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IN A MULTICLASS M/G/1 QUEUE

Lawrence M. Wein

Sloan School of Management, M.I. T.

Abstract

The problem of simultaneous due-date setting and priority sequencing is analyzed in

the setting of a multiclass M/G/1 queueing system. The objective is to minimize the

weighted average due-date lead time (due-date minus arrival date) of customers subject to

a constraint on either the fraction of tardy customers or the average customer tardiness.

Several parametric and non-parametric due-date setting policies are proposed that depend

on the class of arriving customer, the state of the queueing system at the time of customer

arrival, and the sequencing policy (the weighted shortest expected processing time rule)

that is used. Simulation results suggest that these policies significantly outperform tra-

ditional due-date setting policies and that setting due-dates can have a larger impact on

performance than priority sequencing.
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DUE-DATE SETTING AND PRIORITY SEQUENCING

IN A MULTICLASS M/G/1 QUEUE

Lawrence M. Wein

Sloan School of Management, M.I.T.

1. Introduction and Summary

Most of the literature on due-date scheduling problems assume that the due-dates for

individual jobs are exogenous. The scheduling problem then becomes one of sequencing the

jobs at the various stations in a job shop to optimize some measure of the ability to meet the

given due-dates. However, in most firms, the setting of due-dates is negotiable and is the

responsibility of the marketing personnel, who have knowledge of the customer's wishes,

and the manufacturing personnel, who have knowledge of the shop floor's capability. If

the marketing group sets the due-dates oblivious to the shop floor's capability, then the

result is often an overloaded shop with a large work-in-process inventory and many jobs

past due. On the other hand, if the manufacturing personnel set the due-dates oblivious

to the relative importance and urgency of the various jobs, then the customers' wishes will

not be satisfactorily addressed. Thus, it is very important for due-dates to be based on the

knowledge of the status of the shop floor and the urgency and importance of the various

jobs.

In this paper we study two problems of simultaneous due-date setting and priority

sequencing in a multiclass M/G/1 queueing system. Although this system is an idealized

setting, it still captures the dynamic and stochastic elements that are inherent in all job

shops. We assume that jobs of each class arrive to the shop according to an independent

Poisson process, and the service times for each job class are independent and identically
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distributed random variables. The scheduler must assign a due date to each arriving

customer and must also dynamically decide in which order to serve the customers in queue.

Preemption of the customer in service is not allowed.

Since we assume discretionary due dates, there are two conflicting objectives. Let us

define the due-date lead time (abbreviated hereafter by DDLT) to be the length of time

between a job's arrival to the system and its promised delivery date. The first objective

is to set the due-dates as tight as possible; that is, set the due-dates to minimize the

average DDLT's of jobs. If a firm can reduce their DDLT's, then they can achieve a

competitive advantage and will be able to attract more business and/or demand higher

prices. However, some job classes may be more important to the firm (due to potential

future sales, for example) than others, and thus a more appropriate objective can be found

by assigning weights to the various classes and minimizing the weighted average DDLT's.

Once the DDLT's are set, the second and conflicting goal of the shop is to back up

their promises and meet the due dates. There are three common measures of the service

level, or the ability to meet due-dates. One measure is the lateness of a job, which is the

job's actual completion time minus its due-date. The lateness of a job may be positive or

negative, and typical objectives are to minimize the mean and standard deviation of job

lateness. The second measure is the tardiness of a job, which equals the job's lateness if

the lateness is positive, and equals zero otherwise. The typical objective in this case is

to minimize the average tardiness of jobs. The final measure is the number of tardy jobs,

or equivalently, the fraction of tardy jobs. The typical objective here is to maximize the

proportion of jobs that are completed on or before their due-date. In this paper, we will

focus on the latter two of these three measures, since they are used more in practice.

It is clear that the two objectives of DDLT minimization and service level maximiza-

tion are conflicting, since the shorter the DDLT's that a shop quotes, the more difficult it

is to achieve a given level of service. Since these two objectives are conflicting, it is perhaps

most insightful to state our two scheduling problems in terms of a single objective and a
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single constraint. We will refer to a due-date management policy as a combination of a

due-date setting policy and a priority sequencing policy. Our first problem (denoted by

Problem I) is to find a due-date management policy that minimizes the long-run expected

weighted average DDLT subject to a constraint on the long-run expected average propor-

tion of tardy jobs. The second problem (Problem II) has the same objective but is instead

subject to a constraint on the long run expected average tardiness of jobs.

We will not explicitly solve Problems I and II; the goal of this paper is instead to

identify new due-date management policies that outperform conventional due-date man-

agement policies appearing in the literature. Due-date management policy A will be con-

sidered superior to due-date management policy B in either problem above if both policies

satisfy the appropriate constraint with equality, and policy A achieves a lower objective

value than policy B. Before stating our results, we will review the relevant literature.

There have been several simulation studies, including Eilon and Chowdhury [9] and

Weeks [22], concluding that due-dates based on job content and simple estimates of shop

congestion lead to better shop performance that due-dates based solely on job content.

The analytical work on this problem include Bertrand [4], who uses a time-phased rep-

resentation of workload and machine capacity to set workload-dependent due-dates, and

Seidmann and Smith [19], who derive a constant due-date assignment policy (that is, the

DDLT equals a constant) in a dynamic job shop that minimizes a particular penalty cost.

