481 research outputs found

    Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations

    Get PDF
    The original publication is available at www.esaimm2an.org.In this paper we present the numerical analysis of a three-field stabilized finite element formulation recently proposed to approximate viscoelastic flows. The three-field viscoelastic fluid flow problem may suffer from two types of numerical instabilities: on the one hand we have the two inf-sup conditions related to the mixed nature problem and, on the other, the convective nature of the momentum and constitutive equations may produce global and local oscillations in the numerical approximation. Both can be overcome by resorting from the standard Galerkin method to a stabilized formulation. The one presented here is based on the subgrid scale concept, in which unresolvable scales of the continuous solution are approximately accounted for. In particular, the approach developed herein is based on the decomposition into their finite element component and a subscale, which is approximated properly to yield a stable formulation. The analyzed problem corresponds to a linearized version of the Navier-Stokes/Oldroyd-B case where the advection velocity of the momentum equation and the non-linear terms in the constitutive equation are treated using a fixed point strategy for the velocity and the velocity gradient. The proposed method permits the resolution of the problem using arbitrary interpolations for all the unknowns. We describe some important ingredients related to the design of the formulation and present the results of its numerical analysis. It is shown that the formulation is stable and optimally convergent for small Weissenberg numbers, independently of the interpolation used.Peer ReviewedPostprint (author's final draft

    Stabilized finite element formulations for the three-field viscoelastic fluid flow problem

