reward function is designed to reflect the system performance achieved

by a selected action. For given transmission rate requirements in the M×M grids T =

[t1, ..., tm, ..., tM2], and a given action j, if the CBA sub-problem has no feasible solution,

thereby meaning some grids’ transmission rate requirements cannot be satisfied by
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the active SBSs, the reward value is defined as a large negative constant to represent

the penalty factor for this action. Conversely, if the CBA sub-problem has feasible

solutions, the reward value is defined as the opposite number of the optimal value

in the CBA sub-problem. An action may achieve a larger reward value if the active

SBSs can satisfy the transmission rate requirements and lead to a lower total energy

consumption of the SBSs. The mathematical expression of reward value is given as

follows:

r =



λ ,

CBA sub-problem has no feasible solution

−1 · min
bwn,m

N
∑

n=1
En,

CBA sub-problem has feasible solution

(5.15)

where λ is a negative constant, the absolute value of which should be greater than the
maximal total energy consumption in the system.

At the beginning of each time interval, the agent (controller) will transform the expected
transmission rate requirements in the M×M grids into a specific state and choose a proper
action (sleeping strategy) according to an action selecting policy. Then, for the given
transmission rate requirements and action (sleeping strategy), the agent will calculate and
record the reward in this time interval according to (5.15). Notably, since various transmission
rate requirements in the M×M grids are concluded in one state, the agent may obtain different
values of reward in different time intervals even though it observes the same state and adopts
the same action. Since the states are independent from one another, and the reward value
achieved by an arbitrary action is only determined by the current state (transmission rate
requirements) and the action (sleeping strategy), the CSC sub-problem is equivalent to a
MSMAB problem if the 2N actions are defined as arms.

5.2.2 Modified Q-learning Algorithm for CSC Sub-problem

To handle the MSMAB problem, a modified Q-learning algorithm is presented to minimize

the energy consumption for the current state while neglecting the influence of the next state.

The objective of the proposed algorithm is to train an intelligent agent that will automatically
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Fig. 5.3 A basic diagram of Q table

select the action (sleeping strategy) with the largest expected Q value for any given state

through historical experience. A Q table is constructed and maintained to record the average

reward value for every state-action pair. As shown in Fig.5.3, the columns of the Q table

represent the possible states, while the rows denote the possible actions. An arbitrary element

Qi, j in the Q table is calculated as:

Qi, j =
1

Ci, j
[ri, j(T (1))+ ri, j(T (2))+ ...+ ri, j(T (Ci, j))] (5.16)

where T (1),T (2), ...,T (Ci, j) are the samples of transmission rate requirements in the M×M
grids mapped to state i, Ci, j is the times that action j was chosen for state i in the past, and
ri, j(T (c)) is the corresponding reward when the action j is c-th chosen for state i.

The agent confronts an explore-exploit dilemma at every iteration. On one hand, for
the given transmission rate requirements in the M×M grids and the corresponding state,
choosing the action with the largest Q value in the Q table is more likely to acquire a good
reward in this iteration. On the other hand, some actions may be performed unsatisfactorily



112
Energy Efficient Centralized Sleeping Control and Bandwidth Allocation for Small Base

Stations based on Reinforcement Learning

by accident. If the actions with the best performance in the past are always adopted, the
better actions with larger reward values might be neglected due to inadequate exploration.

In this work, the author seeks to utilize the decreasing ε-greedy policy to address the

explore-exploit dilemma mentioned above. At each iteration, the agent will observe the

current state i∗ and select either a random action among the 2N actions with the probability

of ε or the action that has a maximum Q value in the Q table for state i∗ with the probability

of 1− ε . Then the agent will solve the CBA sub-problem corresponding to the selected

action j∗ (sleeping strategy) and obtain the reward value in this iteration. Then, the agent

will update Qi∗, j∗ in the Q table using the following equation:

Qi∗, j∗⇐
Qi∗, j∗×Ci∗, j∗+ r∗i∗, j∗

Ci∗, j∗+1
(5.17)

where Ci∗, j∗ denotes the times that action j∗ was chosen for state i∗ in the past, r∗i∗, j∗ is the
corresponding reward in current iteration.

The pseudo code of the training module for Q-learning-based algorithm is given in
Algorithm 6. To give the agent more chances to test the performances of different actions
for each state at the early stage of the reinforcement learning procedure, ε is initilized by a
relatively large value in the proposed algorithm. Then ε decreases gradually as the iteration
number becomes larger, thus the agent will be more likely to exploit the historical knowledge
and choose the action with the maximum expected reward value.

Given a Q table with Mβ rows and 2N columns, the maximum iteration number Kmax,
the decaying period Kdec, and the decay rate η , the first two steps for this algorithm are to
initialize the Q table and count table with the a specific value and zero, respectively. Then
ε and iteration counting number k are initialized in step 3 and step 4. While the iteration
counting number k is smaller than the maximum iteration number Kmax, the algorithm will go
to the training procedure. Step 6 firstly check if the iteration counting number k is divisible by
the decaying period Kdec, if divisible, ε will be updated by η× ε . By feeding a transmission
rate requirement sample in step 9, the index of the corresponding system state ik can be
obtained based on (5.9), (5.10) and (5.12) in step 10. In step 11, the agent randomly selects
an action j∗ among the 2N possible actions with probability ε , and selects the action j∗ which
has the largest Q value in the ik-th row of the Q table with probability 1− ε . Based on the
chosen action and the system state, the reward value can be calculated based on (5.15) in
step 12. Then the corresponding Q value and the count number will be updated in step 13
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Algorithm 6 Proposed training module for Q-learning-based algorithm

Input: The Q table with Mβ rows and 2N columns, the maximum iteration number Kmax,
the decaying period Kdec, and the decay rate η .