The two studies that are most closely related to ours are Bookbinder and Noor [5]

and Baker and Bertrand [2]. Bookbinder and Noor [5] look at minimizing DDLT for a

single machine problem subject to a constraint on the fraction of tardy jobs, and set due-

dates based on shop content, job information, and the sequencing policy. However, they

assume that the FIFO (first-in first-out) rule is used between batches of jobs. Their due-

date setting rule appears to be the only non-parametric rule in the literature; most rules

include at least one parameter that must be adjusted (usually via simulation) in order to

satisfy some criterion. Baker and Bertrand [2] compare three parametric due-date setting
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strategies for a single machine model and a fixed set of jobs. The three rules set a job's

DDLT equal to a constant, a constant plus the job's expected processing time, and a

constant times the job's expected processing time. (The parameter is the constant in these

three cases.) The authors pose the problem of minimizing the average DDLT subject to no

jobs being tardy and, under the assumption of known processing times, prove that the first

policy is dominated by the other two. We will be incorporating these three policies, none

of which depend explicitly on the status of the shop floor, into the simulation experiment

in Section 7.

In summary, although there have been many simulation studies and some analytic

results, there has been no attempt to set due-dates and sequence jobs in a unified manner

that will lead to the minimization of DDLT. Although the analyses of Problems I and

II appear to be very difficult, an improvement on the existing literature can be made by

observing the relationship between DDLT and cycle time, where the cycle time of a job

is the length of time it spends in the shop. By the definitions of DDLT, cycle time, and

lateness, it follows that the DDLT equals the cycle time minus the lateness. Thus if we

can find an accurate due-date setting policy (thereby keeping the lateness small), then the

desired sequencing policy should aim to minimize the weighted average cycle time in order

to achieve the objectives in Problems I and II. It is well known (see, for example, Klimov

[17], Harrison [11], and Tcha and Pliska [20]) that the sequencing policy that minimizes

the weighted average cycle time in a multiclass M/G/1 queue is the weighted shortest

expected processing time rule, which is often referred to as the c rule.

As mentioned in Baker and Bertrand [2], if a fixed set of jobs was considered and

all processing times were known with certainty, then we could sequence the jobs by the

weighted shortest processing time rule and choose due-dates so that the lateness of all

jobs equalled zero. This due-date management policy would then minimize the weighted

average DDLT objective in Problems I and II and no job tardiness would ever occur.

Of course, in a dynamic stochastic environment, one cannot choose due-dates with such
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impressive results. But we propose that the c rule be used for sequencing in the M/G/1

system, since it would be effective for minimizing the weighted average DDLT of jobs,

assuming an accurate due-date setting policy can be found that satisfies the constraints in

Problems I and II.

In this paper we propose six due-date setting rules, all of which satisfy the appropriate

constraints in Problems I and II; two of these rules are parameterized and the other four

rules are non-parameterized. The two parameterized rules apply to both Problems I and

II, and, of the four non-parameterized rules, two apply to each problem. We assume that

the scheduler in Problems I and II can observe, at the time of each customer arrival, the

number of customers of each class in queue (not including service), the class of customer in

service (if any), and the length of time that the customer has been in service. The scheduler

does not know the times of subsequent arrivals or the service times of customers before

their realization. Given the scheduler's knowledge of the queueing system, we define the

conditional sojourn time of an arriving customer to be the total time the customer spends

in the queueing system if the c rule is being employed. The conditional sojourn time for

each customer is a random variable that depends on the class of the arriving customer and

the state of the system at the time of the customer's arrival. Using standard arguments

from the theory of priority queues (see Cobham[6], Kesten and Runnenburg [15], and

Conway et al. [7]), we derive the (state-dependent) expected value and Laplace tranform

of the conditional sojourn time.

The first parametric rule is based on the mean of the conditional sojourn time distri-

bution, and the second parametric rule is based on the mean and standard deviation of

the conditional sojourn time distribution. Two of the non-parametric rules (one for each

of Problem I and Problem II) are found by analyzing the tail of the conditional sojourn

time distribution.

Unfortunately, the non-parametric rules are difficult to calculate for a general multi-

class M/G/1 queue. For the simple example described in Section 5 (two customer classes

5
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with different exponential processing times), we use Newton's method to compute the

non-parametric due-dates for the higher priority class and, for the lower priority class,

use an efficient algorithm recently developed for finding tails of distributions from Laplace

transforms by Platzman et al. [18]. For more difficult examples, this method or others,

such as Jaegerman [13] or Keilson et al. [14], may be helpful.

Notice that the rules described above do not take into account information about

the due-dates that have already been set. We propose two other non-parametric due-date

setting rules (one for Problem I and one for Problem II) that use past due-date information

to exploit hot streaks (a string of fast service times) by the server. The main idea behind

these policies is to allow an arriving customer to move ahead of customers of its own class

that are in queue (and hence to receive an earlier due-date) as long as these customers will

still be expected to depart the system in the desired amount of time.

Using a simulation model of a very simple system, we test seven due-date setting rules

(four proposed here and three proposed in [2]) for each of Problems I and II. These rules

are used in conjunction with the cp rule (which is the shortest expected processing time

rule in this example) and various non-parametric due-date sequencing policies (such as the

earliest due-date rule) that appear in the literature. As mentioned above, the queueing

system has two customer classes that have different exponential processing times.

