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We consider a stochastic single-server fluid network with both a discounted re-
ward and a cost structure. It can be shown that the optimal policy is a priority index
policy. The indices coincide with the optimal indices in a Semi-Markovian Klimov
problem. Several special cases like single-server re-entrant fluid lines are considered.
The approach we use is based on sample path arguments and Pontryagins maximum
principle.
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1. Introduction

The model under consideration is a stochastic single-server fluid network. It
consists of a finite number of buffers and a single server who has to be allocated
to the buffers. The input flow can come from both external sources as well as
internal transitions which occur according to a routing matrix. The external
arrival process of fluid is driven by a continuous-time Markov chain with finite
state space. We consider both a discounted reward and a discounted cost model.

The motivation to study fluid models is twofold. First, in many applications
which involve hierarchical decision making, fluid models seem to be natural, since
the frequency of occurence of different types of events is different. Therefore,
quantities that vary much faster than others are modeled in a deterministic way
by replacing them with their averages. This is a common technique in manufac-
turing systems (see Sethi/Zhang [8]). Second, fluid models capture the asymp-
totic behavior of discrete stochastic queueing systems. In Chen/Mandelbaum [3]
it is shown that a class of queueing networks converges under appropriate time
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and space scaling to fluid networks. Moreover, recent results have shown a close
connection between stability of stochastic networks and stability of their fluid
models. This implies also the hope that an optimal control for a fluid model - if
translated - can be used as a good heuristic for the discrete stochastic model (see
also Meyn [6]).

Indeed, with our approach we can show that the optimal control in the dis-
counted single-server fluid network is a priority index policy. The indices are
independent of the discount factor and coincide with the optimal indices in a
Semi-Markovian Klimov problem under the average reward criterion. Under ad-
ditional assumptions this has already been discovered for the deterministic fluid
model in Chen/Yao [4]. Using a linear programming approach the authors there
showed that the index policy is a myopic solution of the optimization problem
and gave conditions under which the myopic solution is also globally optimal.
In contrast, we use a sample path argument and Pontryagins maximum prin-
ciple to establish the optimality even in a stochastic fluid setting. Moreover,
we can show that the conditions needed in Chen/Yao [4] are always fulfiled un-
der reasonable assumptions. Note that recent studies in this spirit also include
Avram/Bertsimas/Ricard [2], Avram [1] and Weiss [12].

The paper is organized as follows: in section 2 we give a precise mathemati-
cal formulation of the optimization problem, where we introduce the cost and the
reward model. As in the well-known discrete-time stochastic single-server prob-
lem we show that there is a relation between these two models. In addition we
prove that the value functions are convex and concave respectively. In section 3
we define the indices recursively by a so-called largest remaining index algorithm.
From this representation we can see that the indices coincide with the indices of
an adequately defined Klimov problem. This enables us to derive easily some
bounds and properties of the indices like monotonicity. The next section con-
tains the definition of the index policy and states the optimality of it under some
mild and natural assumptions like stability. Moreover, we consider the following
special cases of the model: zero-routing which implies that the index policy is
the well-known pc-rule, a deteriorating case where the myopic policy is optimal
and a single-server re-entrant line which has also been considered in Weiss [12].
The proof of the optimality of the priority index policy is given in section 5.
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2. The Model

Consider the following single-server fluid network: there are N queues with
infinite buffers. Each buffer receives a continuous stochastic inflow in the follow-
ing way: Let {Z;, ¢ > 0} be a continuous time Markov chain with finite state
space Z and generator Q = (q,./). As usual define ¢, = —¢q,,. We will interpret
Z; as the state of the environment at time ¢ and we will call {Z;, ¢ > 0} the en-
vironment process. Denote by T}, T5, ... the random jump times of {Z;, ¢ > 0}.
Given, the environment process at time ¢ is in state a, there is a deterministic
inflow into buffer j at rate A > 0, j =1,..., N. Let us define \* = (A{,...,A%).
A single server has to be splitted among the buffers. The potential service rate
of buffer j is assumed to be y; >0, 7 =1,..., N which means that if a fraction
uj € (0,1) of the server is allocated to buffer j, there is an output rate of w;u;
if the buffer content is greater zero. If it is zero, the actual output rate is equal
to the minimum of w;u; and the input rate. For abbreviation denote the matrix
D = diag(y15) as the diagonal matrix with elements ; on the diagonal. The fluid
that is leaving buffer j is divided and a fraction of p;; € [0,1), i =1,...,N is
instantaneously flowing into buffer ¢. Throughout this paper we assume that