Output: The well-trained Q table
1: Initialize the elements Qi, j (i = 1, ...,Mβ , j = 1, ...,2N) with the same value.
2: Initialize the counting number Ci, j (i = 1, ...,Mβ , j = 1, ...,2N) with zero.
3: Initialize ε , ε belongs to (0,1].
4: Initialize the iteration counting number k with 1.
5: while k ≤ Kmax do
6: if k mod Kdec = 0 then
7: ε = η× ε

8: end if
9: Acquire the transmission rate requirements of the M grids in this iteration T k =

[tk
1, ..., t

k
m, ..., t

k
M2].

10: Transform T k into a specific state using (5.9) and (5.10), and then calculate the state
index, ik, using (5.12);

11: With probability ε randomly select an action j∗ among the 2N possible actions,
otherwise, select j∗ that has the largest Q value in the ik-th row of the Q table:

j∗ = argmax
j

Qi, j

12: Set jk = j∗ , and calculate the reward value of jk , rik, jk(T
k) , using (5.15).

13: Update the value of Qi∗, j∗ in the Q table based on (5.17).
14: Update the counting number Ci∗, j∗ =Ci∗, j∗+1
15: k = k+1
16: end while
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and 14. Finally, iteration counting number k is updated by k+1, and the algorithm goes to
step 5 for next iteration.

For Algorithm 6, the following two Lemmas and Corollary 1 are proven, respectively.
Lemma 1. The Q table will converge after enough iterations.

Proof:
For any given state i, and any given action j, the Q value in the Q table is calculated based

on (5.17).
When Ci, j is large enough, Qi, j will be the mean value of the reward. Assuming the

number of all the possible samples of transmission rate requirements in state i is finite,
denoted by Ω, and each of them has the same possibility p, then

Qi, j =
Ω

∑
α=1

p× ri, j(T α) (5.18)

where ri, j(T α) denotes the corresponding reward of transmission rate requirements sample
T α in state i when the action j is chosen.

Without loss of generality, it is assumed that part of possible traffic samples in each state
have a reward of λ according to (5.15). The number of those traffic samples is denoted by ∆.

Then, (5.16) can be re-written as:

Qi, j =
∆

∑
α=1

p× ri, j(T α)+
Ω

∑
β=∆+1

p× ri, j(T β )

= λ · p ·∆−
Ω

∑
β=∆+1

p ·D · {
N

∑
n=1

[an · (P0 +Ptx ·
M2

∑
m=1

bwβ
n,m)+(1−an) ·Ps]}

= λ · p ·∆−
Ω

∑
β=∆+1

p ·D ·
N

∑
n=1

[an ·P0 +(1−an) ·Ps]

−
Ω

∑
β=∆+1

p ·D ·
N

∑
n=1

an ·Ptx ·
M2

∑
m=1

bwβ
n,m

(5.19)

The first two parts of (5.19) are constants for a given action j and probability p. For a
finite discrete random variable of the possible samples of transmission rate requirements, the
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third part of (5.19) is also a constant. Therefore, Qi, j will converge after enough iterations
for any given state and action.

More generally, considering a continuous distribution of the possible transmission rate
requirements with any given probability distribution P, it can be similarly proven Qi, j will
converge after enough iterations.

Lemma 2. T k = [tk
1, ..., t

k
m, ..., t

k
M2] and T l = [t l

1, ..., t
l
m, ..., t

l
M2] are two samples of transmis-

sion rate requirements in the M×M grids. If T k and T l simultaneously have feasible solutions
or not for the CBA sub-problem of a given action j∗ and

∣∣tk
m− t l

m
∣∣≤ µ for any m∈ {1, ...,M2},

a linear function of µ , f j∗(µ) can be found, which satisfies
∣∣ri, j∗(T k)− ri, j∗(T l)

∣∣≤ f j∗(µ)

for any µ ≥ 0.
Proof:
For any sample of transmission rate requirements, the optimal solution of the CBA

sub-problem can be obtained if it exists. If the samples of transmission rate requirements T k

and T l do not have a feasible solution for the CBA sub-problem, the ri, j∗(T k) and ri, j∗(T l)

equal λ according to (5.15). Then
∣∣ri, j∗(T k)− ri, j∗(T l)

∣∣ will be zero.

If both of them have feasible solutions for the CBA sub-problem, the optimal solution

can and only can be obtained when the equality is established according to the characteristics

of linear programming. Therefore, the optimal solutions for T k = [tk
1, ..., t

k
m, ..., t

k
M2] and

T l = [t l
1, ..., t

l
m, ..., t

l
M2] will satisfy:

N

∑
n=1

bwk
n,m · γn,m = tk

m, ∀m ∈ {1, ...,M2}

N

∑
n=1

bwl
n,m · γn,m = t l

m, ∀m ∈ {1, ...,M2} (5.20)

where γn,m = Ehn,m [log2(1+SINRn,m)].
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For the given condition, the following equation can be obtained,∣∣∣tk
m− t l

m

∣∣∣= ∣∣∣∣∣ N

∑
n=1

bwk
n,m · γn,m−

N

∑
n=1

bwl
n,m · γn,m

∣∣∣∣∣
=

∣∣∣∣∣ N

∑
n=1

(bwk
n,m−bwl

n,m) · γn,m

∣∣∣∣∣
=

∣∣∣∣∣ N

∑
n=1

bw∆
n,m · γn,m

∣∣∣∣∣≤ µ, ∀m ∈ {1, ...,M2} (5.21)

Thus, ∣∣∣∣∣ N

∑
n=1

bw∆
n,m

∣∣∣∣∣≤ µ

min
n

γn,m
, ∀m ∈ {1, ...,M2} (5.22)

where bw∆
n,m = bwk

n,m−bwl
n,m, ∀n,m.

