9 research outputs found

    Buffer control algorithm for low bit-rate video compression

    Get PDF
    In this paper, a new buffer control algorithm for motion-compensated hybrid DPCM/DCT coding (like H.261 and MPEG-1 I pictures) is presented. The algorithm uses the bit allocation algorithm to determine the quantization scale factor of each macroblock under a given target bit rate. An important advantage of the algorithm is that it has precise control of the buffer and avoids buffer overflow events which is a severe problem in low bit rate video coder. Furthermore, the coder is able to allocate bits to the picture as a whole, resulting in better rate-distortion trade-off. Simulation results show that the H.261 coder, using the proposed algorithm, can achieve a higher PSNR and better visual quality than codec using conventional buffer control algorithm.published_or_final_versio

    Geometry Compression of 3D Static Point Clouds based on TSPLVQ

    Get PDF
    International audienceIn this paper, we address the challenging problem of the 3D point cloud compression required to ensure efficient transmission and storage. We introduce a new hierarchical geometry representation based on adaptive Tree-Structured Point-Lattice Vector Quantization (TSPLVQ). This representation enables hierarchically structured 3D content that improves the compression performance for static point cloud. The novelty of the proposed scheme lies in adaptive selection of the optimal quantization scheme of the geometric information, that better leverage the intrinsic correlations in point cloud. Based on its adaptive and multiscale structure, two quantization schemes are dedicated to project recursively the 3D point clouds into a series of embedded truncated cubic lattices. At each step of the process, the optimal quantization scheme is selected according to a rate-distortion cost in order to achieve the best trade-off between coding rate and geometry distortion, such that the compression flexibility and performance can be greatly improved. Experimental results show the interest of the proposed multi-scale method for lossy compression of geometry

    Interleaving Channel Estimation and Limited Feedback for Point-to-Point Systems with a Large Number of Transmit Antennas

    Get PDF
    We introduce and investigate the opportunities of multi-antenna communication schemes whose training and feedback stages are interleaved and mutually interacting. Specifically, unlike the traditional schemes where the transmitter first trains all of its antennas at once and then receives a single feedback message, we consider a scenario where the transmitter instead trains its antennas one by one and receives feedback information immediately after training each one of its antennas. The feedback message may ask the transmitter to train another antenna; or, it may terminate the feedback/training phase and provide the quantized codeword (e.g., a beamforming vector) to be utilized for data transmission. As a specific application, we consider a multiple-input single-output system with tt transmit antennas, a short-term power constraint PP, and target data rate ρ\rho. We show that for any tt, the same outage probability as a system with perfect transmitter and receiver channel state information can be achieved with a feedback rate of R1R_1 bits per channel state and via training R2R_2 transmit antennas on average, where R1R_1 and R2R_2 are independent of tt, and depend only on ρ\rho and PP. In addition, we design variable-rate quantizers for channel coefficients to further minimize the feedback rate of our scheme.Comment: To appear in IEEE Transactions on Wireless Communication

    Distributed Estimation and Performance Limits in Resource-constrained Wireless Sensor Networks

