
  
 
 
 
 
 
Haitham, F. and Aragon Camarasa, G. and Siebert, J.P. (2008) Towards 
binocular active vision in a robot head system. In: Towards Autonomous 
Robotic Systems Conference, 1-3 September, Edinburgh. 
 
 
http://eprints.gla.ac.uk/5921/ 
 
Deposited on: 25 May 2009 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



Towards Binocular Active Vision in a Robot Head 
Haitham Fattah, Gerardo Aragon-Camarasa and J. Paul Siebert 

Abstract—This paper presents the first results of an 
investigation and pilot study into an active, binocular vision 
system that combines binocular vergence, object recognition 
and attention control in a unified framework. The prototype 
developed is capable of identifying, targeting, verging on and 
recognizing objects in a highly-cluttered scene without the need 
for calibration or other knowledge of the camera geometry. 
This is achieved by implementing all image analysis in a 
symbolic space without creating explicit pixel-space maps. The 
system structure is based on the ‘searchlight metaphor’ of 
biological systems. We present results of a first pilot 
investigation that yield a maximum vergence error of ~6.5 
pixels, while seven of nine known objects were recognized in a 
high-cluttered environment.  Finally a “stepping stone” visual 
search strategy was demonstrated, taking a total of 40 saccades 
to find two known objects in the workspace, neither of which 
appeared simultaneously within the field of view resulting from 
any individual saccade. 

I. INTRODUCTION

HE  recent maturation of digital imaging hardware and 
the continual advancement of image processing and 

analysis techniques has vastly improved the potential for 
uses of computer vision in real-world scenarios. Binocular 
robotic vision has an advantage over monocular vision in 
potentially being able to compute range maps (i.e. distance 
fields to visible surfaces) by decoding the local parallaxes 
between captured stereo-pairs. Binocular imaging can also 
be used in object recognition to provide more information 
and therefore generate stronger object presence/identity 
hypotheses than would be possible with monocular vision 
alone. The development of an active vision control 
mechanism for a binocular camera system featuring object 
recognition and automated visual field exploration has 
potential applications such as: autonomous roving vehicles, 
automatic surveillance, telepresence systems and military 
applications. In this paper we present a system that 
integrates visual attention, vergence, gaze control and object 
recognition based on point matches extracted by means of 

the Scale Invariant Feature Transform 
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[1] (SIFT). The 
system as devised provides an efficient means for 
controlling a binocular robot head system and a unified 
framework for binocular camera control. 

This paper is organized as follows: in section II, we 
describe related work and the motivation that led us to 
design this particular system. We then describe the design of 
the vergence, object recognition and gaze control systems, in 
sections III, IV and V, respectively. Finally, section VI 
contains a summary of the system validation, its results and 
contributions to the field of active vision research. 

II. RELATED WORK AND MOTIVATION

Several Binocular robot heads have been developed in 
recent decades. For example, the ”Richard the First'' head [2]
and the KTH robot head [3] were capable of mimicking 
human head motion. More recent robot heads include the 
LIRA-head [4], where acoustic and visual stimuli are 
exploited to drive the head gaze; the Yorick head [5] or the 
Medusa head [6] where high-accuracy calibration, gaze 
control, control of vergence or real-time speed tracking with 
log-polar images were successfully demonstrated. 

Despite advances in binocular robot heads, few systems 
are reported in the literature that integrate vergence and 
object recognition (operating on highly cluttered images) 
into a complete system capable of autonomously exploring 
its visual field. Therefore, our motivation is to investigate 
the potential for state-of-the art image processing techniques 
to enhance the performance of binocular robotic vision 
systems. 

Vergence, in a biological context, is the act of adjusting 
relative angles of a pair of eyes to centre a real-world region 
of interest in the fovea of both eyes such that the dynamic 
range of parallaxes induced is minimised. In turn, this 
process maximises the visual information that can be 
extracted and perceived by the observer. There are many 
different possible models for implementing vergence in the 
context of a robotic binocular system. For example, by 
means of saliency detection or stereo-matching techniques 
such as: cepstral filtering [7], area based matching [5] and 
feature-based matching [8].

In this work, feature based matching offers advantages 
over area based techniques, such as [9]. For example, these 
advantages are evident when the surfaces are jagged or 
“spiked” or the local disparity gradient is near to an 
occlusion. 