Consider that both samples of transmission rate requirements have an optimal solution,

then substitute (5.15) to the problem,∣∣∣ri, j∗(T k)− ri, j∗(T l)
∣∣∣

=

∣∣∣∣∣−D ·

{
N

∑
n=1

[an · (P0 +Ptx ·
M2

∑
m=1

bwk
n,m)+(1−an) ·Ps]

}

+D ·

{
N

∑
n=1

[an · (P0 +Ptx ·
M2

∑
m=1

bwl
n,m)+(1−an) ·Ps]

}∣∣∣∣∣
= Ptx ·D ·

∣∣∣∣∣ N

∑
n=1

an · (
M2

∑
m=1

bwl
n,m−

M2

∑
m=1

bwk
n,m)

∣∣∣∣∣
= Ptx ·D ·

∣∣∣∣∣ M2

∑
m=1

N

∑
n=1

an ·bw∆
n,m

∣∣∣∣∣ (5.23)
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Then the boundary of
∣∣ri, j∗(T k)− ri, j∗(T l)

∣∣ can be found as

∣∣∣ri, j∗(T k)− ri, j∗(T l)
∣∣∣= Ptx ·D ·

∣∣∣∣∣ M2

∑
m=1

N

∑
n=1

an ·bw∆
n,m

∣∣∣∣∣
≤ Ptx ·D ·

∣∣∣∣∣ M2

∑
m=1

N

∑
n=1

bw∆
n,m

∣∣∣∣∣≤ Ptx ·D ·
M2

∑
m=1

µ

min
n

γn,m
= f j∗(µ) (5.24)

Thus, f j∗(µ) is a linear function of µ and the coefficient is dependent on the parameters
γn,m. When µ approaches zero, f j∗(µ) will be approaching zero.

Corollary 1. Consider an arbitrary state i in the state space when the Q table has
converged. If action j∗ has the largest Q value in the i-th row of the Q table and all the possible
samples of transmission rate requirements in the M×M grids mapped to state i simultaneously
have feasible solutions or not for the CBA sub-problem corresponding to each action among
the 2N actions, then for any transmission rate requirements T = [t1, ..., tm, ..., tM2] belonging
to state i, j∗ is the theoretical optimal action with maximum reward value as long as the grid
depth β is large enough.

Proof:
Suppose the action j∗ has the largest Q value in the i-th row of the Q table, j

′
has the

second largest Q value in the i-th row, and Qi, j∗−Qi, j′ = ω,(ω > 0) . According to (5.16),

the Q value can be re-written as Qi, j∗ =
1

Ci, j∗
[ri, j∗(T (1))+ ri, j∗(T (2))+ ...+ ri, j∗(T (Ci, j∗))].

For any two samples of transmission rate requirements T k = [tk
1, ..., t

k
m, ..., t

k
M2] and T l =

[t l
1, ..., t

l
m, ..., t

l
M2] in the same state i, it can be obtained that

∣∣tk
m− t l

m
∣∣ ≤ Stepsize =

tmax

β

according to (5.9).

Since T (c) (c ∈ {1, ...,Ci, j∗}) is a transmission rate requirements sample in the state i,

and
∣∣∣ri, j∗(T k)− ri, j∗(T (c))

∣∣∣ ≤ f j∗(µ),∀c ∈ {1, ...,Ci, j∗} according to Lemma 2, it can be

obtained∣∣∣ri, j∗(T k)−Qi, j∗
∣∣∣= ∣∣∣∣ri, j∗(T k)− 1

Ci, j∗
[ri, j∗(T (1))+ ...+ ri, j∗(T (Ci, j∗))]

∣∣∣∣
=

1
Ci, j∗

∣∣∣∣∣
Ci, j∗

∑
c=1

(
ri, j∗(T k)− ri, j∗(T (c))

)∣∣∣∣∣≤ 1
Ci, j∗

Ci, j∗

∑
c=1

f j∗(µ)

⇒ Qi, j∗− f j∗(µ)≤ ri, j∗(T k)≤ Qi, j∗+ f j∗(µ) (5.25)
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Similarly,

Qi, j′ − f j′(µ)≤ ri, j′(T
k)≤ Qi, j′ + f j′(µ) (5.26)

Then, for a specific transmission rate requirements sample T k = [tk
1, ..., t

k
m, ..., t

k
M2 ], the

difference between the rewards of action j∗ and j
′
is

ri, j∗(T k)− ri, j′(T
k)≥ Qi, j∗−Qi, j′ − f j∗(µ)− f j′(µ)

= ω− f j∗(µ)− f j′(µ) (5.27)

Therefore, as long as the grid depth β is large enough satisfying that f j∗(µ)+ f j′ (µ)≤

ω , where µ = Stepsize =
tmax

β
and f j∗(µ), f j′ (µ) are linear functions of µ , the action

j∗ will always be the theoretical optimal action for any transmission rate requirements
T = [t1, ..., tm, ..., tM2] belonging to state i.

When the grid depth β becomes large, the transmission rate requirements in the M×M
grids mapped to the same state will be more approximate to each other, according to the
definition of state in (5.9) and (5.10); thus these transmission rate requirements will have
more opportunities to be simultaneously located inside or outside the feasible domain of the
CBA sub-problem corresponding to each action. From Lemmas 1, 2, and Corollary 1, it
can be concluded that, as long as the grid depth β is large enough, the Q table will converge
at last and theoretically help the agent find the optimal action (sleeping strategy) exploiting
the accumulated knowledge for any given transmission rate requirements.