(A1) Zi]ilpji<1, forallj=1,...,N.

i.e. a positive fraction of 1 — Zi]\il pji is leaving the system. Denote the matrix
P = (pj;) and define & = {u € [0,1]" | E;VZI u; < 1}. Hence, given a fixed
server allocation u € U and a fixed environment state a, the input rate into
buffer j, j =1,...,Nis A7 + Ei]\; pijhiu; and the output rate is equal to pju;.
In matrix notation this is \* + P”Du and Du respectively. The state of the
system at time ¢ is (Y, Z;) = (Y1(t),...,Yn(t), Z;) with the interpretation that
Y;(t) is the buffer content of buffer j at time ¢, 1 < j < N. Hence RY x Z is the
state space of the system. If the state of the system is (y, z), we define

N
U(y,z) = {u €U | A\] — pju; + Zpij,uiui > 0, whenever y; = 0}. (1)
i=1
For an arbitrary function u € M = {u : IRy — U | u measurable } denote
Oy, z,u)(t) =y + fg N — Dug + PTDug ds. If we introduce the matrix A =
D(I — P), where I is the identity matrix then we can simply write

oy, z,u)(t) =y + /Ot N — ATy ds (2)
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Figure 1. Single-server network

Hence D(y,z) = {u € M | u € U(¢(y, z,u)(t),z)} is defined as the set of
admissible controls. At each jump time of the environment process we have to
choose an admissible control. This is done by a decision rule from the set F' =
{f: RY x Z — M| f measurable, f(y,z) € D(y,z) for all (y,2) € RY x Z}.
For f € F let ¢/ (y,2)(t) = ¢(y, 2z f(y,2))(t). A policy 7 is now defined by a
sequence of decision rules i.e. T = (fy,), where f, € F for all n € IN. If we define
by

'/Tt:fn(YTnaZTn)(t_Tn) for T, <t < Ty, (3)
then m; is the control we have to apply at time ¢. Analogously we define
Y, = ¢ (Y1, Z1,)(t — T)  for Ty <t < Ty (4)

We are now interested in two different optimality criterions:

In the reward model we suppose that we obtain a reward of r; € IR for
each unit of fluid from buffer j that is processed. Denote r = (r1,...,7x). The
aim is to maximize the expected discounted reward of the system over an infinite

horizon. Hence, for a given admissible policy # we define for § > 0

Vily,2) = Ey . [/0 e Plrm, dt}

where Yy =y, Zy = z and 7, is given by (3).

In the cost model we suppose that a linear cost of rate ¢; € IR is incurred,
when holding fluid in buffer j. Denote ¢ = (ci,...,cny). We are interested in
finding a control which minimizes the expected discounted cost of the system
over an infinite horizon. Hence, for a given admissible policy m we define for
6>0

o0
Cr(y,z) = Ey, [/0 e Pley, dt}
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where Y; is given by (4), Yy =y, Zy = z. Hence the optimization problems are

V(y,z) = sup Vz(y,2)
TEF®

Cly,2) = inf_Crly,2)
TEF™>
An important special case is obtained, when A\ is equal to A for all ¢ € Z. Then
the inflow process is constant and the model is purely deterministic. In this case

the reward model is the following control problem

o¢]
[ e Ptruy dt — max
0

:A—AT’U,t
yr 20
ur €U

As in the discrete time stochastic model there is a certain connection between
the cost and the reward model (see e.g. Weishaupt [11], Tcha/Pliska [9]).
If we define r; = i [c; — S0 pjic;] or in matrix notation r = Ac, we obtain

Lemma 1. Let 7 be a policy and y > 0 the initial inventory of the fluid network.
Then we obtain for a € Z

o
BCx(y,z) =cy+ E [/ e P5eN?s ds
0

In particular, in the deterministic setting, if all A* are equal A, then

- Vﬂ(ya Z)

BCx(y) = cy + %cx Vily)

Proof. The proof is using a sample path argument. Let w be fixed. Denote by
Z(t,w) the path of the environment process and by Y (¢,w) the path of the buffer
contents under policy m, where Y (0,w) =y, Z(0,w) = z. By definition we have

