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Digital images have become an important source of information
in the modern world of communication systems. In their raw
form, digital images require a tremendous amount of memory.
Many research efforts have been devoted to the problem of image
compression in the last two decades. Two different compression
categories must be distinguished: lossless and lossy. Lossless
compression is achieved if no distortion is introduced in the coded
image. Applications requiring this type of compression include
medical imaging and satellite photography. For applications
such as video telephony or multimedia applications, some loss
of information is usually tolerated in exchange for a high
compression ratio.

In this two-part paper, the major building blocks of image
coding schemes are overviewed. Part I covers still image coding,
and Part II covers motion picture sequences.

In this first part, still image coding schemes have been classified
into predictive, block transform, and multiresolution approaches.
Predictive methods are suited to lossless and low-compression
applications. Transform-based coding schemes achieve higher
compression ratios for lossy compression but suffer from blocking
artifacts at high-compression ratios. Multiresolution approaches
are suited for lossy as well for lossless compression. At lossy
high-compression ratios, the typical artifact visible in the
reconstructed images is the ringing effect.

New applications in a multimedia environment drove the
need for new functionalities of the image coding schemes. For
that purpose, second-generation coding techniques segment the
image into semantically meaningful parts. Therefore, parts of
these methods have been adapted to work for arbitrarily shaped
regions. In order to add another functionality, such as progressive
transmission of the information, specific quantization algorithms
must be defined. A final step in the compression scheme is
achieved by the codeword assignment.

Finally, coding results are presented which compare state-
of-the-art techniques for lossy and lossless compression. The
different artifacts of each technique are highlighted and discussed.
Also, the possibility of progressive transmission is illustrated.
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I. INTRODUCTION

Every digital image acquisition system produces pictures
in its canonical form. This means that the analog scene
is sampled in space and quantized in brightness. If the
sampling step size is small enough, the integration ability
of the human visual system will give the illusion of a
continuous picture to the human observer. In that sense,
a digital image is an array of integer numbers.
However, this canonical form needs a large number of bits
for its representation. For example, a 256256 picture
using 8 bits per pixel needs half a million bits for its
representation. The information contained in a sequence
of images for video is even higher due to the additional
temporal dimension.

Image data compression aims at minimizing the number
of bits required to represent an image. Data compression
has wide areas of applications. Video telephony between
two speakers or teleconferencing on two PC’s via the
normal twisted-pair phone lines is only possible with very
low bit rate compression systems. Nearly all multimedia
applications, such as interactive databases (encyclopedias,
electronic newspaper, travel information, and so on), need
a strong compression of the huge input data consisting of
text, audio, and visual information. Other applications can
be found in remote sensing, education, and entertainment.

Some applications allow for visible distortions of the in-
put images in exchange for high compression ratios. This is
typically the case for applications such as teleconferencing
or accessing images from a distant server (for example,
applications related to the World Wide Web). Such coding
schemes are called lossy. In other applications, however,
no distortion of the input image is tolerated. Compression
of medical images is a typical example of this category.
Coding schemes that introduce no distortion are termed
lossless.

In the past, most of the effort has been dedicated to im-
proving the compression ratios of the compression scheme
itself. Functionalities of the compression schemes were
considered less important. Second-generation image coding
techniques [1] attempt to split an image into visual prim-
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itives. By choosing these primitives in a semantic way,
object-oriented coding schemes can be developed. These
schemes compress each object of a scene independently of
the others. Their main advantage is that complete inter-
activity with the scene is possible. For example, different
bit rates can be attributed to different objects of the scene.
Typically one wants good quality for foreground objects and
considers the background less important. For this purpose,
coding schemes allowing the compression of arbitrarily
shaped objects have to be designed.

Another important functionality for compression schemes
is the possibility of progressive transmission or progressive
decoding of the bit stream. A typical application is data
browsing. A picture has been compressed at a good quality
(perhaps even lossless) and the user wants to visualize the
picture at a lower quality to save transmission time. This
is only possible if the stored bit stream is embedded in the
sense that one can reconstruct a coarse version of the image
using only a portion of the entire bit stream.

High compression image coders can be split into two
distinct groups. The first group is called waveform coding
and consists of transform and subband coding (SBC). The
second group, called second-generation techniques, consists
of techniques that attempt to describe an image in terms
of visually meaningful primitives (contour and texture, for
example).