The overall Q-learning-based algorithm is given in Algorithm 7. Given the well-trained
Q table with Mβ rows and 2N columns, the corresponding count table, the test sample T k,
and the time duration D, the first step for Algorithm 7 is to initialize the ε . By feeding
the test sample in step 2, the index of the corresponding system state ik can be obtained
based on (5.9), (5.10) and (5.12). In step 3, the agent randomly selects an action j∗ among
the 2N possible actions with probability ε , and selects the action j∗ which has the largest
Q value in the ik-th row of the Q table with probability 1− ε . Based on the chosen action
and the system state, the reward value can be calculated based on (5.15) in step 4. Then
the corresponding Q value and the count number will be updated in step 5 and 6. After the
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predicted sleeping strategy for the test sample j∗ is obtained in Step 3, it will be estimated
that if the sleeping strategy j∗ can satisfy the testing traffic requirements or not in step 7. If
possible, the corresponding CBA sub-problem for sleeping strategy j∗ will be solved based
on (4.7), and bwk

i, j will be obtained. Then the total energy consumption Ek
total for the sleeping

strategy j∗ will be calculated based on (5.3) in step 9, and be outputted in step 10. If the
predicted sleeping strategy j∗ cannot satisfy the testing traffic requirements, the algorithm
will break in step 12. It should be noted that Algorithm 7 can be modified to an online
algorithm as long as the well-trained Q table and the corresponding count table are replaced
by untrained Q table and count table.

Algorithm 7 Proposed overall algorithm for Q-learning-based algorithm

Input: The well-trained Q table with Mβ rows and 2N columns, the corresponding count
table, the test sample T k, and the time duration D.

Output: The predicted energy consumption Ek
total

1: Initialize ε , ε belongs to (0,1].
2: Transform T k into a specific state using (5.9) and (5.10), and then calculate the state

index, ik, using (5.12);
3: With probability ε , randomly select an action j∗ among the 2N possible actions, other-

wise, select j∗ that has the largest Q value in the ik-th row of the Q table:
j∗ = argmax

j
Qi, j

4: Set jk = j∗ , and calculate the reward value of jk , rik, jk(T
k) , using (5.15).

5: Update the value of Qi∗, j∗ in the Q table based on (5.17).
6: Update the counting number Ci∗, j∗ =Ci∗, j∗+1
7: if the sleeping strategy j∗ can satisfy the traffic requirements T k. then
8: Solve the corresponding CBA sub-problem in (4.7), and obtain bwk

i, j

9: Calculate the total energy consumption Ek
total for the sleeping strategy j∗ based on

(5.3).
10: Output Ek

total .
11: else
12: break
13: end if

5.2.3 Computational Complexity Analysis

In this chapter, the joint SCBA problem with NP-hard complexity is decoupled into two sub-
problems. For the CSC sub-problem, the agent first needs to map the observed transmission
rate requirements T into a certain state using (5.9)-(5.12), whose computational complexity
are bounded by O(β ·M2) . Then, the agent will either randomly select an action among the
2N possible actions or select the action with the largest Q value corresponding to the current
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Fig. 5.4 The comparison of the traffic distribution.

state. Since a vector is used to record the column number for the maximum Q value of each
row in the Q table, the computational complexities of both ways of action selecting will be
bounded by O(1).

When the action (sleeping strategy) of the N SBSs is determined, it is proven that
the CBA sub-problem can be transformed into a LP problem about variables bwn,m, (n =

1, ...N,m = 1, ...,M2). The parameters γn,m, (n = 1, ...N,m = 1, ...,M2) in the LP problem’s
constraints are constants, which can be calculated off-line. Thus, for a certain transmission
rate requirements T and a certain SBS sleeping strategy, solving the CBA sub-problem has the
maximum computational complexity of O(N4 ·M8). The overall computational complexity
of the proposed mechanism is bounded by O(N4 ·M8 +β ·M2 +1).

5.3 Testing and Results

In this section, the performance of the proposed mechanism is evaluated through a series of
semi-authentic transmission rate requirements. Consider a 100×100m2 region that is evenly
divided into 3×3 grids. Three SBSs are supposed to be fixedly allocated in the region with
the same height, H.
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Table 5.1 Parameters for Q-learning based algorithm

Parameter Symbol Value

Region of Area B 100×100m2

No. of BSs N 3,5,8
Path loss exponent α -4
No. of grids M×M 3×3,4×4,5×5
Bandwidth BW 5MHz
Transmit power of SBSs Ptx -30dBm/Hz
Static power consumption P0 38dBm
Sleep power consumption Ps 27dBm
Noise σ2 -174dBm/Hz
Height of SBSs H 5m
The duration of each Time interval D 1 hour
Grid depth β 2-6
No. of test samples NT 672(4 weeks)
Large negative constant λ -100

The duration of each time interval, D, is set as an hour. Based on the temporal model
of mobile traffic variation proposed in [95] and the observations of mobile traffic records
collected in London, the downlink mobile traffic volume of grid m in each time interval is set
by the following equation:

vm(T Inum) = Amsin(
2π

24
×T Inum +ϕm)+ km +σm(T Inum) (5.28)

where T Inum is the order number of time interval, Am,ϕm and km are fixed factors used
to fit the traffic load variation in each grid m according to realistic mobile traffic records
generated in a 100×100m2 belonging to the center area of Greater London from 2012-06-10
to 2012-06-24, σm(T Inum) is a random variable uniformly distributed in [σmin,σmax]. The
realistic mobile traffic pattern and the imitated mobile traffic pattern of a randomly selected
grid are illustrated in Fig.5.4.