The primary insight from the simulation study is that proper due-date setting offers a

much larger improvement in performance than priority sequencing. The proposed due-date

setting policies reduced the mean DDLT by 25-50% in Problem I and 50-68% in Problem

II relative to conventional due-date setting policies. It is interesting to point out that

the parametric rule based on the first two moments was only slightly more effective at

reducing DDLT than the parametric rule based on one moment. Also, there was not a

significant difference in performance between the parametric rules and the non-parametric

rules; the parametric rules were slightly more effective in Problem I and the non-parametric

rules were slightly more effective in Problem II. Thus, the parametric rule based on the
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expected value of the conditional sojourn time, which is very easy to calculate for any

multiclass M/G/1 system, appears to be a very effective due-date setting policy. This has

important implications for the more complicated network setting, since it appears to be

quite difficult to obtain good estimates of second moments or tails of conditional sojourn

time distributions in a multiclass queueing network under various priority schemes. Care

must be taken in drawing broad conclusions concerning the relative strength of the four

proposed due-date setting policies, since only a single instance of an M/M/1 system has

been analyzed numerically.

The simulation results also suggest that when the due-dates proposed here are used,

the impact from priority sequencing is minimal. This is intuitively clear, because the pro-

posed due-dates are set in accordance with the cp rule, and thus due-date based sequencing

policies will not differ greatly from the c rule. However, when using the traditional due-

date setting policies (from [2]), priority sequencing has some impact, but not nearly as much

as the proposed due-date setting policies. Thus, although there have been many simula-

tion studies (see Baker [1], for example) comparing various priority sequencing heuristics

for due-date scheduling problems, it appears that more leverage can be gained by being

concerned with the setting of due-dates, not with priority sequencing.

The results of this simulation study closely parallel those of Wein [23], where the prob-

lem of simultaneous input control (how to release jobs onto the factory floor) and priority

sequencing is analyzed in the setting of a 24-station simulation model of a semiconductor

wafer fab. It was found that (1) input control (loosely based on the analysis of Wein [24]-

[25]) provided a much larger improvement in performance than did priority sequencing,

(2) under proper input control, the effect of priority sequencing was minimal, and (3) un-

der traditional input control, priority sequencing had a moderate impact. The connection

between this study and the present one is that due-date setting and input control can both

be thought of as tactical design decisions that are made at a higher level than the priority

sequencing decisions. Thoughtful decisions made at this higher level lead to well designed
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systems that are much easier to control (in that detailed control issues such as priority

sequencing do not need to be a major concern) than poorly designed systems.

This paper is organized as follows. Problems I and II are formulated in Section 2

and the Laplace transform and expected value of the conditional sojourn time are given in

Section 3. Two parametric and two non-parametric due-date setting policies are proposed

in Section 4. In Section 5, these rules are derived for the case of two customer classes

with different exponential processing times. In Section 6, we describe two additional non-

parametric due-date setting policies that attempt to exploit hot streaks by the server, and

the simulation experiment is presented in Section 7.

2. Two Problem Formulations

We consider a multiclass M/G/1 queueing system where jobs of class k = 1,..., IK

arrive according to an independent Poisson process with rate Ak. The service times for job

class k are independent and identically distributed random variables with mean Pk , finite

variance, general distribution Fk(t),t > 0, and Laplace transform Fk*(s). The scheduler

must assign a due date Dk,t to a class k customer who arrives at time t, and must also

dynamically decide in which order to serve the jobs in queue. Thus the DDLT of a class

k job that arrives at time t is Dk,t - t. To repeat, a due-date management policy is a

combination of a due-date setting policy and a priority sequencing policy. For k = 1, ... , K,

let Dk be the long-run expected average DDLT of class k jobs. Let P be the long-run

expected average proportion of jobs that are tardy. Then Problem I is to find a due-date

management policy to

K

minimize E ckDk (1)
k=l1

subject to P <p, (2)
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where Ck is a linear cost (or weight) for job class k, and p is the desired upper bound on

the proportion of jobs that are tardy. For example, many companies define their service

goals by desiring to deliver 95% of their jobs on time, in which case pi = .05.

Let T be the long-run expected average job tardiness. Then Problem II is to find a

due-date management policy to

K

minimize E ckDk (3)
k=l

subject to T < , (4)

where t is the desired upper bound on the average job tardiness.

The non-parametric rules proposed in this paper can accomodate class-dependent

service level constraints in Problems I and II. For example, constraint (2) can be replaced

by Pk < Pk for k = 1, ... , K, where Pk is the long-run expected average proportion of class

k jobs that are tardy, and Pk is the desired upper bound on the proportion of class k jobs

that are tardy.

3. The Conditional Sojourn Time

The goal of this section is to derive the Laplace transform and expected value of the

conditional sojourn time Sk,t for a class k customer who arrives at time t. Recall that

the conditional sojourn time of an arriving customer is the total time the customer spends

in the system if the cp rule is being used, conditioned on the class of arriving customer

and the state of the queueing system at the time of arrival. In order to simplify notation,

we will suppress the dependence on the arrival time. Without loss of generality, assume

the customer classes are ordered so that clpl > ... > ... CKIK, where ck is the weight for

class k customers in objective function (1) and (3). If a customer arrives to the queueing

system at time t, the scheduler can observe the K-dimensional vector Q(t) = (Qk(t)),
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where Qk(t) = nk is the number of class k customers in queue (not including service) at

time t, the class of customer who is currently in service at time t, and the length of time

that has elapsed since this customer started service, which is denoted by a(t) = a. Let us

define F0 to be the distribution of the residual processing time of the customer currently

in service. Then Fo(t) = 0 for t > 0 if the server is idle, and

Fo(t) = Fk(a + t) - Fk(a)
1 -Fk(a)

if a class k customer is in service, for k = 1, ..., K. Let po 1 and Fo(s) denote the mean

and Laplace tranform, respectively, of the residual processing time. It is well known from

renewal theory that o,1 = 0 if the server is idle, and

1 _ fo0 2 dFk() (6
00 (6)

po 2 fo xdFk(x)

if class k is in service. Following the notation and reasoning of Chapter 8 of Conway et

al.[7], let Aak = ji= Ai be the total arrival rate of jobs with higher priority than class

k., let Fak(t) = A)-l ik-l AiFi(t), t > 0 be their composite processing time distribution,

and let F*k(s) be the associated Laplace transform. Define Go(s) = Fo(s) -n'=1 [Fi*(s)]n:

to be the Laplace transform for the sum of the processing times of the job currently in

service plus the processing times of all jobs in queue of higher priority than class k. If we

denote the Laplace transform of Sk,t by Sk*,t(s), then it follows that for k = 1, ... , K,