00 N
Colty2)(w) = [ oY ei(t)
—/ Bth]</st)ds+y]> dt
:B/o ’5520] (s,w ds—i-ﬂZch]

7j=1
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where the second equality follows from changing the order of integration.
Substituting Yj(s,w) by the expression A]-Z(s’w) — pimi(s,w) + SN pijpimi(s,w)

we obtain

. N . N N
/ e P Z c;Yj(s,w) ds :/ e P Z (8, w)pj (—Cj + ijicl) ds +
0 j=1 0 j=1 i=1
N
o0
/ e P Z cj)\jz(s’w) ds =
0 et

00 N
0 ”
Jj=1

where we have used the definition of r; for the last equality. Taking expec-
tation, we obtain the desired result. O

A further interesting property of the value functions is the following:
Lemma 2. C(-,z) is convex and V (-, z) is concave for all z € Z.

Proof. We restrict on showing the assertion on C', the rest follows with Lemma
1.

Let y,y' > 0 and « € [0,1]. Fix w and suppose that 7 and «' are the
paths of the optimal policies for start in y and y' respectively. Define #; =
amy + (1 — a)my, t > 0. Hence it holds that 7y € U, t > 0. Use & as a control
for start in §j = ay + (1 — )y’ and denote by Y (t,w), (Y (0,w) = §) the associate
trajectory, analogously for Y (t,w), (Y (0,w) = y) and Y'(t,w), (Y'(0,w) = ¢).
Hence

. t
Y(t,w) = Q—i—/ A (59) _ Dir(s,w) + PT Dit(s,w) ds = aY (t,w) + (1 — )Y (t,w)
0

and in particular f/(t,w) > 0 for all £ > 0, since m and 7’ are admissible. More-
over,
w A
Ci3:2)(@) = [ e Pl (t,w) dt = aC(y, 2)(w) + (1 - Oy, ()
0
and taking expectation, we obtain

Clay + (L —a)y',2) = C(,2) < Cx(,2) = aC(y,2) + (1 - )C(y', 2)

which is the assertion. O
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3. Definition and Properties of the Indices

Our aim is to prove that the optimal policy is a priority index policy. In this
section we give a definition of the indices and show several important properties.
Due to assumption (A1) we have that (I — P)~! = 3%, P® > 0 and hence

oo
AP=3"P'D'>0 (5)
n=0
For means of short notation, let us introduce the following abbreviation: For
a subset S C {1,..., N} we denote

0f = (=aij)jes = (pij)ies, 1 ¢ S and  As = (ai)sjes-

An analogous definition is used for vectors. Obviously the relation in (5) holds
for arbitrary submatrices Ag.

Now we will give a recursive definition of the indices I', ..., IV, the so-called
largest remaining index algorithm (the name will be justified by Theorem 4
a)). By e we denote the vector consisting of 1’s only - the dimension should be
clear from the context.

Algorithm 3 Largest remaining index algorithm:.
(1) Il = maXxi<j<n Ty, ’il = argmaxlSjSN Tj, Sl = {11}

(ii) For k=1,...,N —1 let

. Sk o4—1
rj + a; Ask TS,

I = jé Sk
J Sk 4—1 ’
]. + a]kASk esk
k+1 _ k+1 k+1
I = %%1( I;™, g1 = argmax;gg, I

Set Ski1 =Sk + {’ik+1}.

Buffer ij, is now assigned the index I(iy) = I¥, k = 1,..., N. The indices
have the following nice interpretations:

In the fluid setting: I' is simply the maximal reward rate in the model.
Suppose that the indices I',...,I* have already been determined. Given that
we have to keep the buffer contents of the buffers in S; at zero we can now look
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at the reduced network which consists of the buffers in {1,...,N} — S;. If we
allocate a unit of the server to buffer j ¢ Sk, in order to keep the buffers in Sy
empty we have to assign to them a server capacity ug, which can be computed

from

_ 7T Sk
O—Askusk Clj .

Therefore ug, = af’“ Agkl. Hence I ]]-CH is the reward rate of buffer j in the reduced
network.