For a certain time interval (TI), the transmission rate requirement in grid m is calculated

as follows:

tm(T Inum) =
vm(T Inum)

D
(5.29)
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When the Q table has converged after sufficient time intervals, the author compares
the performance of proposed mechanism over NT test samples (a number of NT samples
of transmission rate requirements in the 100×100m2 region) with other existing sleeping
control algorithms proposed in previous research studies. Same as that in Chapter 4, four
benchmarks, non-sleep(ALLON), probability-based strategic sleeping control (SSC) [200],
greedy sleeping control (GSC) [201], and optimal sleeping control (OSC) are employed
for comparison. After the prediction results (sleeping strategies) are obtained by these
algorithms, the bandwidth allocation for the active SBSs will then be obtained by solving
the corresponding CBA sub-problem, except SSC algorithm, for which the transmission rate
requirement in each grid is served by the active SBS which provides the maximum SINR.
Thus, the overall power consumption minimization of the system can be obtained.

If the CBA sub-problem has no feasible solution for the sleeping strategy given by a
specific algorithm, a best-effort solution will be employed to maximize the served traffic.
The parameters used in this work are summarized in Table 5.1.

5.3.1 Convergence

The convergence speed of proposed mechanism under different values of grid depth, β , for
N = 3 and M = 9 is illustrated in Fig.5.5. From Fig.5.5, it can be observed that the proposed
mechanism will always converge after enough iterations. Additionally, as the grid depth β ,
increases from 2 to 6, the mechanism’s convergence speed slows down (from about 200000
TIs with β = 2 to about 600000 TIs with β = 6) and the average reward value achieved
when the approach has had steady increases (from -13.23 to -12.81). These phenomena are
consistent with the theoretical analyses and common sense that dividing finer state space
will raise the mechanism’s complexity and extend training time, while on the other hand,
elevating the mechanism’s performance according to Corollary 1.

5.3.2 Accuracy

The accuracies of sleeping strategy selection for proposed mechanism and other existing

algorithms are illustrated in Fig.5.6. For any test sample of transmission rate requirements, if

the action decided by the evaluated algorithm is the same as the action decided by OSC, it

will be called an accurate one. The accuracy is thus calculated according to the following
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Fig. 5.5 Convergence of proposed mechanism under different values of grid depth for N = 3
and M = 9.

equation,

Accuracy(%) =
The No. of accurate samples
The total No. of test samples

×100% (5.30)

From Fig.5.6, it can be observed that the accuracies of the proposed mechanism under
different values of grid depth are greater than those of GSC and SSC (49.71% and 34.08%,
respectively). Furthermore, the accuracy of proposed mechanism increases along with the
increase of the grid depth β (from 86.91% with β = 2 to 91.22% with β = 6). Notably, for
any grid depth β , the accuracy of proposed mechanism will always be greater than 85%.

5.3.3 Average Total Energy Consumption

Fig.5.7 depicts the comparison of average total energy consumption for the proposed mech-
anism and other existing algorithms. From Fig.5.7, it can be observed that the average
total energy consumptions of the proposed mechanism decrease with the increase of grid
depth approaching the theoretical minimum of 11.52Wh. When the grid depth equals 6, the
difference between the average total energy consumption of the proposed mechanism and the
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Fig. 5.6 Comparison of the accuracy of sleeping strategy selection for proposed mechanism
and other existing algorithms for N = 3 and M = 9.

theoretical minimum is 2.95%. The performance of the proposed mechanism is comparable
to that of GSC, and will have a better performance when β ≥ 5.

5.3.4 Served Rate

Another concern about the proposed mechanism is the percentage of served traffic over the

total traffic (referred to as the served rate, SR), which is defined as:

SR(%) =
The served traffic

The total traffic
×100% (5.31)

Fig.5.8 compares the served rates of different algorithms. The results show that the
served rates of the proposed mechanism under different values of grid depth are all equal to
100%, while the served rates of GSC and SSC are 100% and 89.46%, respectively. The good
performance of the proposed mechanism about the served rate results from the large negative
constant in (5.15), which is consistent with previous analysis.
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Fig. 5.7 Comparison of the average total energy consumption for proposed mechanism and
other existing algorithms for N = 3 and M = 9.
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Fig. 5.9 Comparison of the dynamic total energy consumption of different algorithms over
hours of a day.

5.3.5 Dynamic Total Energy Consumption

The dynamic total energy consumption of different algorithms is evaluated in Fig.5.9 and
Fig.5.10. Fig.5.9 denotes the dynamic total energy consumption over hours of a day, while
Fig.5.10 denotes the dynamic total energy consumption in different days. It can be observed
that the dynamic total energy consumption of the proposed mechanism with β = 6 is
approximately the same as that of OSC, no matter in Fig.5.9 or Fig.5.10, while the dynamic
total energy consumption of ALLON is almost unchanged along with time. The fluctuation
of the dynamic total energy consumption for SSC is violent and irregular in a day since the
switching ON/OFF of SBS for SSC is probability-based. Moreover, the dynamic performance
of GSC is also good since it is a centralized sleeping algorithm and tries to find a global
optimal solution.

5.3.6 Complexity

The complexity of the proposed algorithm is also investigated for different number of BSs
and different number of grids. Table 5.2 depicts the complexity for the decision-making
of different algorithms. Experimental results are achieved on an Intel i7 2.60GHz 12GB
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Fig. 5.10 Comparison of the dynamic total energy consumption of different algorithms over
different days.

computer. From Table 5.2, it can be found that proposed algorithm always makes the fastest
decision compared with other algorithms. As to a specific pair N and M, the complexity
for proposed algorithm is almost the same under different value of β . As the number of
BSs increases, the complexity for all algorithms increase, while the increase for proposed
algorithm is modest. Similar conclusions can be obtained for increasing number of grids.
Therefore, the complexity for proposed algorithm is more and more superior compared with
existing algorithms with the increasing number of BSs or grids.