There are many different possible models for 
implementing vergence based on point matches. In the 
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context of vergence, these different models are concerned 
with: selective versus non-selective point matching, image 
independent vs. image dependent/inferred selective vergence 
and attended vs. non-attended vergence 

The above different models could be viewed as a 
Behavioural Hierarchy [10] that defines how the system 
should behave in given circumstances. The concept of 
modes of behaviour in gaze control is discussed in section 
III.

In the context of autonomous robot vision systems, the 
ability to identify and categorise objects imaged within the 
environment is essential. Accordingly, a system that can 
reliably identify objects in its field of view would find use in 
a broad range of applications. With regard to techniques 
which currently exist, however, generally applicable and 
robust methods are scarce. Approaches include: shape-based 
methods such as Belongie's [11], which identifies 
correspondences between points on a shape and uses them to 
estimate an aligning transform; and Gevers [12] which 
combines colour and shape information into a high-
dimensional descriptor of the object for recognition 
purposes.

It has already been stated, however, that the integrated 
framework designed in this paper makes use of the SIFT 
data generated by the vergence system for the purposes of 
object recognition. SIFT-based object recognition has been 
implemented in several systems such as Eklundh on the 
Yorick head, which could localize, attend and recognize 
objects [5] and the work by Kragic on robotic vision in a 
domestic context [13]. The SIFT algorithm was adopted in 
this work since implementations of the SIFT algorithm are 
readily available and SIFT can provide the basis for a 
reasonably general purpose object recognition system. In 
addition, SIFT can serve as a framework for point matching 
based on other sensing modalities. Our laboratory has now 
developed a version of SIFT adapted to operate on range 
images [14], offering the potential to extend the developed 
system in the future to take full advantage of its binocular 
imaging ability. 

The process of using SIFT for object recognition is 
described concisely by Eklundh in [13]. Assuming a set of 
‘known’ objects and a database that contains images of a 
number of poses of each, SIFT features are extracted for 
every image in the database. The integration of object 
recognition is included in this system in order to 
demonstrate its utility and the means of doing so in a 
structured and computationally parsimonious manner. 

On the other hand, human visual attention is often 
described as being governed by the searchlight metaphor 
[15]. This suggests that human visual attention is separated 
into two modalities of analysis running simultaneously, with 
the output of one feeding into the other. These modalities are 
known as ‘pre-attentive’ and ‘attentive’ (further discussed in 
section V). 

In machine vision, the above paradigm was adopted by 

Westelius [16] to drive the attention of his hierarchical gaze 
control. Earlier attempts of modelling attention in a 
computer vision context include Milanese's [17] use of 
multiple feature maps. More recently reported developments 
in gaze control include the systems implemented in [18] that 
perform automatic saccadic gaze control in a mobile robot 
unit with active binocular cameras based on keypoint 
features; or in [13], which uses depth recovery to segment 
the scene by distance as part of an object-search strategy. 

As discussed above, there are several distinct elements 
which drive an attention mechanism. The gaze control 
system adopted in this paper has been modelled on the 
searchlight metaphor of attention, including pre-attentive 
and attentive elements working in conjunction to guide the 
cameras. 

To ensure that visual search progresses without endless 
backtracking, a mechanism for implementing inhibition of 
return (which also operates in a purely symbolic space) has 
been developed and integrated within the gaze control 
system. 

III. VERGENCE

The requirements of the vergence system specify that the 
cameras are driven such that they target the same real-world 
position. There are several different modalities of vergence 
conceivable, including those operating on the following 
contexts when: the system is verging on a specific object or 
part of the scene, the content of the scene is known a priori 
and one camera already targets the desired location. 

Thus, the behaviour of the system is contextually defined 
and task-motivated. We have attempted to structure the 
vergence system as a hierarchy of behaviours, related to 
Brooks' Subsumption Architecture [19]. The two modalities 
considered are; Global, non-selective vergence and 
Attended, selective vergence.

The selective vergence case was developed as an 
adaptation during the design of the gaze control system as a 
special case of the non-selective vergence case (section V). 
The remainder of this section, therefore, refers mainly to the 
development of the design of the non-selective vergence.