A waveform-based coding system consists of performing
a decomposition/transform of the image data, quantization
of the transform coefficients, and source coding of the
quantized coefficients. The first step transforms the image
into another representation, where most of the energy is
compacted in a few coefficients. This is achieved by means
of a subband transform or a block transform, such as the
discrete cosine transform (DCT). At compression factors of
about 30–40, block transform techniques produce blocking
artifacts. Unfortunately, the human eye is very sensitive to
such a distortion, therefore block coders are not appropriate
for low bit-rate image coding. On the other hand, the main
artifact of SBC, at high compression factors (around 50), is
due to the Gibbs phenomenon of linear filters and is called
ringing effect. To avoid this artifact, morphological subband
decompositions lead to good quality decoded pictures at
compression ratios as high as 70–80.

The second group of methods is based on second-
generation techniques. They attempt to decompose the data
into visual primitives such as contours and textures [1],
[2]. One approach is to divide the image into directional
primitives as proposed in [3]. Segmentation-based coding
techniques [4] extract regions from the image data which
are represented by their shape and their textural content.
Following similar ideas, sketch-based image coding [5] is
based on extracting the contours of an image, namely
their geometric and intensity information, resulting in
the so-called sketch picture. The texture is then defined
by the difference between the original and the sketch
image and is coded using waveform coding techniques.
An extension of this technique has been proposed by Ran
et al. [6], [7] and is based on a three-component image

model. This technique divides the image into the strong
edge, texture, and smooth components. The strong edge
component is encoded separately whereas the texture and
smooth components are encoded using waveform coding
techniques. A solution to find the most important image
features has been proposed by Mallatet al. [8] using
multiscale edges. A double layer technique based on
multiscale edges and textures has been proposed in [9].
In general, second-generation techniques become efficient
at higher compression ratios (about 50) when compared to
other methods.

In this paper, the basic blocks of image coding are
overviewed. Image coding is fundamentally carried out in
two steps: message extraction and codeword assignment.

The first operation—message extraction—consists of
transforming the original image into a stream of message
symbols. In general, all message-extraction methods are
based on a mapping of the original data onto another
representation domain. For that purpose different methods
have been studied: predictive methods (Section II); block
transform methods (Section III); and multiresolution
approaches (Section IV). Parts of these methods have
been adapted to object-based second-generation coding
techniques and are discussed in Section V. The last
operation of message extraction is the quantization and
is reviewed in Section VI. After message extraction, a
codeword is assigned to the extracted symbols. This
operation is discussed in Section VII.

Complete state-of-the-art schemes are described in
Section IX. Coding results of all those methods are
presented in Section X. General conclusions are drawn
in Section XI.

II. PIXEL-SPACE METHODS

A. Introduction

The simplest methods for image coding are based on
predictive methods. These methods are usually used for
lossless image compression. Lossless image coding plays
an important role in situations such as medical imaging
or satellite photography, where no information loss is
allowed during compression. A recent survey of lossless
compression techniques is presented in [10]. Part of the
review presented in [11] is devoted to lossless image
compression techniques with special focus on radiological
image compression.

For all types of images, direct coding using an entropy
coder does not achieve any considerable degree of compres-
sion. As an example, consider the “Lena” image shown in
Fig. 1. Using the UNIX implementation of the Lempel–Ziv
compression, one obtains a compression factor of 1.19. That
clearly demonstrates that some form of prior decorrelation
is necessary to achieve an acceptable compression ratio.
Therefore, all coding techniques appearing in imaging liter-
ature employ a method of decorrelation of the information.
One possibility is to use predictive models to achieve this
goal. Another possibility is to extract self similarity in the
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Fig. 1. Test image “Lena.”

image, so as to describe an image region with a simple
transformation of another region. This is exploited by so-
called fractal coding.

B. Predictive Methods

In predictive coding schemes, the next input is predicted
based on the digitally coded past. The simplest form of
prediction can be achieved by using differential methods.
The idea behind differential methods is to encode the value
of the difference between the previously encoded pixel and
the current pixel. Due to the correlation existing in a natural
image, the resulting values to be encoded have a lower
dynamic range than the original values.

In predictive schemes one tries to predict a value
based on the coded past. The resulting difference

between the original value and the predicted value
is called the prediction error

(1)

The successive values of are then quantized and
compressed. If lossless compression is required, the signal

must have a limited number of possible values and
is not quantized.

The lossless mode of the international Joint Photographic
Expert Group (JPEG) standard [12] is a predictive scheme.
Seven different prediction methods have been defined in the
standard JPEG. All seven are based on a prediction of the
next input with up to three previously encoded local neigh-
bors. None of these prediction methods clearly outperform
the other ones for all applications. Other predictive lossless
compression schemes can be found in literature [13]–[16].