5.4 Conclusions

In this chapter, a centralized, low-complexity mechanism is proposed to minimize the total
energy consumption of the SBSs by properly switching SBSs into sleep mode and allocating
the bandwidth of the active SBSs to satisfy the transmission rate requirements. The author
decouples the joint SCBA problem into CBA sub-problem and CSC sub-problem, and solve
them by linear programming and a modified Q-learning algorithm, respectively.

Numerical results confirm the effectiveness of the proposed mechanism. An additional
42.8%-45.5% and 60.8%-62.6% accuracy can be achieved for proposed mechanism compared
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Table 5.2 Comparison of the complexity for different algorithms

Algorithms
N = 3 (ms) N = 5 (ms) N = 8 (ms)

M=3 M=4 M=5 M=3 M=4 M=5 M=3 M=4 M=5
Proposed-β = 2 5.1 6.2 9.3 5.3 8.2 10.5 6.1 10.9 16.0
Proposed-β = 3 5.0 5.7 9.1 5.3 8.6 10.1 6.1 11.1 14.6
Proposed-β = 4 5.1 5.9 8.8 5.3 8.5 10.2 5.9 10.5 15.2
Proposed-β = 5 5.1 5.8 9.4 5.3 8.4 10.2 6.3 10.5 13.7
Proposed-β = 6 5.3 6.4 8.9 5.3 8.2 10.1 7.1 10.4 15.1

SSC 7.4 9.5 11.4 9.0 12.4 14.4 8.2 13.8 15.2
GSC 19.5 27.7 33.8 22.8 29.0 32.2 22.0 31.1 35.6
OSC 45.7 53.2 72.0 248.0 333.7 415.8 2405.1 3405.2 4420.9

with GSC and SSC from β = 2 to β = 6. Moreover, the proposed algorithm has a good
performance for energy saving and the served rate. The served rates of proposed mechanism
under different grid depth remains 100%, while the difference between the average total
energy consumption of the proposed mechanism and the theoretical minimum is 3% when
the grid depth equals 6. Furthermore, the complexity of different algorithms for different
number of BSs and grids are also analyzed. The numerical results show that compared with
existing sleeping control schemes, the complexity of proposed algorithm is significantly
reduced for different number of BSs and grids.

For future work, the restrictions of the training time in this work need to be investigated.



Chapter 6

Conclusions and Future Works

How to achieve green communication and minimize the energy consumption remain open
issues. This thesis studied two promising categories for green communication: energy
efficient BS deployment and energy efficient BS sleeping. According to the literature review
of the state-of-art techniques, it can be found that there has been works in these fields.
Although effective, existing works have limitations such as high-complexity, low accuracy,
or not good enough performance, etc. In this thesis, the author investigated the potential of
these two methods based on online social network data and machine learning techniques.

In Chapter 3, it is shown that existing deployment methods, such as SPPP model, hexog-
onal model, are no longer suitable for current networks, especially for SBS networks. To fill
the gap, the author developed a joint optimization scheme to minimize the power consump-
tion and satisfy the constraints of coverage or capacity. Further, to reduce the computational
complexity of the joint optimization scheme and achieve a good performance, two different
k-means based deployment methods subject to different constraints were proposed based on
Twitter data.

Energy efficient BS strategies were discussed are proposed in Chapter 4 and Chapter
5. In Chapter 4, a joint optimization scheme combining sleeping control and bandwidth
allocation (SCBA) is introduced and formulated as a mixed integer non-linear programming
problem subject to transmission rate requirements. To reduce the computational complexity
of the joint SCBA optimization scheme, KNN-based algorithm and CNN based algorithm
were proposed. In Chapter 5, the author considers the SCBA optimization scheme for the
scenarios where few realistic traffic datasets are available. In this situation, a Q-learning
based algorithm was proposed to enable continuously learning and improvement.

In this chapter, the contributions and limitations of current work are firstly discussed.
Then the future directions for energy consumption minimization are proposed within the
scope of this thesis.



130 Conclusions and Future Works

6.1 Conclusions

• BS deployment and BS sleeping are promising for green communication. In Chap-
ter 1 and Chapter 2, different energy efficient technologies are discussed. According to
the discussions, existing works for BS deployment and BS sleeping have the limitations
of high complexity, low accuracy, or not good enough performance, while effective.
More efficient methods are required.

• Online social network data and clustering algorithms can significantly improve
the performance for BS deployment. In Chapter 3, the author proposed two novel k-
means based SBS deployment methods subject to different constraints based on Twitter
data. For a HetNet scenario where existing networks provide poor coverage, a data-
driven SBS deployment method is proposed to minimize the power consumption while
guaranteeing the coverage. For a dense urban scenario, a data-driven SBS deployment
method is proposed to minimize the power consumption while satisfying the traffic
requirements. The performances of proposed methods are evaluated in various regions.
Simulation results show the performance can be significantly improved by proposed
methods, with smaller power consumptions and better QoS under the same number
of BSs. Although significant results have been obtained, there are some unsolved
problems. Firstly, as to the first scenario, only coverage is considered as the constraint
in current work. In the future, other tradeoffs or other KPIs need to be investigated.
Secondly, as to the second scenario, SBS network is considered in current work. In
the future, HetNet will be considered. Thirdly, the traffic requirements from all users
are assumed to be the same in the second scenario. In the future, more practical
traffic patterns need to be considered. Lastly, k-means used in this work is based on
spatial extent, thus it cannot accurately capture the difference of traffic requirements
for different users. In the future, other methods will be investigated such as DBSCAN,
weighted-k-means, etc.