    Get PDF
    The Finite Element Method (FEM) is a powerful numerical tool, that permits the resolution of problems defined by partial differential equations, very often employed to deal with the numerical simulation of multiphysics problems. In this work, we use it to approximate numerically the viscoelastic fluid flow problem, which involves the resolution of the standard Navier-Stokes equations for velocity and pressure, and another tensorial reactive-convective constitutive equation for the elastic part of the stress, that describes the viscoelastic nature of the fluid. The three-field (velocity-pressure-stress) mixed formulation of the incompressible Navier-Stokes problem, either in the elastic and in the non-elastic case, can lead to two different types of numerical instabilities. The first is associated with the incompressibility and loss of stability of the stress field, and the second with the dominant convection. The first type of instabilities can be overcome by choosing an interpolation for the unknowns that satisfies the two inf-sup conditions that restrict the mixed problem, whereas the dominant convection requires a stabilized formulation in any case. In this work, different stabilized schemes of the Sub-Grid-Scale (SGS) type are proposed to solve the three-field problem, first for quasi Newtonian fluids and then for solving the viscoelastic case. The proposed methods allow one to use equal interpolation for the problem unknowns and to stabilize dominant convective terms both in the momentum and in the constitutive equation. Starting from a residual based formulation used in the quasi-Newtonian case, a non-residual based formulation is proposed in the viscoelastic case which is shown to have superior behavior when there are numerical or geometrical singularities. The stabilized finite element formulations presented in the work yield a global stable solution, however, if the solution presents very high gradients, local oscillations may still remain. In order to alleviate these local instabilities, a general discontinuity-capturing technique for the elastic stress is also proposed. The monolithic resolution of the three-field viscoelastic problem could be extremely expensive computationally, particularly, in the threedimensional case with ten degrees of freedom per node. A fractional step approach motivated in the classical pressure segregation algorithms used in the two-field Navier-Stokes problem is presented in the work.The algorithms designed allow one the resolution of the system of equations that define the problem in a fully decoupled manner, reducing in this way the CPU time and memory requirements with respect to the monolithic case. The numerical simulation of moving interfaces involved in two-fluid flow problems is an important topic in many industrial processes and physical situations. If we solve the problem using a fixed mesh approach, when the interface between both fluids cuts an element, the discontinuity in the material properties leads to discontinuities in the gradients of the unknowns which cannot be captured using a standard finite element interpolation. The method presented in this work features a local enrichment for the pressure unknowns which allows one to capture pressure gradient discontinuities in fluids presenting different density values. The stability and convergence of the non-residual formulation used for viscoelastic fluids is analyzed in the last part of the work, for a linearized stationary case of the Oseen type and for the semi-discrete time dependent non-linear case. In both cases, it is shown that the formulation is stable and optimally convergent under suitable regularity assumptions.El Método de los Elementos Finitos (MEF) es una herramienta numérica de gran alcance, que permite la resolución de problemas definidos por ecuaciones diferenciales parciales, comúnmente utilizado para llevar a cabo simulaciones numéricas de problemas de multifísica. En este trabajo, se utiliza para aproximar numéricamente el problema del flujo de fluidos viscoelásticos, el cual requiere la resolución de las ecuaciones básicas de Navier-Stokes y otra ecuación adicional constitutiva tensorial de tipo reactiva-convectiva, que describe la naturaleza viscoelástica del fluido. La formulación mixta de tres campos (velocidad-presión-tensión) del problema de Navier-Stokes, tanto en el caso elástico como en el no-elástico, puede conducir a dos tipos de inestabilidades numéricas. El primer grupo, se asocia con la incompresibilidad del fluido y la pérdida de estabilidad del campo de tensiones, y el segundo con la convección dominante. El primer tipo de inestabilidades, se puede solucionar eligiendo un tipo de interpolación entre las incógnitas que satisfaga las dos condiciones inf-sup que restringen el problema mixto, mientras que la convección dominante requiere del uso de formulaciones estabilizadas en cualquier caso. En el trabajo, se proponen diferentes esquemas estabilizados del tipo SGS (Sub-Grid-Scales) para resolver el problema de tres campos, primero para fluidos del tipo cuasi-newtonianos y luego para resolver el caso viscoelástico. Los métodos estabilizados propuestos permiten el uso de igual interpolación entre las incógnitas del problema y estabilizan la convección dominante, tanto en la ecuación de momento como en la ecuación constitutiva. Comenzando desde una formulación de tipo residual usada en el caso cuasi-newtoniano, se propone una formulación no-residual para el caso viscoelástico que muestra un comportamiento superior en presencia de singularidades numéricas y geométricas. En general, una formulación estabilizada produce una solución estable global, sin embargo, si la solución presenta gradientes elevados, oscilaciones locales se pueden mantener. Con el objetivo de aliviar este tipo de inestabilidades locales, se propone adicionalmente una técnica general de captura de discontinuidades para la tensión elástica. La resolución monolítica del problema de tres campos viscoelástico puede llegar a ser extremadamente costosa computacionalmente, sobre todo, en el caso tridimensional donde se tienen diez grados de libertad por nodo. Un enfoque de paso fraccionado motivado en los algorítmos clásicos de segregación de la presión usados en el caso del problema de dos campos de Navier-Stokes, se presenta en el trabajo, el cual permite la resolución del sistema de ecuaciones que definen el problema de una manera completamente desacoplada, lo que reduce los tiempos de cálculo y los requerimientos de memoria, respecto al caso monolítico. La simulación numérica de interfaces móviles que envuelve los problemas de dos fluidos, es un tópico importante en un gran número de procesos industriales y situaciones físicas. Si se resuelve el problema utilizando un enfoque de mallas fijas, cuando la interfaz que separa los dos fluidos corta un elemento, la discontinuidad en las propiedades materiales da lugar a discontinuidades en los gradientes de las incógnitas que no pueden ser capturados utilizando una formulación estándar de interpolación. Un enriquecimiento local para la presión se presenta en el trabajo, el cual permite la captura de gradientes discontinuos en la presión, asociados a fluidos de diferentes densidades. La estabilidad y la convergencia de la formulación no-residual utilizada para fluidos viscoelásticos es analizada en la última parte del trabajo, para un caso linealizado estacionario del tipo Oseen y para un problema transitorio no-lineal semi-discreto. En ambos casos, se logra mostrar que la formulación es estable y de convergencia óptima bajo supuestos de regularidad adecuados.Postprint (published version