Sk,t(s) = Fk (s)[G(s + Aak- AakBak(s))[F (S + Aak - AakBk())] (7)

where Bk(s) is the solution to

Bk(S) = Fak(S + Aak - AakBk()). (8)

Thus, in order to obtain a closed form solution for St(s), one needs to first find the

solution B*(s) to equation (8). In cases where a solution can be found, the expected

value and standard deviation of the conditional sojourn time, denoted by E[Sk,t] and

a[Sk,t], respectively, can be found by differentiating the Laplace transform S* (s).
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However, a simple expression for E[Sk,t] can be found by using the direct expected

value procedure of Cobham [6]; see, for example, Dolan [8] or pages 205-207 in Gross and

Harris [10]. Let k = Ak/Yk and Uk = Zi= Pi for k = 1,...,K, where a0o = 0. Then it

follows that
1 _ _k 1

E[Sk,t] = - + (9)
Il1k l-ak-1

where there are nk class k customers in queue at time t, and where p0 is given by (6).

4. Four Due-date Setting Policies

In this section we present four due-date setting policies, all of which satisfy the ap-

propriate constraint (2) or (4). The first two policies are parameterized rules that apply

to both Problems I and II. Of the last two policies, which are both parameterized, one

applies to Problem I and one applies to Problem II. The first parametric rule assigns the

due-date

Dk,t = t + aE[Sk,t], (10)

and the second parameterized rule assigns the due-date

Dk,t = t + E[S,,] + /P[S,it]. (11)

The parameters a and in (10) and (11) are set (via simulation) in Problems I and II so

that the constraints in these problems are satisfied.

The non-parametric rule for Problem I assigns the due-date

Dk,t = t + Pk,t, (12)

where

P = P(Skt > pk,t). (13)
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Thus, pk,t is the (1 - )th fractile of the distribution of the random variable Sk,t. If this

due-date setting rule is employed in conjunction with the c rule, then constraint (2) will

be automatically satisfied.

Suppose for now that the random variable Sk,t has distribution Gk,t. Then the first

non-parametric rule for Problem II assigns the due-date

Dk,t = t + Tk,t, (14)

where

= j (- rk,t)dGkt(X). (15)

Similarly, if this due-date setting rule is employed with the cp rule, then constraint (4)

will be satisfied.

As mentioned earlier, the due-date setting policies described in (11)-(15) are not easy

to calculate for general multiclass M/G/1 queues. In the next section we will derive

E[Sk,t], a[Sk,t],pk,t, and rk,t for a particular simple example.

5. An Example

Suppose there are K = 2 customer classes that have exponential processing times with

rates pl and p2, respectively. Without loss of generality, suppose that cpl > C2p2, SO

that the cp rule awards higher priority to class 1 customers. By the memoryless property

of the exponential distribution, the residual processing time distribution F 0 is exponential

with parameter Pk if class k customer is in service, for k = 1, 2. The state of the system at

the time of a customer arrival is adequately described by (nl, n 2 ,i l, i 2), where nk class k

customers are in queue, and ik equals one if a class k customer is in service, and ik equals

zero otherwise. Notice that i = i2 = 0 implies that nl = n2 = 0.

Let us begin by analyzing the conditional sojourn time Sl,t of the higher priority

customer class. If i 2 = 0, then Sl,t has an Erlang distribution with shape parameter
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nl +il + 1 and scale parameter yl . If i 2 = 1, then Sl,t is distributed as the convolution of an

Erlang distribution with shape parameter nl + 1 and scale parameter pl, and an exponential

distribution with parameter P2. Thus, when i2 = 0, it follows that E[S1 ,t] = /l- (nl +il + 1)

and [Si,t] = l-' l/nl + i1 + 1. In order to find pi,t in equation (13) when i2 = 0, let

y = plplt. Then equation (13) reduces to

nl+il+l -1

pe = E I(j-1)!' (16)

When i = 0, equation (16) has a closed form solution that leads to pl,t = ,-' ln(- ).

When il = 1, equation (16) can easily be solved using Newton's method. Similarly, when

i2 0, equation (15) reduces to

nl+il +l e-pirlt ((nl + i + 1)! nl7+l ,t (ni +il + 1)! (nl + i1 )!
nl+i1+2 nl+il-j+2

(n, 11 j= / J! (J1
(17)

Once again, a closed form solution rl,t = -1 ln(lir) exists when il = 0, and Newton's

method can be used when ii > 0.

When i 2 = 1, we have E[SI,t] = p (nl +1)+p'-1 and a[S,t] = - 2(nl + 1) + /2 2

When i2 = 1, equation (13) reduces to

-= +l# 2 eP42PI~ t (1 nl+i Pje(2-il)Plt (e(2-)Pl t -1)n
(_1).~r, + (-Pl,,

P =1 (P2 - p 1)nl-j+lj! + (-1) _ )n+l '

(18)

and equation (15) reduces to

n+ nl ()+e- j+l lt (j + 1) j! (j +1)!