C. Fractal Compression

Iterated functions systems (IFS) theory, closely related
to fractal geometry, has recently found an interesting appli-
cation to image-compression purposes. Barnsley [17] and
Jacquin [18] pioneered the field followed by numerous
contributions [19], [20]. The approach consists in express-
ing an image as the attractor of a contractive functions
system which can be retrieved simply by iterating the
set of functions starting from any initial arbitrary image.
The form of redundancy exploited is named piecewise self
transformability. This term refers to a property that each

segment of an image can be properly expressed as a simple
transformation of another part of higher resolution. Then,
only the sequence of transformation is sufficient as the
description of the full picture. IFS-based still image com-
pression techniques can provide very good performances
at high compression ratios (about 70–80) as proved by
[21], [22]. Results for fractal compression are shown in
Section X.

III. T RANSFORM CODING

A. Introduction

Transform coding, also called block quantization, is a
widely used technique in practice. A block of data is
unitarily transformed so that a large fraction of its energy
is packed in relatively few transform coefficients, which
are then quantized independently. The optimum transform
coder is defined as the one that minimizes the mean-square
distortion of the reconstructed data for a given quantization.
This turns out to be the Karhunen–Lòeve (KL) transform.

B. The Optimum Transform Coder

Suppose an random vector with zero mean and
covariance matrix is linearly transformed by an
matrix (complex) to produce a vector such that its
components are mutually uncorrelated. The quantization of

produces then an output which is linearly transformed
by a matrix to yield the reconstructed signal The
problem is to find the optimum matrices and and
the optimum quantizers such that the overall average mean
square distortion is minimized. The solution to this problem
[23] can be summarized in the following way.

1) The optimal matrix is the (KL) [24], [25] trans-
form of More precisely, the rows of are the
ortho-normalized eigenvectors of the auto-covariance
matrix

2) For an arbitrary quantizer, the optimal reconstruction
matrix is given by

(2)

where modeling the quantization, is a diagonal
matrix whose elements are

(3)

3) The optimal Lloyd–Max quantizer minimizes the
overall mean square distortion for every element
yielding

(4)

and consequently

(5)

The application of the KL transform to images is quite slow.
The KL transform depends on the second-order statistics as
well as the size of the image and, hence, the basis vectors
are not known analytically. After having computed the
transform matrix the remaining operations for perform-
ing the transformation is still quite large for images. There
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exists a fast KL transform algorithm [26] only for certain
statistical image models. Therefore, the KL transform is
not appropriate for image coding applications. There exist
numerous transforms which have been applied to image
coding. Fortunately, there exists a unitary transform which
performs nearly as well as the KL transform on natural
images. The mentioned transform is called the DCT and is
the subject of the next section.

C. DCT

The one-dimensional (1-D) DCT of a sequence
is defined as

(6)

where

(7)

The inverse transform is then given by

(8)

The DCT has some very interesting properties. First, it
can be noted that the transform kernel is a real function.
This is important for coding purposes because only the
real part of the transform coefficients of a natural image
must be coded. Moreover, there exist fast algorithms for
computing the DCT in one or two dimensions [27], [28].
The cosine transform of an vector can be performed
in operations via a -point fast Fourier
transform (FFT).

The final objective of the transformation is image com-
pression, and, therefore, it is wished to have a good energy
compaction of the transform coefficients. In practice, it is
verified that the DCT is very close—in terms of energy
compaction—to the optimal KL transform. This has the
following reason. The basis vectors of the cosine transform
are the eigenvectors of the symmetric tridiagonal matrix

defined as [23]

...
...

. . . (9)

where is a parameter. Assume the input signal is a
first-order stationary Markov sequence, whose covariance
function is given by

(10)

Then, the inverse of the covariance matrix will be given by

...
...

.. . (11)

where and Hence,
the following approximation is valid:

for (12)

Consequently, the eigenvectors ofand the eigenvectors
of will be quite close for a first-order Markov sequence
with A natural image is a highly correlated signal. It
is clear that a first-order model of a natural image does not
take into account the nonstationarity of the signal such as
edges. However, it gives a first approximation. In general,
an estimation of the first-order correlation of natural
images gives a value around [29]. Hence, we
can assume that the DCT of a natural image is quite close
to the optimal KL transform.

This property of the DCT together with the fact that there
are fast algorithms have made it a popular transform for
image-coding purposes.

D. Block Partitioning

In practice, the application of the transform is not applied
to the image itself. The image is divided into blocks.
Each block is then transformed and coded independently.
This block processing allows for an increase in compression
performance. From simulation results, it is shown that
for natural images is optimal around In the
international standard JPEG, a value of has been
chosen.