    Get PDF
    Distributed inference arising in sensor networks has been an interesting and promising discipline in recent years. The goal of this dissertation is to investigate several issues related to distributed inference in sensor networks, emphasizing parameter estimation and target tracking with resource-constrainted networks. To reduce the transmissions between sensors and the fusion center thereby saving bandwidth and energy consumption in sensor networks, a novel methodology, where each local sensor performs a censoring procedure based on the normalized innovation square (NIS), is proposed for the sequential Bayesian estimation problem in this dissertation. In this methodology, each sensor sends only the informative measurements and the fusion center fuses both missing measurements and received ones to yield more accurate inference. The new methodology is derived for both linear and nonlinear dynamic systems, and both scalar and vector measurements. The relationship between the censoring rule based on NIS and the one based on Kullback-Leibler (KL) divergence is investigated. A probabilistic transmission model over multiple access channels (MACs) is investigated. With this model, a relationship between the sensor management and compressive sensing problems is established, based on which, the sensor management problem becomes a constrained optimization problem, where the goal is to determine the optimal values of probabilities that each sensor should transmit with such that the determinant of the Fisher information matrix (FIM) at any given time step is maximized. The performance of the proposed compressive sensing based sensor management methodology in terms of accuracy of inference is investigated. For the Bayesian parameter estimation problem, a framework is proposed where quantized observations from local sensors are not directly fused at the fusion center, instead, an additive noise is injected independently to each quantized observation. The injected noise performs as a low-pass filter in the characteristic function (CF) domain, and therefore, is capable of recoverving the original analog data if certain conditions are satisfied. The optimal estimator based on the new framework is derived, so is the performance bound in terms of Fisher information. Moreover, a sub-optimal estimator, namely, linear minimum mean square error estimator (LMMSE) is derived, due to the fact that the proposed framework theoretically justifies the additive noise modeling of the quantization process. The bit allocation problem based on the framework is also investigated. A source localization problem in a large-scale sensor network is explored. The maximum-likelihood (ML) estimator based on the quantized data from local sensors and its performance bound in terms of Cram\\u27{e}r-Rao lower bound (CRLB) are derived. Since the number of sensors is large, the law of large numbers (LLN) is utilized to obtain a closed-form version of the performance bound, which clearly shows the dependence of the bound on the sensor density, i.e.,i.e., the Fisher information is a linearly increasing function of the sensor density. Error incurred by the LLN approximation is also theoretically analyzed. Furthermore, the design of sub-optimal local sensor quantizers based on the closed-form solution is proposed. The problem of on-line performance evaluation for state estimation of a moving target is studied. In particular, a compact and efficient recursive conditional Posterior Cram\\u27{e}r-Rao lower bound (PCRLB) is proposed. This bound provides theoretical justification for a heuristic one proposed by other researchers in this area. Theoretical complexity analysis is provided to show the efficiency of the proposed bound, compared to the existing bound

    High-performance compression of visual information - A tutorial review - Part I : Still Pictures

    Get PDF
    Digital images have become an important source of information in the modern world of communication systems. In their raw form, digital images require a tremendous amount of memory. Many research efforts have been devoted to the problem of image compression in the last two decades. Two different compression categories must be distinguished: lossless and lossy. Lossless compression is achieved if no distortion is introduced in the coded image. Applications requiring this type of compression include medical imaging and satellite photography. For applications such as video telephony or multimedia applications, some loss of information is usually tolerated in exchange for a high compression ratio. In this two-part paper, the major building blocks of image coding schemes are overviewed. Part I covers still image coding, and Part II covers motion picture sequences. In this first part, still image coding schemes have been classified into predictive, block transform, and multiresolution approaches. Predictive methods are suited to lossless and low-compression applications. Transform-based coding schemes achieve higher compression ratios for lossy compression but suffer from blocking artifacts at high-compression ratios. Multiresolution approaches are suited for lossy as well for lossless compression. At lossy high-compression ratios, the typical artifact visible in the reconstructed images is the ringing effect. New applications in a multimedia environment drove the need for new functionalities of the image coding schemes. For that purpose, second-generation coding techniques segment the image into semantically meaningful parts. Therefore, parts of these methods have been adapted to work for arbitrarily shaped regions. In order to add another functionality, such as progressive transmission of the information, specific quantization algorithms must be defined. A final step in the compression scheme is achieved by the codeword assignment. Finally, coding results are presented which compare stateof- the-art techniques for lossy and lossless compression. The different artifacts of each technique are highlighted and discussed. Also, the possibility of progressive transmission is illustrated

