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High-Performance Compression of Visual
Information—A Tutorial Review—
Part |: Still Pictures
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Digital images have become an important source of information . INTRODUCTION

in the modern world of communication systems. In their raw Every digital image acquisition system produces pictures

form, digital images require a tremendous amount of memory. . . .
Many research efforts have been devoted to the problem of imagei™ its canonical form. This means that the analog scene

compression in the last two decades. Two different compressionis sampled in space and quantized in brightness. If the
categories must be distinguished: lossless and lossy. Losslesssampling step size is small enough, the integration ability
compression is achieved if no distortion is introduced in the coded of the human visual system will give the illusion of a

image. Applications requiring this type of compression include : :
medical imaging and satelite photography. For applications continuous picture to the human observer. In that sense,

such as video telephony or multimedia applications, some loss @ digital image is anVy x N, array of integer numbers.
of information is usually tolerated in exchange for a high However, this canonical form needs a large number of bits
compression ratio. for its representation. For example, a 256256 picture

In this two-part paper, the major building blocks of image sing 8 bits per pixel needs half a million bits for its

coding schemes are overviewed. Part | covers still image coding, : : . - .
and Part Il covers motion picture sequences. representation. The information contained in a sequence

In this first part, still image coding schemes have been classified ©f images for video is even higher due to the additional
into predictive, block transform, and multiresolution approaches. temporal dimension.
Predictive methods are suited to lossless and low-compression |mage data compression aims at minimizing the number
applications. Transform-based coding schemes achieve higher ot pits required to represent an image. Data compression

compression ratios for lossy compression but suffer from blocking . o
artifacts at high-compression ratios. Multiresolution approaches has wide areas of applications. Video telephony between

are suited for lossy as well for lossless compression. At lossy WO speakers or teleconferencing on two PC's via the

high-compression ratios, the typical artifact visible in the normal twisted-pair phone lines is only possible with very

reconstructed images is the ringing effect. low bit rate compression systems. Nearly all multimedia
New applications in a multimedia environment drove the gappjications, such as interactive databases (encyclopedias,

need for new functionalities of the image coding schemes. For ; . .
that purpose, second-generation coding techniques segment theelectromc newspaper, travel information, and so on), need

image into semantically meaningful parts. Therefore, parts of & Strong compression of the huge input data consisting of
these methods have been adapted to work for arbitrarily shaped text, audio, and visual information. Other applications can
regions. In order to add another functionality, such as progressive be found in remote sensing, education, and entertainment.
transmission of the information, specific quantization algorithms  ggme applications allow for visible distortions of the in-

?Cﬁtevté% S;ftlﬂgdéoc?evcgﬂ asé‘;%nmm et;‘te compression scheme ISput images in exchange for high compression ratios. This is

Finally, coding results are presented which compare state- typically the case for application_s such as teleconferencing
of-the-art techniques for lossy and lossless compression. TheOr accessing images from a distant server (for example,
different artifacts of each technique are highlighted and discussed. applications related to the World Wide Web). Such coding

Also, the possibility of progressive transmission is illustrated. schemes are called lossy. In other applications, however
Keywords—Compression, image processing, JPEG, MPEG, no distortion of the input image is tolerated. Compression
standards, still pictures. of medical images is a typical example of this category.
Coding schemes that introduce no distortion are termed
lossless.
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itives. By choosing these primitives in a semantic way, model. This technique divides the image into the strong
object-oriented coding schemes can be developed. Thesedge, texture, and smooth components. The strong edge
schemes compress each object of a scene independently afomponent is encoded separately whereas the texture and
the others. Their main advantage is that complete inter- smooth components are encoded using waveform coding
activity with the scene is possible. For example, different techniques. A solution to find the most important image
bit rates can be attributed to different objects of the scene.features has been proposed by Malktt al. [8] using
Typically one wants good quality for foreground objects and multiscale edges. A double layer technique based on
considers the background less important. For this purpose,multiscale edges and textures has been proposed in [9].
coding schemes allowing the compression of arbitrarily In general, second-generation techniques become efficient
shaped objects have to be designed. at higher compression ratios (about 50) when compared to
Another important functionality for compression schemes other methods.
is the possibility of progressive transmission or progressive In this paper, the basic blocks of image coding are
decoding of the bit stream. A typical application is data overviewed. Image coding is fundamentally carried out in
browsing. A picture has been compressed at a good qualitytwo steps: message extraction and codeword assignment.
(perhaps even lossless) and the user wants to visualize the The first operation—message extraction—consists of
picture at a lower quality to save transmission time. This transforming the original image into a stream of message
is only possible if the stored bit stream is embedded in the symbols. In general, all message-extraction methods are
sense that one can reconstruct a coarse version of the imagbased on a mapping of the original data onto another
using only a portion of the entire bit stream. representation domain. For that purpose different methods
High compression image coders can be split into two have been studied: predictive methods (Section II); block
distinct groups. The first group is called waveform coding transform methods (Section Ill); and multiresolution
and consists of transform and subband coding (SBC). Theapproaches (Section IV). Parts of these methods have
second group, called second-generation techniques, consisteeen adapted to object-based second-generation coding
of techniques that attempt to describe an image in termstechniques and are discussed in Section V. The last
of visually meaningful primitives (contour and texture, for operation of message extraction is the quantization and
example). is reviewed in Section VI. After message extraction, a
A waveform-based coding system consists of performing codeword is assigned to the extracted symbols. This
a decomposition/transform of the image data, quantization operation is discussed in Section VII.
of the transform coefficients, and source coding of the Complete state-of-the-art schemes are described in
quantized coefficients. The first step transforms the image Section IX. Coding results of all those methods are
into another representation, where most of the energy ispresented in Section X. General conclusions are drawn
compacted in a few coefficients. This is achieved by meansin Section XI.
of a subband transform or a block transform, such as the
discrete cosine transform (DCT). At compression factors of || pixel -SpacE METHODS
about 30-40, block transform techniques produce blocking
artifacts. Unfortunately, the human eye is very sensitive to
such a distortion, therefore block coders are not appropriateA. Introduction
for low bit-rate image coding. On the other hand, the main  The simplest methods for image coding are based on
artifact of SBC, at high compression factors (around 50), is predictive methods. These methods are usually used for
due to the Gibbs phenomenon of linear filters and is called lossless image compression. Lossless image coding plays
ringing effect. To avoid this artifact, morphological subband an important role in situations such as medical imaging
decompositions lead to good quality decoded pictures ator satellite photography, where no information loss is
compression ratios as high as 70-80. allowed during compression. A recent survey of lossless
The second group of methods is based on second-compression techniques is presented in [10]. Part of the
generation techniques. They attempt to decompose the dataeview presented in [11] is devoted to lossless image
into visual primitives such as contours and textures [1], compression techniques with special focus on radiological
[2]. One approach is to divide the image into directional image compression.
primitives as proposed in [3]. Segmentation-based coding For all types of images, direct coding using an entropy
techniques [4] extract regions from the image data which coder does not achieve any considerable degree of compres-
are represented by their shape and their textural contentssion. As an example, consider the “Lena” image shown in
Following similar ideas, sketch-based image coding [5] is Fig. 1. Using the UNIX implementation of the Lempel-Ziv
based on extracting the contours of an image, namely compression, one obtains a compression factor of 1.19. That
their geometric and intensity information, resulting in clearly demonstrates that some form of prior decorrelation
the so-called sketch picture. The texture is then definedis necessary to achieve an acceptable compression ratio.
by the difference between the original and the sketch Therefore, all coding techniques appearing in imaging liter-
image and is coded using waveform coding techniques. ature employ a method of decorrelation of the information.
An extension of this technique has been proposed by RanOne possibility is to use predictive models to achieve this
et al [6], [7] and is based on a three-component image goal. Another possibility is to extract self similarity in the
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segment of an image can be properly expressed as a simple
transformation of another part of higher resolution. Then,
only the sequence of transformation is sufficient as the
description of the full picture. IFS-based still image com-
pression techniques can provide very good performances
at high compression ratios (about 70-80) as proved by
[21], [22]. Results for fractal compression are shown in
Section X.

I1l.  TRANSFORM CODING

A. Introduction

Transform coding, also called block quantization, is a
widely used technique in practice. A block of data is
unitarily transformed so that a large fraction of its energy
image, so as to describe an image region with a simplejs packed in relatively few transform coefficients, which
transformation of another region. This is exploited by so- are then quantized independently. The optimum transform

Fig. 1. Test image “Lena.”

called fractal coding. coder is defined as the one that minimizes the mean-square
distortion of the reconstructed data for a given quantization.
B. Predictive Methods This turns out to be the Karhunendéve (KL) transform.

In predictive coding schemes, the next input is predicted
based on the digitally coded past. The simplest form of )
prediction can be achieved by using differential methods. SUPPose aiV x 1 random vector: with zero mean and
The idea behind differential methods is to encode the value COvVariance matrixt is linearly transformed by av x v
of the difference between the previously encoded pixel and Matrix A (complex) to produce a vectqy such that its
the current pixel. Due to the correlation existing in a natural COmponents are mutually uncorrelated. The quantization of
image, the resulting values to be encoded have a lower¥ Produces then an outpgt which is linearly transformed
dynamic range than the original values. by a matrix B to yield the reconstructed signal The

In predictive schemes one tries to predict a value Problem is to find the optimum matriced and B and
z[n1,n2] based on the coded past. The resulting difference the optimum quantizers such that the overall average mean

between the original valuefn , n,] and the predicted value ~ Sauare distortion is minimized. The solution to this problem

B. The Optimum Transform Coder

#[n1,no] is called the prediction erraffny, 1] [23] can be summarized in the following way.
e[ny,na] = w[ng, na] — &[ng, nal. (1) 1) The optimal matrix4 is the (KL) [24], [25] trans-
_ . form of . More precisely, the rows oA are the
The successive values efk,!) are then quantized and ortho-normalized eigenvectors of the auto-covariance
compressed. If lossless compression is required, the signal matrix R.
e(k,1) must have a limited number of possible values and  2) For an arbitrary quantizer, the optimal reconstruction
is not quantized. matrix B is given by

The lossless mode of the international Joint Photographic

-1
Expert Group (JPEG) standard [12] is a predictive scheme. B=A"4 (2)
Seven different prediction methods have been defined in the where A, modeling the quantization, is a diagonal
standard JPEG. All seven are based on a prediction of the matrix whose elements; are
next input with up to three previously encoded local neigh- o Ely: 7] 3)
bors. None of these prediction methods clearly outperform T Ew
the other ones for all applications. Other predictive lossless 3) The optimal Lloyd—-Max quantizer minimizes the
compression schemes can be found in literature [13]-[16]. overall mean square distortion for every elemefi
yielding
C. Fractal Compression A—1 @
Iterated functions systems (IFS) theory, closely related N
to fractal geometry, has recently found an interesting appli- and consequently
cation to image-compression purposes. Barnsley [17] and B=aAl (5)

Jacquin [18] pioneered the field followed by numerous

contributions [19], [20]. The approach consists in express- The application of the KL transform to images is quite slow.
ing an image as the attractor of a contractive functions The KL transform depends on the second-order statistics as
system which can be retrieved simply by iterating the well as the size of the image and, hence, the basis vectors
set of functions starting from any initial arbitrary image. are not known analytically. After having computed the
The form of redundancy exploited is named piecewise self transform matrix4, the remaining operations for perform-
transformability. This term refers to a property that each ing the transformation is still quite large for images. There
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exists a fast KL transform algorithm [26] only for certain
statistical image models. Therefore, the KL transform is
not appropriate for image coding applications. There exist

numerous transforms which have been applied to image

coding. Fortunately, there exists a unitary transform which
performs nearly as well as the KL transform on natural

images. The mentioned transform is called the DCT and is

the subject of the next section.

C. DCT
The one-dimensional (1-D) DCX [] of a sequence[n]
is defined as
N—-1
a1 7(2n + Dk
X[k = n; z[n] cos < T )

k=01,... . N—1 (6)

where

aOZ\/% a[k]:\/% k=1,...,N—-1. (7)

The inverse transform is then given by

The DCT has some very interesting properties. First, it
can be noted that the transform kernel is a real function.
This is important for coding purposes because only the
real part of the transform coefficients of a natural image
must be coded. Moreover, there exist fast algorithms for
computing the DCT in one or two dimensions [27], [28].
The cosine transform of alV x 1 vector can be performed
in O(Nlog, N) operations via alN-point fast Fourier
transform (FFT).

The final objective of the transformation is image com-

N1 ]
2] = 3 awX[k]cos <w
k=0

n=0,1,...,N—1. (8)

Then, the inverse of the covariance matrix will be given by

1 —pa (0
—po 1 —pa
R =p7? & (11)
—pc 1 —pa
o —pa 1

where3 = (1 — p%)/(1 + p?) anda = p/(1 + p?). Hence,
the following approximation is valid:

BR=Q forp— 1. (12)

Consequently, the eigenvectors Bfand the eigenvectors
of @ will be quite close for a first-order Markov sequence
with p — 1. A natural image is a highly correlated signal. It
is clear that a first-order model of a natural image does not
take into account the nonstationarity of the signal such as
edges. However, it gives a first approximation. In general,
an estimation of the first-order correlatign of natural
images gives a value around =~ 0.95 [29]. Hence, we
can assume that the DCT of a natural image is quite close
to the optimal KL transform.

This property of the DCT together with the fact that there
are fast algorithms have made it a popular transform for
image-coding purposes.

D. Block Partitioning

In practice, the application of the transform is not applied
to the image itself. The image is divided inddx N blocks.
Each block is then transformed and coded independently.
This block processing allows for an increase in compression
performance. From simulation results, it is shown that
for natural imagesV is optimal arounds,...,16. In the
international standard JPEG, a value /8f= 8 has been
chosen.

This block processing has a significant drawback, how-
ever, since it introduces a distortion termed blocking effect,
which becomes visible at high compression ratios. It is
especially visible on image regions with low local variance.

pression, and, therefore, it is wished to have a good energyThis will be illustrated in Section X.

compaction of the transform coefficients. In practice, it is
verified that the DCT is very close—in terms of energy
compaction—to the optimal KL transform. This has the

following reason. The basis vectors of the cosine transform

are the eigenvectors of the symmetric tridiagonal matrix
Q, defined as [23]

1 —«o (0
- 1l —«
Q= ' 9)
— 1 —«
(0} — 1

where « is a parameter. Assume the input signal is a

IV. MULTIRESOLUTION APPROACHES

A. Introduction

In recent years, SBC of images has become a domain
of intensive research. In such a scheme, subbands are
computed by filtering the input image with a set of band-
pass filters and decimating the results. The subbands each
represent a particular portion of the frequency spectrum
of the image. The power of this technique resides in its
capability to code each subband separately with a bit rate
that matches the visual importance of that subband. SBC
leads to visually pleasing image reconstruction and does

first-order stationary Markov sequence, whose covariancenot produce blocking artifacts. In addition, it allows a

function is given by

rln] = p™ |p <1 Vn. (10)
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Then Smith and Barnwell [31] solved the problem of perfect
reconstruction filter banks for a 1-D multirate system.
Following these studies, substantial research effort has
been devoted to perfect reconstruction filter banks theory ' _ _
[32]-[34], which was then extended to the two dimensional Fig- 2. Two-band analysis/synthesis systefii (=) is the low-

. .. . pass analysis filtetd» (2) is the highpass analysis filtef (z) is
(2-D) case by Vetterli [35]. Applications of SBC t0 images the lowpass synthesis filter, ar@, (=) is the highpass synthesis
was introduced by Woods and O’Neil [36] by means of 2-D filter.

separable quadrature mirror filter (QMF) banks.

SBC consists of the following three steps: 1) subband
decomposition; 2) quantization; and 3) entropy coding of
the subbands. The decoding process involves the inverse o
each of these steps to reconstruct the signal.

Several methods have been proposed in the last decad
for designing filter banks. The most well-known filters are
the QMF’s introduced by Johnston [37]. They are two-
band filter banks. The design process is based on the
minimization of a weighted sum of the reconstruction error
and the stop band energy of each filter. QMF's are not
perfect reconstruction filters, but they have a linear phase.

An altgrnative solution is the two-banq filters proposed of the compressed image can be progressively decoded.
by Smith and Barnwell [31], called conjugate quadrature T featre allows for important functionalities such as,

filters (CQF), which allow for perfect reconstruction but for example, image browsing. The proposed techniques

have a_nonlinear phase. Vaidyanatheinal [33] ;olve_d for noise reduction can be incorporated into the EZW
the design problem al/-band perfect reconstruction filter algorithm

banks. They use perfect reconstruction blocks based on
lossless polyphase matrices and optimize adequate paramg | inear Subband Decomposition
eters. Nayebiet al. [38] have developed a framework
based on temporal analysis. A design technique leading
to numerically perfect reconstruction filter banks has been
developed as well by Nayelst al. [39]. This technique
is very flexible and addresses the inclusion of additional
constraints for specific applications such as low delay,
linear phase, high regularity, and so on. Although the
above techniques exist for designiffyband and/or perfect
reconstruction filter banks, the QMF’s designed by Johnston
are still the most cited and utilized in the image-coding
community. This is partly due to the simplicity of the design
technique and the published tables of filter coefficients.
On the other hand, filters proposed in [39] and in [40] X(2)=X(2)T(2)+ X(—2)A(=) (13)
are relatively long, and hence, they are not suitable for
image-coding applications.

Image-coding applications require filter banks with spe- T(z) = % [Hl(z)Gl(z) +H2(z)G2(z)} (14)
cific features that differ from the classical perfect recon-
struction problem or from the design of filter banks for and
other applications. Psychovisual properties of the human A(z) = % [Hl(—z)Gl(z) +H2(—z)G2(z)}. (15)
visual system and typical spectral characteristics of natural
images have to be taken into consideration. Images are Perfect reconstruction can be achieved by removing the
highly nonstationary sources. In general, they are composedaliasing distortion4(z) and imposing the transfer function
of large homogeneous regions and edges which have al’(z) to be a pure delay of the forffi(z) = z=°, where§
small spatial support. Typical natural images have a highly is the delay of the system. By choosing the synthesis filters
asymmetrical power spectrum with respect®. A good as G1(z) = Ha(—2) and Ga(2) = —H;(—2) the aliasing
model is a spectrum proportional t$=2 [41], with f component is removed, and therefore perfect reconstruction
being the frequency. Filter banks that take into account the is achievable. Under these constraints the system transfer
statistics of natural images and reduce the ringing effect function becomes
have been proposed by Cagktral [29], [42]. .

One advantage of SBC of images over block transform T(z) = F(z) - F(=2) (16)
coding such as the DCT is the absence of the blocking where F(z) = Hy(z)H»(—z) is called the product filter.
effect. However, one major artifact is still remaining. It is Now perfect reconstruction is obtained when the product

X(z)

the ringing effect which occurs around high-contrast edges
1plue to the Gibbs phenomenon of linear filters. This artifact
can be reduced or even removed by an appropriate design
of the filter bank. lllustrations of this ringing effect will be
found in Section X.

For compression purposes, it is important to exploit the
existing zero-correlation across the subbands. One pow-
erful approach is the embedded zerotree wavelet (EZW)
algorithm proposed in [43]. The EZW algorithm is based
on successive-approximation quantization which leads to a
completely embedded bit stream. That is, the bit stream

1) Analysis/Synthesis Blocksubband decomposition di-
vides the input signal into different subbands. The choice
of the filters is an important issue. It has been shown
[29], [44], [45] that the filters represent an important factor
in the performance of the decomposition for compression
purposes.

Fig. 2 shows a two-band filter bank. The filtef (z)
and H,(z) are the analysis lowpass and highpass filters,
respectively, whileG1(z) and G2(z) are the synthesis
filters. In this system, the input/output relationship is given

where
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Fig. 4. Classical multiresolution morphological decomposition.

Fig. 3. lllustration of a wavelet decomposition of depth two. The operation OC denotes the morphological open—closing fil-
tering. The decomposition yields a nondetail image and several
residual images.

filter f(k) = Z7[F(»)],Z7(-) being the inverse:-
transform, is a power-complementary half-band filter. This
means that every odd sample, except one sarfipi¢ is
equal to zero, that is

to nonlinear decompositions to overcome the problem of the
ringing effect. The most popular class of nonlinear filters
used in image processing is that of morphological filters

9 1= 1/2, 2n+1=4 —0.1.2 L-1 because of their efficiency and simplicity.
fln+1] = 0, otherwise ' TS T o Major difficulties in designing morphological filter banks
(17) occur because the digital morphological sampling theorem
[46] does not provide a tool for designing morpholog-
where L is the length of the product filtef'(z). Even ical filters that allow for critical sampling and perfect

samples of the product filtef do not affect the perfect reconstruction. Indeed, even after a perfect morphological
reconstruction property. They can be chosen arbitrarily. lowpass filter, such as an open—closing filter, there is no
They are usually chosen to design the product filter as away of downsampling the filtered image and reconstructing

lowpass filter. it perfectly. The problem is that morphological filtering
Research on the development/df-band filter banks has  removes small objects without blurring the contours of
been reported in literature in [33] and [39]. larger objects. This means that high-frequency information

2) Tree-Structured System3wo-band systems are the is always contained in the morphologically filtered image.
basic component of most subband decomposition schemesHence, aliasing always occurs and there is no way of
They are used in a complete tree structure to define areconstructing the original image perfectly.
fine frequency partitioning. As mentioned before, a good  Notice that downsampling is a linear process. It is most
model of a natural image is based on a power spectrumeasily described through a frequency analysis using the
proportional to f=2 [41], with f being the frequency. sampling theorem [47]; however, the concept of frequency
That means that most of the frequency is concentratedis a strictly linear concept and cannot be used in the context
in low-frequency regions. A suited partitioning of the of morphological signal processing.
frequency should therefore have a finer division in  One important difference between linear and morpho-
low-frequency regions and a coarser partitioning in high- logical filters is that morphological filters preserve the
frequency regions. This is the reasoning behind the waveletspecificity of the input set. If the input consists of integer
decomposition which is the most popular tree-structure in valued coefficients only, then the output will also consist of
practice. It is defined as follows. At each step of the integer valued coefficients. This is not true for linear filters.
decomposition, the low-frequency subband is decomposedUsing this property, a lossless coding scheme based on the
into its four constituting subbands by ways of of the two- morphological subband decomposition can be defined. The
band filter bank applied to the lines and the columns. This following sections describe these decompositions.
procedure is iterated until the lowest subband is smaller than 1) Morphological DecompositionUsing  mathematical
a certain threshold. An example of such a decomposition morphology, the analysis of an image is based on

is shown in Fig. 3. object shapes and object sizes. This is in contrast
with the frequency concept using linear operations. In
C. Nonlinear Subband Decompositions terms of mathematical morphology, a multiresolution

In the previous section, linear subband decompositions @nalysis intends to decompose an image into different
have been discussed. It is shown that it is possible to designSUPimages, where each subimage contains objects of a
filters allowing for critical subsampling of the filtered SPecific size. Fig. 4 shows the standard decomposition for
images [32]. In such cases, the decomposed image has th@ultiresolution anaIyS|s.[48], [49]. Thls_ decomposn,on is
same number of pixels as the original image. It has been@ (?ascade of oper]—clpsmgs which are intended to filter out
shown that the major drawback of such a decomposition OPJ€Cts of a certain size at each stage.
scheme is the inherent Gibbs phenomenon of linear filters e first stage of the decomposition is computed by
[44]. This pr(_)duces an ann_oying ringing _artifacjt when com- X, =(X o By)-B;
pressing an image with a high compression ratio. The Gibbs Ri—X_X (18)

. . . . 1 1
phenomenon affects linear filters but not nonlinear filters,
such as morphological filters. Therefore, many attempts where(X o B;y) - B; = OCp,(X) denotes open—closing
have been made to generalize linear subband decompositiorof X by B;. R; is the first residual image containing only
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i i i X X Y, T x Y;
object.s qf size smaller or equal than the_ structuring element Foye | IR PP B 0Cp 22 ax a2
By. Similarly, the second stage is obtained by J J

- - + 1z f L N N
Xy =(X1 0 By) By “ RECF"t2x2 RECHtax2
Ry =X — Xy (19) | |
Rl R?
where Fig. 5. Pyramidal decomposition using mathematical morphol-
ogy. The operation OC denotes the morphological open—closing
By =B ¢ B; (20) filtering. The decomposition yields a downsampled nondetail image

and several residual images.
and & is the dilation operator.
Each stage produces a residual imdge Together with
the last open—closed imag€y the original image can be
reconstructed just by adding all together as follows:

the difference between the imalje_; of the previous stage
and the reconstructed image, that is

N Ry, =X - REC(Zy) (25)
X=Xy + ZRk' (21) for the first stage and
k=1

Attempts to use this decomposition for coding purposes Ry =Yy — REC(Z;) 1=2,3,... (26)

areblrepo_rte(:] n Il(';_eratu;e h[49], .[go];l however, ht'hi ba3|cf for the next stages. It is clear that the performance of this
phro Em1s t. €co |r;]g 0 t € rcles_| ua |ma|ges Vr\]' Ic aée O'I decomposition depends directly on the performance of the
the same size as the original image. Also, the nondetail o \strction filter because the residual images do not only

image X still has a large entropy and is also of the . ain the residual objects, which are contained in the
same size as the original image. The only advantage of th'sdifferenceY;_l — X, but also contain the reconstruction
decomposition is the absence of ringing effect even under

strong quantization. It is clear that a good decomposition
for coding purposes must be compact, that is the number e, = X; — REC(Z;). (27)
of pixels used to represent the original image has to be as
close as possible to the number of pixels of the original In that sense, the variances of the residual images are higher
image. In this case, the representation ne¥démes more than with the decomposition given in Section IV-C1. Since
pixels for representing the original and consequently is not we can assume that and X; are uncorrelated, we have
appropriate at all for image-compression purposes. 9 9 9
2) Pyramidal DecompositionAnother approach is the ORi = 0ei T 0 (28)
pyramidal decomposition [51], shown in Fig. 5. The idea
is similar to the previous decomposition. The original image
is first open—closed by a structuring eleméhto give the
filtered imageX;

wheres? is the variance of the differencdé_; — X;. The
smallero2, the better the decomposition. The advantage of
this decomposition is that the residual images are getting
smaller by a factor of four at each stage.

X1 = (X o B)- B=0Cx(X) (22) Although, such a decor_nposition is ml_Jc_:h more appropri-

ate than the multiresolution decomposition, it seems that

then X; is down-sampled by a factor of two in the two there is still a waste of space since the decomposed image
directions. Denote the imag¥; by z;[n1, no] in the spatial needs more space than the original image. Optimal would

domain. The downsampled image[n,, n] is then be a compact decomposition which would require the same
number of pixels as the original image.
yi[n1, no] =21[2n1,2n2] n1 =0,1,... (3 N1) — 1 3) Morphological Subband Decompositionn order to
ne =0,1,..., (% Ny) — 1. (23) have a tool which can be generalized to the nonlinear case,

we will use the concept of a half-band filter. Let us give
The imageY; is then further decomposed at each stage. In the definition of a linear half-band filter.
order to preserve perfect reconstruction the computation of Definition 1: A linear filter is called a half-band filter
the residual images has to be performed the following way. if every odd sample of its impulse respongé:) is zero,
The imagey; is first upsampled by a factor of two in the except one samplg(¢), that is

two directions which gives s i L

— ) n+1= _ —
w2 2], =024, f[2”+1]_{0, otherwise " = O L2 5

zilni,no] = 272 ny =0,2.4. ... (24) (29)

’ otherwise. whereL is the length of the half-band filtef(k).

The upsampled image is then filtered by a morphological Suppose a signat(%) is first downsampled and upsam-
reconstruction filter which should produce an image as closepled by a factor of two. Call this signal(k). Then, it is
to X; as possible. The residual image is then computed asfiltered by a half-band filteyf (k). This procedure is shown

—o0
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i I i X(z)
Fig. 6. The signalz(k) is downsampled and upsampled by a
factor of two to obtainy(k), which is then filtered by a half-band
filter with impulse respons¢ (k) leading to the output(k). Fig. 8. Filter bank with morphological filters yielding perfect

reconstruction if M(-) is a generalized half-band filter and
A() =T — M(-).
—

Now, negating the variable has the following effect on

the impulse response:

Fig. 7. Filter bank with specific filters yielding perfect recon- -1 i _(_1\k
struction if G (=) is a half-band filter ands (=) = G (—=). Z7HF(=2)) = (-1)"f(k). (33)

Since every odd sample is zero, the negation of the

in Fig. 6. Let us definez(k) as the convolution ofy(k) variable will only have an effect on the middle sample.
with f(k) Hence the following equation holds for a zero-phése=
0) half-band filter:
(k) = y(k) = f(k). (30) F(—2)=1- F(z2). (34)
Then, every alternate sample ofk) is given by This situation can now be generalized to the nonlinear case.
Denote. A(-) the nonlinear high-pass analysis filter. Then
2(2k) = § z(2k — 6) (31)
A=7T-M (35)

that is, the input is not processed (except a factog)cﬁor
these samples. Note that (31) implies (29). Moreover, (31)
allows us to generalize the concept of a half-band filter to
the nonlinear case.

Definition 2: Consider a signat(k), which is downsam-
pled and then upsampled by a factor of two to gixé).
A nonlinear filter is then called a half-band filter if every
alternate sample of the filtered signglk) is equal to the
corresponding samples in the original sigaék). Define
F, (k) the output of the nonlinear half-band filter. It then

where Z is the identity operation. This nonlinear filter
bank yields perfect reconstruction and is shown in Fig. 8.
Although this filter bank is a particular case, it invalidates
the assertion that morphological filter banks with perfect
reconstruction are impossible in general.

The effect of taking the lowpass analysis filter as the
identity operation will be to introduce aliasing in the
downsampled lowpass subband. However, it is shown that
good subband filters, such as the asymmetrical filter banks
(AFB’s) [44], have a similar property since the lowpass

satisfies filter has quite a poor frequency response. What matters
F(2k) = c - 2(2k — §) (32) most for. im.age compress?or) is thg behavior of the !owpass

synthesis filter, because it is designed mainly to filter the

wherec is an arbitrary constant. introduced quantization noise, but it is also the main origin

Note that such nonlinear filters do exist, like erosion, ©f the ringing effect. With the kind of filter bank just dis-
dilation or median filter, if the region of support is chosen C€ussed we have a complete control on the lowpass synthesis
appropriately. filter. The use of a morphological filter at this stage will

Let us recall that perfect reconstruction of the linear two- completely eliminate the ringing effect. Furthermore, the
band filter bank of Fig. 2 is achieved if the convolution of Proposed morphological subband decomposition (MSD) has
hi(k) andg; (k) is a half-band filter and if the filters respect the desired property of representing the original image by

the bi-orthogonality conditions given b§f>(z) = G (—z) the same number of pixels as the original image.

and Ga(z) = —Hi(—2) [52]. Now, supposeH;(z) = N

1. Then perfect reconstruction is achieved G§(z) = D. Lossless Decompositions

—1,G1(z) is a half-band filter andd»(z) = G1(—=z). This In contrast to lossy image coding, special care has to be
filter bank is shown in Fig. 7. dedicated to the coefficients in the subband domain when

Let us replace the filtet71(z) by a generalized half- lossless compression is intended. Indeed, classical sub-
band filter M(-). It is clear that this filter cannot be band/wavelet coefficients are floating point numbers. The
described with itsz-transform since it is a nonlinear filter.  output of these filters are therefore floating point numbers
However, from the bi-orthogonality condition, in the case as well. This representation is not suitable for subsequent
of linear filter banks, it is known thaH,(z) = G1(—2) lossless entropy coding. Even if the filter coefficients can be
yields perfect reconstruction. The solution to the problem made integers by a single normalization factor, the dynamic
of finding the corresponding high-pass analysis filter, in the range is usually too wide to be effectively coded. Therefore,
nonlinear case, can be obtained by understanding exactlydifferent multiresolution techniques have to be designed for
what it means to negate the variablef a linear half-band the lossless compression of images than those used for the
filter. Again, consider the impulse response of a half-band lossy compression. Several multiresolution approaches have
filter. Every other sample is zero, except the median sample.been presented for the lossless coding of images [53]-[57].
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of interest. These regions of interest are the actual objects
and are generally of arbitrary shapes. There are two im-
portant issues involved in a region-based scheme: 1) the
representation and coding of the region shapes and 2) the
representation and coding of the interior of the regions.
Fig. 9. Filter bank with morphological filters allowing for perfect When considering moving picture sequences, the issue of
reconstrugfion ggr?o?eé;vg(g \/?;Iywiaggeé(V;dltiJ:daCOEEir?tiggtﬂSdnThe tracking is also raised; this will be covered in Part Il of this
?upnecrﬁctzrﬁasp)ping aroatinJg péint valued coefficier?t to an integer paper. This section will focus on the representation and
valued coefficient. coding of the interior of the regions.

An efficient representation of the region interior should

provide a good decorrelation of the data in order to obtain

lethe Erewous section, ;he MSD has been descnbedhas ) high energy compaction. When compressing rectangular
;00 orthe c;?m?ressmn o '”?agesﬁ; It aslbeeq stated t ?t Itpictures, this decorrelation is performed by using appropri-

oes not suffer from any ringing effect at low bit rates. T. € ate block transforms such as a DCT or subband/wavelet
MSD has anot_her Interesting property. All the f|_|ter|n_g " transforms. Various approaches have been proposed to
the- decomposition is performed W|th_morpholog|c.all f||ters generalize the block-based techniques to arbitrarily shaped
which have the property of preserving the specificity of regions.
:jh;ir']r;p:t I:tsl(ess?: CSo?;:tlon l\./'C)' This makes it possible to One approach is to represent the arbitrarily shaped region

. pression scheme. . . using a classical block transform such as DCT. An appropri-

In order_ to achieve Iossles_s compression of the 'MagE, ate extension is performed in those blocks containing pixels

two conditions must be satisfied by the decomposition not belonging to the region interior. The block is filled

filters. with pixel values. The whole block is then transformed and

1) The filter bank must allow perfect reconstruction, coded. Several approaches to perform the extension have
This means that if no quantization is applied to been proposed [59], [60]. This approach obviously has the
the decomposed coefficients, the reconstructed imagedisadvantage of needing to transmit more coefficients than
must be identical to the original image. pixels in the region.

2) The coefficients of the subbands must be repre- A technique using a Gram-Schmidt orthogonalization
sentable by a limited number of bits. procedure to find an orthonormal basis inside the region

of interest has been proposed by Gilge in [61]. This

As shown in Section IV-C3, the MSD enjoys the property procedure is computationally expensive both at encoder and
of perfect reconstruction. Besides, median filters on a region decoder sides, as it requires the computation of a different
of support of size six are very efficient for that purpose orthonormal basis for each different region.
[58]. Since this median has an even number of samples, the A technique using an iterative procedure based on the
output of such a filter will no longer yield integer valued theory of successive projection onto convex sets has been
coefficients. This is due to the fact that the median value proposed by Chewt al. [62]. This technique has proven
of an even number of samples is defined by the average ofto be efficient in a rate-distortion (R-D) sense. However, it
the two middle samples. suffers from two drawbacks: 1) it is computationally heavy

One possibility of satisfying the second condition is due to the involved iteration and 2) if the number of pixels
to modify the MSD in the following way. The highpass of the shape is the same as the number of coefficients in the
synthesis filter is defined by the generalized half-band filter transform domain, then perfect reconstruction of the shape

M(-). Let us define a new half-band filtev" by is not guaranteed.
The algorithm proposed by Sikoet al. [63], [64] per-
N = QM) (36)  forms a shifting of the input pixels in such a way that a DCT

can be performed along the shifted lines. This technique,
known as SA-DCT (see Section V-C), has become very
popular due to its coding efficiency. The main drawback of
this method is that it does not perform a full decorrelation
of neighboring pixels in a given region.

where Q(+) is a quantization function mapping a floating
point valued coefficient to an integer valued coefficient. The
flow diagram of the new decomposition is shown in Fig. 9.
Such a filter bank still allows for perfect reconstruction, as
the input data are integers.

B. POCS-Based Block Transform (PBT)

The PBT, where POCS stands for projection onto convex
o sets, is based on an iterative procedure to determine the best
A. Motivation transform coefficient values. Two convex sets are defined:

New applications in a multiresolution environment result one in the spatial domain and one in the frequency domain.
in the need for additional functionalities and requirements One iteration of the PBT (see Fig. 10) will project the input
for video coding schemes. Most of them are closely related image onto the spatial domain set, transform this projected
to object-oriented manipulations. Object-oriented function- set into the frequency domain, project the transformed
alities require a prior segmentation of the scene into regionscoefficients onto the frequency domain set, and transform

V. SEGMENTATION-BASED APPROACHES
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Fig. 10. General flow diagram of the POCS-based block iterative (®) ©
process. The transform coefficient set (TCS) keeps only a subset of . .
the transform coefficients, whereas the region of support set (RSS) 1 ]
keeps only a subset of the spatial coefficients.

OO0 0 0000000
00000 00008000
0000000 -— 0000000
Q000000 ®eeCO0O0OO0 (d) ®
Q00 001010101010 Fig. 12. lllustration of the SADCT. (a) Original shape (grayed).
) (b) (b) Shape after first shifting of pixels. (c) Shape obtained after
performing aDCT »; on all the columns, with the DC coefficients
Fig. 11. (a) Region enforcing in the space domain. Black circles: marked with a black circle. (d) Shape after second shifting of
original shape; grey circles: pixels outside the region of interest. (b) pixels. () Shape obtained after performind& T on all the
Region zeroing in the frequency domain. Black circles: significant lines, with the DC coefficient marked with a black circle.

transform coefficients; white circles: zeroed transform coefficients.

reconstruction. Even though DCT is a compact frequency
the coefficients back to the spatial domain. Therefore, C|0$€transform, zeroing out some coefficients in the frequency

convex sets have to be defined. They are associated withdomain will inevitably results in a loss of information.

a priori constraints that are based on the characteristics of However, as most of the energy of a natural image is

the input shapes. concentrated in the low-frequency coefficients, the loss is
The first set is defined based on the theory of transform minimized.

coding. The goal of a transform for coding purposes is to

compact the energy of the input image into few coefficients. c. Shape-Adaptive DCT

Typically, for natural images, only a few coefficients of The shape-adaptive DCT (SADCT) is based on prede-

the DCT transform are important to represent the input fined orthogonal sets of DCT basis functions. The basic

Image. The set of images which can be repres_ented usi_ng a(:oncept of the method proposed by Sikora [63], [64] is as
selected group of transform coefficients constitute the first follows. The original shape is segmented ito< N blocks

set._ Th.|s se; |itermedftransfor? c;oefﬂm:cents_set (TCS). r-]r.hewith N being eight in most cases. On the blocks where all
projection of the transform coefficients of an input onto this -y, pixels belong to the original shape, the classical block

set can be obtained in zeroing all coefficients not in the DCT is applied. For those blocks where some pixels do

TCS. This is called region zeroing. - . ,
not belong to the original shape, the algorithm illustrated
The second set is derived from the fact that the values of . g 9 P gor "

he pixel ide th ) Iy irrel Thi in Fig. 12 is performed. The first step consists of shifting
the pixels outside the region ot interest are irrelevant. ThIS o) e pixels of the region to the upper bound of the block.

set_if rgferred to as th? region of S“PF’O” set (RSS). The As an example, the shifting of all the pixels of the original
prOJectpn of an grbnrarlly Shf’iped region onto the RSS can shape shown in Fig. 12(a) is presented in Fig. 12(b). Then,
be obtained by simply replacing those pixels corresponding depending on the number of pixels of each particular

to the interior of the region by their original values, and column, a DCT transform matri®CT y containing a set of

ignoring the other pixels. This procedure is called region N DCTy basis vectors is selected. THET y transform
enforcing in the space domain. matrix is defined as

Both those sets are illustrated in Fig. 11. In Fig. 11(a),

one can see the original shape represented by the black DCTy(p, k) =co - cos [p. <k+ 1) .1}
circles. The grey circles represent the pixels being irrelevant 2) N
because they do not belong to the original shape. Applying kp=0,...,N-1 (37)

region enfor_cing to the region.in grey quld keep only whereeo = (1/v/2) if p = 0, ¢o = 1 otherwisep denoting
the black pixels after the projection. In Fig. 11(b), the o 4h DCT basis vector. Thev vertical DCT coefficients
trans_fo_rm dom:?un is shown. The black qrclgs represent the ¢; for each columnz; can be computed as
coefficients which are kept and the white circles represent )
the coefficients which are zeroed by the region-zeroing ¢ = NDCTN -z, (38)
process.

One iterates over the two sets until a satisfying result The result of the transforms for each column is illustrated in
is obtained. Although, the convergence of the algorithm Fig. 12(c). The next step consists of shifting all the pixels
is guaranteed [65], this transform cannot achieve perfectto the left bound of the block as shown in Fig. 12(d). Then,
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Fig. 13. General flow diagram of the SAWT.

on all the lines, theDCT y transform is applied to obtain 0‘9"‘/0‘/.‘/.}. OOOQO  muine
the final transform coefficients, illustrated in Fig. 12(e). PYY T X ToloYoYoToloTo i

This algorithm presents the advantage that the final ' ' -
number of transform coefficients is the same as the numberFig- 14. Processing of each line before filtering.
of total pixels of the original shape. This transform also

enjoys the property of being reversible if the original it s to be noted that holes present in the original shape will
segmentation is known. Due to its computational simplicity produce artificial contours as well. Note that this drawback
and its effectiveness, it is the shape-adaptive transformis 5150 to be found in the SADCT. There is one major
having the biggest popularity. The main drawback of this e4350n why this artifact may not degrade the performance
approach lies in the decorrelation of nonneighboring pixels. 4t the technique. The objects are usually segmented in such
Al_so, since thig approach is _block—based, blocking artifacts way that they are spatially compact. This leads to objects
will occur at high compression factors. where holes are not very frequent.
The processed vector is then decomposed Mtbands
D. Subband Transform for Arbitrarily Shaped Regions by means of a filter bank in a second step. A filter

1) General Requirementstn this section, an algorithm ~ bank requires the input to have a size being a multiple

to perform arbitrarily shaped transforms is examined. As ©f the number of samples. Since the transform must be
mentioned before, it is crucial to have a decomposition OPerational on arbitrarily shaped regions, one cannot ensure
Satisfying the fo”owing two conditions. that this condition will be fulfilled. In order to overcome

this problem, these extra pixels are not processed in the
1) The transformed shape must be represented by thefilter bank but are put in the lowpass subband after having
same number of coefficients as present in the original been multiplied by the gain of the lowpass filter. This is a

shape_. _ _ . reasonable choice since the statistics of the lowpass filter
2) The filtering must be performed on pixels which are are very similar to the statistics of the original signal. It is
neighbors of each other in the original shape. important not to create a change of statistics for these extra

pixels. Since the gain of the lowpass filter is in general not
equal to one (usually/2), one has to multiply all these
extra pixels by this gain. The usual number of bands for
wavelet decompositions i% = 2. In that case, there is
a maximum of one extra pixel per line. This procedure
is illustrated in Fig. 15 for a two-band filter bank. The

The second point is important in order to have a full upper left picture shows the original shape. The upper right

decorrelation in the transform domain. As seen for the SA- figure S_hOWS each Iing after aII- the holes have b_een filled.
DCT in Section V-C, pixel neighborhood is not preserved These I!nes are then f|ltered with the t\_/vo-band_ filter bank
and artificial contours are created. This leads to an increasedhoWn in the lower right part of the figure. Finally, the
difficulty in decorrelating the information and thus increases €X{ra Pixels represented by the grey circles are put in the
the variance in the highpass subbands. Ipwpass s_ub_band as |Ilustrateql in the Iqwer left part (_)f the
2) Shape-Adaptive Wavelet Transfornthe proposed figure. It is important to mention t_h_at linear phase filters
shape-adaptive wavelet transform (SAWT) is performed in &€ appropriate for this decomposition because they allow
a separable way as in conventional decomposition schemes@ Symmetric extension of each line. This reduces greatly the
The transformation is done in three steps, as illustrated in border effects which could be introduced otherwise. Note
Fig. 13. The first step consists in processing each line that asymmetrical filter banks satisfy this requirement.
such that no hole is present anymore. The second step [N @ third step, the filtered samples have to be placed
decomposes the processed line iffosubbands while the  into subbands such that each subband preserves the original
last step places the filtered wavelet coefficients in their shape of the region. This is important for the purpose of
right locations. obtaining a maximum decorrelation of the filter bank. For
The line processing step writes for each line all pixels every group ofN pixels of the original region the samples
belonging to the region in a vector sequentially. This are distributed into theV subbands such that the number
procedure eliminates all holes present in the original shapeof pixels in each subband does not differ by more than
and is shown in Fig. 14. This operation satisfies condition NV — 1. As illustrated in Fig. 16, this procedure ensures
1) of the previous section. Indeed, neighboring pixels that the subbands are very near in shape to the original
remain neighboring pixels after the processing; however, region scaled by a factor a¥. An example of a wavelet

The first condition is a requirement necessary in order to
have a good coding performance. Decompositions which do
not fulfill this condition show a poorer coding performance.

It has to be noticed that if the goal of the decomposition

is not coding but a multiresolution analysis, then this

condition is not required anymore.

986 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999



0COe0eo 000
ceedee o000 ’ﬁﬁgg&;
000000 00000 CAS
000800 000 | 2
000000 . _ 00000 P
0Oee00 o0
000000 ® |

Low High

-] ‘ 2 M H(@

000 oo L™

° -

®

Fig. 15. Decomposition of a region into two subbands. Black
circles are pixels belonging to the region. Grey circles represent
extra pixels which are not processed by the filter.
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o0 o ol X BNel Jo Fig. 17. Example of an SAWT on the picture “Weather.” (a)
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Fig. 16. Placing of the decomposed samples in the two subbands.
(a) Subbands obtained after the filtering. (b) Each pixel is placed
at the correct location in the subbands.
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iti i i i Fig. 18. lllustration of the placement of the decomposed samples
decomposition of a shape is shown in Fig. 17'. One can in the two subbands. (Top) Line to be decomposed. The dashed
clearly observe that the subbands are very near in shape t

et ) %roup of two pixels are those having only one pixel belonging to
the original region. the region of interest. (Bottom) Resulting placement of the pixels

This algorithm is not reversible in the sense that in in (a) the lowpass subband and (b) the highpass subband such that
Lo . . L. they are evenly distributed.

general it is not possible to find the original contour of
the region from the contours of the subband shapes. This
is due to the fact that one imposes an equal number of
pixels in each subband of the same level (if we except the
mentioned extra pixels). Hence, all pixels belonging to a
group of V pixels with some of those pixels not belonging

If at a specific location in the subbands there is a pixel
in the lowpass subband but not in the highpass subband,
it is impossible to know if in the reconstructed shape it

to the region are evenly distributed among the subbands.iS 'Fhe_: fi.rst or the _seC(_)nd pixe_l that belongs to the region.
This is illustrated forN = 2 in Fig. 18. In the figure, the This is illustrated in .Flg. 19. Fig. 19(a) shows the lowpass
dashed group of two pixels are those having only one pixel Subband and the highpass subband. For pixels 2, 4, and
belonging to the region of interest. At the appearance of 6 it iS impossible to retrieve the correct constellation of
such a group, one pixel is attributed to the lowpass subband.the original shape. There are always two possibilities, and
At the next appearance it is given to the highpass subbandthese are shown in Fig. 19(b).

In Fig. 18, bins number 2, 4, and 6 have this structure Although one cannot reconstruct the original shape from
of only one pixel belonging to the region. Hence, pixels the subband shapes, we do not have to send additional
number 2 and 6 will be present in the lowpass subband information since the shape is coded in a different channel
while pixel 4 will be in the highpass subband. anyway. The procedure to decompress a region coded
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Fig. 19. From the samples in the two subbands, it is impossible to
retrieve to original shape. (a) For pixels 2, 4, and 6, it is impossible
to retrieve the correct constellation of the original shape. (b) There

are always two possibilities.

with the SAWT algorithm must be done in the following

chronology:

1) decoding of the contour information;
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Fig. 20. Downsampling of the original shape to obtain the low-
pass subband. (a) Original shape. Black circles belong to the orig-
inal shape. White circles do not belong to the original shape. The
dashed rectangles highlight the pixels belonging to odd columns.
(b) Downsampled version of the shape, corresponding to the odd
columns.

2) decomposition of the shape into the subband shapes ~—

by using the SAWT without the filtering;

(@) (b) ©

3) reconstruction of the O”gmal shape and its content by Fig. 21. Example of the iterative procedure to fill all the region

applying the inverse filter bank of the SAWT.

E. The Shape-Adaptive Transform for
the Nonlinear Transforms

In the previous section, an algorithm has been proposed

of support of the generalized half-band filter. (a) Region of support
of six pixels with only two pixels belonging to the shape. (b) After
the first iteration, the three grey pixels can be computed. (c) After
the second iteration, the last (grey) pixel can be computed.

to perform a subband decomposition on arbitrarily shaped half-band filter has a region of support 8fsamples. In the

regions. This algorithm is based on filtering each line case of rectangular images, it is guaranteed that for all the
independently. Therefore, it works properly only for sep- IV samples there is a pixel to be filtered. The only exception
arable filter banks with monodimensional subband filters. is on the border of the picture. This can be overcome easily
However, some nonlinear subband transforms, such as thddy applying a symmetric extension of the image. In the case

MSD, use filters with a 2-D region of support.

In the case of the proposed nonlinear filter banks, having
to deal with a degenerated filter bank simplifies the task
of defining a shape-adaptive version of the transform. The
lowpass analysis filter is not present in the filter bank

of arbitrarily shaped regions there are three cases of interest.

1) All N pixels of the region of support of the filter
belong to the region. In this case, the same filtering
procedure is applied as for rectangular images.

since the lowpass subband is defined as a downscaled 2) There are onlym pixels of the region of support

version of the original subband. Hence, one can define the

of the filter belonging to the original shape, where

lowpass subband of the shape-adaptive transform as the 0<m<N. In this case, a successive symmetrical

downscaled version of the original shape. The procedure
to obtain this subband is as follows. Fig. 20 illustrates the
caseN = 2, i.e., two subbands. Each line of the original
shape is downsampled by a factor of two. Hence, every
odd pixel of the original shape is contained in the lowpass
subband. If an odd pixel belongs to the original shape, it
will belong to the subband shape as well. On the other
hand, if this odd pixel did not belong to the original shape,
it will not belong to the subband shape either. Fig. 20(a)
shows the original shape; black circles belong to the shape,
white circles do not belong to the shape, and the dashed
rectangles highlight the pixels belonging to odd columns.

extension of the region of support is applied until
all N samples have been extended. This procedure
is illustrated in Fig. 21. Fig. 21(a) shows a region of
support of six pixels for the nonlinear filter. Only two
pixels (black circles) belong to the shape. On the first
iteration, three more pixels can be computed by taking
the average values of the neighbor pixels illustrated
by the arrows in the figure. The second iteration is
able to compute the missing pixel again by taking the
average of its two neighbors.

3) No pixels of the region of support of the filter belong
to the original shape. In this case, the output pixel is

The downsampled version of the shape is represented in not filtered but added to the lowpass subband. This

Fig. 20(b).

The highpass subband is composed of the difference
between the original image and the image filtered with the
generalized half-band filter. One can define a similar proce-

procedure is illustrated in Fig. 22. The black circle on
the left part of the figure has no neighbors belonging
to the shape. All pixels on the region of support of
the filter (dashed circles) do not belong to the original

dure for arbitrarily shaped regions. Suppose the generalized shape. Thus, it is put in the lowpass subband.
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partially transparent object layers. However, it is possible
to apply similar principles to code alpha plane shapes.

Region shape representation has been investigated in the
past for arbitrary and constrained shaped regions [67], [68].
They can be classified in three categories: bitmap; intrinsic;
and contour-based techniques.

Designed only for compression, bitmap-based techniques
apply binary image coding methods, such as those de-
veloped for facsimile transmission, to shape images. Two
typical bitmap coding schemes are the modified-modified
Fig. 22. (a) The shape is represented by the dark grey circles and reaql (MMR) [69], [70] and the context-based arithmetic en-
the. bla.ck circle. The rectangles highlight the odd columns. The ,COdmg (CAI_E) _[71]' The former has b_ee,n used successfully
pixel represented by the black circle cannot be filtered because in the facsimile group four transmission norm, whereas
no pixel of the region of support (dashed circles) belongs to the the latter has been included in the Motion Picture Experts
g{'%"r;alcz?ﬁa';%o(r?éi:g urj;che'.s pixelis put into the lowpass subband Group (MP_EG)-4_video compression norm. Th_ese_ methods

are of particular interest when shape coding is integrated
in a block-based scheme as in current still image coding
standards, as they are easily modified to accommodate for
the fixed segmentation [72].

Intrinsic shape representation considers the solid shape
rather than its boundaries. In its most trivial form, an
intrinsic shape coding technique is a bilevel coding of
inside/outside binary information of an object. This is
performed in decomposing the shape into smaller simple
elements, by means of quadtree-based techniques [68] or
representing it by its skeleton [73], [74]. The inverse
decomposition is then applied to the transmitted simple
element to recover the shape. Some methods may present
characteristics like progressive or lossy shape coding. Cur-
rent object-based standards like MPEG-4 use this approach
due to their good compression efficiency and their simplic-
ity. However, such an approach lacks a semantic description
of objects, which is of interest in applications where high-
level information is needed (content-based search, image
understanding, pattern matching, etc.)

Contour-based techniques use a transform to convert the
object into contours representing its outline. An inverse
transform recovers the shape from this contour represen-
tation. This transformation should preserve information to
allow lossless shape coding using contours. When simpli-
fication hypotheses are available, the transformation can
often be expressed in a very compact form.

The key part in contour-based techniques is the actual
This definition for the shape-adaptive nonlinear decom- coding of the contour information. Several connectivity
positions (SAND) allows for perfect reconstruction of the methods can be used to define what relative positions two
original shape. The comments on the subband shape of theneighboring contour pixels can take. The most common
SAWT also apply to this decomposition. An example of neighboring descriptions are, as shown in Fig. 24, four
a decomposition of a shape is shown in Fig. 23. One can connectivity, eight connectivity, and six connectivity. Let
clearly observe that the subbands are very close in shape and j be two neighboring contour pixels. In a four-

O8N0 Q0O

@ (b)

22247 15]

(b)

Fig. 23. Example of an SAND on a ultrasound picture. (a) Shape
to be coded. (b) Resulting subbands after performing the SAND.

to the original region. connected contour, pixélis either to the north, east, south,
) or west of pixelj, and in a eight-connected contour it can
F. Shape Coding also be to the northeast, southeast, southwest, or northwest,

In this section, we briefly present major shape-coding in addition to the previous directions. A third connectivity
techniques used in literature. The user is referred to [66] for scheme represents six-connected contour pixels. As op-
a more detailed overview. The emphasis will be given to bi- posed to four- and eight-connected contours that lie on
nary shape coding as opposed to alpha shape coding, whiclpixels, six-connected contours lie in between pixels. The
has been recently introduced in a number of applications line between two pixels is also called crack edge [66]. This
using concepts from computer graphics in order to representlast possibility is a more natural representation; however,
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)

@) (b) ©

Fig. 24. The most common connectivities, along with an example
of the shape representation in: (a) four connectivity; (b) eight
connectivity; and (c) six connectivity. Note that six connectivity
is defined on the border of the pixels (crack edges), whereas the
other two are defined in the middle of the pixel.

(a

the corresponding grid implementation is more complex d
when compared to the other representations.

A contour tracking algorithm then extracts lists of con- (b)
nected contour pixels. In most cases, the corresponding
shape boundaries are described by a closed contour. How-
ever, depending on the selected connectivity and the exis-
tence of thin details, or borders, some parts of the contour
may remain open. Two solutions exist to handle that case.

The first possibility is to let the contour tracker move
backward. The nonclosed contours are then tracked twice,
back and forth. The second possibility is to process open
contours separately. In this case an additional code for the
end of contour, or alternatively, information regarding the )
contour size, is needed. For a correct shape reconstruction o , )
from the contour information, the inside and outside of an ;'%piséoﬁﬁzms‘ﬂﬁegeg's(tg)”g?;ng?ssflrggg; F;'ngolygzﬁgf algpS)rng-
object also need to be defined. A closed contour can beimation; (c) lossy chain coding; (d) joint block/Hermite curve
tracked and encoded either clockwise or counterclockwise. approximation; and (e) MPEG-4 VM block-based shape coding.
Depending of the convention used, one could then consider

the left or right side of the oriented contour as the interior |, g complete object-based compression scheme with

of an object. o lossy shape coding, the shape—texture coding interaction
Quite an extensive literature has already treated thejs of prime importance. The bit-rate reduction, resulting

problem of contour coding [75]-[80]. The most popular i, 5 o5 of shape coding quality, may actually increase

techplque f'st;ha'r.‘ C;)d'ng’tr\"Vh'Ch S[:onS|sts|, ,'[n cotdln?h the the texture bit rate for a given texture quality. Preliminary
position of the pixels in the contour relative 1o their o, qjieq [87], [88] have shown that the relation between the
neighbors. In the most classical chain coding, the first pixel :
. . o ? overall system R-D behavior and those of shape and texture
in a contour is coded in its absolute coordinates. All the .

are very complex. They depend on the image and also on

remaining pixels are then coded by just indicating their . . ; :
relative position compared to the last encoded neighboring coding parameters such as the desired quality, the bit rate,
and the rate control scheme.

pixel. Variants of this technique are used to improve the
compression efficiency [68], [78]-[80].

Geometrical approximation methods constitute another VI. QUANTIZATION
family of contour-based representations that have been first
investigated in the field of computer vision and pattern A |ntroduction
recognition. Geometrical representations include polygon
approximation [81], [82] and cubic curves. Literature re-
ports several schemes for the selection of the vertices
representing the contour approximation for polygons [83]
cubic curves [84], [85] or hybrid system [86], including
both types for better shape representation.

Fig. 25 reports an example of different types of distor- B. Basic Equations of Quantization
tions that can be observed by using various lossy shape Let X be a real random variable with probability density
coding techniques. function (pdf) px (). The cumulative distribution function

(e)

To compress the data of the image, the subband signals
are quantized. To perform an optimal quantization, the type
of quantization (uniform, nonuniform) and the number of
' the quantization levels in the different subbands are defined.
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(cdf) F(-) is then Equation (47) defines the expected value of the interval

® which is in general not the same as the median point.
F(z) = / px (&) dE. (39) The design of a quantizer in the minimum mean square
o0 error (MMSE) sense reduces to choosing the threshalds
Let us give the following definition of a quantizer. to minimize Ds by respecting (47). This yields a set of
Definition 3: A device with inputX and outputY = nonlinear equations which are difficult to solve in general.

Q(X) is called a quantizer ifa;—; <X < a; implies
Y = v;. The a;'s are called the quantization thresholds p  uniform Quantizer
(decision levels) and the;’s are called the reconstruction
levels [89].

The probabilityp; that the outpul” is ~; depends on the
cumulative distribution ofX by

The simplest quantizer is the uniform quantizer which is
defined as follows.

Definition 4: A quantizer is uniform when the quan-
tization thresholds are uniformly separated by the same
Pi = P(Y = ’}/i) = F(CLZ) - F(ai,l). (40) distance, hence

Hence, the knowledge aF'(-) gives us the possibility to a;—ai_1 = A, Vi (48)
compute the zeroth-order entropy rakteof the output
A very surprising fact is that this simple quantizer is optimal

R= —ZPZ‘ log, pi (41) or quasi-optimum in most of the cases. Actually, it is
g optimal if the inputX has a Laplacian or exponential pdf.
and the averageth order distortionD.,. Otherwise, the optimal quantizers perform only negligibly

a; [89] better than the uniform quantizer. This is the reason
D.=E|Y - X|" = Z/ |z — v px(x)dv  (42) for the popularity of uniform quantizers.
7 @i —1

wherer is a positive integer. After quantization, a source E. Successive-Approximation Quantization (SAQ)

coding algorithm is applied. The lower the entropy of the 1) |ntroduction: As shown in Section VI-D, the uniform

data, the more efficient the source coding algorithm (see quantizer is well suited in an image-compression frame-
Section VII). It can be concluded that in our context an \york: however, it does not permit the definition of a

optimal quantizer is one that minimizeB, for a fixed  progressive transmission and an exact rate control. To
entropy ratek. improve the image-compression scheme featuring these
new functionalities, different quantization strategies have
C. Optimum Quantizers to be adopted. An approach achieving this goal is SAQ of
It can be observed from (41) that the entropy rBtdoes the coefficients. It is detailed below.
not depend on the reconstruction levels Therefore, the 2) Classical SAQ:To exploit the existing zero-

~; can be chosen to minimize the distortidh.. It can be correlation across subbands, the EZW algorithm—proposed
shown [89] that the optimal;’s are uniquely specified by by Shapiro [43]—is based on three main blocks: 1) the

a;_1,a;, andr by the equation hierarchical subband decomposition; 2) the prediction of
i @ the absence of significant information across scales using
/ |z — 3" px(z)de = / |z — v 'px(z) dr. zerotrees; and 3) the entropy-coded SAQ.
ai—1 Vi The first block is a subband decomposition of any type.
(43) All decompositions described in Section IV-B can be used

for that purpose.
The second block is the heart of the EZW algorithm and
B “ follows. For each subband, a parent—children rela-
| m@ao= [ px@as sy  gossas follows . @ parent-childre
ai_y y tionship is defined. The low-frequency subband is defined to
be the parent of all other subbands. Then, a parent—children
relationship is defined for all subbands. An example of a
EX <vlaic1<X <a) = % (45) parent—children relationship for the wavelet decomposition
is shown in Fig. 26.
The next block is the scan of all coefficients to detect
the highest valued coefficient (in magnituds),, of all

For » = 1, (43) reduces to

or equivalently

Equation (45) defines the median point of the interval. We
can also compute (43) for = 2

@ the subbands. This coefficient is used to compute an initial
/a_ wpx (v) do thresholdZy by the following equation:
Vi = (46)
/ Px (.Z‘) dx TO =7 * Cmax (49)

where~ is a parameter of the system. Convergence of the
guantization is ensured if > % Then different scans are
vi = E(X|a;—1 < X < a;). 47 performed, producing a stream of symbols.

which is the same as
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Fig. 26. Parent—children relationship for the wavelet decomposi-
tion of the EZW algorithm.

0
o ek
B AR A

Min

Fig. 27. lllustration of the primary scan of the zerotree wavelet
algorithm. The unquantized coefficients range framim to max
and are quantized to NEG, POS, or zero.

Max

The last block is the arithmetic coder, which turns the
symbols into the final bit stream.
The successive approximation consists in an iteration

over two scans, called the primary scan and the secondary.

Fig. 28. lllustration of the secondary scan of the zerotree wavelet
algorithm. Each coefficient which has been quantized to a signif-
icant value in the previous primary scan is refined by a factor of
”’/ = 2

Original Subbands

1366251 3.2
11.7 [ 35| -6.6 4.3 [cmazr = 13.6
102 4.7, 92 3.1
-82 95| 26 6.3
Primary Stream P, Q\—lantized Subbands
7 69 1035 ] 0 0 0
Streamn = POS, ZTR, POS, 17, POS, IZ 10.35 | 0 0 0
NEG, NEG, POS, IZ, IZ, 1Z. 1035 0 1085 0
' ' B -10.35 -10.35 0 0
4
Quantized Subbands
Sccondary Strcam S 12.075 [ 0 0 0
Stream = HIGH, HIGH, LOW, LOW, 120751 0 0 0
LOW, LOW. 8.625 0 8.625 0
-8.626 -8.62b 0 0
!

. Quantized Subbands
;),“marf fi’;’“m P 12.075 [ 5.175 | 5176 00 ‘
Stlream - NL( NEG, POS, 17, NEG 12075 | 5175 | 5175 5.175

POS’NEG YIZ IZ'P():§ ’ 8.625 -5.175 | 8.625 0 ‘
! T ’ -8.625 -8.625 0 5.175

Fig. 29. Example of a classical SAQ on wavelet coefficients.

scan. _The primary scan locates the si'gnificant wavelet ystrated are the first two primary strearfi8; and P») and the
coefficients, and the secondary scan refines the values ofirst secondary streariS1). The parent—children relationship is

all considered coefficients so far.

The symbol stream of the primary scan is generated
for the coefficients in the subbands using the following
symbols: POS (positive) if the coefficient is significant with
respect to the thresholfi; and positive; NEG (negative) if
the coefficient is significant with respect to the threshHld
and negative; ZTR (zerotree) if the wavelet coefficient is
insignificant with respect to the threshold and all its children
are insignificant, too; IZ (isolated zero) for all other wavelet
coefficients.

This quantization procedure is illustrated in Fig. 27. One
can see that the uncertainty inter¢amay be not uniform.
Indeed, with~ > %, the uncertainty interval of the zero-
guantized coefficients is always larger than for the values
guantized to POS or NEG. In the special caseyof %,

this dead zone is twice as large as the uncertainty interval

of the significant coefficients.

In the secondary scan, all the coefficients which have not
been quantized to zero so far are refined. This is done by

transmitting, for each of these coefficients, a binary value
telling if the unquantized coefficient is in the lower or upper

half of the interval. This refinement is illustrated in Fig. 28

for the case where the coefficient was primarily scanned
as POS.

After a secondary scan, a new threshold is computed as

Tip1 =1;/2 (50)

992

that of Fig. 26, andy = 2.

wheret is the iteration number. The algorithm is iterated by
applying successive primary and secondary symbol streams.
These are then encoded using the entropy coder. The result
is a completely embedded bit stream. An example of such
a quantization is shown in Fig. 29. The EZW algorithm
has shown excellent performances in compressing natural
images.

One approach for generalizing the EZW algorithm is as
follows. At each iteration, instead of dividing the threshold
by two, let us define the new threshold by the general
formula

Ty =T;/Q (51)
where @) is a floating point value. Moreover, instead of
splitting the uncertainty interval of the nonzero coefficients
into two bins, a refinement intd/ distinct values is
produced in the secondary stream(lf= 3.0 and M = 3,
one approaches a uniform quantization very closely. This
is illustrated in Fig. 30.

One can observe that after the first primary stream, a
uniform quantization is achieved @ is chosen to be 3.0.
Closer examination shows that this is indeed the case after
each primary stream. The EZW algorithm proposed in [43]
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Fig. 30. lllustration of the primary scan of the zerotree wavelet
algorithm with@ = 3.0. The unquantized coefficients range from

min to max and are quantized to NEG, POS, or zero. The three
uncertainty intervals are equally large.

. b
has the following system parameters:= 0.5; @ = 2.0; @ ()
and M = 2 Fig. 31. lllustration of the generalized zerotree prediction. (a)
’ . The complete zerotree. Black pixels belong to the region. Gray
3) SAWT and SAND SAQTo use the described shape- pixels do not belong to the region. (b) The purged tree.

adaptive transforms in an efficient coding environment, it is

proposed to generalize the EZW to match these transforms. Original Subbands

Special care has been dedicated to retain all the advantages ﬁ?{ - g
of the EZW algorithm for arbitrarily shaped regions. As — 7 37 fmaz = 29
for the original EZW algorithm, the proposed technique is -8.2

based on three basic blocks, namely the transform (SAWT

or SAND), the zerotree prediction, and the SAQ. Quantized Subbands

After performing the subband transform, the zerotree pjnary Stream P 10.35
prediction in turn allows for a further improvement of the 7, =69 1035 [ 0
energy compaction by taking into account the remaining Strcam = POS, POS, ZTR. IZ, NEG. 0 0
interband correlations. The zerotree prediction has to be 1035
generalized to match the properties of arbitrarily shaped U
subbands. Indeed, in the case of rectangular images the sub-
bands are rectangular as well. This allows a straightforward Quantized Subbands
definition of the parent—children relationship as described Secondary Stream S; ]138;2 3
in Section VI-E. Stream = IIGH, HIGH, LOW. — 3 9
In the case of arbitrarily shaped regions, it may happen -8.625
that a group of children has no parent or that a parent has no
children. This leads to a redefinition of the parent—children Y
relationship for arbitrary shapes. The idea behind the ze- Quantized Subbands
rotree is to be able to code a complete tree of zero-valued Primary Stream P, 12.075
coefficients with only one symbol. Hence, it is important 71 =345 12.075 | 5.175
that a missing pixel in a whole tree does not affect the > ¢®™ = POS NEG, 12 625 AT 0

efficiency of the zerotree symbol. The proposed approach

is defined as follows: Fig. 32. Example of an SAQ on wavelet coefficients of an
arbitrarily shaped region. lllustrated are the first two primary
streams(P; and P,) and the first secondary streaf;). The

1) create a zerotree in the same way as for rectangularp‘,ﬂrem_Chilolren relationship is that of Fig, 26.

images;
2) consider all the pixels of the tree not belonging to the {jona| features such as progressive transmission, retrieval,

arbitrarily shaped regions as quantized to zero; and data browsing for each region independently.
3) code the tree as before, but considering only pixels 4y | ossless SAQThe two conditions for lossless com-

in the shape. pression in a multiresolution environment have been stated
in Section IV-D. It is clear that even though these con-
ditions on the filter bank might be satisfied, they are not
sufficient to render the entire scheme lossless. To render
this compression algorithm lossless, the following four
conditions on the quantization are considered.

This approach ensures that the maximum number of ze-
rotrees can be found. The method is illustrated in Fig. 31.
Fig. 31(a) shows the complete zerotree where the black
pixels belong to the region and the gray pixels do not.
Fig. 31(b) is the purged tree. Note that the appropriate
placing of the pixel in the subbands, as described in 1) The initial threshold should be set @ = A™ with

Section V-D, allows for an efficient representation with n being an integer value.
zerotrees. An example of the SAQ encoding for arbitrarily ~ 2) The threshold is divided byl at each iteration,
shaped regions is shown in Fig. 32. T, = T,/M.

Finally, the SAQ provides an embedded bit stream and 3) The iterative quantization procedure is iterated
allows for an exact rate control. The embedded bit stream times for the primary stream and — 1 times for
together with the multiresolution structure allows for addi- the secondary stream.
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Quantized Subbands
8 1010 0
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T() =8
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0
8
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4

Quantized Subbands

Secondary Strcam S 1210 |0 0
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12 -4 4 0
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Primary Stream P,

T[) =4

Stream = NEG, IZ, POS, 12, NEG, POS,
NEG, 1Z, 1Z, POS.

4
0
4

Fig. 33. Example of a lossless SAQ on wavelet coefficients.
lllustrated are the first two primary strearg®; and P») and the
first secondary streariS;). The parent—children relationship is
that of Fig. 26.

4) The reconstruction levels have to be set to the mini-
mum absolute value of the uncertainty interval of the
reconstruction.

There are two ways to achieve lossless reconstruction.
The first way is if, at the last primary scan, the uncertainty
interval C for the reconstruction i€ < 1, and if the
values to be reconstructed are integers. This can be reache
if conditions 1)-3) are met. This ensures that after the
nth iteration of the primary stream, the threshold will be
exactly one. At thesth primary stream, for each quantized
coefficientc, the following inequality will be satisfied:

(52)

Cmin S < Cmax

wherec,,;, ande,,.5 are the bounds df. After » iterations
of the primary streana,,,» — cmin = 1. Sincec is a signed
integer value, the correct value efmust be

(53)

C = Cmin-

The second way lossless reconstruction is achieved is
when conditions 1) and 2) are not satisfied, but enough
iterations (normally more than) are considered. The stop
criterion is againC < 1, allowing for a perfect mapping of
the quantized coefficients to their integer values.

An example of lossless quantization withh = 2 is
shown in Fig. 33.

F. Vector Quantization (VQ)

In contrast to scalar quantization discussed in previous
sections, VQ is the process of mapping sets of values in

994

form of vectors into a predefined set of patterns. Although
VQ can be seen as a generalization of scalar quantization,
it can be shown that from an R-D point of view that it
results in an optimum performance even when the data to
be quantized are made of independent samples [90]. Let us
give the following definition of a vector quantizer.

Definition 5: A device with inputX = (z1,22,...,zx)
and outpuft” = Q(X) = (y1, 49, ..., yx) is called a vector
qguantizerQ of dimensionk and sizeN if any vector X
is mapped into one of théV possible output pointg;
contained in the finite sef’ defined as

C=1{YY; e R¥ieI} with IT={12... N}
(54)
The setC is called the codebook and the output or repro-
duction pointsY; are called code vectors. The resolution or
rate of the vector quantizer is definedras: (log, N)/k. A
partition of R* into IV regionsR;, called cells, is associated
with the codebook and is defined as

m:{mXeRKQXpﬁﬁ (55)

with
U&:Rk
and
RNR; =0 fori,jel,i#j.

Taking into account the above definitions, VQ can be
interpreted as an association of every code vetioio a
cell R;, in which the actual quantization process would be
the assignment of; to X when X ¢ R;.

In principle, the design of a VQ requires a common

efinition of codebook used in both encoder and decoder.

ncoder and decoder then only exchange the indexe®
of the Y; instead of the values ak.

The choice of the codebook depends on the statistical
properties of the source data to be quantized and as a
consequence plays an essential role in the performance of
VQ. Several strategies have been developed in order to
design appropriate codebooks in an efficient way requiring
minimal computational load during quantization. The most
well-known approach for the design of a codebook is that of
generalized Lloyd algorithm, also known as LBG algorithm
[91]-[93]. In the LBG approach, the codebook is designed
using a training set containing data of the same kind as
that to be quantized. The codebook is then stored and used
in both encoder and decoder. Variants of VQ may update
the initial codebook as the process of quantization is in
progress. Such quantizers are known as adaptive vector
quantizers.

Another class of vector quantizers makes use of no
explicit codebook in order to avoid storage requirements.
Lattice VQ is one such approach. As for scalars, the optimal
high-resolution entropy-constrained scalar quantization is
the uniform quantization (see Section VI-D); similarly,
for large vector sizes, the optimal vector quantizer for a
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constrained entropy is obtained in using a codebook with STATE

uniform cells [95]. 0 ?;g"
Formation of input vectors is another important issue in O/DZ
the design of vector quantizers applied to image coding. In ! 1/Do
earlier realizations, vectors were formed by pixel values in ) 0/D;
a square block of an image [92]. In more recent techniques, 1/Ds
vectors are created from the coefficients of a transformed 5 0/Ds
image. Either coefficients of a given subband around the 1/ Dy
same spatial position or coefficients from different subbands 4 0/ Dy
in the same spatial position can be used. Some variants use /Do
both kinds of coefficients to form vectors [95]. 5 0/Dqo
Although from a theoretical point of view it is possible to L/ D
show that VQ remains superior to scalar quantization, the 6 %83
added complexity does not pay off for most applications. N 0/01
' 1/Ds

G. Trellis Coded Quantization (TCQ) . . | | | ; |

TCQ is a source coding method offering similar R- Do D D, Dy Dq Dy D,
D performance to that of VQ at only slightly higher
complexity than scalar quantization. The principle behind
TCQ is motivated by alphabet-constrained R-D theory,

. . . Table 1
which determines the best achievable performance whengampie set of Symbols to be Represented in Binary Code
compressing data using a finite set of quantized Symbols. 5T cocficiont value 010 20 40 60 120
Notions used in TCQ are similar to that of trellis coded TFrequency of occurrence 29 26 23 19 2 1
modulation (TCM) widely used today for the design of Yixed-length code 000 001 010 011 100 101

. . . . . Variable-length code 11 10 01 001 0001 0000
voice line modems [96]. In its simple form, TCQ exploits a
codebook of22+! codewords when coding a given source
at a bit rate of B bits/symbol [97]. This is twice the  yesylts for progressive compression of still images. Results
number of codewords needed in a conventional quantizationgre shown in Section X.
mechanism. It is possible to show that this doubling of
number of codewords allows one to obtain nearly all the
theoretical gain possible over a B bits/symol Lloyd—Max
quantizers. The codebook is partitioned i6t! subsets . .
with P < B using the set partitioning mechanism proposed A Variable Length Coding
by Ungerboecks in TCM. Typically, the expanded codebook The message extraction phase described in the previous
is divided into four subset&” = 1), each containing”~! sections results in a list of symbols. Codeword assignment
codewords such that the minimum distance between theis the procedure of mapping the symbols to bit patterns,
codewords in a subset is achieved. The process of quan-suitable for transmission or storage. To illustrate the differ-
tization then proceeds as follows. To encode a sequenceent schemes presented in this section, we will refer to the
of N symbolsz = {xo,...,xy_1} at R bits/symbol, N following example.
stages of a trellis are cascaded together. Fig. 34 gives an Suppose we get a collection of 100 quantized DCT
example of one stage of such a trellis with eight states with coefficients as our list of symbols. Let us assume only the
codebook partitioning into four subset®,, D1, D5, and values shown in Table 1 occur in this collection, with the
Ds. In this example, four scalar quantizations are performed indicated number of occurrences. The bit patterns assigned
at each stage (one for each partition) to determine theto each symbol of the set are called the bit codes. A
best quantization level (in general based on the minimum straightforward conversion is to assign a fixed-length code
mean-squared criteria). The quantization error introducedto each symbol. The length of the code depends on the
by this process is chosen as the cost function when selectinghumber of different values which appear in the set, also
the path in the trellis from one stage to the next. The referred to as the alphabet. For an alphabet of Sizéhe
Viterbi algorithm can be used to find the trellis path with length of the code i§(log, (S)]. In the example of Table
the minimum cumulative distortion between the source 1 we have six values leading to a code length of three.
and its quantized version [98]. The sequence of resulting All symbols have to be defined as unique. An example
guantization codewords can be identified usifigits at fixed length bit code is given in Table 1. Encoding our 100
each stage of the trellis, namely, one bit to specify the path symbols with this code results in 300 bits.
in the trellis, andk—1 bits to select the desired quantization At this point of the compression of the image, it is
level in the partition associated to that path. Variants of very likely that the number of symbols that represents
TCQ have been reported in the literature for both scalar andthe input picture is the same as the original number of
VQ [99]-[101]. More recently, a technique using wavelet values describing the pixels values. In case of segmentation-
decomposition and TCQ was reported in [102] with superior based schemes, it might even be higher because of the

Fig. 34. Transitions in a stage of a trellis coder.

VIl. CODEWORD ASSIGNMENT
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Table 2

description of the shape itself. The message extraction |sRunlength Representation of a Sequence of Symbols

a map for input signal (pixels) onto a set of symbols

Symbolssequence 10 0 0 0 0 10 10 20 10 O O O

presenting statistics which the code assignment can exploit. 2 Runs 10 0 10 20 10 0

i icti ili Length 1 4 2 1 1 3
With the symbols statistics, e.g., the pr_obablh_ty of oc- R v—
currencep(s; ) of each symbok;, we could find a bit code Zeros Length 4 0 0 0 3

which is more efficient than the fixed-length code from
above [103]. The variable-length code shown in Table 1

represents the same set of 100 symbols on only 225 bits,I h the si f th iainal alphabet is ind dent
which is a gain of 25% over the previous scheme. engths, as the size ot the original alphabet IS Independen
from the maximum burst length.

The measure of the goodness of a set of bit-codes is the . . .
zeroth-order entropy, defined as In real image compression algorithms [107]_—[1091, hovy-
ever, the runs and lengths are encoded into bits with
s a variable-length scheme like a Huffman or arithmetic
H, ==Y p(si)logy (p(s:)) (56) coding. Two codes are used for runs and lengths, taking into
i=1 account their different statistical distributions. Furthermore,
where log, [p(s;)] represents the actual number of bits the representation might slightly change if more precise
necessary to encode the symbplndp(s;) its probability information is available about the original symbol statistics.
of occurrence. The above definition gives the theoretical The quantization and ordering of the DCT coefficients in
lower bound where we get the optimal length for each of [107] and [108] generally lead to long sequences of zeros,
the codes. When evaluating a bit Code’ one replaces thisinterleaved with a few nonzero coefficients. Therefore,
length with the actual bit length of the code for all the the two-symbol representation is of type (nonzero coeffi-
It can be shown that this function is minimum when the cient; zero-sequence length). The corresponding symbols
code is optimum [104], and therefore enables the objective are¢ shown in rowB of Table 2.
comparison of two bit codes. Runlength is not a proper coding scheme as it only
1) Adaptive SchemesTo retrieve the symbols from the Produces another set of symbols, thus making it simply
bit sequence, the decoder has to know the exact bit code@ representation change. The type of statistical feature one
which has been used. For an efficient representation, thecan exploit is that the input data consist of long bursts
bit code has been built on the statistics of the symbols. Of the same symbol value. In the worst case where any
Therefore, the decoder could also rebuild the same bit codetWo successive symbol values are different, the number of
providing it gets the statistics. Some image-compression Symbols after the runlength is doubled.
standards simply use a predefined bit code based on sta-
tistics from a set of typical input images. As those might C. Huffman Coding
change from image to image, or might change for different 11,4 goal here is to give longer codes to less probable

parts of an image, the overhead of encoding the statisticssymbo|s_ Given an alphabet of sigewith symbolss; and

along with the symbols might well be compensated with qiy probability of occurrence(s;), Huffman’s scheme

the better compactness of the bits representing the symbols[llo] of building the bit codes; tries to minimize their
One way to embed the statistical information is to start with average length

a predefined statistic, update it at each encoded symbol, and

use the new statistical information for the next symbol. 5

The decoder can then do the same procedure, updating Ellength(c;)] = > _ p(s;)lengtt(c;). (57)

the statistical information at each decoded symbol. Such a i=1

scheme is called adaptive. The overhead of transmitting the For the encoded sequence of symbols to be uniquely

statistical distribution of the symbols is spread over each decodable, the bit codes have to form a prefix code
of them, as only the last one is coded with the bit code 6. noe: i’s a prefix of another one. In this case, at a’ny

most suited to the_ _tr_ue statistics of the symbols. How to bit-code boundary in the encoded sequence of symbols only
update thg probabilities of occurrence of each symbol can one symbol will match, and the corresponding bits can be
be found in [105] and [106]. removed from the bit stream to go to the next bit-code
) boundary.
B. Runlength Coding The bit-code construction discovered by Huffman [110]
A first approach to reduce the amount of data is to satisfies the prefix-code constraint while leading to an
describe the sequence of symbols in term of bursts of theoptimal code. The expected bit-length length comes
same symbol (run) and the number of times this symbol is quite close to the lower bound given by the entropy of
found in a row (length), hence the name. A simple example the symbol sequence given in (56).
is given in rowA of Table 2. Note that the runs consist of Fig. 35 illustrates how a Huffman code can be built. The
symbols from the original alphabet, whereas the lengths symbols and their probabilities have been taken from Table
are new symbols. Compression can be gained in assigningl. The codes with the highest occurrence frequency are
a fixed-length code to each of the runs and lengths to beexpected to get shorter bit codes. As we are building a
encoded. Different codes have to be used for runs andprefix code, the length of the two longest codes must be
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. . ) Step #1: Step #2: Step #3:
Initial p(‘sl) and p(gl) Encoding *10° Encoding *0"
si o p(si)

Status of encoder

0 0.29 0.29 0.29 0.29> 0.55
.55

0 T 071 -
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Fig. 35. Huffman bit-code construction example. e §C§? T . §1§%2 x ekt 2

) ) ] ) Fig. 36. Example of coding three symbols with an arithmetic
equal. Otherwise, in removing the last bit of the longest coder.

we would get another valid prefix code but with a shorter
length, rendering the first one nonoptimal. In general, one . . ,
can build a bit code in which the two longest codes differ D. Al‘lthmfi'tl(.: Codmg. . . o )
only in the last bit. The main idea behind arithmetic coding is the encoding
To get the bit codes for all the symbols, one can build of a number of arbitrary precision describing the sequence
a tree in combining the two symbols with the lowgs$s;) of symbols of lengthV. Any other sequences; } of length
into a single group symbaj; with frequency of occurrence IV would lead to a different number. The precision of the
equal to the sum of the twp(s;). Doing this recursively number will be the minimum to achieve this distinction
on the obtaineds; and g; leads to a binary tree, on which ~between sequences of the same lengths, and its binary rep-
we can put bit labels to each branch, as shown in the lower resentation is the actual encoding of the string of symbols.
part of Fig. 35. The bit code for a symbol of the alphabetis ~ The construction and encoding of this number can be
then given by the bit label sequence of the branches whendone incrementally. Fig. 36 shows three steps of construc-
going from the root to the leaf of the binary tree. The bit tion of the number comprised between zero and one. This
codes for this example are shown in the last row of Table 1. range is divided into slots whose size is proportional to
As mentioned before, this optimal Huffman code leads to a p(si). Therefore, numbers whose values lie in the slot for
25% reduction of the bits necessary to encode the symbolSymbol O represents sequences starting with this symbol.
sequence. For a sequence of a single symbol 0, any number in this
From this construction, it is clear that Huffman bit codes range will describe the sequence.
have a minimum bit length of 1 bit per symbol. This  For further symbols, the range corresponding to the en-
also gives a lower bound on the length of the produced coded symbol is again subdivided into slots corresponding
bit stream. In applications where symbol frequency of to the (possibly updated)(s;). The same process restarts,
occurrence may be far from uniformly distributed, this is until all symbols have been encoded and the range of values
considered a drawback. Having an integer number of bits for the number representing this sequences is known. In
per symbol helps synchronizing encoder and decoder andthe example of Fig. 36, the sequence {10} leads to the
results in a less error-prone system. However, having somenumber range [0.45, 0.71], the sequence {10, 0} to the
synchronization point on bit boundaries can be used to range [0.6346, 0.71], and the sequence {10, 0, 20} to the
detect the end of the list of encoded symbols, as “no bits range [0.651 188, 0.668 53].
left” means “no symbols left.” Arithmetic coding has the interesting feature of being
Bit boundary is also helpful in case of bit errors. For able to get below the 1-bit-per-symbol limit. It there-
this purpose, reversible Huffman codes are used, whichfore achieves better compression, especially for longer
enable one to decode from the end of the bit stream. sequences of symbols as their true frequency of occurrence
Therefore, reversible Huffman codes are prefix and postfix is far better represented in the model. A drawback of
codes, which is not guaranteed in the above mentionedthis scheme, however, is that the number of symbols
construction of the bit codes (e.g., in Fig. 35 the code for cannot be embedded in the bit stream and therefore has
symbol 40 is a postfix of the code for symbol 60). The to be coded separately. Furthermore, the same number
group of symbols before the first bit error and the group represents sequences of any length sharing Xhdirst
after the last bit error can therefore be decoded. For singlesymbols. Arithmetic coding is also much more sensible to
bit errors, one can come up with a scheme decoding all butbit errors, as modifying a single bit might alter a great

the corrupted symbols from the bit stream. This method is number of symbols. Furthermore, backward decoding is
used in the decoding in [111]. impossible.
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The implementation of an arithmetic coder leads one to wheres? is the variance of the signal in tHéh subband,
consider numbers of arbitrary precision. Those practical and A is the number of subbands. This formula holds
issues, as well as an efficient solution, are given in [112] for a uniform decomposition implying equal bandwidths.

and discussed further in [113]. It should be emphasized that this measure is only valid for
orthonormal filter banks. This criterion can be included in

VIIl. RATE ALLOCATION the design of filter banks and has been done [29], [116]
with some success.

A. Introduction It is known that the restriction of the filter bank being

Image transformations or decompositions for coding pur- orthonormal is too strong. Good subband filters [44], [117]
poses have the goal to compact most of the energy of theare not included in this class. The generalization of the
image in as few pixe|s as possib|e_ For examp|e, the purposecriterion to arbitrary subband-like decompositions has been
of performing the DCT of image blocks is that most of the publlshed in [118] and is described in the fO”OWing section.
information will be around DC, and hence many transform  2) Unified Coding Gain—General Casd:et us define
coefficients corresponding to higher frequencies will have the parametersl; and B; by the following equations:
values near zero. In SBC of images, the image is split into

2 _ A2
frequency bands, and again one band will contain most of oi = Aoy (60)
the information, whereas other bands will have very little 5.4

energy. It is clear that the better the energy compaction the M1

better the coding performance will be. This criterion can 9

be defined in a precise way and is called unified coding - Z

gain, which is the subject of Section VIII-B. Having split

the image into several subbands, another problem consistsvhere 0?2 is the variance of théth subbandc?, is the

of optimally assigning quantizers to these subbands, whichvariance of the input signaly? is the variance of the

are to be coded at a given bit rate. This problem is called reconstructed imager,i is the variance of the quantization

bit allocation. error of theith subband, and/ is the number of subbands.
Also, define the inverses of the downsampling factors by

B. Unified Coding Gain i, where

Coding gain is a performance measure coming from R-D Mot

theory and is described in detail in [114]. This criterion de- Z o =1, (62)

notedGr« measures the performance of a block transform. =

It is defined in [42]; formally

(61)

Under the assumption of uncorrelated quantization errors,

1<, B; is given by
A 2% Z
k=0 L;—1
Cre= s 55 Bi=a; ¥ gln] (63)
i
k=0 with L; the number of coefficients of th¢h synthesis filter.
where oF are transform coefficient variances aid is The unified coding gain [118] is then given by
the number of coefficients. This measure assumes that all 1
coefficients, as well as the original signal, have the same Gspe = 77— (64)
type pdf [114]. This assumption is strictly correct only A B\
for Gaussian sources. In the context where the sources are H < a; )
natural images, it is not exactly satisfied. Nevertheless, it =0
is known from literature that this measure is consistent which can be expressed as
with the observed experimental coding performance for 9
block transforms. The higher the gaifrc, the better the Gspe = Tin . (65)
performance of the transform. RS, 7
1) Coding Gain of Orthonormal Filter Bankstn the spe- H 73 Z g;[n]
cial case of orthonormal filter banks such as QMF's or =0 n=0
CQF’s, the coding gain has been introduced by Akagisu  Note that (65) simplifies to
al. [115] and is given by )
o
i]\ilrﬂ Gsne = L1 mM—l /M (66)
% (5 o) (1)
Gorrn = T UM (59) n=0 i
of for orthogonal filter banks and equal downsampling factors.
=0 Equation (66) is similar to (59).
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Fig. 37. R-D plot of all possible bit allocations in the case /&f
subbands and/ admissible quantizers per subband.

C. Optimal Bit Allocation

The solution to optimal bit allocation was first proposed
by Westerinket al. [119]. Simplifications of that algorithm
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Fig. 38. The convex hull of a R-D plot.

The optimal points are those lying on the lower convex
hull on the plot of all possible bit allocations [122]. The
convex hull of the previous example is shown in Fig. 38.
Finding a convex hull of a set of points has been inves-

have then been proposed in [120] and [121]. In bit alloca- tigated in literature, and many fast algorithms have been

tion, as used in SBC, the objective is to optimally assign to designed to solve the problem [123]. However, exhaustive

each subband its own quantizers, such that the total numbercomputation of all the combinations is not practical. The

of bits equals a given quota and the overall distortion is desired algorithm should find the convex hull in a limited

minimal. number of computations. Such an algorithm has been
In subband-like coding schemes, the bit allocation prob- derived by Westerinlet al. in [119].

lem can be formulated as the problem to minimize the
overall quantization erro)

D=>dy (67)
n=1
under the constraint of a given total bit rate
M
R=> " (68)

by assigning to each subband the appropriate quantizer

having a distortionl,, and a rate, . It has to be emphasized
here that the only assumption made about the overall
distortion is that it can be written as a sum of the individual
distortions. However, no assumption about the nature of the

distortion measure is made. Moreover, the quantizers doh
not necessarily have to be of the same nature either; eachb

subband can have its own distortion measure and its own
admissible quantizers.

The MSE will be used as a measure of the distortion,
although it is clear that it is not a good measure at all
for the quality of natural images when the human visual
system is to be evaluated.

1) R-D: In order to explain the problem, considér
subbands, each of them havidgy admissible quantizers.
Let us imagine that for altp” different realizations, the

rate and the distortion are computed. The output of such a

simulation is illustrated in Fig. 37 in the case of subband
decomposition of the test image “Pepper.”

EGGERet al: HIGH-PERFORMANCE COMPRESSION OF VISUAL INFORMATION

Each bit allocation in the R-D plot is the result of
assigning a certain quantizer to each subband. Let us denote
the assignment of quantizer to subband by v;. Using
this notation, each possible bit allocation is described by
the vector

(69)

v= (Ulv"'va)'

Equations (67) and (68) can then be rewritten in the
following way:

N

D(v) = Z di(ve) (70)
n;l

Rw) = 3 nw). (71)
n=1

A useful property satisfied by all the points on the convex
ull is that if we draw a line through neighboring points
n the convex hull, then all other points of the set must lie
on or at one side of this line. This is illustrated in Fig. 39.
Denote two points of the convex hull by the vectbendk.
Moreover, define the line through these points/hy, k).
This allows to define a convex hull by using the equation
of the line L(l, k) [119]. Thus, the convex hull is defined
as the set of points satisfying the following equation:

[R(v) = R(K)] 2 S(LE) - [D(v) = D(E)] Vo (72)

where S(1, k) is the slope of the linel(l, k), which can
be computed by

Sl k) = R(l) — R(k)D(D) — D(k). (73)
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05 ' : ' ' ' ' ' dr(vn) — dp(kn) >0 = S k)

0.45} T (Vn) — Tr(kn)

<—F——= Vo, (78
0.4 o dn(vn) - dn(kn) ( )
0.35r

Let us consider the first case. The solution to (77) is [119]

o
w
T

bit rate: bits/pixel
(=]
)
=

02t s - ] N
R S(l, k) = maxs(vp, kn) Y, (79)
0.15 e "
0.1 _
0.05k | where s(v,, k,,) is defined by
% 50 100 150 200 250 300 350 400

Distortion: MSE Tn(vn) _ 7n(kn)

Fig. 39. A line through two neighboring points on the convex $(vn; k) = dn () — dn(kn) (80)
hull.
Now, by substituting (70) and (71) in (72) we obtain Now, by substituting (70) and (71) into the definition of

N N S(l, k), and applying the definition of(v,,, &, ), we obtain

Z [rn(vn) = ra(kn)] 2 S(LE) Z [dn(vn) — dn(kn)]-

n=1 n=1 N

(74) > (s b (In) = ()]

The termS(l, k) does not depend on the running variable S(L k)= "=t ~ (81)
and can be put into the sum. After having moved everything ALY — d(k
to the left-hand side, the inequality becomes nz::l[ nlln) = dn(kn)]

Z {[Tn(vn) - Tn(kn)] - S(lak)[dn(vn) - dn(kn)]} Z 0.
. 75)

Now, by using (79) we can modify (81) to

This inequality is the basis of the optimal bit allocation  ~ .

algorithm. It gives the relationship of two neighboring Z [s(ln,kn) — lnii{(s(vm,km)} [dn(ly) — dp (k)] = 0.

points of the convex hull. Let us assume we know one n»=1 "=

point of the convex hull, then the neighboring point can be (82)

found by (75). Actually, there will be two solutions since

a point always has two neighbors. However, assume we

begin at maximal distortion and minimal rate, this point The key of the algorithm is in the solution of this equation.

will always lie on the convex hull. Then, we can iteratively The trivial solution] = & is not considered, and the solution

find the next point on the convex hull. Therefore, finding is

the optimal bit allocations is equal to repeatedly finding

a vector! that satisfies (75) for every vecter where an

initial vector k is given. When the desired bit rate or the l, =wv, for thatn for which s, (v, k,) is maximum

desired distortion is reached, the iteration can be stopped. ; _ 1 for all othern. (83)
The sum of (75) will be larger or equal to zero if all

the terms are zero. The objective is to find a veéteuch

that Vo, Valid solutions of (83) are those satisfying the first condition
[ (vn) = Tn(kn)] = S E)[dn(vn) — dn(kn)] = 0. (76) of (77), since we considered this case. This means con-
cretely that we are searching in the direction of decreasing
Two different situations are obtained depending on the sign distortion D. This is the sought-after solution since very
of d,(v,) — d.(k,), each resulting in one of the two low bit-rate coding of images is the objective. Therefore, it
neighbors of& is reasonable to begin the search with the lowest possible
bit rate. If the objective is very low distortion, then it is of
dn(Un) = dn(kn) <0 = S(L, E)( ) () interest to begin the search with the lowest distortion, the
> Tn\Un) — Tn Fn

Yo, (77) second condition of (77) has to be developed in a similar
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Now, all the tools of the algorithm have been developed. removed by means of a simple prediction. The value of a

The algorithm can be summarized as follows. pixel is first predicted from one or several of its neighbors
Algorithm 1 Optimal Bit Allocation (seven pgtt_erns can _be used to predict the value of a pixel.)

1 Determine the initial bit allocation by assigning to Th_e prediction erroris c_oded by means of a Huffman code_.
each sub-band an admissible quantizer that has Th!s compression technique a(?h|eves a modest compression

the lowest bit rate. ratio of about 2:1 for natural images. It also suffers from

2 INITIALIZE  TRUE. the lack of progressive decoding.

3 do In fact, a bit stream generated by lossless mode of JPEG
cannot be decoded patrtially to allow user to have a glance
of the picture. The major advantage of lossless JPEG is its
extreme simplicity.

4 if INITIALIZE then

5 Calculate for each sub-bamdall possible values of
$(vp, kn) With d(v,) < dn(k,) and find for each
sub-band the quantizer for whictfv,,, k) is

maximal. C. FlashPix
6 INITTALIZE — FALSE. Some of the drawbacks of the current JPEG standard
7 else have been resolved in the new format called FlashPix [125].
8 Calculate the values(v,, k) for the subband to FlashPix is more of a new format than a new compression
which the new quantizer was assigned and find the scheme. In most imaging applications, the user does not
quantized for whichs(v,,, k,,) is maximal. need to have an immediate access to a high resolution
9 Determine the sub-band for which the maximum of the whole image. Therefore, FlashPix stores several
s(vn, kn) is the largest and assign to this resolutions of the same image. The user can choose one
sub-band the quantizer for which this maximum of them for intermediate or final processing stages. With
is obtained. this multiresolution format, the appropriate resolution can
10 Calculate the new rat& and the new distortior). be selected. On a low-resolution monitor, a low-resolution
11 until The bit rate is sufficiently close to the image will be used, and when printing the final result,
desired bit rate. a higher resolution version of the image is selected. In
FlashPix, each resolution level is compressed using the
IX. IMAGE COMPRESSIONSTANDARDS JPEG algorithm.
A. JPEG D. MPEG-4

_JPEG [12], [124] has been created out of the collabora-  \1peG is working on a technology for the compression
tion between the Consultative Committee on International ¢ 5,dio-visual data in multimedia environment. Video is

Telephone and Telegraph (CCITT) and the International gpyiect hased in MPEG-4 and normally deals with sequences
Standards Or_ganization (ISO). to estgblish an international images; however, its intracoding mode is a still image
standard for image compression. It is based on transform.,mnression scheme. The algorithm is very similar to that
coding using the DCT. _ of JPEG. The bounding box of the object to be coded
The original image is divided into 8 8 blocks which are is divided into 16 x 16 macroblocks, containing four
separately transformed. Note that the correlation betweenpocks of 8x 8 pixels. A DCT is performed separately on
different blocks is not exploited. After transformation, the o5ch of the luminance and chrominance blocks in a given
64 transform coefficients are quantized by different quan- macroblock, totaling six 8< 8 blocks as the chrominance
tization _steps. These are specified.by a quantization matrix;g usually subsampled. Three types of macroblocks may be
to take into account the different importance of each co- gncountered in a bounding box: those that lie completely
efficient. Quantization steps for low-frequency coefficients jngige the object; those completely outside of the object; and
are smaller than those for high-frequency coefficients. The yose that partially cover the object. Macroblocks that are
coefficients are then source coded using either Huffman .o mpetely outside of the video object plane (VOP) are not
coding or arithmetic coding. _ coded at all. Those macroblocks that lie completely inside
The partitioning of the image into & 8 blocks is not e opject are coded using a conventional DCT scheme.
a source of d_|st0rt|on by |ts_elf; however, the mdepende_nt The 8 x 8 blocks of a macroblocks lying partially on the
quantizing of image blocks introduces a block effect. Itis /op gre first padded using repetitive padding prior to their
especially visible on image regions with low local variance. coding. Padding gives a value to pixels which are outside
of the boundary of the object in order to perform block
B. JPEG Lossless matching (e.g., for motion estimation and compensation).
In some applications, lossless compression of a still The DCT coefficients are quantized, zig-zag scanned, and
image is of prime importance. For these applications, the entropy coded by run-length and Huffman methods. DCT
JPEG group has also proposed a lossless variant. It is basedoefficients are split into two groups: zero frequency coef-
on a completely different approach than the lossy algorithm ficient (DC) and nonzero frequency coefficients (AC). Two
described previously [12]. It does not make use of any quantization techniques are available. The first technique,
transform. The redundancy between neighboring pixels is similar to that of recommendation H.263 [109], uses a
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quantization parameter for the AC coefficients in the DCT. pression of natural images at medium bit rates. They
This value may change based on a desired quality or aare compared to state-of-the-art techniques from literature.
targeted bit rate, on a macroblock by macroblock basis. They are: the EZW algorithm proposed by Shapiro [43];
The second technique for quantization is similar to that the EPIC compression scheme proposed by Simoneelli
used in MPEG-2 [108], where the quantization step size al. [126], [127]; the AFB scheme proposed by Egger [44];
may vary depending on the position of the AC coefficient and the ASD compression [58], the TCQ method, and a
in the frequency domain according to a quantization matrix. fractal-based encoding technique.

Intra- and interquantization matrices can be defined and 2) Image Quality MeasureThe best instrument to mea-
can also be encoded in the bit stream. In all cases, the DCsure image quality is the human eye. Unfortunately, visual
coefficients are quantized with a step size equal to eight. Fortests are expensive to perform, and other techniques to
a higher compression efficiency, the DC as well as the first measure an image quality are required.

row or first column of the AC coefficients in the intracoded  The simplest way of measuring the coding distortion is
macroblocks can be differentially coded using an adaptive termed the peak signal-to-noise ratio (PSNR). This form of
predictive method. The prediction value is selected as the measurement is also the most used in practice because of
corresponding value of a neighboring block. The DC gradi- its simplicity. It is defined as follows:

ent between blocks is used to select the prediction neighbor-

- ) h g 25 =2
hood. For objects of arbitrary shape, the shape information PSNR = 10log O—‘; (84)
is also coded by means of a bitmap coding approach. e

5 . .
X COMPARATIVE RESULTS wheres? is the variance of the error given by
N—-1
. 1
2 _ L A2

A. Introduction of== ; (z; — &) (85)

The complete coding schemes described in Section IX

can find several applications. In this section, two main wherez; is a sample of the original imagé; is the same
applications are discussed and results of the describedsamme of the reconstructed image, a¥ids the number of
coding schemes are presented. Also, the functionalities of cgnsidered pixels. This measure does not model the human
the described coding schemes are discussed and illustrated;ig g system (HVS) [128] well. For example, it does not
The first category of applications is the lossy compression reflect visual artifacts such as blockiness or ringing artifacts
of natural images at low to medium bit rates. This type of jn their real values. An image suffering from blocking
compression is typically required for multimedia applica- artifact enjoys a poor visual quality by definition since these
tions or for the distant access of images, such as displayingartifacts will render the coded image irksome to the end
images over Internet. In this type of compression, a visual yger.
distortion of the image is accepted in order to obtain @ |ntensive researches have been devoted to the definition
high compression ratio. This high compression ratio allows of an image distortion measure correlated with the HVS
either a small storage space for the image or a considerablg129], [128]. In order to measure the coding performance
reduction of the transfer time to display the image from a of the different coding schemes, we will measure its PSNR
distant server. The critical issue in this type of compression as well as its visual decibels, or vdB's.
is the characteristic of the introduced distortion. The unit vdB is a visual quality measure that takes into
The second category of applications is the compressionaccount mechanisms of the HVS such as contrast sensitivity
of images requiring a lossless representation of the (strong contrast may modify the perception of shapes),
reconstructed image. A lossless compression is oftenmasking (closely coupled stimuli in the spectral domain
required for medical applications, as a diagnostic must be can render each other imperceptible), and multichannel
drawn on the original image. This type of compression structure (the same pattern is not perceived the same way if
does not allow a high compression ratio; however, the moving or oriented differently). The measure is based on a
browsing capability is a very efficient way of saving Gabor decomposition with both spatial and temporal filters,
time when the pictures are located on a distant server.leading to a perceptual decomposition of the input images
Indeed, a lossless representation of the image is certainlyconsisting of channels. These channels are then processed
not necessary on all the images which are displayed, asby a masking evaluator, and the visual quality metric is then
a lossy representation might suffice for browsing purpose. a weighted sum of the distortion measures in each channel.
This functionality can be very useful if the user likes This last number is measured in vdB [129].
to visualize rapidly several pictures and deciding only  3) Coding Results:To assess the compression perfor-
afterwards if he wants the full resolution of it. Therefore, mance of the different schemes, three different test images
the possibility of progressively decoding a picture adds have been compressed at rates where the distortion becomes

a useful functionality to these compression schemes. visible. Fig. 40 shows the picture “Lena” compressed at
) 0.10 bits/pixel with the different coding schemes. One can
B. Lossy Compression observe the different distortions introduced by the coding

1) Introduction: The schemes described in Section IX schemes. For the picture compressed with the international
are used to assess their performance for lossy image comstandard JPEG, a strong blocking effect is introduced. The
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Fig. 40. “Lena” 512 x 512 pixels, 0.10 bits/pixel: (a) original;
(b) JPEG,; (c) EPIC; (d) EZW; (e) AFB; (f) ASD; (g) TCQ; and
(h) fractal.

Table 3
“Lena” 512 x 512 Pixels, 0.10 bits/pixel; PSNR
and vdB of the Different Coding Schemes

Coding scheme | JPEG EPIC EZW AFB ASD Fractal TCQ

PSNR 24.14 2746 27.87 27.69 26.06 26.84  30.25
vdB 43.61 50.86 50.75 50.66 45.84 49.33  55.18

Fig. 41. “Pepper” 512x 512 pixels, 0.10 bits/pixel: (a) original;
(b) JPEG; (c) EPIC; (d) EZW; (e) AFB; (f) ASD; (g) TCQ; and
(h) fractal.

Although less annoying than the blocking effect, it disturbs
the overall quality of the coded image. The coding scheme
based on the linear subband decomposition using the AFB
filter bank clearly has less ringing effect in comparison to
the two other SBC schemes. The picture compressed with
the ASD enjoys a complete absence of ringing effect, but

two SBC schemes EPIC and EZW have a much better visualwith a less accurate texture rendition than the pictures coded
quality than the picture compressed with JPEG; however, with the linear subband decompositions. Fractal-encoded
they suffer from another artifact, the ringing effect. One can images preserve most sharp edges and do not present any
clearly see this artifact around the contours of the image. ringing of blocking effect, but they suffer from blurriness.
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Table 4

“Pepper” 512x 512 Pixels, 0.10 bits/pixel; PSNR

and vdB of the Different Coding Schemes

Coding scheme | JPEG EPIC EZW AFB  ASD  Fractal TCQ
PSNR 24.90 2710 27.37 27.73 2672 26.19  29.37
vdB 47.70 51.20 50.82 51.24 5141 49.32 54.65

Fig. 43. Zoom of the “Camera man” 256 256 pixels, 0.35
bits/pixel: (a) original; (b) JPEG; (c) EPIC; (d) EZW; (e) AFB; (f)
ASD; (g) TCQ; and (h) fractal.

having the highest PSNR are the coding scheme EZW and
the coding scheme based on the AFB’s. From a visual point

Fig. 42. “Camera Man” 256x 256 pixels, 0.35 bits/pixel: (a) . .
original; (b) JPEG; (c) EPIC: (d) EZW coding scheme; (e) gen- of view, however, the two best coding schemes are the

TCQ; hy fractals. L
CQ: and () fractals based on the ASD. Among the two, it is difficult to clearly

Compression with TCQ has a quite good preservation of state which one is better.

edges, but ringing effect is present and shaded areas have Fig. 41 shows the comparison on the picture “Pepper” at
stepwise color quantization. For comparison purposes, the0.10 bits/pixel. This picture has very few textured regions

PSNR and the vdB are shown in Table 3. The pictures but many sharp contours. The same artifacts as for the the
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(b)

Fig. 44. The three medical test images: (a) “Sagittal,” of type MRI; (b) “Coronal,” of type MRI;
and (c) “Pelvis,” of type X ray.

Fig. 45. The three natural test images: (a) “Lena”; (b) “Pepper”; and (c) “Weather.”

picture “Lena” appear in all coding schemes. The JPEG with JPEG and the linear coding schemes, while the ASD
compression standard suffers from a strong blocking effect scheme exhibits a poor reconstruction in this region, and
while the linear SBC schemes suffer from a ringing effect. fractals blurred out most of the details of the background.
One can clearly observe that there is a strong attenuation
of the ringing effect with the AFB coding scheme in ) ] .
comparison with the other two classical SBC scheme. The [N this section, two different methods for lossless com-

ASD enjoys a complete absence of ringing effect. Fractals pre§si0ns are compared. The _first one is based on a mul_ti_res-
have the same blurring effect but keep edges clear, angelution approach based on either the MSD decomposition

TCQ presents ringing effect while preserving edges quite [130] or the rank-order polynomial decomposition (ROPD)

well. Table 4 compares the PSNR and the vdB of the coded [131]. . . :
images. The scheme having the highest PSNR is the AFB The second one is the lossless mode of the international
scheme while JPEG has the smallest PSNR. From a visuaIStamdard JPEG. The lossless mode of JPEG allows seven

point of view, however, the ASD has the best performance fjlfferent predictors. For each test image, the best predictor

is selected for the purpose of a fair comparison.
and the AFB scheme comes out as second. oo . . .
. . ) B The possibility of data browsing gives another functional-
Fig. 42 shows the comparison on the picture “Camera

,, o . . . ity to the proposed coding schemes. This is achieved thanks
Mhan at 0.35 b'tSIp');el'hTh'S m;)agells chr?racterlzed by to the progressive bit stream of the lossless compression.
sharp contours around the man, by a large homogeneous reg g i illustrating the browsing quality are shown and

gion defining the sky, and by a textured region representing comparisons are drawn between the two proposed decom-
the ground. One can clearly observe strong artifacts on thepositions.

contours of the man. There is a ringing effect with the linear Finally, the application of lossless compression of arbi-
SBC scheme and TCQ, and a mosquito noise with the JPEGyayily shaped regions is shown for ultrasound images. In
scheme. No ringing effect occurs with the ASD scheme, nor thjs type of image, only a part of the image is of medical
with fractals. A zoom of a region containing a sharp contour interest. Hence, only this part needs to be coded in a lossless
is shown in Fig. 43, which emphasizes the good behavior of \yay. Results of this hybrid lossy/lossless compression are
the ASD on sharp contours. Fractals preserve the contoursreported.

quite well, but the gray values are not very accurate, as Testimages of different types have been used for compar-
show in the zoomed pictures. The sky is well represented ison purposes. Three medical images have been used. Two
with all the coding schemes, except for JPEG, where a of them come from medical resonance imaging (MRI) and
strong blocking effect arises, and TCQ, which quantizes the one is of type X ray. The three medical images are shown
color scale in a visible way. On the other hand, in the region in Fig. 44. Three images of a general type are compared as
depicting the ground, a good representation is obtainedwell. They are shown in Fig. 45.

C. Lossless Compression
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Table 5
Compression Comparison of MSD, ROPD, JPEG, SPITH, and WTCQ

Image l Size ] Type JPEG | MSD | ROPD | SPITH | WTCQ
Medical: b/p b/p b/p b/p b/p

“Sagittal” | 256 x 256 MRI 4.37 3.67 3.40 3.45 4.15

“Coronal” | 256 x 256 MRI 2.13 1.45 1.39 1.52 4.89

“Pelvis” 448 x 448 | X-ray 2.69 247 2.32 2.38 2.68
General: b/p b/p b/p b/p b/p
“Lena” 512 x 512 | Natural 4.70 4.43 4.33 4.20 4.42

“Pepper” 512 x 512 | Natural | 4.99 4.76 4.66 4.63 4.74
“Weather” | 352 x 288 | Natural 4.92 4,72 4.52 4.29 4.99

Fig. 46. “Pelvis” 448 x 448 pixels, lossless rate 2.32 bits/pixel. Each picture has been decoded
with only part of the bit stream: (a) with 1.3% of the bit stream, 24.29 dB; (b) 2.6%, 28.49 dB;

(c) 5.6%, 33.61 dB; (d) 11.2%, 38.58 dB; (e) 22.4%, 43.21 dB; (f) 44.8%, 46.33 dB; (g) 81.0%,
55.97 dB; and (h) original picture: 100%< dB. The full bar represents the amount of information

used to reproduce the image, the line represents the lossless rate, and the empty bar represents the
amount of information of the uncompressed original picture.

All test images have been compressed in a lossless way 1) lllustration of the Progressive Bit Streamfhe ROPD

with the two decompositions (MSD and ROPD) and with scheme has the functionality of having a completely
the standard JPEG. The results are summarized in Table 5embedded bit stream. That means that a picture compressed
It is shown that for all the test images, the multiresolution in a lossless way can be decompressed at any bit rate. In
algorithms perform better than the standard JPEG. An order to recognize the picture, only a small part of the bit
improvement of up to 53% is achieved for MRI type of stream is necessary. This is illustrated in Fig. 46 for the
images. From the table one can also clearly see the markedX-ray image “Pelvis” using the ROPD. It is demonstrated
superiority of the ROPD in comparison with the MSD. For that only a small part of the bit stream is necessary to get
natural images, an improvement of around 9% is achieved a good quality picture. With only 5% of the bit stream, the
with the ROPD in comparison with the standard JPEG.  picture is of good browsing quality. Fig. 47 shows the R-D
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Fig. 47. R-D curve of the progressive lossless schemes for the
picture “Pelvis.” (Full lines) ROPD, the arrow represents the
lossless rate. (Dotted lines) MSD, the arrow represents the lossless
rate. (Dash dotted line) JPEG lossless rate.

Fig. 49. R-D curve of the progressive lossless compression in
comparison to a classical lossy subband compression. The arrow
represents the lossless bit rate and is 1.69 bits/pixel.
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Fig. 50. R-D curve of the progressive lossless compression in
comparison to a classical lossy subband compression at low bit
rates.

Fig. 48. Zoom of the R-D curve of the progressive lossless
schemes for low bit rates for the picture “Pelvis.” (Full line) ROPD.
(Dotted line) MSD.

performance at low bit rates than the lossless coding

observed on the figure that the quality is increasing with isocshselcransi. cﬁijir?lggcrr\aetrii tglc()(\;\/se\;zr\}a(r:?zae ec?)rf] tﬁgefagatth;??t
an increasing bit rate. Also, as expected, the PSNR has to 9 9

tend tooo at the lossless bit rate. The lossless rates areWiII become lossless at a ce_rtain rate_and shows a _better

. : performance than the lossy linear coding scheme. Fig. 50
represented in t'he graph by the two arrows. Ope can S€€nows a zoom of the R-D curve at low bit rates. One can
that the ROPD s superior to the MSD at any bit rate. At yhserg that a loss of around 1 dB occurs in comparison

low bit rates the improvement with the ROPD is around (; the jinear SBC scheme. This loss represents the cost of
3 dB. This is illustrated in Fig. 48, where a zoom of the ihe |0ssless functionality.

previous figure is shown. That means that the ROPD has
a better lossless rate than the MSD but also has a muchXl. CONCLUSIONS

better browsing quality if decompressing only part of the  The goal of Part | of this twofold paper has been to review
bit stream. state of the art still image coding techniques. The major
In Fig. 49, the browsing quality of the progressive loss- building blocks of image coding schemes are overviewed.
less coding is compared to the AFB coding scheme. It  All image-compression schemes rely on two major pro-
can be observed that the linear SBC scheme has a bettecessing steps: message extraction and codeword assign-

curve of the two multiresolution coding schemes. It can be
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ment. Message-extraction methods have been classified
into predictive, fractal, block transform, and multiresolution

approaches. Predictive methods are suited to lossless an

g

Digital Image ProcessingGeneva, Switzerland, Apr. 1983, pp.
131-139.

S. Carlsson, “Sketch-based coding of grey level imag8ghal
Processingvol. 15, no. 1, pp. 57-83, July 1988.

low-compression applications. Fractals take advantage of [6] X. Ran and N. Farvardin, “Low bit-rate image coding using a

self similarities in images. Transform-based coding schemes

achieve higher compression ratios for lossy compression but [7]

suffer from blocking artifacts at high compression ratios.
Multiresolution approaches are suited for lossy as well as

for lossless compression. At lossy high-compression ratios, [g]

the typical artifact in the reconstructed images is the ringing

effect.

New applications in a multimedia environment have

(9]

raised the need of new functionalities of the image cod- [10]

ing schemes. For that purpose, second-generation coding, ;
techniques segment the image into semantically meaningful
parts. Therefore, parts of these methods have been adapted

to work for arbitrarily shaped regions. In order to add

another functionality, which is the progressive transmission

(12]

of the information, specific quantization algorithms must be [13]

defined. A final step in the compression scheme is achieved

by the codeword assignment.
Coding results have been presented which compare state-

of-the-art techniques for lossy and lossless compression.

(14]

The different artifacts for the lossy techniques are high- [15]

lighted. Block-based transform coding suffers mainly from
the so-called blocking artifact. It is shown that the human

visual system is especially sensitive to this kind of image [16]
distortion. While they do not suffer from any blocking
artifact, SBC schemes introduce another distortion called [17

ringing effect. It is shown that this artifact can be strongly

reduced by an appropriate design of the filter bank.

Results of lossless compression are also reported. It is

three-component image model,” Univ. Maryland, College Park,
MD, Tech. Rep. TR 92-75, 1992.

—_, “Adaptive DCT image coding on a three-component
image model,” inProc. Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSPBan Francisco, CA, vol. Ill, Mar. 1992,
pp. 201-204.

S. G. Mallat and S. Zhong, “Characterization of signals from
multiscale edges,IEEE Trans. Pattern Anal. Machine Intell.
vol. 14, pp. 710-732, July 1992.

J. Froment and S. G. Mallagecond Generation Compact Image
Coding With Wavelets New York: Academic, 1992.

N. D. Memon and K. Sayood, “Lossless image compression: A
comparative study,” irfProc. SPIE vol. 2418, 1995, pp. 8-20.

] S. Wong, L. Zaremba, D. Gooden, and H. K. Huang, “Radi-

ologic Image Compression—A reviewProc. |IEEE vol. 83,

pp. 194-219, Feb. 1995.

JTC1 Commitee, “Digital compression and coding of
continuous-tone still images,” Int. Org. Standardization
ISO/IEC, JTC1 Commitee Draft, JPEG 8-R8, 1990.

V. K. Heer and H. K. Reinfelder, “A comparison of reversible
methods for data compression,”froc. SPIE vol. 1233, 1990,
pp. 354-365.

G. R. Kuduvali and R. M. Rangayyan, “Performance analysis
of reversible image compression techniques for high-resolution
digital teleradiology,”|EEE Trans. Med. Imag.vol. 12, pp.
430-445, Sept. 1993.

N. Memon, S. Ray, and K. Sayood, “Differential lossless
encoding of images using nonlinear predictive techniques,” in
Proc. Int. Conf. Image Processing (ICIR)Mashington, DC, vol.

I, 1994, pp. 841-844.

N. Tavakoli, “Lossless compression of medical images,” in
Proc. 4th Annu. IEEE Symp. Computer-Based Medical Systems
1991, pp. 201-207.

M. F. Barnsley,Fractals Everywhere San Diego, CA: Aca-
demic, 1988.

8] A. E. Jacquin, “Image coding based on a fractal theory of

shown that multiresolution approaches can greatly out- [19]
perform predictive methods such as used in the standard
JPEG. Furthermore, they allow the definition of additional [20]

functionalities, such as progressive transmission. It is shown

that only 5% of the lossless bit stream is necessary to [21]
reconstruct a good browsing quality of an image.
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