11 research outputs found

    Optimal control of single-server fluid networks

    Get PDF
    We consider a stochastic single server fluid network with both a discounted reward and a cost structure. It can be shown that the optimal policy is a priority index policy. The indices coincide with the optimal indices in a Semi-Markovian Klimov problem. Several special cases like single server re-entrant fluid lines are considered. The approach we use is based on sample path arguments and Pontryagins maximum principle

    Due-date setting and priority sequencing in a multiclass M/G/1 queue

    Get PDF
    Includes bibliographical references (leaves 26-28).by Lawrence M. Wein

    A mathematical programming approach to stochastic and dynamic optimization problems

    Get PDF
    Includes bibliographical references (p. 46-50).Supported by a Presidential Young Investigator Award. DDM-9158118 Supported by matching funds from Draper Laboratory.Dimitris Bertsimas

    The achievable region method in the optimal control of queueing systems : formulations, bounds and policies

    Get PDF
    Cover title.Includes bibliographical references (p. 44-48).Supported in part by a Presidential Young Investigator Award, with matching funds from Draper Laboratory. DDM-9158118Dimitris Bertsimas

    The achievable region method in the optimal control of queueing systems : formulations, bounds and policies

    Get PDF
    Cover title.Includes bibliographical references (p. 44-48).Supported in part by a Presidential Young Investigator Award, with matching funds from Draper Laboratory. DDM-9158118Dimitris Bertsimas

    A mathematical programming approach to stochastic and dynamic optimization problems

    Get PDF
    Includes bibliographical references (p. 46-50).Supported by a Presidential Young Investigator Award. DDM-9158118 Supported by matching funds from Draper Laboratory.Dimitris Bertsimas

    Deterministic and stochastic scheduling: : Extended abstracts

    Get PDF

    The scheduling of queues with non-linear holding costs

    Get PDF
    PhD ThesisWe consider multi-class, single server queueing systems and we seek to devise policies for server allocation which minimise some long-term cost function. In most of the work to date on the optimal dynamic control of such systems, holding cost rates are assumed to be linear in the number of customers present. Such assumptions have been argued to be unrealistic and thus inappropriate: see Van Meighem (1995). With pure priority policies, which often emerge from analyses based on linear holding cost assumptions, there is often the problem that service offered to lower priority traffic is unacceptably poor. Seeking to address such problems, we first investigate the performance of policies based on linear switching curves in an M/M/1 model with two customer types, imposing various constraints on the second moments of queue lengths. We then develop an index heuristic for a multi-class M/M/1 model with increasing convex holding cost rates. Following work by Whittle (1988), we develop the required indices and in a numerical study of two and three class systems, demonstrate the strong performance of these index policies. Performance of policies throughout the thesis, as measured by lowest costs achievable under a given policy class, (i. e. best linear switching, best threshold, or index policy) is compared with a lower bound on the minimum cost achievable under any policy. This lower bound is obtained by adopting the achievable region approach, see Bertsimas, Paschalidis & Tsitsiklis (1994) and Bertsimas & Nino-Mora (1996) in which we construct a set of constraints satisfied by the first and second moments of the queue lengths. These constraints define a relaxation of the set of achievable region performance vectors of the system. Optimisation over this relaxed region yields the lower bound. Numerical results indicate the strong performance of the index policy.Engineering and Physical Sciences Research Council
    corecore