This block processing has a significant drawback, how-
ever, since it introduces a distortion termed blocking effect,
which becomes visible at high compression ratios. It is
especially visible on image regions with low local variance.
This will be illustrated in Section X.

IV. M ULTIRESOLUTION APPROACHES

A. Introduction

In recent years, SBC of images has become a domain
of intensive research. In such a scheme, subbands are
computed by filtering the input image with a set of band-
pass filters and decimating the results. The subbands each
represent a particular portion of the frequency spectrum
of the image. The power of this technique resides in its
capability to code each subband separately with a bit rate
that matches the visual importance of that subband. SBC
leads to visually pleasing image reconstruction and does
not produce blocking artifacts. In addition, it allows a
progressive multiresolution transmission.

The concept of subband decomposition was introduced
first by Crochiere [30] in the context of speech coding.
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Then Smith and Barnwell [31] solved the problem of perfect
reconstruction filter banks for a 1-D multirate system.
Following these studies, substantial research effort has
been devoted to perfect reconstruction filter banks theory
[32]–[34], which was then extended to the two dimensional
(2-D) case by Vetterli [35]. Applications of SBC to images
was introduced by Woods and O’Neil [36] by means of 2-D
separable quadrature mirror filter (QMF) banks.

SBC consists of the following three steps: 1) subband
decomposition; 2) quantization; and 3) entropy coding of
the subbands. The decoding process involves the inverse of
each of these steps to reconstruct the signal.

Several methods have been proposed in the last decade
for designing filter banks. The most well-known filters are
the QMF’s introduced by Johnston [37]. They are two-
band filter banks. The design process is based on the
minimization of a weighted sum of the reconstruction error
and the stop band energy of each filter. QMF’s are not
perfect reconstruction filters, but they have a linear phase.
An alternative solution is the two-band filters proposed
by Smith and Barnwell [31], called conjugate quadrature
filters (CQF), which allow for perfect reconstruction but
have a nonlinear phase. Vaidyanathanet al. [33] solved
the design problem of -band perfect reconstruction filter
banks. They use perfect reconstruction blocks based on
lossless polyphase matrices and optimize adequate param-
eters. Nayebiet al. [38] have developed a framework
based on temporal analysis. A design technique leading
to numerically perfect reconstruction filter banks has been
developed as well by Nayebiet al. [39]. This technique
is very flexible and addresses the inclusion of additional
constraints for specific applications such as low delay,
linear phase, high regularity, and so on. Although the
above techniques exist for designing-band and/or perfect
reconstruction filter banks, the QMF’s designed by Johnston
are still the most cited and utilized in the image-coding
community. This is partly due to the simplicity of the design
technique and the published tables of filter coefficients.
On the other hand, filters proposed in [39] and in [40]
are relatively long, and hence, they are not suitable for
image-coding applications.

Image-coding applications require filter banks with spe-
cific features that differ from the classical perfect recon-
struction problem or from the design of filter banks for
other applications. Psychovisual properties of the human
visual system and typical spectral characteristics of natural
images have to be taken into consideration. Images are
highly nonstationary sources. In general, they are composed
of large homogeneous regions and edges which have a
small spatial support. Typical natural images have a highly
asymmetrical power spectrum with respect to A good
model is a spectrum proportional to [41], with
being the frequency. Filter banks that take into account the
statistics of natural images and reduce the ringing effect
have been proposed by Caglaret al. [29], [42].

One advantage of SBC of images over block transform
coding such as the DCT is the absence of the blocking
effect. However, one major artifact is still remaining. It is

Fig. 2. Two-band analysis/synthesis system.H1(z) is the low-
pass analysis filter,H2(z) is the highpass analysis filter,G1(z) is
the lowpass synthesis filter, andG2(z) is the highpass synthesis
filter.

the ringing effect which occurs around high-contrast edges
due to the Gibbs phenomenon of linear filters. This artifact
can be reduced or even removed by an appropriate design
of the filter bank. Illustrations of this ringing effect will be
found in Section X.

For compression purposes, it is important to exploit the
existing zero-correlation across the subbands. One pow-
erful approach is the embedded zerotree wavelet (EZW)
algorithm proposed in [43]. The EZW algorithm is based
on successive-approximation quantization which leads to a
completely embedded bit stream. That is, the bit stream
of the compressed image can be progressively decoded.
This feature allows for important functionalities such as,
for example, image browsing. The proposed techniques
for noise reduction can be incorporated into the EZW
algorithm.

B. Linear Subband Decomposition

1) Analysis/Synthesis Block:Subband decomposition di-
vides the input signal into different subbands. The choice
of the filters is an important issue. It has been shown
[29], [44], [45] that the filters represent an important factor
in the performance of the decomposition for compression
purposes.