P =1 "1 + E (1 -. /-, ( + (I )! -)!) + +2 )

( _l 11i (eA e-1)) (19)+(~ - tP)"'+ 2 ( 7' )
which can both be solved by Newton's method.

The analysis of the conditional sojourn time S2 ,t of the lower priority class is more

difficult and requires the use of the Laplace transform S* t. Since Fa2(s) = Fl(s) =k ,'
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p1 /(s + p1l), the solution Ba2 (s) to equation (8) is (see, for example, page 215 of Kleinrock

[16])

az(S)= (20)B. 2(s) =/ + A1 + s- 1 + A1 + s) 2-4#1iA (20)2A1

By equation (7) we have

nl+il

/_2 ) 2/p1
'S;(,)/ =( + + 2 + A + + +/( + V a + ) 2-4pA l

2/12 - 1l + + + A + + s)2 -4 1 A1 ) (21)

where, for k = 1,2, ik = 1 if a class k customer is in service at time t, and equals zero

otherwise. Readers may verify that -S*,t(O) yields the value of E[S2,t] given in equation

(9), and that differentiating (21) twice gives

~E[S~, , = 2 . 2 2A 1
ES22, ] = S2*,(0) = +( + i)(_2( 1) + ( - a1)3

+ (n2 + i 2)( p- A1 ) + 2A1 A1 )

+ ( A ((n 1 + i)(ni + i + 1) + t2 (n2 + i2 )(n 2 + i 2 + 1)(1~~ 2P2

+ 2 (ni + i)(n 2 + i2 )). (22)

Thus,

c[S2,t]1 +qE[Sa, ]E

= + (nl +il)(( -A 1 ) + (n 2 + i2 )( 1
- A1 + 2AL8 ) (23)

+ il)(C - Al),3 2(k~l - A1)3

Since E[Sk,t] does not equal a[Sk,t] for k = 1,2, due-date setting policies (10) and (11)

should yield different results for our example.

In order to calculate P2,t and r2 ,t in equations (13) and (15), we used an approximation

algorithm recently developed by Platzman et al. [18] for computing tail probabilities
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from transforms. For a prespecified accuracy parameter AA and prespecified precision

parameter AP, they showed that the tail probability TP defined by

N (2

TP = U- A A + AA E im(3n - n)S2*X(jwn)} (24)
U + 2AA n 7 )S,(jwn)}n=l

satisfies

P(S 2,t > A + AA) - AP < TP _< P(S2 , > A- AA) + AP (25)

as long as P(S2 ,t < U) << AP. Here,

2 AA 2irj= /-, k = ln( ), D= AA , w = 2AA

2k D2,,2 (+A-
N= [ , &=1 / P= ei(U+A)W, and = eA. (26)

By equation (25), it can be seen that equation (24) calculates the appropriate tail

probability P(S2 ,t > A) given A, whereas we need to find the value of A such that the tail

probability equals the desired value of ip in equation (13). However, imbedding equation

(24) within a simple search algorithm allows us to calculate P2,t. The search algorithm,

given previously calculated values of Ai- 1, TPi-l, Ai, and TPi, calculates a new value of

A, denoted by Ai+l, by

TP- -5
Ai+l = Ai -(TP -TP )(Ai- -Ai). (27)TP,1j - TP,

Equation (24) is then used to calculate TPi+l given Ai+l. The algorithm is stopped with

a solution P2,t = Ai when

ITPi - < , (28)

where e is a small specified value.

Platzman et al. [18] showed more generally that, for any integrable function g(S2,t),

N

TP* = Co + 2 E an real{CnS,t(jwn)} (29)
n=l

15



always lies in the range

conv{E[g(S2,t + a)JO < S2,t < U] + bAP : lal < A, bi < diam(g(I))}, (30)

where diam(g(I)) = max{g(x)- g(x') : x, ' I}, where the Fourier series coefficients C,

for n = 0,1, ..., N appearing in equation (29) are given by

1 U+AA
n= V+- A eJnwYg(y)dy. (31)U + 2AA J-aA

By specializing the function g to

gA(y) y-A if y > A, (32)
9AY 0, A, otherwise,

we can obtain an approximate value of r2,t with a similar algorithm that was used to find

p2,t: equation (29) is simply used in place of equation (24) to find TP* given Ai, and TP*

takes the place of TP in equation (27). For our special case of the function g in (32), the

Fourier coefficients are given by

U2 + A 2 + (A) 2 + 2UAA - 2AAA - 2AU
2(U + 2AA)

and, for n = 1,..., N,

C, = einw(U+aA) U + AA 1 - ,,A(A 127rjn rjn 2+wn 2r 7rn 2(wn

where w is given in (26).

6. Exploiting Hot Streaks

Although the due date Dk,t for a class k customer arriving at time t proposed in

Section 4 depen on the class k of arriving customer and on the state of the queueing

system at time t, it does not depend on the due dates of customers who are in queue at
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time t. It is reasonable to presume that improved due-date setting policies for Problems I

and II could be found by allowing Dk,t to depend on past due-date information.

In this section, we describe two non-parametric due-date setting policies (one for

Problem I and one for Problem II) that use past due-date information to exploit hot

streaks (a sequence of fast service times) by the server. The situation we are attempting

to exploit is the following: suppose a customer arrives at time t and, just prior to time t,

the server has completed a sequence of services that were faster than expected. (In the case

where machine breakdown and repair are incorporated into the service time distributions

(see, for example, Harrison [12]), such a hot streak can occur when there has not been

a machine breakdown for an unusually long time, or when a machine is repaired much

quicker than expected.) Then there may be customers in queue who have particularly

slack due-dates, because their due-dates were set before the start of a hot streak. Indeed,

there may be enough slack in these due-dates so that an arriving customer can move ahead

of these customers in queue without endangering these customers with tardiness.