In a Semi-Markovian setting: consider the following Semi-Markovian
single-server network (cf. Walrand [10]). Arrivals at node j are according to a
Poisson process at rate A;. Service times are independent in all queues and have
mean i in queue j. When a customer is served in queue j a reward r; is received
and the customer is sent to queue 7 with probability p;;, i = 1,..., N and leaves
the network otherwise. The objective is to maximize the average reward of the
system over all nonpreemptive service policies. This problem gives exactly the
same indices. Moreover, let us look at a particular customer and denote by X (t)
the location of him at time ¢. Define the stopping time 7, = inf{¢t > 0 | X(¢) ¢
Sk} as his exit time from the set Sk, then

B [ e dt| =i+ a4
i ; TX(t) ri+ a; S TSk -
and we can write
B; [J5* rxq di]
Ej[m]

Therefore it is possible to give a direct calculation of the index I(j) of buffer j
by

k+1 _
I =

I(j) = sup B (6)
where the supremum is taken over all stopping times 7 of the Semi-Markov process
{X(t)} which are service completion times. The indices I(j) are the so-called
Klimov indices. From this observation we obtain the following properties of
the indices.

Theorem 4. a) The indices computed by the largest remaining index algorithm
fulfil

I'>rr>...>1V.
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b) The Klimov indices fulfil

;< 1) < ; =1,... .
’rJ — I(]) = IISI%Z&S}](VT“ J ]-7 7N
c) f pp =...=pyv =1land i+ r; and i — Zlepzj are decreasing for all
k=1,...,N, then

Proof. a) and b) follow from Walrand [10] and from (6).
c) Let K € R, 0 < 8 < 1 and define V(j,K), j =1,..., N as the unique
solution of the fixed point equation

N
V(]a K) = ma’X{Ka Tj + /szjzv(la K)}
i=1
Due to our assumptions about r and P we obtain that V' (j, K) is decreasing in j
for all K € IR. If we introduce now

I°(j) = min{K € R| V(j,K) = K},

it holds for ¢ < j that {K € R | V(i,K) = K} C{K € R|V(j,K) = K}
and therefore I°(i) > I°(j). Since I(j) = limg_1(1 — B)I°(j) the assertion is
completely proved. O

4. Definition of the Priority Index Policy

The priority index policy is now defined as follows: assign the complete
server to the non-empty buffer with highest index as long as there is fluid in this
buffer. When the buffer is empty, assign to it only the capacity that is needed to
hold the buffer at zero and assign the rest of the server to the buffer with second
highest index and so on. Since there can be re-entrants from the newly processed
buffer to buffers with higher priority, this procedures makes it necessary to re-
assign the server capacity to all the buffers at each time point when a buffer
empties. Before we define the index policy formally we assume that our network
is strongly stable, i.e.

(A2) for all environment states z € Z there exists an u = u(z) € U such that

N < ATu(z).
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This condition simply means that it is possible to empty the system in finite time
in each of the possible environment states.

Now fix an environment state z € Z. An important implication of (A2) is
that for a state y which fulfilsys =0, y; >0, S C {1,...,N}, j ¢ S it is possible
to find an admissible allocation of the server such that

e there is no allocation to buffers i ¢ S + {j}.
e the server is capable of keeping the buffers i € S at zero.
e the output rate at buffer j exceeds the input rate i.e. buffer j can be emptied.

This is because of the following observation: Define T = S+{;} and ur = Ap A",
Hence up > 0 and eup = eATA}I < 1 by (A2). ur is the server capacity that is
needed to cope with the input at buffers i € T. Now let € > 0 and allocate an
additional fraction of € to buffer j. Due to re-entrants it is necessary to allocate
some more capacity vg = mngl > 0 to the buffers in S (see interpretation
of the indices in the fluid setting). If we define ug; = (ur,0) + (vs,¢,0) and
choose € > 0 such that eug ; =1, we have found an admissible allocation which
fulfils all requirements. In particular let us define the following important server
allocations: uj = (1,0,...,0) and for Sy = {1,...,k}, uj = ug, | as well as
uy = AA7L.

Assume that the buffers have been rearranged such that the natural order
coincides with the priority order i.e. i =k, k =1,...,N and Sy = {1,...,k}.
Formally we will define the priority index policy as the stationary policy m =

(f.f,...) with

{u;‘(z) if j=min{i|y;(¢t) > 0}

where y; = ¢/(y,2)(t). To obtain the optimality we have to impose a further
assumption which is very natural

(A3) the rewards ry,...,ry are non-negative.

Assumption (A3) guarantees that ideling of the server is not optimal as long as
the buffers are nonempty, because processing of each buffer is profitable. Notice
that the assumption ¢; > 0 has not the same consequence. Obviously (A3)
implies ¢; > 0 whereas the converse is not valid.