The working hypothesis during the design of the vergence 
system was that it is possible to cause the cameras to verge 
by considering a global set of SIFT keypoint matches 
between the two camera images, i.e. keypoint 
correspondences between the images of the stereo-pair. For 
each pair of corresponding (i.e. matched) keypoints 
identified, the x-axis positions of these keypoints in each 
image are compared to produce a single-point disparity. For 
any given stereo-pair of images, there is likely to be a large 
number of such matches. An example of a stereo-pair 
captured by the robot head is shown in Fig. 1(a). Matched 
keypoints are joined by lines. 

The algorithmic design is summarised in Fig. 2. To 
facilitate closed loop vergence, the disparity is measured 
again after the first iteration. If the post-verge disparity is 



reported as larger than a tolerance value, another iteration is 
initiated. 

(a)

(b)
Fig. 1.  (a) The stereo-pair view of a highly cluttered scene. (b) x-coordinate 
(left) and y-coordinate histogram of disparities. 

  In a scene that does not contain depth (that is to say, one 
in which all viewable information exists in one plane, 
parallel to the camera baseline), all correctly identified 
keypoint matches will exhibit the same disparity value. 

However, we know this condition is not usually true for 
almost all non-trivial cases. Image keypoints that correspond 
to real-world locations at a range of distances from the 
cameras will exhibit a range of disparities. 

The solution developed is to use the raw disparity data to 
infer information about the structure of the scene by 
identifying clusters, or peaks, of disparities. Since each 
disparity corresponds to a point somewhere on a surface at a 
specific distance from the cameras, we hypothesise that 
large number of roughly similar disparities sample the 
surface of a potentially interesting object (i.e. an object 
comprising visual structure). An implicit assumption of this 
approach is that any object that is spatially compact in depth 
will form a disparity cluster around some mean distance to 
the cameras. Where several objects are present, the object 
with the most structure represented by keypoints, will give 
rise to the largest cluster and this can be identified by means 
of a simple histogram of the keypoint disparity values. An 
example of such a histogram (with bin width of 10 pixels), 
can be seen in Fig. 1(b). 

An examination of the y-coordinate disparity histogram 
shows a clear peak around zero. This is expected, as the 
cameras should always be in vertical alignment, and 
therefore all correctly-matched keypoints will exhibit a near-
zero vertical disparity. This assumption holds when the 
cameras are in a fronto-parallel position, however, as the 
cameras rotate away from this position, epipolar tilt induces 
a non-zero vertical disparity between corresponding 
keypoints. 

Therefore, we created two constraints associated with 
each SIFT keypoint matched, these comprise the rotation
and scale constraints defined as;  

20o
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where  is the rotation value of the keypoint matches in left 
and right cameras which denotes the plane rotation of both 
images; and  is the scale of the keypoint matches of both 
camera images. 

Fig. 2.  The structure of the closed-loop verge control algorithm. 

In order to mitigate false SIFT feature matches, the 
disparity histogram proposed in combination with (1) and 
(2) made this algorithm robust with high cluttered scenes. 

IV. OBJECT RECOGNITION

The design of the object recognition system is a direct 
adaptation of the SIFT-based object recognition first 
described by Lowe [1]. The relevance of the design to this 
project is found in the means of integrating the object 
recognition system in the overall framework. For 
completeness, a brief overview of the design is given below. 

The basic function of the object recognition procedure is 
to compare each input image captured by the binocular 
camera-pair to all pre-stored object examples held in a 
database (in the form of sets of keypoints rather than 
images). Having applied the SIFT algorithm to all training 
images, the generated keypoints are stored in a data structure 
to facilitate searching during the subsequent object -
recognition phase. 

The object recognition system will take the keypoints 
extracted from the current camera images and then match 
these to all keypoints in the database and then apply the 
Generalized Hough transform (GHT) [20]. There are 
typically several images of each object class in the database. 
Each database keypoint must, therefore, remain logically 
associated with an object class. When a keypoint match is 
found, it is registered as one vote for that object class. The 
integration of the recognition function into the overall 
framework is summarised in Fig. 3. 

In an object recognition context, the GHT as Lowe 
described in [1], is used to strengthen a recognition 
hypothesis by establishing a measure of geometrical 
consistency between the test object and a reference object. 
This is performed by assigning votes into Hough-space bins 
for each matched SIFT feature. When a peak or cluster of 
votes is detected in Hough space, this indicates a consistent 



interpretation for a number of features which has a much 
higher probability of being true than a single feature match. 