With this situation in mind, we define the following non-parametric due-date setting

policy for Problem I. This policy only allows an arriving customer to move ahead of cus-

tomers of its own class. The corresponding sequencing policy still ranks the customer

classes by the c rule, but now customers are ranked within each class by the earliest

due-date, not by the earliest arrival date. This policy first computes new due-dates for

each customer in the queue that is of the same class as the arriving customer (say, class k).

These due-dates are computed only for the purpose of assigning a due-date to the arriving

customer; the customers in queue still retain the original due-date that was assigned to

them at the time of their arrival. The new due-date for a customer of class k in queue

is again computed according to (12)-(13), but is now computed as if the new customer

has just arrived and observes nk customers of class k in queue, where nk equals mk + 1

and mk equals the number of class k customers in queue that have an earlier due-date

than this customer; the extra one in addition to nk accounts for the arriving customer.
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Thus the new due-date is based on a revised conditional sojourn time that assumes that

the arriving customer moves ahead of the customer in queue. If the new due-date of the

customer in queue is earlier than the customers original due-date, then there is enough

slack in the customer's original due-date to allow the arriving customer to move ahead of

this customer in queue; in this case, we say that the customer in queue can accomodate

the arriving customer.

Under our proposed policy, an arriving customer, rather than joining the end of the

queue of class k customers (who are ordered according to the earliest due-date criterion),

instead passes customers in its queue (starting from the back of the queue) until he/she

meets a customer in queue who cannot accomodate him/her. The arriving job's due date

is then calculated by (12)-(13), ignoring all the customers of its class that it has passed in

queue.

The corresponding non-parametric rule for Problem II is identical to this rule, except

that equations (14) and (15) are used in place of (12) and (13) to calculate all old and new

due-dates. If these two due-date setting policies are used in conjunction with the cy rule,

where jobs are served within each class by the earliest due-date criterion, then constraints

(2) and (4), respectively, should be satisfied.

This idea of exploiting server hot streaks can be extended so that arriving customers

may pass ahead of customers in queue that are of a higher class, not just of the same

class. In this case, the corresponding sequencing policy would be according to the earliest

due-date criterion, regardless of the class of customer, although equations (12)-(15) would

still be used to set new and old due-dates. However, the conditional sojourn time for a

customer in queue would need to take into account all customers in queue who have earlier

due-dates than this customer. Such a policy cannot be guaranteed to satisfy constraints

(2) or (4), since the c rule would not be used. Due to the rather cumbersome nature

of these policies and due to the modest inprovement achieved in the simulation study of

the next section by the two rules described earlier in this section, this idea has not been
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pursued any further.

7. A Simulation Study

Using the example in Section 5, a simulation study was undertaken to compare the

performance of the due-date setting policies described in Sections 4 and 6 against conven-

tional due-date setting policies. The example queueing system has two customer classes

with Poisson arrival rates Al = .4 and 2 = .2. The two classes have exponential service

times with rates p = 1 and p2 = .5. Thus, p = P2 = .4 and the server utilization is

p = .8. The weights for the two customer classes are cl = c2 = 1 (that is, the objective in

Problems I and II is to minimize the long-run expected average DDLT of jobs), and so the

cp rule gives higher priority to class 1 jobs. The service levels for problems I and II were

set at = .05 (that is, 5% tardy jobs) and f = 0.5.

For each of Problems I and II, seven due-date setting policies and five priority se-

quencing policies were tested; thus, 35 due-date management policies were tested for each

problem. For each due-date management policy tested on each problem, 20 independent

runs were made, each consisting of 5000 customer completions. Each simulation run started

with an empty system and had no initialization period. Five parametric due-date setting

policies, the first three of which are from [2], were tested on both problems: a constant

policy (referred to as CONSTANT in Tables I and II), where Dk,t = t + c for some pa-

rameter c; a slack policy (SLACK), where Dk,t = t + 1 + c; proportional (PROP),

where Dk,t = t + CPk l; the policy described in equation (10), which will be referred to as

E[Sk,t]; and policy (11), which will be referred to as a[Sk,t]. For these policies, the asso-

ciated parameter was set so that the resulting average fraction of tardy jobs P satisfied

P E [.05 ± .0005] and the resulting average job tardiness T satisfied T E [.5 ± .005].

In addition, two non-parametric due-date setting rules were tested on each problem.
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The policy described in (12)-(13), which will be referred to as NONPAR I, was tested

on Problem I, and policy (14)-(15), which will be referred to as NONPAR II, was tested

on Problem II. Also, the two corresponding policies described in Section 6, which will be

referred to as HOT I and HOT II, were tested on Problems I and II, respectively. For these

four policies, the accuracy parameter AA and precision parameter AP in equation (25)

were set equal to .01 and .005, respectively. Also, the parameter appearing in equation

(28) was set equal to .0005 for NONPAR I and HOT I, and was set equal to .005 for

NONPAR II and HOT II. The upper bound parameter U appearing in (24) was set equal

to twenty times the expected value of the conditional sojourn time.