Theorem 5 (Optimality of the priority index policy).
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Under the assumptions (A1) — (A3), the priority index policy is optimal for
both the reward and the cost model of section 1.

The proof of the theorem is given in section 5. Hence, in the single-server
network the optimal policy in the fluid model coincides with the optimal pol-
icy in the Semi-Markovian counterpart under the average reward criterion. It
is remarkable that the priority index policy in the fluid model is independent
of the discount factor #. This is mainly due to the fact that the impact of a
decision occurs without delay. Some interesting special cases of the model are
the following.

A) Zero-Routing

Let P =0, which means that there is no routing and processed fluid leaves
the system immediately. Obviously (A1) is fulfiled and (A2) reduces to

(A2’) for all z € 7 it must hold that -0, 5 < 1.

Moreover, we obtain r; = pj;c; and af = 0 for arbitrary j ¢ S. Therefore
the largest remaining index algorithm gives I¥+1 = max;¢g, rj and the priority
index policy is the well-known pc-rule.

B) Deteriorating Case

W.lLo.g. assume that 1 > 79 > ... > ry and let pj; =0 for 1 <7 < j < N.
Hence P is an upper triangular matrix. This means that after processing a fluid
it will only be routed to buffers with lower reward. In this case it is easy to see
that I¥ = r;, and the index policy is the myopic or greedy policy.

C) Single-Server Re-Entrant Fluid Line

The following re-entrant fluid line is considered in Weiss [12]. Formally this
problem reads

,
e Plru, dt — max

g1(t) = A — prua (1)
i (t) = pj—ruj—a(t) — pjui(t), 7=2,....N
ye >0

[ w € U
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|
Server
My = P) M-t NS

.

Figure 2. Single-server Re-Entrant Line

The routing matrix is given by

01 0
P =
0 ...0

Condition (A1) is not fulfiled in general in this model, but (I — Ps)~! obviously
exists for all subsets S C {1,..., N} which is sufficient for the derivation of all

the preceeding lemmas and theorems. Let us define m; = i The stability

condition (A2) reduces to A E;VZI mj < 1. Due to the special routing matrix the

representation of the Klimov-indices in (6) gives

1) = i M+ .o oM 17541 i=1 N
ISISN=j+1  mj+ ...+ mjp g S

which coincides with the indices given in Weiss [12] Proposition 3.2.

5. Proof of the optimality of the Index policy

In this section we show that the priority index policy is optimal for the
defined control problems. We will prove this statement in the setting of the cost
model, using a sample path argument.

In the sequel we will refer to the following deterministic control problem:

o
[ e Pley; dt — min
0
() 9 =M — ATy
yr >0

ur €U
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where Ay > 0, £ > 0 is a given, deterministic function which is right contin-
uous with left limits and has at most a countable number of discontinuities. The
Hamiltonian of the control problem (C) is

H(y,u,p,t) = cys + ptAe — ui Apy.

To identify an admissible control for (C') to be optimal, we can use the following
lemma (cf. Seierstad/Sydsater [7], where we use the weak regularity conditions).

Lemma 6 (Sufficient conditions for optimality).

The control u; with the associate trajectory y; is optimal for (C) if
there exists a continuous and piecewise continuously differentiable vector func-
tion py = (p1(¢),...,pn(t)) as well as a piecewise continuous vector function
ne = (n1(t),...,nn(t)) such that for all t > 0

(i) «* maximizes u; — ugApy for uy € U(T, 1).

(ii) pt — Bpt = —c + 1, where the p;(t) are differentiable, j =1,..., N.
(i) 0 > 0.

(iv) my; = 0.

(

v) liminf; o e Prpy(yf — y¢) > 0 for all admissible trajectories y;.

The next lemma will be important in the proof of optimality. Notice, that
the statement of Lemma 7 was also used in Chen/Yao [4] as a further condition
for global optimality of the index policy. The authors there have not seen that
this condition is always fulfiled. Hence our lemma also fills a gap in Chen/Yao
[4].

Lemma 7. For k =1,...,N — 1 it holds that

Agkl (Ik+165k - ’I“Sk) <0.

