3,713 research outputs found

    Optimal energy dispatch in a smart micro-grid system using economic model predictive control

    Get PDF
    The problem of energy dispatch in heterogeneous complex systems such as smart grids cannot be efficiently addressed using classical control or ad-hoc methods. This paper discusses the application of Economic Model Predictive Control (EMPC) to the management of a smart micro-grid system connected to an electrical power grid. The considered system is composed of several subsystems, namely some photovoltaic (PV) panels, a wind generator, a hydroelectric generator, a diesel generator, and some storage devices (batteries). The batteries are charged with the energy from the PV panels, wind and hydroelectric generators, and they are discharged whenever the generators produce less energy than needed. The subsystems are interconnected via a DC Bus, from which load demands are satisfied. Modeling smart grids components is based on the generalized flow-based networked systems paradigm, and assuming energy generators to be stable, load demands and energy prices are known. This study shows that EMPC is economically superior to a two-layer hierarchical MPC.Peer ReviewedPostprint (author's final draft

    Decentralized energy management of power networks with distributed generation using periodical self-sufficient repartitioning approach

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a decentralized model predictive control (MPC) method as the energy management strategy for a large-scale electrical power network with distributed generation and storage units. The main idea of the method is to periodically repartition the electrical power network into a group of self-sufficient interconnected microgrids. In this regard, a distributed graph-based partitioning algorithm is proposed. Having a group of self-sufficient microgrids allows the decomposition of the centralized dynamic economic dispatch problem into local economic dispatch problems for the microgrids. In the overall scheme, each microgrid must cooperate with its neighbors to perform repartitioning periodically and solve a decentralized MPC-based optimization problem at each time instant. In comparison to the approaches based on distributed optimization, the proposed scheme requires less intensive communication since the microgrids do not need to communicate at each time instant, at the cost of suboptimality of the solutions. The performance of the proposed scheme is shown by means of numerical simulations with a well-known benchmark case. © 2019 American Automatic Control Council.Peer ReviewedPostprint (author's final draft

    Robust optimization based energy dispatch in smart grids considering demand uncertainty

    Get PDF
    In this study we discuss the application of robust optimization to the problem of economic energy dispatch in smart grids. Robust optimization based MPC strategies for tackling uncertain load demands are developed. Unexpected additive disturbances are modelled by defining an affine dependence between the control inputs and the uncertain load demands. The developed strategies were applied to a hybrid power system connected to an electrical power grid. Furthermore, to demonstrate the superiority of the standard Economic MPC over the MPC tracking, a comparison (e.g average daily cost) between the standard MPC tracking, the standard Economic MPC, and the integration of both in one-layer and two-layer approaches was carried out. The goal of this research is to design a controller based on Economic MPC strategies, that tackles uncertainties, in order to minimise economic costs and guarantee service reliability of the system.Postprint (author's final draft

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip

    A MPC Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization

    Get PDF
    In this paper, a novel model predictive control strategy, with a 24-h prediction horizon, is proposed to reduce the operational cost of microgrids. To overcome the complexity of the optimization problems arising from the operation of the microgrid at each step, an adaptive evolutionary strategy with a satisfactory trade-off between exploration and exploitation capabilities was added to the model predictive control. The proposed strategy was evaluated using a representative microgrid that includes a wind turbine, a photovoltaic plant, a microturbine, a diesel engine, and an energy storage system. The achieved results demonstrate the validity of the proposed approach, outperforming a global scheduling planner-based on a genetic algorithm by 14.2% in terms of operational cost. In addition, the proposed approach also better manages the use of the energy storage system.Ministerio de Economía y Competitividad DPI2016-75294-C2-2-RUnión Europea (Programa Horizonte 2020) 76409

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    Robust optimization based energy dispatch in smart grids considering simultaneously multiple uncertainties: load demands and energy prices

    Get PDF
    Solving the problem of energy dispatch in a heterogeneous complex system is not a trivial task. The problem becomes even more complex considering uncertainties in demands and energy prices. This paper discusses the development of several Economic Model Predictive Control (EMPC) based strategies for solving an energy dispatch problem in a smart micro-grid. The smart grid components are described using control-oriented model approach. Considering uncertainty of load demands and energy prices simultaneously, and using an economic objective function, leads to a non-linear non-convex problem. The technique of using an affine dependent controller is used to convexify the problem. The goal of this research is the development of a controller based on EMPC strategies that tackles both endogenous and exogenous uncertainties, in order to minimize economic costs and guarantee service reliability of the system. The developed strategies have been applied to a hybrid system comprising some photovoltaic (PV) panels, a wind generator, a hydroelectric generator, a diesel generator, and some storage devices interconnected via a DC Bus. Additionally, a comparison between the standard EMPC, and its combination with MPC tracking in single-layer and two-layer approaches was also carried out based on the daily cost of energy production.Postprint (published version
    corecore