When the affine pose estimation is applied to a winning 
cluster of keypoint votes in the GHT, described in [1], this 
can provide a precise location of the centre of the 
hypothesized object. 

To obtain the position of any point of a database object in 
the scene, the affine pose estimator is used as follows; 

ratioy Ax PS (3)

Fig. 3: The method of interfacing the recognition function. Note the use of 
passing keypoint data instead of image data. 

where, A is the affine transformation, described above, x the 
centre points of the image, PSratio a pixel-space ratio which 
corresponds to the total number of motor steps per pixel of 
translation in the image and y is the spatial location of the 
object in the scene. The actuators can then be driven to 
target the cameras at that point. 

The interface to the object recognition function is 
intentionally low-level to provide the maximum level of 
flexibility in its use. Notably, the recognition module does 
not return a set of recognized objects, but a set of all objects 
in the database, with the associated number of matches to 
each database object. 

The confidence for any given object is defined as the 
confidence of the highest-peak in Hough space for the 
recognized object which is used in section V to saccade the 
cameras towards the object with highest confidence value. 

V. GAZE CONTROL

The design of the behavioural system aims at achieving a 
gaze control strategy for search that uses the vergence and 
object recognition functions (described in sections III and 
IV) to explore the scene that it is presented with. We have 
developed an attentional system that operates purely in 
symbolic space by use of the SIFT keypoints. This allows a 
single set of image features to be used for the entire, 
heterogeneous set of tasks required. 

  A flow chart of the behaviour of the system can be seen 
in Fig. 4. The pre-attentive and the attentive functions work 
in a quasi-parallel manner, with the output of one feeding to 
the input of the other. 

  The pre-attentive function is concerned with analyzing 

the current field of view to detect salient features. This phase 
does not make recognition decisions; it is solely responsible 
for detecting areas of the field of view that may be of 
interest to the search strategy. These highlighted image 
features are passed to the attentive function (as in 3), which 
then guides the ‘searchlight’ to examine these areas in detail. 

The attentive phase uses the information provided by the 
pre-attentive function to target the cameras and make 
recognition decisions. This phase selects which attentive 
item to visit next, and directs the cameras to the reported 
location. 

  As a consequence of the pre-attentive phase, the gaze 
control system will ‘notice’ objects and keypoints only when 
they appear in the view of the dominant eye (the left 
camera). Since the cameras are only driven to look at objects 
and keypoints, salient items will only be registered if they 
appear in the field of view when the cameras are targeting 
another salient item. This system, therefore, follows a 
‘stepping-stone’ search pattern, due to the way that the 
system will notice a second object when saccading to target 
the first. An object will only reach the attention of the 
system if it appears close enough to a targeted object or can 
be reach by a ‘bridge’ of other objects and keypoints. Salient 
keypoints are those keypoints in the left camera image that 
are found not to match to a database image and exhibit a 
saliency score above a threshold. The saliency score 
(SSaliency) for each keypoint is then computed as: 

310Saliency offset offsetS x y (4)

Note that xoffset and yoffset denotes the horizontal and 
vertical distance from the left image centre respectively and 

 the scale value of the keypoints matched. 
  The mean and standard deviation is computed over all 

saliency scores from unrecognized keypoints in each 
fixation. These scores are then filtered to keep only those 
that exceed three standard deviations of the currently input 
keypoint population. In selecting which keypoint to target, 
the attentive function selects the unvisited keypoint with the 
highest saliency score from working memory. 

To inhibit return to salient image features that have 
already been attended, a list is maintained of those salient, 
unrecognized keypoints that have been attended (verged on) 
by the system (6). When the pre-attentive phase is analyzing 
the current image for new salient keypoints, each keypoint is 
compared to all keypoints in this list using the Lowe’s 
matching algorithm. If an input keypoint is found to match 
to a keypoint in the visited list, it will be discarded. 

{ , ,

, }
SaliencyObjects S Descriptor

Location in the image Attented
(5)

This principle leads to the inclusion of the unrecognized, 
salient keypoints as a target of the pre-attentive system. It is 
hypothesised that by allowing the cameras to follow 



unrecognized image structures, it provides a semi-guided 
method for exploring parts of the scene that would not be 
reached if the cameras only followed recognized objects. 

