7,089 research outputs found

    Influence of Stereoscopic Camera System Alignment Error on the Accuracy of 3D Reconstruction

    Get PDF
    The article deals with the influence of inaccurate rotation of cameras in camera system alignment on 3D reconstruction accuracy. The accuracy of the all three spatial coordinates is analyzed for two alignments (setups) of 3D cameras. In the first setup, a 3D system with parallel optical axes of the cameras is analyzed. In this stereoscopic setup, the deterministic relations are derived by the trigonometry and basic stereoscopic formulas. The second alignment is a generalized setup with cameras in arbitrary positions. The analysis of the situation in the general setup is closely related with the influence of errors of the points' correspondences. Therefore the relation between errors of points' correspondences and reconstruction of the spatial position of the point was investigated. This issue is very complex. The worst case analysis was executed with the use of Monte Carlo method. The aim is to estimate a critical situation and the possible extent of these errors. Analysis of the generalized system and derived relations for normal system represent a significant improvement of the spatial coordinates accuracy analysis. A practical experiment was executed which confirmed the proposed relations

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Detail-preserving and Content-aware Variational Multi-view Stereo Reconstruction

    Full text link
    Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo reconstruction, most existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with few textures. To address these limitations, this paper presents a Detail-preserving and Content-aware Variational (DCV) multi-view stereo method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware p\ell_{p}-minimization algorithm by adaptively estimating the pp value and regularization parameters based on the current input. It is much more promising in suppressing noise while preserving sharp features than conventional isotropic mesh smoothing. Experimental results on benchmark datasets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse ring datasets in terms of both completeness and accuracy.Comment: 14 pages,16 figures. Submitted to IEEE Transaction on image processin

    Towards binocular active vision in a robot head system

    Get PDF
    This paper presents the first results of an investigation and pilot study into an active, binocular vision system that combines binocular vergence, object recognition and attention control in a unified framework. The prototype developed is capable of identifying, targeting, verging on and recognizing objects in a highly-cluttered scene without the need for calibration or other knowledge of the camera geometry. This is achieved by implementing all image analysis in a symbolic space without creating explicit pixel-space maps. The system structure is based on the ‘searchlight metaphor’ of biological systems. We present results of a first pilot investigation that yield a maximum vergence error of 6.4 pixels, while seven of nine known objects were recognized in a high-cluttered environment. Finally a “stepping stone” visual search strategy was demonstrated, taking a total of 40 saccades to find two known objects in the workspace, neither of which appeared simultaneously within the Field of View resulting from any individual saccade

    Ego-motion and Surrounding Vehicle State Estimation Using a Monocular Camera

    Full text link
    Understanding ego-motion and surrounding vehicle state is essential to enable automated driving and advanced driving assistance technologies. Typical approaches to solve this problem use fusion of multiple sensors such as LiDAR, camera, and radar to recognize surrounding vehicle state, including position, velocity, and orientation. Such sensing modalities are overly complex and costly for production of personal use vehicles. In this paper, we propose a novel machine learning method to estimate ego-motion and surrounding vehicle state using a single monocular camera. Our approach is based on a combination of three deep neural networks to estimate the 3D vehicle bounding box, depth, and optical flow from a sequence of images. The main contribution of this paper is a new framework and algorithm that integrates these three networks in order to estimate the ego-motion and surrounding vehicle state. To realize more accurate 3D position estimation, we address ground plane correction in real-time. The efficacy of the proposed method is demonstrated through experimental evaluations that compare our results to ground truth data available from other sensors including Can-Bus and LiDAR

    Enabling Depth-driven Visual Attention on the iCub Humanoid Robot: Instructions for Use and New Perspectives

    Get PDF
    The importance of depth perception in the interactions that humans have within their nearby space is a well established fact. Consequently, it is also well known that the possibility of exploiting good stereo information would ease and, in many cases, enable, a large variety of attentional and interactive behaviors on humanoid robotic platforms. However, the difficulty of computing real-time and robust binocular disparity maps from moving stereo cameras often prevents from relying on this kind of cue to visually guide robots' attention and actions in real-world scenarios. The contribution of this paper is two-fold: first, we show that the Efficient Large-scale Stereo Matching algorithm (ELAS) by A. Geiger et al. 2010 for computation of the disparity map is well suited to be used on a humanoid robotic platform as the iCub robot; second, we show how, provided with a fast and reliable stereo system, implementing relatively challenging visual behaviors in natural settings can require much less effort. As a case of study we consider the common situation where the robot is asked to focus the attention on one object close in the scene, showing how a simple but effective disparity-based segmentation solves the problem in this case. Indeed this example paves the way to a variety of other similar applications

    A multi-projector CAVE system with commodity hardware and gesture-based interaction

    Get PDF
    Spatially-immersive systems such as CAVEs provide users with surrounding worlds by projecting 3D models on multiple screens around the viewer. Compared to alternative immersive systems such as HMDs, CAVE systems are a powerful tool for collaborative inspection of virtual environments due to better use of peripheral vision, less sensitivity to tracking errors, and higher communication possibilities among users. Unfortunately, traditional CAVE setups require sophisticated equipment including stereo-ready projectors and tracking systems with high acquisition and maintenance costs. In this paper we present the design and construction of a passive-stereo, four-wall CAVE system based on commodity hardware. Our system works with any mix of a wide range of projector models that can be replaced independently at any time, and achieves high resolution and brightness at a minimum cost. The key ingredients of our CAVE are a self-calibration approach that guarantees continuity across the screen, as well as a gesture-based interaction approach based on a clever combination of skeletal data from multiple Kinect sensors.Preprin
    corecore