Fig. 2 shows a two-band filter bank. The filters
and are the analysis lowpass and highpass filters,
respectively, while and are the synthesis
filters. In this system, the input/output relationship is given
by

(13)

where

(14)

and

(15)

Perfect reconstruction can be achieved by removing the
aliasing distortion and imposing the transfer function

to be a pure delay of the form where
is the delay of the system. By choosing the synthesis filters
as and the aliasing
component is removed, and therefore perfect reconstruction
is achievable. Under these constraints the system transfer
function becomes

(16)

where is called the product filter.
Now perfect reconstruction is obtained when the product
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Fig. 3. Illustration of a wavelet decomposition of depth two.

filter being the inverse -
transform, is a power-complementary half-band filter. This
means that every odd sample, except one sample is
equal to zero, that is

otherwise
(17)

where is the length of the product filter Even
samples of the product filter do not affect the perfect
reconstruction property. They can be chosen arbitrarily.
They are usually chosen to design the product filter as a
lowpass filter.

Research on the development of-band filter banks has
been reported in literature in [33] and [39].

2) Tree-Structured Systems:Two-band systems are the
basic component of most subband decomposition schemes.
They are used in a complete tree structure to define a
fine frequency partitioning. As mentioned before, a good
model of a natural image is based on a power spectrum
proportional to [41], with being the frequency.
That means that most of the frequency is concentrated
in low-frequency regions. A suited partitioning of the
frequency should therefore have a finer division in
low-frequency regions and a coarser partitioning in high-
frequency regions. This is the reasoning behind the wavelet
decomposition which is the most popular tree-structure in
practice. It is defined as follows. At each step of the
decomposition, the low-frequency subband is decomposed
into its four constituting subbands by ways of of the two-
band filter bank applied to the lines and the columns. This
procedure is iterated until the lowest subband is smaller than
a certain threshold. An example of such a decomposition
is shown in Fig. 3.

C. Nonlinear Subband Decompositions

In the previous section, linear subband decompositions
have been discussed. It is shown that it is possible to design
filters allowing for critical subsampling of the filtered
images [32]. In such cases, the decomposed image has the
same number of pixels as the original image. It has been
shown that the major drawback of such a decomposition
scheme is the inherent Gibbs phenomenon of linear filters
[44]. This produces an annoying ringing artifact when com-
pressing an image with a high compression ratio. The Gibbs
phenomenon affects linear filters but not nonlinear filters,
such as morphological filters. Therefore, many attempts
have been made to generalize linear subband decomposition

Fig. 4. Classical multiresolution morphological decomposition.
The operation OC denotes the morphological open–closing fil-
tering. The decomposition yields a nondetail image and several
residual images.

to nonlinear decompositions to overcome the problem of the
ringing effect. The most popular class of nonlinear filters
used in image processing is that of morphological filters
because of their efficiency and simplicity.

Major difficulties in designing morphological filter banks
occur because the digital morphological sampling theorem
[46] does not provide a tool for designing morpholog-
ical filters that allow for critical sampling and perfect
reconstruction. Indeed, even after a perfect morphological
lowpass filter, such as an open–closing filter, there is no
way of downsampling the filtered image and reconstructing
it perfectly. The problem is that morphological filtering
removes small objects without blurring the contours of
larger objects. This means that high-frequency information
is always contained in the morphologically filtered image.
Hence, aliasing always occurs and there is no way of
reconstructing the original image perfectly.

Notice that downsampling is a linear process. It is most
easily described through a frequency analysis using the
sampling theorem [47]; however, the concept of frequency
is a strictly linear concept and cannot be used in the context
of morphological signal processing.

One important difference between linear and morpho-
logical filters is that morphological filters preserve the
specificity of the input set. If the input consists of integer
valued coefficients only, then the output will also consist of
integer valued coefficients. This is not true for linear filters.
Using this property, a lossless coding scheme based on the
morphological subband decomposition can be defined. The
following sections describe these decompositions.

1) Morphological Decomposition:Using mathematical
morphology, the analysis of an image is based on
object shapes and object sizes. This is in contrast
with the frequency concept using linear operations. In
terms of mathematical morphology, a multiresolution
analysis intends to decompose an image into different
subimages, where each subimage contains objects of a
specific size. Fig. 4 shows the standard decomposition for
multiresolution analysis [48], [49]. This decomposition is
a cascade of open–closings which are intended to filter out
objects of a certain size at each stage.