Proof. W.l.o.g. we assume that i, = k for k = 1,..., N. By v/ we denote the
unit vector with 1 in component j. The dimension should be clear from the
context. We have to show that
i 4—1
T+ < v/ Ag, T,

< —= forall 1<j3<Ek, k=1,...,N.
UJASkegk
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We will do this by induction over k.
For k =1 we have I' = r; and the inequality obviously holds. Assume the
statement is valid for I',...,I*. We define w; = af’“’lAgkl_l, k<j <N and

Hence we have
k_ Tk + wgrs,_,
1 4+ wges,

k

Define the k-dimensional vector z* = vagkl, hence

2k = (wka> where a = (agwy + app) "t # 0.

«
This can be easily checked by computing Agk zF. This gives us

kA—1

v Agrs,  ZPrs,  matoawgrs, Ik
1 T kp. =

vaSk es, AR a + awges, _,

and by Theorem 4 a) I**! < I*. What is left to prove is that

vl Aty
TRl < — 5 B pall 1< <k 1.
UJASk es,

Let 2/ = vJ Agkl, hence it is easy to check that
i A—1 —aev) AT
2 = (wka+v]A5k1 asv Ask—l
«

where «a = .
agk + aswg

Therefore

i 4—1 i JiAz!
“]Ask rs,  zlrg, @ (rk —i—wkrgk_l) + v Ask_lrgk_l

- —1 - ] . —1
’U]AS,k eSk Z esk o (]_ + wkeskfl) + ,U]Ask—leskfl

jA—1
Tk + Wgrs,_; v Ask,ITSk_l Tk + WErs,_,

=IF & —=% > =I*
1 + wges, _, viAg  es,_, 1+ wges,

which is true by the induction hypothesis. Since I*¥ > I**! (see Theorem 4 a))
we obtain the desired result. O

Now we are able to prove the main theorem.
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Proof of Theorem 5:. We will prove Theorem 5 for the cost problem by using
a sample path argument: Let 7™ be the index policy as defined before. We have
already shown that 7 € F'°°. Suppose 0 € F'*° is an arbitrary policy. We have
to show that Cr(y, 2) < Cy(y,2) for (y,2) € RY x Z. Now let w € Q be fixed.
Denote by A\, = A?(:%) the path of the input process, by 7(t,w), o(t,w) the
paths of the controls and by Y™ (¢,w) (Y7(t,w)) the path of the buffer contents
under control 7 (¢). Due to the definition of the deterministic control problem
(C), w(t,w) and o(t,w) are admissible controls for (C'), with respective costs
JoT Y™ (t,w) dt and [5° Y7 (¢, w) dt.

By showing that there exist functions p; and n; which fulfil together with
7(t,w) and Y™ (¢,w) the sufficient conditions of Lemma 3 we prove that

/0 T YT w) dt < /0 T oYt w) dt (7)

for all w € Q. Integrating w.r.t. w on both sides we finally obtain the desired

inequality
Cr(y,2) < Col(y, 2).

In what follows we will suppress w.
Before we start to prove (7), let us introduce several notations: let

R=(r,...,r)and C = (¢,...,c) be N x N-matrices.

By 0 =ty <t <ty < ...ty < oo denote the successive emptiness times of
the buffers under the priority index policy w. Notice that such a relation of
the emptiness times can be guaranteed under the index policy, regardless of the
choosen w € €. (Of course the ¢; depend on w). Some of the buffers may initially

be empty, in which case 0 =¢; = ... =t; holds. Denote
—e Bt 0 ... 0
=Pl _ =Bt —e P2 ... 0
T —
e PIN-1 _ o=BIN o—Bin-1 _ o—Bin  _o—Btn
For j = 1,..., N we define now the adjoint functions p; in the following way

pj(t)=0 whent > ty,

1
pj(t) = B (bjk + ljke’gt) whent, { <t<tg, k=1,...,N,
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where bj;, = ¢; if K < j and the other constants will be determined as the proof
continues. Hence, condition (ii) is obviously satisfied with n;(t) = 0 if ¢t < ¢;
which also implies that (iv) is true. Moreover, the adjoint functions are piecewise
continuously differentiable and the Lagrange multipliers 7; are constant on the
intervals [tg,tr11). To ease notation, let us define

c1 bigbiz---bin
ey €2 baz---ban

B = (bjy) =
CNCN CN -+ CN
i Lo Liz -+ Lin
log loo lo3 -+ lan
L=(ljx)=

INNINN INN - InN

What is left to prove, are conditions (i) and (iii) as well as the continuity of
p. We will now determine the constants [;; in such a way that p is continuous.
The continuity condition for 1 < j < k < N reads

bin +le6”8tN =0

bjk + ljkeﬁtk =0jk+1 + ljk_He’Btk.
From this set of equations, we obtain the following recursion foreach j = 1,..., N:

—pt
lin = —bjne Btn

ljlc = ljlc-i—l + (bjk — bjk_l_l)(—e*ﬂtk) k=N-—-1,...,7.
Hence, we get inductively that

N-1

Lik =Y (bji — bjir1)(—e 1) — bjye AV
i=k

for 1 <75 <k < N. Using matrix notation this is simply . = BT'. Hence L = BT

guarantees that p is continuous and

[(B)jk + (BT)jke’Bt] , whent, 1 <t <t,

| =

pi(t) =
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Now we are going to show that (i) can be satisfied by choosing the remaining
constants bj; appropriately. For that purpose define R, = (Ri(%),...,Rn(t)) =
Ap,. To fulfil condition (i) we have to show that

0<Ri(t)=...=R;(t) > Rj1(t),...,Rn(t) whent;_; <t <t
forj=1,...,N and
Ri(t)=...=Ry(t) =0 whent>tn.
Since p; = 0 for ¢ > tx the last equation trivially holds. Due to the definition of
the adjoint functions we can write

1
Rj(t) = B [(AB)]k + (ABT)jkeﬁt} , whent, | <t <t,

Hence we get
— LB e henty | <t <t

,8( [+ e])jk’ whenty 1 <t <tg.
For abbreviation denote X = (z;;) = AB. Since for t € [t;_1,1;) it holds that
the k-th column of (I +TeP*) is non-negative, it is not difficult to see that for (i)
it suffices to show that

R;(t)

0<z11 > T21,...,TN1
0< 7312 =392 > x32,...,TN2
0<ziyn=...=2ZnNN-

If we define B = B — C we have X = A(B + C) = AB + R. Since bj; =
0, j=1,...,N it follows that z;1 = rj, j = 1,..., N. Hence the first assertion
follows from the definition of the first index and the fact that 4 > 0. Let
us now have a look at column k£ + 1, k£ € {1,..., N — 1} of matrix X. With
ZA)].C_H = (61,k+1, e ,IA)]C’].H_l) and Sk = {1, e ,k} define

be+1 = AE,CI (Ik+lesk - Tsk) :
Hence we obtain that

Ik—l—lesk

_ [kl Sk

Sk -1 -1
ak+1Ask TSk “k+1Ask €Sy, t Tk+1

(361,k+1, s ,$N,k+1) =

S 4—1 k+1 .Sk 4—1
a]\}“ASkrgk — Ikt CLA}%lSkeg,c +ry
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Because of the definition of 7¥*1, it holds that
S — S _
T — I = (Tk+1 + akilAskl?"Sk) - I (1 + akilAskleSk) =0

and since af’“ > 0, Agkl > 0, using the maximality of I**! we have for
i=k+2,...,N:

Tj k1 — IFt = (ri + af’“AgklrSk) — [kFT (1 + af’“Agklesk) <0

and using additionally (A3) we get I**1 > 0. Hence we have shown that 0 <
Tl htl = -+ = Thtl k4l > Thi2btls - ENk+1, k € {1,..., N —1} which implies
(i) of the sufficient conditions.

Due to Lemma 7 it holds that 3k+1 <0, k=1,...,N —1 or equivalently
B < C. Bearing condition (ii) in mind, this implies that the Lagrange multipliers
n¢ are non-negative, hence (iii) holds. Since ¢y < 0o we obtain that p; = 0 for all
t > tn which implies (v). This completes the proof. O

6. Conclusion

We have shown that the optimal policy for a stochastic single-server fluid
network is simple priority index policy. The indices coincide with the optimal
indices in a Semi-Markovian Klimov problem. In particular are these indices
independent of the environment process (Z;) and of the discount factor 3. From
the sample path proof of Theorem 4 it can be seen that the index policy is
optimal in a very strong sense: it stochastically minimizes the cost function over
all time intervals [0,¢),,t € IR U {oo}. Thus, this policy can also be interpreted
as a myopic policy. From that point of view the index policy is quite natural.
Moreover, the sample path proof shows that, even one were knowing in advance
the complete sample path of the environment process, the optimal policy would

remain the same.
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