Only non-parametric priority sequencing rules were considered in our study; readers

are referred to Vepsalainen and Morton [21] for recent work in parameterized rules. The

five priority sequencing policies are: the shortest expected processing time rule (SPT),

where class 1 jobs get priority over class 2 jobs; the earliest due date rule (EDD), where

priority is given to the job with the earliest due-date; the minimum slack rule (SLACK),

which gives priority to the job with the smallest slack, where a job's slack is its due-date

minus its expected processing time minus the current time; a critical ratio rule (S/EPT),

where priority is given to the job with the smallest ratio of its slack divided by its expected

processing time; and the modified due-date (MDD) policy of Baker and Bertrand [3], which

gives priority to the job with the earliest modified due-date, where a job's modified due-

date is the maximum of its due-date and its earliest expected completion time (that is, the

current time plus its expected processing time).

For the SPT rule, we need to specify the manner in which customers are ordered

within each class. Two possibilities are to order them by the earliest arrival date or by

the earliest due-date; the two subsequent sequencing policies are denoted by SPT(FIFO)

and SPT(EDD), respectively. Under the three traditional due-date setting policies, these

two sequencing rules are identical, since the due-dates do not depend on the state of the

queueing system. As mentioned in Section 6, the HOT I and HOT II due-date setting rules
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need to be run with SPT(EDD) in order to satisfy the necessary constraint. However, the

remaining proposed due-date setting policies were tested in conjunction with both the

SPT(FIFO) and SPT(EDD) sequencing policies.

The results of the simulation study are summarized in Table I (for Problem I) and

Table II (for Problem II). In both tables, each row corresponds to a due-date management

policy, and the average DDLT of jobs is given for each row, along with a 95% confidence

interval. In addition, the average fraction of tardy jobs is stated in Table I, and the average

job tardiness is stated in Table II, both with 95% confidence intervals.

As can be seen in Table I, the four due-date setting policies easily outperformed the

three traditional due-date setting policies. Also, the due-date setting policies have a much

bigger impact on performance than do the priority sequencing policies. As for our four

proposed due-date setting policies, the two non-parametric rules slightly outperformed the

two parametric rules. The HOT I policy was the best due-date setting policy, slightly

outperforming the NONPAR I policy. Since the ability to exploit hot streaks should

increase with the variability of the processing times, and since only a minor improvement

was obtained with exponential processing times, it would appear that the HOT I policy will

not often lead to a significant improvement over the NONPAR I policy. Also, the c[Sk,t]

policy achieved a minor reduction in DDLT compared to E[Sk,t], suggesting that the second

moment of the conditional sojourn time improves performance, but not dramatically.

Notice that the service level target of p = .05 was well within the 95% confidence

intervals of the proportion of tardy jobs observed under the (NONPAR I,SPT) and (HOT

I,SPT) due-date management policies; thus the algorithms developed in Sections 5 and 6

for the non-parametric due-date setting policies are shown to be reliable.

There was a negligible difference in performance among the priority sequencing policies

when they were used in conjunction with one of the four due-date setting policies proposed

for Problem I. This is because the due-dates were set in accordance with the SPT rule,

and thus the SPT rule and the due-date based rules prioritized jobs in a similar manner.
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PRIORITY
SEQUENCING

POLTCY

SPT
EDD

SLACK

S/FPT
MDD

SPT
EDD

SLACK

S/FPT
MDD

SPT

EDD

SI,ACK

S/EPT
MDD

SPT(F1FO)

SPT(EDD)
EDD

SLACK

S/FPT

MDD

SPT(FIFO)

SPT(EDD)
EDD

ST,ACK

S/EPT
MDD

SPT(FIFO)
SPT(EDD)
EDD

SLACK

S/EPT
MDD

SPT(EDD)

EDD
SLACK

S/EPT
MDD

MEAN
DD,T

23.5(.00)

22.3(+.00)

22.43(.00)
23.6(+.00)

21.7(-.00)

22.88(+.00)

22.43(±.00)

22.23(±.00)
23.23(+.00)

21.73(±.00)

16.4(±.03)

19.13(+.03)

19.33(±.03)

20.6(.04)

18.7(±.03)

13.9(+.51)

13.9(+.53)
13.8(±.53)

13.8(±.51)

14.1(±.51)

13.8(±.53)

12.9(±.36)

12.4(.34)

13.0(±.38)

13.0(±.38)

13.0(+.38)

12.5(+.40)

12.4(±.33)

12.4(+.33)

12.5(+.36)

12.6(±.36)
12.3(±.33)

12.3(+.33)

11.9(+.31)

12.0(+.33)

12.0(+.34)
12.0(+.33)
11.9(+.33)

PERCENTAGE
TARDY

JOBS

5.02(±.63)
4.99( .96)

5.00(+.96)
4.98(±.97)

4.99( .92)

5.02(±.63)

5.01 (.97)

5.01 (.96)
5.05(+.93)

5.00(+.97)

4.99(±.60)

5.02(+1.04)
4.98(+1.02)

5.04(±.94)
4.95(± 1.00)

4.99(+.18)

5.01 (±.18)
4.97(±.16)

4.95(±.18)

5.00( .17)

5.01(. 18)

4.95( .23)

5.05(±.26)

4.98(±.28)

5.02(+.26)

5.01(+.28)

5.04(+.30)

4.88(±.24)
4.75(±.25)

4.89(+ .35)
4.94(± .35)

5.97(±.29)
4.75(±.25)

5.09(±.27)
5.20(±.36)

5.23(+.37)
5.69(+ .37)
5.04(+.35)

TABLE I. SIMULATION RESULTS FOR PROBLEM 1.
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DUE-DATF
SETTING
PO,lICY

CONSTANT
CONSTANT

CONSTANT

CONSTANT

CONSTA NT

SL,ACK

SLACK

ST,ACK

SLACK

SLACK

PROP
PROP

PROP
PROP
PROP

[si.]