The first stage of the decomposition is computed by

(18)

where denotes open–closing
of by is the first residual image containing only
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objects of size smaller or equal than the structuring element
Similarly, the second stage is obtained by

(19)

where

(20)

and is the dilation operator.
Each stage produces a residual image Together with

the last open–closed image the original image can be
reconstructed just by adding all together as follows:

(21)

Attempts to use this decomposition for coding purposes
are reported in literature [49], [50]; however, the basic
problem is the coding of the residual images which are of
the same size as the original image. Also, the nondetail
image still has a large entropy and is also of the
same size as the original image. The only advantage of this
decomposition is the absence of ringing effect even under
strong quantization. It is clear that a good decomposition
for coding purposes must be compact, that is the number
of pixels used to represent the original image has to be as
close as possible to the number of pixels of the original
image. In this case, the representation needstimes more
pixels for representing the original and consequently is not
appropriate at all for image-compression purposes.

2) Pyramidal Decomposition:Another approach is the
pyramidal decomposition [51], shown in Fig. 5. The idea
is similar to the previous decomposition. The original image
is first open–closed by a structuring elementto give the
filtered image

(22)

then is down-sampled by a factor of two in the two
directions. Denote the image by in the spatial
domain. The downsampled image is then

(23)

The image is then further decomposed at each stage. In
order to preserve perfect reconstruction the computation of
the residual images has to be performed the following way.
The image is first upsampled by a factor of two in the
two directions which gives

otherwise.

(24)

The upsampled image is then filtered by a morphological
reconstruction filter which should produce an image as close
to as possible. The residual image is then computed as

Fig. 5. Pyramidal decomposition using mathematical morphol-
ogy. The operation OC denotes the morphological open–closing
filtering. The decomposition yields a downsampled nondetail image
and several residual images.

the difference between the image of the previous stage
and the reconstructed image, that is

(25)

for the first stage and

(26)

for the next stages. It is clear that the performance of this
decomposition depends directly on the performance of the
reconstruction filter because the residual images do not only
contain the residual objects, which are contained in the
difference but also contain the reconstruction
error

(27)

In that sense, the variances of the residual images are higher
than with the decomposition given in Section IV-C1. Since
we can assume that and are uncorrelated, we have

(28)

where is the variance of the difference The
smaller the better the decomposition. The advantage of
this decomposition is that the residual images are getting
smaller by a factor of four at each stage.

Although, such a decomposition is much more appropri-
ate than the multiresolution decomposition, it seems that
there is still a waste of space since the decomposed image
needs more space than the original image. Optimal would
be a compact decomposition which would require the same
number of pixels as the original image.

3) Morphological Subband Decomposition:In order to
have a tool which can be generalized to the nonlinear case,
we will use the concept of a half-band filter. Let us give
the definition of a linear half-band filter.

Definition 1: A linear filter is called a half-band filter
if every odd sample of its impulse response is zero,
except one sample that is

otherwise
(29)

where is the length of the half-band filter
Suppose a signal is first downsampled and upsam-

pled by a factor of two. Call this signal Then, it is
filtered by a half-band filter This procedure is shown

982 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999



Fig. 6. The signalx(k) is downsampled and upsampled by a
factor of two to obtainy(k); which is then filtered by a half-band
filter with impulse responsef(k) leading to the outputz(k):

Fig. 7. Filter bank with specific filters yielding perfect recon-
struction ifG1(z) is a half-band filter andH2(z) = G1(�z):

in Fig. 6. Let us define as the convolution of
with

(30)

Then, every alternate sample of is given by

(31)

that is, the input is not processed (except a factor of) for
these samples. Note that (31) implies (29). Moreover, (31)
allows us to generalize the concept of a half-band filter to
the nonlinear case.

Definition 2: Consider a signal , which is downsam-
pled and then upsampled by a factor of two to give
A nonlinear filter is then called a half-band filter if every
alternate sample of the filtered signal is equal to the
corresponding samples in the original signal Define

the output of the nonlinear half-band filter. It then
satisfies

(32)

where is an arbitrary constant.
Note that such nonlinear filters do exist, like erosion,

dilation or median filter, if the region of support is chosen
appropriately.

Let us recall that perfect reconstruction of the linear two-
band filter bank of Fig. 2 is achieved if the convolution of

and is a half-band filter and if the filters respect
the bi-orthogonality conditions given by
and [52]. Now, suppose

Then perfect reconstruction is achieved if
is a half-band filter and This

filter bank is shown in Fig. 7.
Let us replace the filter by a generalized half-

band filter It is clear that this filter cannot be
described with its -transform since it is a nonlinear filter.
However, from the bi-orthogonality condition, in the case
of linear filter banks, it is known that
yields perfect reconstruction. The solution to the problem
of finding the corresponding high-pass analysis filter, in the
nonlinear case, can be obtained by understanding exactly
what it means to negate the variableof a linear half-band
filter. Again, consider the impulse response of a half-band
filter. Every other sample is zero, except the median sample.