    Rate-distortion optimized geometrical image processing

    Get PDF
    Since geometrical features, like edges, represent one of the most important perceptual information in an image, efficient exploitation of such geometrical information is a key ingredient of many image processing tasks, including compression, denoising and feature extraction. Therefore, the challenge for the image processing community is to design efficient geometrical schemes which can capture the intrinsic geometrical structure of natural images. This thesis focuses on developing computationally efficient tree based algorithms for attaining the optimal rate-distortion (R-D) behavior for certain simple classes of geometrical images, such as piecewise polynomial images with polynomial boundaries. A good approximation of this class allows to develop good approximation and compression schemes for images with strong geometrical features, and as experimental results show, also for real life images. We first investigate both the one dimensional (1-D) and two dimensional (2-D) piecewise polynomials signals. For the 1-D case, our scheme is based on binary tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly and is called prune-join algorithm. This allows to achieve the correct exponentially decaying R-D behavior, D(R) ~ 2-cR, thus improving over classical wavelet schemes. We also show that the computational complexity of the scheme is of O(N logN). We then extend this scheme to the 2-D case using a quadtree, which also achieves an exponentially decaying R-D behavior, for the piecewise polynomial image model, with a low computational cost of O(N logN). Again, the key is an R-D optimized prune and join strategy. We further analyze the R-D performance of the proposed tree algorithms for piecewise smooth signals. We show that the proposed algorithms achieve the oracle like polynomially decaying asymptotic R-D behavior for both the 1-D and 2-D scenarios. Theoretical as well as numerical results show that the proposed schemes outperform wavelet based coders in the 2-D case. We then consider two interesting image processing problems, namely denoising and stereo image compression, in the framework of the tree structured segmentation. For the denoising problem, we present a tree based algorithm which performs denoising by compressing the noisy image and achieves improved visual quality by capturing geometrical features, like edges, of images more precisely compared to wavelet based schemes. We then develop a novel rate-distortion optimized disparity based coding scheme for stereo images. The main novelty of the proposed algorithm is that it performs the joint coding of disparity information and the residual image to achieve better R-D performance in comparison to standard block based stereo image coder

    Nouvelles techniques de quantification vectorielle algébrique basées sur le codage de Voronoi : application au codage AMR-WB+

    Get PDF
    L'objet de cette thèse est l'étude de la quantification (vectorielle) par réseau de points et de son application au modèle de codage audio ACELP/TCX multi-mode. Le modèle ACELP/TCX constitue une solution possible au problème du codage audio universel---par codage universel, on entend la représentation unifiée de bonne qualité des signaux de parole et de musique à différents débits et fréquences d'échantillonnage. On considère ici comme applications la quantification des coefficients de prédiction linéaire et surtout le codage par transformée au sein du modèle TCX; l'application au codage TCX a un fort intérêt pratique, car le modèle TCX conditionne en grande partie le caractère universel du codage ACELP/TCX. La quantification par réseau de points est une technique de quantification par contrainte, exploitant la structure linéaire des réseaux réguliers. Elle a toujours été considérée, par rapport à la quantification vectorielle non structurée, comme une technique prometteuse du fait de sa complexité réduite (en stockage et quantité de calculs). On montre ici qu'elle possède d'autres avantages importants: elle rend possible la construction de codes efficaces en dimension relativement élevée et à débit arbitrairement élevé, adaptés au codage multi-débit (par transformée ou autre); en outre, elle permet de ramener la distorsion à la seule erreur granulaire au prix d'un codage à débit variable. Plusieurs techniques de quantification par réseau de points sont présentées dans cette thèse. Elles sont toutes élaborées à partir du codage de Voronoï. Le codage de Voronoï quasi-ellipsoïdal est adapté au codage d'une source gaussienne vectorielle dans le contexte du codage paramétrique de coefficients de prédiction linéaire à l'aide d'un modèle de mélange gaussien. La quantification vectorielle multi-débit par extension de Voronoï ou par codage de Voronoï à troncature adaptative est adaptée au codage audio par transformée multi-débit. L'application de la quantification vectorielle multi-débit au codage TCX est plus particulièrement étudiée. Une nouvelle technique de codage algébrique de la cible TCX est ainsi conçue à partir du principe d'allocation des bits par remplissage inverse des eaux
    corecore