    A nonlinear weighted least-squares finite element method for Stokes equations

    Get PDF
    AbstractThe paper concerns a nonlinear weighted least-squares finite element method for the solutions of the incompressible Stokes equations based on the application of the least-squares minimization principle to an equivalent first order velocity–pressure–stress system. Model problem considered is the flow in a planar channel. The least-squares functional involves the L2-norms of the residuals of each equation multiplied by a nonlinear weighting function and mesh dependent weights. Using linear approximations for all variables, by properly adjusting the importance of the mass conservation equation and a carefully chosen nonlinear weighting function, the least-squares solutions exhibit optimal L2-norm error convergence in all unknowns. Numerical solutions of the flow pass through a 4 to 1 contraction channel will also be considered

    Shape optimization of Stokesian peristaltic pumps using boundary integral methods

    Full text link
    This article presents a new boundary integral approach for finding optimal shapes of peristaltic pumps that transport a viscous fluid. Formulas for computing the shape derivatives of the standard cost functionals and constraints are derived. They involve evaluating physical variables (traction, pressure, etc.) on the boundary only. By emplyoing these formulas in conjuction with a boundary integral approach for solving forward and adjoint problems, we completely avoid the issue of volume remeshing when updating the pump shape as the optimization proceeds. This leads to significant cost savings and we demonstrate the performance on several numerical examples

    Mathematical Aspects of Computational Fluid Dynamics

    Get PDF
    [no abstract available

    Advancements In Finite Element Methods For Newtonian And Non-Newtonian Flows

    Get PDF
    This dissertation studies two important problems in the mathematics of computational fluid dynamics. The first problem concerns the accurate and efficient simulation of incompressible, viscous Newtonian flows, described by the Navier-Stokes equations. A direct numerical simulation of these types of flows is, in most cases, not computationally feasible. Hence, the first half of this work studies two separate types of models designed to more accurately and efficient simulate these flows. The second half focuses on the defective boundary problem for non-Newtonian flows. Non-Newtonian flows are generally governed by more complex modeling equations, and the lack of standard Dirichlet or Neumann boundary conditions further complicates these problems. We present two different numerical methods to solve these defective boundary problems for non-Newtonian flows, with application to both generalized-Newtonian and viscoelastic flow models. Chapter 3 studies a finite element method for the 3D Navier-Stokes equations in velocity- vorticity-helicity formulation, which solves directly for velocity, vorticity, Bernoulli pressure and helical density. The algorithm presented strongly enforces solenoidal constraints on both the velocity (to enforce the physical law for conservation of mass) and vorticity (to enforce the mathematical law that div(curl)= 0). We prove unconditional stability of the velocity, and with the use of a (consistent) penalty term on the difference between the computed vorticity and curl of the computed velocity, we are also able to prove unconditional stability of the vorticity in a weaker norm. Numerical experiments are given that confirm expected convergence rates, and test the method on a benchmark problem. Chapter 4 focuses on one main issue from the method presented in Chapter 3, which is the question of appropriate (and practical) vorticity boundary conditions. A new, natural vorticity boundary condition is derived directly from the Navier-Stokes equations. We propose a numerical scheme implementing this new boundary condition to evaluate its effectiveness in a numerical experiment. Chapter 5 derives a new, reduced order, multiscale deconvolution model. Multiscale deconvolution models are a type of large eddy simulation models, which filter out small energy scales and model their effect on the large scales (which significantly reduces the amount of degrees of freedom necessary for simulations). We present both an efficient and stable numerical method to approximate our new reduced order model, and evaluate its effectiveness on two 3d benchmark flow problems. In Chapter 6 a numerical method for a generalized-Newtonian fluid with flow rate boundary conditions is considered. The defective boundary condition problem is formulated as a constrained optimal control problem, where a flow balance is forced on the inflow and outflow boundaries using a Neumann control. The control problem is analyzed for an existence result and the Lagrange multiplier rule. A decoupling solution algorithm is presented and numerical experiments are provided to validate robustness of the algorithm. Finally, this work concludes with Chapter 7, which studies two numerical algorithms for viscoelastic fluid flows with defective boundary conditions, where only flow rates or mean pressures are prescribed on parts of the boundary. As in Chapter 6, the defective boundary condition problem is formulated as a minimization problem, where we seek boundary conditions of the flow equations which yield an optimal functional value. Two different approaches are considered in developing computational algorithms for the constrained optimization problem, and results of numerical experiments are presented to compare performance of the algorithms
    corecore