Fig. 4.  A flow chart showing a high-level view of the behaviour of the gaze 
control system. 

  When saccading to a recognized object, it is necessary to 
verge the camera-pair such that the object of interest is 
centred in the field of view of each camera (3rd order case in 
section III). The approximate location of the object is known 
at saccade-time as its coordinates are passed from the pre-
attentive phase, where they are calculated by means of the 
affine pose estimator (section IV). 

  To ensure that the vergence operation targets only the 
desired object, the coordinate frame is translated to actuator 
units to calculate the required actuator movement to centre 
the object in view. Subsequently, only those database 
keypoints that match to the target object are used in the 
disparity calculation (algorithm of Fig. 2), and hence only 
that object will be considered. 

VI. EXPERIMENTAL DESIGN AND RESULTS

A. Binocular camera robot head configuration 
The physical robot head [21] used in this work comprises 

the following: two SONY cameras XCD700 (1024×768 
pixels resolution) fitted with IEEE Firewire interfaces and 
four high-accuracy stepper-motors and motor-controllers 
(Physik Instrumente GmbH & Co.). 

The hardware was interfaced to a Pentium 4 computer 
with a CPU clock speed of 2 GHz, with 2 GB in RAM 
running under Windows XP and MATLAB. 

B. Vergence system validation 
As previously explained, the vergence mechanism, by 

applying different modes of operation based on different 
visual search conditions, can be viewed as implementing a 
behavioural hierarchy. The non-selective and the selective
vergence levels of this hierarchy have been implemented in 
this system. As is described in previous sections, the 
selective vergence case is implemented as a special case of 
the non-selective case. Therefore, the experimentation on the 
vergence system is aimed primarily at the non-selective case. 
The correct function of the selective vergence case is 
validated as part of the gaze control system. 

The objective of the non-selective vergence case is to 
minimise the total horizontal disparity between a global set 
of uniquely corresponding locations identified in the current 
camera images when no target has been identified in the 
current field of view. The statistical accuracy and reliability 
of the vergence system is measured by observing the system 
behaviour when presented with a number of scenarios: a 
situation when all keypoints appear in a single depth plane; a 
situation in which a disparity step (resulting from two 
juxtaposed planes at different distances to the cameras) is 
present in the field of view; and a realistic situation in which 
keypoints come from a continuous range of possible depths. 

  To create a scene in which all identifiable detail occurs 
on a single plane, a printed image was mounted to a board, 
which was mounted on a bench at known distance from the 
camera baseline. The vergence algorithm in Fig. 2 was 
initiated and allowed to execute until it settled with a 
tolerance value of ±4 pixels. This process was repeated six 
times at different depth locations. In every case, it took 2 
iterations for the vergence to settle. It can be seen from Fig. 
5 that there appears to be no correlation between the 
distance of the target from the cameras and the accuracy of 
the vergence. The worst single vergence error observed in 
all 36 verges was an error of ~5.3 pixels from optimal. The 
average overall accuracy is ~1.4 pixels of error. Both values 
are objectively small and therefore acceptable for most 
applications. 

    Likewise, to create a scene that contained identifiable 
detail in two separate depth planes, a second different 
printed image was mounted to a board mounted adjacent to 
the previously mentioned printed-image. The first image was 
kept at the same distance to the camera baseline, while the 
distance of the second image was varied. The same number 
of iterations as in the first experiment was performed. The 
vergence error was measured in the same manner and the 
resulting data is shown in Fig. 6. 

  It is notable that a lower overall accuracy is observed 
when comparing the results in Fig. 6 with Fig. 5. The overall 
mean vergence error is over twice that of the first 
experiment. Objectively, the mean vergence error is still 
sufficiently small to allow dense disparity fields to be 
recovered through stereo-matching. The worst single 
vergence result observed was ~6.5 pixels of error. 



In a real-world scenario, accuracy of vergence is harder to 
measure quantitatively. A precise value of the vergence error 
could be calculated in the previous experiments as there is a 
clearly definable ‘optimal’ verge point. A sample of the 
images produced during this experiment is shown in Fig. 
7(a). The most notable of these images is the anaglyph 
showing the camera views after the verge (Fig. 7(b)). The 
object that exhibits fewer matches, in this case the lion toy is 
disregarded in the vergence. The resulting alignment of the 
skull shows the left eye to be precisely verged, whereas 
regions of the skull that are further away are, naturally, less 
verged. This level of overlap of the skull is, therefore, 
probably as good as could be expected. However, the 
vergence actually achieved, it is satisfactory for the purposes 
of 3D reconstruction. The average execution time required 
to verge the cameras was 73.8 seconds. 

C. Gaze Control system 
The gaze control system was developed to demonstrate 

how the SIFT-based vergence technique could be combined 
with SIFT-based attention and recognition in a search 
strategy. To test this system, it is first necessary to isolate 
the various functions and operational modalities of gaze 
control. The functions of the system are listed below as three 
individual units of functionality that can each be verified. 
1. The system should detect the presence of a recognized 

object when it is in the field of view of the dominant 
camera, recording its position in the actuator space. 
When the system is aware of one or more possibly 
recognized objects, it will saccade to and verge both 
cameras on the object with the highest confidence of 
recognition (selective case of vergence). 

2. The system will use a combination of recognized objects 
and salient keypoints in a `stepping stone' process to 
explore the scene, reporting all objects recognized 
therein.

3. If an object has been previously recognized, no attempt 
will be made to return attention to that object again. 
When the system has not seen any possible but 
unverified objects, it will saccade to the most salient, 
previously seen keypoint. 

To verify the correct operation of the first function, as 
detailed above, we present the system with a highly-
cluttered scene, as shown in Fig. 8(a). In the pre-attentive 
cycle, the skull and the car were identified, the confidence 
value, evaluated in section IV, was used to discriminate 
which object to attend (in this particular case, the car was 
attended). 

The correct identification of the car object corroborates 
the ability of the system to detect and classify correctly 
objects in the field of view. Fig. 8(b) represents the views of 
both cameras after the saccade to the object is performed. 
Note that this image was captured before the vergence cycle; 
hence the poor amount of overlap. It can be seen that the car 
is correctly positioned near the centre of both images. This 
validates the requirement of the system to be able to 

correctly identify the actuator-space location of an object in 
the field of view. 

To verify the second function, the system was presented 
with a scene containing all known objects and allowed to 
run until a halt condition was reached, i.e. no new objects 
could be detected. While it is therefore expected that the 
behaviour of the system will conform to the functionality 
described, it does not necessarily follow that 100% 
identification of objects in the field of view will be achieved. 
Fig. 9 (a) and (b) shows the actuator-space motion trace of 
both cameras. The stepping stone search pattern can be seen 
by further examination of the image in Fig. 10. 

Fig. 5.  The verge errors on a single plane over six iterations at each six 
distances. The RMS error is given in pixels, the distance in millimetres. 

Fig. 6.  The verge errors in two separate depth planes over six iterations at 
each six distances. The RMS error is given in pixels, the distance in 
millimetres. 

Fig. 7.  (a) An anaglyph of the left and right camera images before verging. 
(b) An anaglyph showing the camera images after vergence had settled. 

Fig. 8.  (a) Initial field of view of the camera, (b) Anaglyph of the camera 
images after the saccade to the position of the car and before the vergence 
cycle.

It can be seen that, the object being targeted appeared in 



the field of view in the previous fixation (the target process 
is represented with capital letters in Fig. 10). The system 
failed to identify one object in the scene, a bike toy, which 
does not have a registered fixation. The saccade denoted as 
C in Figure 10, which corresponds to the mouse, does not 
centre the object as expected, thus it is considered a false 
positive match. It is not necessary that the next object to be 
saccaded to is selected from the current camera image; it is 
the most highly matched object of all unattended candidate 
objects that is selected. In the results presented there are no 
examples of a saccade to an object that was identified 
several cycles prior, however this is not due to design, but 
simply a property of the way in which the scene is structured 
in this particular run. The execution time required to explore 
the scene and to recognize the objects shown in Fig. 10 was 
31.5 minutes. 

Fig. 9.  The left (a) and right (b) camera position traces. Each trace is plotted 
in the actuator coordinate-space of that camera. Note the different horizontal 
axes values. Both traces begin at (0, 0). 