• Deep learning techniques can significantly improve the performance for BS sleep-
ing when historical datasets are available. In Chapter 4, a joint sleeping control
and bandwidth allocation (SCBA) optimization problem is introduced and formulated
as a mixed integer non-linear programming problem subject to the transmission rate
requirements. The joint optimization problem is then decoupled into two sub-problems:
a centralized bandwidth allocation (CBA) sub-problem that minimizes the power con-
sumption of the system by optimizing the allocated bandwidth of the active SBSs;
and a centralized sleeping control (CSC) sub-problem that finds the optimal SBS
sleeping strategy among all the possible ones. Given the historical datasets, KNN-
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based algorithm and CNN-based algorithm are proposed to reduce the computational
complexity and achieve good performances. Numerical results show the proposed
algorithms both have better performances compared with existing approaches, while
the CNN-based method has a superiority over KNN-based method at the expenses of
pre-training. Despite the significant improvements, proposed algorithms have some
limitations which need to be solved in the future. Firstly, the influence of the size
of historical datasets and the ratio of train/test set need to be investigated. Secondly,
since the definition of distance between two samples may affect the performance of
KNN-based algorithm, different distance calculation methods should be discussed in
the future. Thirdly, the training time of the CNN-based algorithm for different number
of BSs also need to be investigated in the future.

• Reinforcement learning techniques can significantly improve the performance
for BS sleeping when few or no historical datasets are available. In Chapter 5, a
similar optimization problem to Chapter 4 is considered, while a Q learning based
algorithm is proposed based on few realistic datasets. Theoretically, the convergence
of the proposed Q-learning algorithm is analyzed. Simulation results confirm the
effectiveness of the proposed algorithm with convergence, greater accuracy, smaller
energy consumption, greater served rate, and lower computational complexity. This
work also faces challenges. Firstly, the system model in current work is based on ideal
assumptions that there is no inter-cell interference. In the future, more practical models
need to be considered. Secondly, the training time for different number of BSs should
be investigated in the future. Thirdly, for an online training algorithm, the performance
at the early stage will be poor, how to improve it will be investigated for future work.

6.2 Future Works

In this thesis, the author studied two proposing energy efficient technologies for green
communications: energy efficient BS deployment and energy efficient BS sleeping. The
contributions of current works have been summarized in previous section. Although sig-
nificant results have been obtained, there are some remaining problems and potentials of
improvement which are worth further investigation. The future research directions related to
the topics of this thesis are summarized below.

As it can be seen from Chapter 3, there remain many limitations in current research for
BS deployment. As the first stage of deploying networks, the potential of energy efficient BS
deployment is worth further research in the following directions:
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• Introduce other tradeoffs or other KPIs. In the work that SBSs are deployed to
uncover blackspots, only coverage is taken into consideration. However, more concern
about blackspots are focused on capacity and latency in current networks, especially in
5G networks [13]. Therefore, the blackspots detection based on capacity and latency
should be introduced in the future, resulting in more practical energy efficient BS
deployment method.

• Introduce complex network models and propagation models. In the work that S-
BSs are deployed to provide traffic, only small cell networks are considered. In the
future, K-tier HetNet need to be introduced, since it is much closer to realistic net-
works. Besides, more accurate propagation models which contains fading and channel
variations need to be considered in the future, since the link budgeting considered in
current works is based on ideal assumption that fading effect is ignored.

• Introduce more practical traffic patterns. The traffic requirements for different
users are assumed to be the same in current works, which is not practical. In realistic,
the spatial-temporal characteristics of traffic distribution is extremely uneven. Based
on existing works, more practical traffic patterns which contain variations in spatial
and temporal domain will be considered, such as lognormal distribution with mobility
[205, 206].

• Introduce other cluster algorithms. k-means used in current works is based on
spatial extent, thus it cannot accurately capture the difference of traffic requirements for
different users. In the future, k-means will be no longer suitable if more practical traffic
patterns are considered. Alternatively, weighted-k-means [207] or DBSCAN [208]
algorithms can be introduced since both of them can capture the weight information
for different points.

Chapter 4 and 5 focus on the joint optimization of sleeping strategy and bandwidth
allocation. The future works are listed as follows.

• Consider more practical interference model. In current works, the system models
are based on ideal assumptions that there is no inter-cell interference. In realistic,
the inter-cell interference may be non-neglectful. Therefore, more accurate channel
models which contains inter-cell interference need to be considered in the future.

• Evaluate the influence of the size of dataset and the ratio of train/test set. In
current works, the size of dataset and the ratio of train/test set remain the same for
simulations. However, the size of dataset and the ratio of train/test set can significantly
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affect the complexity and the performance of proposed algorithms. Recent years,
how to achieve good training results with few samples, which is called few-shot
learning[209], has drawn more and more attention. For current works, few-shot
learning is also meaningful, since the available traffic datasets is usually sparse.

• Introduce other definitions of distance for KNN-based algorithm. For KNN-based
algorithm, the definition of distance between two samples has a great influence on the
performance. In current works, the Chebyshev distance [210] is utilized to evaluate
the similarities between two samples. Two samples are regarded as more and more
similar while the Chebyshev distance between them decreases. However, this method
may not be best method for similarity evaluation. In the future work, other similarity
evaluation methods, such as cosine similarity [211], Pearson correlation coefficient
[212], etc, will be investigated.

• Evaluate the training time for CNN-based algorithm. Since there is an offline
training procedure, the training time has a significant impact on the evaluation of CNN-
based algorithm. Although the performance for CNN-based algorithm is outstanding,
it may be unacceptable for real-time scenarios if the training time is considerable.
Therefore, the training time for CNN-based algorithm need to be further investigated
considering different sizes of datasets and different number of BSs.

• Evaluate the training time and improve the performance at the early stage for
Q-learning based algorithm. Since Q-learning based algorithm can be regarded as an
online training algorithm, the performance for it at the early stage may be poor due to
the explore/exploit process. Hence, the training time for convergence can significantly
affect the performance. In the future, how to shorten the training time and improve the
performance at the early stage will be investigated.





