3,275 research outputs found

    Enhanced distance-based location management of mobile communication systems using a cell coordinates approach

    Get PDF
    In managing the locations of mobile users in mobile communication systems, the distance-based strategy has been proven to have better performance than other dynamic strategies, but is difficult to implement. In this paper, a simple approach is introduced to implement the distance-based strategy by using the cell coordinates in calculating the physical distance traveled. This approach has the advantages of being independent of the size, shape, and distribution of cells, as well as catering for the direction of movement in addition to the speed of each mobile terminal. An enhanced distance-based location management strategy is proposed to dynamically adjust the size and shape of location area for each individual mobile terminal according to the current speed and direction of movement. It can reduce the location management signaling traffic of the distance-based strategy by half when mobile terminals have predictable directions of movement. Three types of location updating schemes are discussed, namely, Circular Location Area, Optimal Location Area, and Elliptic Location Area. Paging schemes using searching techniques such as expanding distance search based on the last reported location and based on the predicted location, and expanding direction search are also explored to further reduce paging signal traffic by partitioning location areas into paging areas.published_or_final_versio

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Simulation to track 3D location in GSM through NS2 and real life

    Full text link
    In recent times the cost of mobile communication has dropped significantly leading to a dramatic increase in mobile phone usage. The widespread usage has led mobiles to emerge as a strong alternative for other applications one of which is tracking. This has enabled law-enforcing agencies to detect overspeeding vehicles and organizations to keep track its employees. The 3 major ways of tracking being employed presently are (a) via GPS [1] (b) signal attenuation property of a packet [3] and (c) using GSM Network [2]. The initial cost of GPS is very high resulting in low usage whereas (b) needs a very high precision measuring device. The paper presents a GSM-based tracking technique which eliminates the above mentioned overheads, implements it in NS2 and shows the limitations of the real life simulation. An accuracy of 97% was achieved during NS2 simulation which is comparable to the above mentioned alternate methods of tracking.Comment: 12 Pages, JGraph-Hoc Journa

    Tourism and the smartphone app: capabilities, emerging practice and scope in the travel domain.

    Get PDF
    Based on its advanced computing capabilities and ubiquity, the smartphone has rapidly been adopted as a tourism travel tool.With a growing number of users and a wide varietyof applications emerging, the smartphone is fundamentally altering our current use and understanding of the transport network and tourism travel. Based on a review of smartphone apps, this article evaluates the current functionalities used in the domestic tourism travel domain and highlights where the next major developments lie. Then, at a more conceptual level, the article analyses how the smartphone mediates tourism travel and the role it might play in more collaborative and dynamic travel decisions to facilitate sustainable travel. Some emerging research challenges are discussed

    "If You Can't Beat them, Join them": A Usability Approach to Interdependent Privacy in Cloud Apps

    Get PDF
    Cloud storage services, like Dropbox and Google Drive, have growing ecosystems of 3rd party apps that are designed to work with users' cloud files. Such apps often request full access to users' files, including files shared with collaborators. Hence, whenever a user grants access to a new vendor, she is inflicting a privacy loss on herself and on her collaborators too. Based on analyzing a real dataset of 183 Google Drive users and 131 third party apps, we discover that collaborators inflict a privacy loss which is at least 39% higher than what users themselves cause. We take a step toward minimizing this loss by introducing the concept of History-based decisions. Simply put, users are informed at decision time about the vendors which have been previously granted access to their data. Thus, they can reduce their privacy loss by not installing apps from new vendors whenever possible. Next, we realize this concept by introducing a new privacy indicator, which can be integrated within the cloud apps' authorization interface. Via a web experiment with 141 participants recruited from CrowdFlower, we show that our privacy indicator can significantly increase the user's likelihood of choosing the app that minimizes her privacy loss. Finally, we explore the network effect of History-based decisions via a simulation on top of large collaboration networks. We demonstrate that adopting such a decision-making process is capable of reducing the growth of users' privacy loss by 70% in a Google Drive-based network and by 40% in an author collaboration network. This is despite the fact that we neither assume that users cooperate nor that they exhibit altruistic behavior. To our knowledge, our work is the first to provide quantifiable evidence of the privacy risk that collaborators pose in cloud apps. We are also the first to mitigate this problem via a usable privacy approach.Comment: Authors' extended version of the paper published at CODASPY 201

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    The design of an indirect method for the human presence monitoring in the intelligent building

    Get PDF
    This article describes the design and verification of the indirect method of predicting the course of CO2 concentration (ppm) from the measured temperature variables Tindoor (degrees C) and the relative humidity rH(indoor) (%) and the temperature T-outdoor (degrees C) using the Artificial Neural Network (ANN) with the Bayesian Regulation Method (BRM) for monitoring the presence of people in the individual premises in the Intelligent Administrative Building (IAB) using the PI System SW Tool (PI-Plant Information enterprise information system). The CA (Correlation Analysis), the MSE (Root Mean Squared Error) and the DTW (Dynamic Time Warping) criteria were used to verify and classify the results obtained. Within the proposed method, the LMS adaptive filter algorithm was used to remove the noise of the resulting predicted course. In order to verify the method, two long-term experiments were performed, specifically from February 1 to February 28, 2015, from June 1 to June 28, 2015 and from February 8 to February 14, 2015. For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 92%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored IAB premises for monitoring. The designed indirect method of CO2 prediction has potential for reducing the investment and operating costs of the IAB in relation to the reduction of the number of implemented sensors in the IAB within the process of management of operational and technical functions in the IAB. The article also describes the design and implementation of the FEIVISUAL visualization application for mobile devices, which monitors the technological processes in the IAB. This application is optimized for Android devices and is platform independent. The application requires implementation of an application server that communicates with the data server and the application developed. The data of the application developed is obtained from the data storage of the PI System via a PI Web REST API (Application Programming Integration) client.Web of Science8art. no. 2
    corecore