Fig. 10.  The trace of one camera positing overlaid onto a photograph of the 
scene.

Fig. 11.  The scene for the last function of the gaze control experiments. 

To verify the ability of the system to exploit unrecognised 
scene elements to guide exploration, a scene was constructed 
that contained two known objects, widely separated from 
each other while positioned in a highly cluttered scene 
shown in Fig. 11. The arrangement of the two known 
objects was such that, when the cameras were directed at 
one known object, the other was not present in the field of 
view; a gap of 300mm between them was used. 

The search mode of the system was invoked and allowed 
to run until the objects were correctly found. The system 
performed 40 saccades to find both objects (Fig.12(a) and 

(b)) in the scene. Fig 13(a) and (b) shows the actuator-space 
motion trace of both cameras. 

  The above results produced by this first pilot study 
suggest that we have demonstrated the ability of the system 
to form a useful search pattern and recognize objects with 
reasonable accuracy by testing the gaze control system 
against a complex, cluttered scene. 

VII. CONCLUSIONS

The objective of the work reported here is to develop a 
binocular robot vision system capable of autonomous scene 
exploration, with the goal of identifying and localising 
objects within known classes while maintaining binocular 
vergence. We present a system that demonstrates the 
application of several novel design principles in a 
functional, integrated framework that essentially achieves 
the above objectives. 

Adopting SIFT features as the underlying visual 
representation for our active gaze control system allowed a 
single mechanism to combine elegantly the key functions of 
binocular vergence, object recognition and saccade 
selection. 

The approach of computing the vergence signal that 
drives the binocular camera pair, based on finding the 
highest feature density peak within a SIFT derived disparity 
histogram, proved to be robust and effective. The maximum 
vergence error observed of ~6.5 pixels remains within viable 
limits for any subsequent depth recovery task based on 
stereo-matching. We anticipate that by couching the 
vergence mechanism as a behavioural hierarchy, it will be 
possible to structure this algorithm efficiently to meet the 
needs of different operational contexts. 

Fig. 12.  Anaglyph of recognized verged objects (3rd case of vergence): (a) 
A lion-toy, the first object recognized (b) a skull, the second object. 

Fig. 13.  The left (a) and right (b) camera position traces of the last 
experiment. Each one is plotted in coordinate-space of the cameras.

Saccade selection drives our gaze control system (section 
V) and likewise adopts SIFT keypoints as the basis of 



attention and inhibition of return mechanisms.  
Additionally, a functional implementation of a standard 

SIFT object recognition module has been embedded in a 
conceptually uncomplicated manner. In the preliminary 
results presented, seven of nine objects were recognized in a 
highly cluttered scene. Accordingly, the system was able to 
demonstrate centring its gaze on each detected object of 
interest in each fixation of the camera-pair, as expected. In 
addition, we demonstrated that the implemented 
‘searchlight-metaphor’ of visual attention could navigate 
between two widely separated known objects embedded 
within unknown clutter. 

Fig. 14.  The scene and the robot head used in the experiment illustrated in 
Fig. 11. 

Hence, it is now possible for a binocular robotic vision 
system to direct its gaze on a scene such that it: maintains 
binocular vergence, detects salient image features, directs its 
gaze to investigate these features, verifies the identification 
of objects and continues to investigate the workspace for 
recognized objects based on visual cues. All these 
characteristics are combined in a computationally 
parsimonious manner using SIFT descriptors. Fig. 14 shows 
the experimental configuration of the robot head cameras 
and the scene. 

It must be emphasised that we have presented the first 
preliminary results of validating the active binocular vision 
system reported here. The next objective is to perform a 
more complete validation involving a wider range of scenes 
and randomised initial fixation points in order to generate 
sufficient statistics to characterise reliably the performance 
of the system. 

It should also be noted that the current system 
implementation is not intended for real-time operation, 
however, we believe that this can be achieved by means of 
GPU acceleration of both the SIFT algorithm [22] and 
critical sections of the vergence and saccade selection 
mechanisms. 

Our current work now focuses on automatic clustering in 
a continuous Hough space to allow multiple same-class 
object instances to be localised accurately. In the future we 
propose to investigate range-map recovery [23] and use of 
2.5D SIFT [14] features in conjunction with 2D SIFT 

features to improve object identification and 3D pose 
recovery. 
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