FISk,:]

F[S ,t]

F[St,tI

Estit]

E[Skt]

[Sit]
[s.Sk,t]

-[Sik,]

[sk.,t]
[S,It]

It[S.s]

NONPAR I

NONPAR 

NONPAR1
NONPAR 1

NONPAR T
NONPAR I

HOT 1I

HOT I
HOT I

HOT 1I

HOT I



PRIORITY
SEQUFNCING

POL,ICY

SPT

EDD

SLACK

S/EPT
MDD

SPT

FDD

SLACK

S/FPT
MDD

SPT
FDD

SL ACK

S/EPT
MDD

SPT(FIFO)

SPT(FDD)
EDD

SLACK

S/EPT
MDDnn

SPT(FIFO)

SPT(EDn)
EDD

SLACK

S/EPT
MDD

SPT(FIFO)

SPT(EDD)
EDD

SLACK

S/EPT
MDD

SPT(EDD)
EDD
SIACK

S/EPT
MnnDD

MEAN
DDT

27.0(±.00)
19.7(±.00)
20.0(±.00)
19.8(.00)

19.1 (±.00)

26.33(±.00)
19.83(±.00)

19.63(±.00)

19.7(±.00)

19.1(+ .00)

18.0(±.03)

17.2(±.03)

17.33(±.03)

17.3(±.03)

16.5(±.03)

8.91(±.33)

8.80(± .34)
8.60(±.36)

8.61(+±.34)
10.05(±.41)

8.75(±.34)

8.86(+.28)

8.79(±.28)

8.62(±.30)

8.66(±.30)

8.71(±.33)

8.50(±.32)

9.50(±.34)

9.53(±.35)

9.58(±.37)

9.59(±.36)

9.48(±.34)

9.48(±.35)

9.01(±.32)

9.09(±.34)
9.10(±.34)

9.05(±.33)
9.02(± .33)

Table II. SIMUL,ATION RESULTS FOR PROBIEM 11.
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DUF-DATF
SFTTING
POLICY

CONSTANT

CONSTANT
CONSTANT
CONSTANT

CONSTANT

MEAN
JOB

TA RDIN ESS

.506(±.124)

.506(±.149)

.497(+.150)
.492(±.137)

.497(±.138)

.506(±.124)

.502(±.151)

.509(±. 150)

.493(±.137)

.501(±.142)

.509(±.125)

.493(±.167)

.508(±.154)

.501(±.144)

.499(±.145)

.504(±.035)

.505(±.038)

.504(±.034)

.497(±.034)

.492(±.070)

.505(±.038)

SIL ACK

STLACK

STLACK
SLACK

SLACK

PROP

PROP

PROP

PROP

PROP

[Sk,,]

FI[S,t]

F[,,]

[Sk,t]

[Sk,t]

E[Sk,t]

nT[Sk,t]

n[Sk,t]
o[Sk,t]

,[S,t]

n[Sk,t]

.498(±.044)

.502(±.046)

.500(..045)

.501 (.045)

.507(±.043)

.502(±.042)

NONPAR I

NONPAR 1

NONPAR 1

NONPAR 1I

NONPAR I

NONPAR I

HOT I
HOT I
HOT 1

HOT 1I
HOT 1I

.520(±.029)

.510(±.031)

.489(±.019)

.492(±.017)

.733(±.081)

.510(±.031)

.532(±.032)

.514(±.029)

.517(±.030)

.522(±.028)

.511(±.028)



The only exception is the S/EPT sequencing rule, which did not perform well with the

proposed due-date setting policies. This is not surprising, however, since this sequencing

rule may attempt to serve class 2 customers before class 1 customers when there are no

tardy jobs in queue, and hence will counteract the proposed due-date setting policies. The

(PROP,SPT) due-date management policy was the only case where a priority sequencing

rule had a significant impact under a particular due-date setting policy. The PROP due-

date setting rule worked well with the SPT sequencing rule in this example because class

1 jobs have a shorter cycle time than class 2 jobs under the SPT rule.

We now turn our attention to Table II, which gives results for Problem II. The results

for this case are quite similar to those of Problem I, but are even more dramatic: the best

due-date setting policies cut the DDLT by a factor of two or three compared to conventional

due-date setting policies. In contrast to Problem I, the non-parametric rules now out-

performed the parametric rules. Also, there was virtually no difference in performance

between the E[Sk,t] and [a[Sk,t] rules in Problem II. HOT II outperformed NONPAR II,

but the increase in performance was again modest. The service level target T = .5 once

again was within the 95% confidence interval of the observed average job tardiness for the

(NONPAR II,SPT) and (HOT II,SPT) policies; however, the target was near the endpoint

of the interval in both cases.

As in Problem I, there was very little difference among priority sequencing policies

under our proposed due-date setting policies. Under the traditional due-date setting poli-

cies, SPT did not perform as well as the due-date sequencing policies. In particular, the

(PROP,SPT) policy, which had performed well in Problem I, did not perform well in Prob-

lem II. Also, our study agrees with the results of Baker and Bertrand [3] in that the MDD

rule performs better than the other sequencing rules in most cases.

In summary, all the due-date setting policies described in this paper easily outper-

formed the traditional due-date setting policies, and provided a much larger improvement

in performance than did priority sequencing. Moreover, the proposed due-date setting
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policies are very robust with respect to the sequencing policy that was used with it.
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