Appendix A

Analysis of BSs Spatial Characteristics in
London

Based on a London dataset from an operator in 2012, the spatial characteristics of BS (2289)
in London are investigated according to the testing method of SPPP distribution proposed
in [66]. The regions in Greater London is categorized into: dense urban, urban, suburban.
For each type of region, tremendous examples are tested. An example for each region type
is randomly chosen and shown in the following figures. According to the results, similar
conclusion can be obtained, that is, SPPP model is not suitable for dense urban region
anymore because of the considerable number of SBSs in those regions. Since the locations of
SBSs are highly related to the users traffic demand rather than randomness, the SPPP model
is becoming more and more unsuitable for current networks.
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Fig. A.1 (Left) BSs in dense urban region. (Right) Comparison between distribution of BSs
and SPPP model

Fig. A.2 (Left) MBSs in dense urban region. (Right) Comparison between distribution of
MBSs and SPPP model

Fig. A.3 (Left) SBSs in dense urban region. (Right) Comparison between distribution of
SBSs and SPPP model
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Fig. A.4 (Left) BSs in urban region. (Right) Comparison between distribution of BSs and
SPPP model

Fig. A.5 (Left) BSs in suburban region. (Right) Comparison between distribution of BSs and
SPPP model





Appendix B

COST-231-Walfisch-lkegami Model

COST-231-Walfisch-lkegami Model utilizes the theoretical Walfisch-Bertoni model [213,
214], and takes the reflection and scattering above and between buildings into consideration.
According to the distance between BS and UE, two situations are proposed in this model:
line of sight (LOS) and non-line of sight (NLOS). According to researches, it is suitable for
network performance prediction in metropolitan areas [215, 216].

If the distance between the UE and BS is equal to or smaller than 20 m, this situation can
be regarded as LOS, and the model is approximated to the free-space propagation model,
given as :

LLOS = 42.6+26× log(d)+20× log( f ), d ≤ 20m (B.1)

where d(km) is the distance between UE and BS. f (MHz) refers to the radio frequency.
If d > 20m, the model will take reflection, scattering and diffraction of the buildings into

account, the model thus is given by :

LNLOS = L0 +max{0,Lrts +Lmsd}, d > 20m (B.2)

where L0 denotes the free space path loss, Lrts is the loss resulted from the diffraction and
scattering between rooftop and street, and Lmsd refers to the diffraction from the buildings.
The detailed information of these terms is shown in Table.B.1.
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Table B.1 Parameters for COST-231-Walfisch-lkegami model

Symbol Meaning and Equation

f (MHz) Radio frequency
d (km) Distance of radio path
w (m) Average street width
hm (m) Height of mobile
hroo f (m) Height of building
hB (m) Height of base station
ϕ (◦) Road orientation with respect to direct radio path
b (m) Average building separation
∆hM (m) hroo f −hM
∆hB (m) hB−hroo f
L0 32.4+20 · log(d)+20 · log( f )
Lrts −16.9−10 · log(w)+10 · log( f )+20 · log(∆hM)+Lori

Lori


−10+0.354ϕ, 0◦ ≤ ϕ < 35◦

2.5+0.075(ϕ−35), 35◦ ≤ ϕ < 55◦

4.0−0.114(ϕ−55), 55◦ ≤ ϕ < 90◦

Lmsd Lbsh + ka + kdlog(d)+ k f log( f )−9log(b)

Lbsh

{
−18log(1+∆hB), hB > hroo f

0, hB ≤ hroo f

ka


54, hB > hroo f

54−0.8∆hB, hB ≤ hroo f and d ≥ 0.5km
54−1.6∆hBd, hB ≤ hroo f and d < 0.5km

kd

18, hB > hroo f

18−15
∆hB

hroo f
, hB ≤ hroo f

k f


−4+0.7(

f
925
−1), for medium cities, suburbs with medium tree density

−4+1.5(
f

925
−1), for metropolitan centers



Appendix C

Additional Simulations for Suburban
Region and Dense Urban Region for
Chapter 3.2

A suburban region (28km×23km) with 37 MBSs, and 11058 users, and a dense urban region
(2.5km× 4.5km) with 20 MBSs, 108 MiBSs and 32246 users are chosen as the scenario,
shown in Fig.C.1 and Fig.C.6, respectively. The parameters used for these regions are the
same as those in Table 3.1. The results for the suburban region are shown in Fig.C.2 - Fig.C.5,
while the results for the dense urban region are shown in Fig.C.7 - Fig.C.10. According to
the simulation results, similar conclusion can be obtained that compared with existing SPPP
model, the coverage probability can be significantly improved under the same number of
SBSs, and the power consumption can be significantly reduced under the same coverage
probability threshold for the proposed model in various regions.

(a) (b)

Fig. C.1 (a) MBSs in the subruban region. (b) Users in the subruban region.
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(a) (b)

Fig. C.2 (a)The heatmap of the received power (dBm) of users in the suburban region. (b)
The PDF of the received power in the suburban region.

Fig. C.3 Users suffering from poor coverage in the suburban region.
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Fig. C.4 Comparison of coverage probability for two models under different number of SBSs
in the suburban region.

Fig. C.5 Comparison of the additional power consumption for two models under different
coverage probability threshold in the suburban region.
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(a) (b)

Fig. C.6 (a) MBSs in the dense urban region. (b) Users in the dense urban region.

(a) (b)

Fig. C.7 (a)The heatmap of the received power (dBm) of users in the dense urban region. (b)
The PDF of the received power in the dense urban region.
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Fig. C.8 Users suffering from poor coverage in the dense urban region.

Fig. C.9 Comparison of coverage probability for two models under different number of SBSs
in the dense urban region.
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Fig. C.10 Comparison of the additional power consumption for two models under different
coverage probability threshold in the dense urban region.
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