Fig. 8. Filter bank with morphological filters yielding perfect
reconstruction ifM(�) is a generalized half-band filter and
A(�) = I � M(�):

Now, negating the variable has the following effect on
the impulse response:

(33)

Since every odd sample is zero, the negation of the
variable will only have an effect on the middle sample.
Hence the following equation holds for a zero-phase

half-band filter:

(34)

This situation can now be generalized to the nonlinear case.
Denote the nonlinear high-pass analysis filter. Then

(35)

where is the identity operation. This nonlinear filter
bank yields perfect reconstruction and is shown in Fig. 8.
Although this filter bank is a particular case, it invalidates
the assertion that morphological filter banks with perfect
reconstruction are impossible in general.

The effect of taking the lowpass analysis filter as the
identity operation will be to introduce aliasing in the
downsampled lowpass subband. However, it is shown that
good subband filters, such as the asymmetrical filter banks
(AFB’s) [44], have a similar property since the lowpass
filter has quite a poor frequency response. What matters
most for image compression is the behavior of the lowpass
synthesis filter, because it is designed mainly to filter the
introduced quantization noise, but it is also the main origin
of the ringing effect. With the kind of filter bank just dis-
cussed we have a complete control on the lowpass synthesis
filter. The use of a morphological filter at this stage will
completely eliminate the ringing effect. Furthermore, the
proposed morphological subband decomposition (MSD) has
the desired property of representing the original image by
the same number of pixels as the original image.

D. Lossless Decompositions

In contrast to lossy image coding, special care has to be
dedicated to the coefficients in the subband domain when
lossless compression is intended. Indeed, classical sub-
band/wavelet coefficients are floating point numbers. The
output of these filters are therefore floating point numbers
as well. This representation is not suitable for subsequent
lossless entropy coding. Even if the filter coefficients can be
made integers by a single normalization factor, the dynamic
range is usually too wide to be effectively coded. Therefore,
different multiresolution techniques have to be designed for
the lossless compression of images than those used for the
lossy compression. Several multiresolution approaches have
been presented for the lossless coding of images [53]–[57].
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Fig. 9. Filter bank with morphological filters allowing for perfect
reconstruction and having only integer valued coefficients. The
operatorN (�) denotesQ(M), where Q(�) is a quantization
function mapping a floating point valued coefficient to an integer
valued coefficient.

In the previous section, the MSD has been described as a
tool for the compression of images. It has been stated that it
does not suffer from any ringing effect at low bit rates. The
MSD has another interesting property. All the filtering in
the decomposition is performed with morphological filters
which have the property of preserving the specificity of
the input set (see Section IV-C). This makes it possible to
define a lossless compression scheme.

In order to achieve lossless compression of the image,
two conditions must be satisfied by the decomposition
filters.

1) The filter bank must allow perfect reconstruction.
This means that if no quantization is applied to
the decomposed coefficients, the reconstructed image
must be identical to the original image.

2) The coefficients of the subbands must be repre-
sentable by a limited number of bits.

As shown in Section IV-C3, the MSD enjoys the property
of perfect reconstruction. Besides, median filters on a region
of support of size six are very efficient for that purpose
[58]. Since this median has an even number of samples, the
output of such a filter will no longer yield integer valued
coefficients. This is due to the fact that the median value
of an even number of samples is defined by the average of
the two middle samples.

One possibility of satisfying the second condition is
to modify the MSD in the following way. The highpass
synthesis filter is defined by the generalized half-band filter

Let us define a new half-band filter by

(36)

where is a quantization function mapping a floating
point valued coefficient to an integer valued coefficient. The
flow diagram of the new decomposition is shown in Fig. 9.
Such a filter bank still allows for perfect reconstruction, as
the input data are integers.

V. SEGMENTATION-BASED APPROACHES

A. Motivation

New applications in a multiresolution environment result
in the need for additional functionalities and requirements
for video coding schemes. Most of them are closely related
to object-oriented manipulations. Object-oriented function-
alities require a prior segmentation of the scene into regions

of interest. These regions of interest are the actual objects
and are generally of arbitrary shapes. There are two im-
portant issues involved in a region-based scheme: 1) the
representation and coding of the region shapes and 2) the
representation and coding of the interior of the regions.
When considering moving picture sequences, the issue of
tracking is also raised; this will be covered in Part II of this
paper. This section will focus on the representation and
coding of the interior of the regions.

An efficient representation of the region interior should
provide a good decorrelation of the data in order to obtain
a high energy compaction. When compressing rectangular
pictures, this decorrelation is performed by using appropri-
ate block transforms such as a DCT or subband/wavelet
transforms. Various approaches have been proposed to
generalize the block-based techniques to arbitrarily shaped
regions.

One approach is to represent the arbitrarily shaped region
using a classical block transform such as DCT. An appropri-
ate extension is performed in those blocks containing pixels
not belonging to the region interior. The block is filled
with pixel values. The whole block is then transformed and
coded. Several approaches to perform the extension have
been proposed [59], [60]. This approach obviously has the
disadvantage of needing to transmit more coefficients than
pixels in the region.

A technique using a Gram–Schmidt orthogonalization
procedure to find an orthonormal basis inside the region
of interest has been proposed by Gilge in [61]. This
procedure is computationally expensive both at encoder and
decoder sides, as it requires the computation of a different
orthonormal basis for each different region.

A technique using an iterative procedure based on the
theory of successive projection onto convex sets has been
proposed by Chenet al. [62]. This technique has proven
to be efficient in a rate-distortion (R-D) sense. However, it
suffers from two drawbacks: 1) it is computationally heavy
due to the involved iteration and 2) if the number of pixels
of the shape is the same as the number of coefficients in the
transform domain, then perfect reconstruction of the shape
is not guaranteed.

The algorithm proposed by Sikoraet al. [63], [64] per-
forms a shifting of the input pixels in such a way that a DCT
can be performed along the shifted lines. This technique,
known as SA-DCT (see Section V-C), has become very
popular due to its coding efficiency. The main drawback of
this method is that it does not perform a full decorrelation
of neighboring pixels in a given region.

B. POCS-Based Block Transform (PBT)

The PBT, where POCS stands for projection onto convex
sets, is based on an iterative procedure to determine the best
transform coefficient values. Two convex sets are defined:
one in the spatial domain and one in the frequency domain.
One iteration of the PBT (see Fig. 10) will project the input
image onto the spatial domain set, transform this projected
set into the frequency domain, project the transformed
coefficients onto the frequency domain set, and transform
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Fig. 10. General flow diagram of the POCS-based block iterative
process. The transform coefficient set (TCS) keeps only a subset of
the transform coefficients, whereas the region of support set (RSS)
keeps only a subset of the spatial coefficients.

(a) (b)

Fig. 11. (a) Region enforcing in the space domain. Black circles:
original shape; grey circles: pixels outside the region of interest. (b)
Region zeroing in the frequency domain. Black circles: significant
transform coefficients; white circles: zeroed transform coefficients.

the coefficients back to the spatial domain. Therefore, close
convex sets have to be defined. They are associated with
a priori constraints that are based on the characteristics of
the input shapes.

The first set is defined based on the theory of transform
coding. The goal of a transform for coding purposes is to
compact the energy of the input image into few coefficients.
Typically, for natural images, only a few coefficients of
the DCT transform are important to represent the input
image. The set of images which can be represented using a
selected group of transform coefficients constitute the first
set. This set is termed transform coefficients set (TCS). The
projection of the transform coefficients of an input onto this
set can be obtained in zeroing all coefficients not in the
TCS. This is called region zeroing.

The second set is derived from the fact that the values of
the pixels outside the region of interest are irrelevant. This
set if referred to as the region of support set (RSS). The
projection of an arbitrarily shaped region onto the RSS can
be obtained by simply replacing those pixels corresponding
to the interior of the region by their original values, and
ignoring the other pixels. This procedure is called region
enforcing in the space domain.

Both those sets are illustrated in Fig. 11. In Fig. 11(a),
one can see the original shape represented by the black
circles. The grey circles represent the pixels being irrelevant
because they do not belong to the original shape. Applying
region enforcing to the region in grey would keep only
the black pixels after the projection. In Fig. 11(b), the
transform domain is shown. The black circles represent the
coefficients which are kept and the white circles represent
the coefficients which are zeroed by the region-zeroing
process.

One iterates over the two sets until a satisfying result
is obtained. Although, the convergence of the algorithm
is guaranteed [65], this transform cannot achieve perfect

(a) (b) (c)

(d) (e)

Fig. 12. Illustration of the SADCT. (a) Original shape (grayed).
(b) Shape after first shifting of pixels. (c) Shape obtained after
performing aDCTN on all the columns, with the DC coefficients
marked with a black circle. (d) