327 research outputs found

    Safety Awareness for Rigid and Elastic Joint Robots: An Impact Dynamics and Control Framework

    Get PDF
    This thesis aims at making robots with rigid and elastic joints aware of human collision safety. A framework is proposed that captures human injury occurrence and robot inherent safety properties in a unified manner. It allows to quantitatively compare and optimize the safety characteristics of different robot designs and is applied to stationary and mobile manipulators. On the same basis, novel motion control schemes are developed and experimentally validated

    Differential Spiral Joint Mechanism for Coupled Variable Stiffness Actuation

    Full text link
    In this study, we present the Differential Spiral Joint (DSJ) mechanism for variable stiffness actuation in tendon-driven robots. The DSJ mechanism semi-decouples the modulation of position and mechanical stiffness, allowing independent trajectory tracking in different parameter space. Past studies show that increasing the mechanical stiffness achieves the wider range of renderable stiffness, whereas decreasing the mechanical stiffness improves the quality of actuator decoupling and shock absorbance. Therefore, it is often useful to modulate the mechanical stiffness to balance the required level of stiffness and safety. In addition, the DSJ mechanism offers a compact form factor, which is suitable for applications where the size and weight are important. The performance of the DSJ mechanism in various areas is validated through a set of experiments

    Model-based design and optimization of a dielectric elastomer power take-off for oscillating wave surge energy converters

    Get PDF
    This paper investigates a new kind of device for producing electricity from the mechanical energy carried by ocean waves. The proposed machine, named poly-surge, is based on an existing sea-bottom hinged surging-flap concept that is equipped with a new power take-off (PTO) system based on a novel soft dielectric elastomer (DE) transducer. DEs are highly deformable polymeric materials that can be used to conceive electrostatic generators relying on capacitance variation. This kind of generators shows a number of features that well match the requirements of a wave energy converter since they are light-weight, low-cost, tolerant to salty/aggressive marine environment, noise-free during operation, and easy to manufacture and install. The considered poly-surge converter employs a parallelogram-shaped DE generator (PS-DEG) arranged in a dual agonist–antagonist configuration, which makes it possible to provide the flap with controllable bidirectional torques. In this paper, first a complete wave-to-wire multiphysics model of the overall system is described that assumes a simplified hydrodynamic response for the hinged-flap and an electro-hyperelastic behaviour of the PS-DEG. Second, a procedure is presented for the dimensioning and optimization of the PS-DEG for given sets of poly-surge flap dimensions, wave-climate information and constraints on both design and operational variables. Finally, simulation results are provided to demonstrate that the poly-surge can achieve quasi-optimal power production with a properly designed agonist–antagonist DEG PTO system

    Physiological, neuromuscular and perceived exertion responses in badminton games

    Get PDF
    The purpose of this study was to characterise the physiological, neuromuscular and perceived exertion variables during a badminton match and to assess the influence of these variables on the characteristics of the game. Each variable was measured before, every ten minutes, and ten and twenty minutes after a badminton game. Using a lactate device, a heart rate monitor, an accelerometric system, a dynamometer, a camera and a Borg scale, twelve games between elite players were analysed. An increase was found in the heart rate, blood lactate and in the recovery time, while a decrease was found in the power output of the lower and upper limb joints and shot frequency. These results suggest the capability of the players to preserve a high intensity of performance for as long as possible despite general fatigue. The fatigue induced by changes in physiological variables is affected more by the intensity of the stroke rather than the duration of the rallies. The perceived exertion is thought to be a combination of attentional and neuromuscular fatigue rather than related to changes in metabolites. Consequently, in future studies, researchers and trainers should consider the fatigue state as a means to increase players’ ability

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    A review of forward-dynamics simulation models for predicting optimal technique in maximal effort sporting movements

    Get PDF
    The identification of optimum technique for maximal effort sporting tasks is one of the greatest challenges within sports biomechanics. A theoretical approach using forward-dynamics simulation allows individual parameters to be systematically perturbed independently of potentially confounding variables. Each study typically follows a four-stage process of model construction, parameter determination, model evaluation, and model optimization. This review critically evaluates forward-dynamics simulation models of maximal effort sporting movements using a dynamical systems theory framework. Organismic, environmental, and task constraints applied within such models are critically evaluated, and recommendations are made regarding future directions and best practices. The incorporation of self-organizational processes representing movement variability and "intrinsic dynamics" remains limited. In the future, forward-dynamics simulation models predicting individual-specific optimal techniques of sporting movements may be used as indicative rather than prescriptive tools within a coaching framework to aid applied practice and understanding, although researchers and practitioners should continue to consider concerns resulting from dynamical systems theory regarding the complexity of models and particularly regarding self-organization processes

    Design of high-performance legged robots: A case study on a hopping and balancing robot

    Get PDF
    The availability and capabilities of present-day technology suggest that legged robots should be able to physically outperform their biological counterparts. This thesis revolves around the philosophy that the observed opposite is caused by over-complexity in legged robot design, which is believed to substantially suppress design for high-performance. In this dissertation a design philosophy is elaborated with a focus on simple but high performance design. This philosophy is governed by various key points, including holistic design, technology-inspired design, machine and behaviour co-design and design at the performance envelope. This design philosophy also focuses on improving progress in robot design, which is inevitably complicated by the aspire for high performance. It includes an approach of iterative design by trial-and-error, which is believed to accelerate robot design through experience. This thesis mainly focuses on the case study of Skippy, a fully autonomous monopedal balancing and hopping robot. Skippy is maximally simple in having only two actuators, which is the minimum number of actuators required to control a robot in 3D. Despite its simplicity, it is challenged with a versatile set of high-performance activities, ranging from balancing to reaching record jump heights, to surviving crashes from several meters and getting up unaided after a crash, while being built from off-the-shelf technology. This thesis has contributed to the detailed mechanical design of Skippy and its optimisations that abide the design philosophy, and has resulted in a robust and realistic design that is able to reach a record jump height of 3.8m. Skippy is also an example of iterative design through trial-and-error, which has lead to the successful design and creation of the balancing-only precursor Tippy. High-performance balancing has been successfully demonstrated on Tippy, using a recently developed balancing algorithm that combines the objective of tracking a desired position command with balancing, as required for preparing hopping motions. This thesis has furthermore contributed to several ideas and theories on Skippy's road of completion, which are also useful for designing other high-performance robots. These contributions include (1) the introduction of an actuator design criterion to maximize the physical balance recovery of a simple balancing machine, (2) a generalization of the centre of percussion for placement of components that are sensitive to shock and (3) algebraic modelling of a non-linear high-gravimetric energy density compression spring with a regressive stress-strain profile. The activities performed and the results achieved have been proven to be valuable, however they have also delayed the actual creation of Skippy itself. A possible explanation for this happening is that Skippy's requirements and objectives were too ambitious, for which many complications were encountered in the decision-making progress of the iterative design strategy, involving trade-offs between exercising trial-and-error, elaborate simulation studies and the development of above-mentioned new theories. Nevertheless, from (1) the resulting realistic design of Skippy, (2) the successful creation and demonstrations of Tippy and (3) the contributed theories for high-performance robot design, it can be concluded that the adopted design philosophy has been generally successful. Through the case study design project of the hopping and balancing robot Skippy, it is shown that proper design for high physical performance (1) can indeed lead to a robot design that is capable of physically outperforming humans and animals and (2) is already very challenging for a robot that is intended to be very simple

    Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions

    Get PDF
    Instabilities in solids and structures are ubiquitous across all length and time scales, and engineering design principles have commonly aimed at preventing instability. However, over the past two decades, engineering mechanics has undergone a paradigm shift, away from avoiding instability and toward taking advantage thereof. At the core of all instabilities—both at the microstructural scale in materials and at the macroscopic, structural level—lies a nonconvex potential energy landscape which is responsible, e.g., for phase transitions and domain switching, localization, pattern formation, or structural buckling and snapping. Deliberately driving a system close to, into, and beyond the unstable regime has been exploited to create new materials systems with superior, interesting, or extreme physical properties. Here, we review the state-of-the-art in utilizing mechanical instabilities in solids and structures at the microstructural level in order to control macroscopic (meta)material performance. After a brief theoretical review, we discuss examples of utilizing material instabilities (from phase transitions and ferroelectric switching to extreme composites) as well as examples of exploiting structural instabilities in acoustic and mechanical metamaterials
    • …
    corecore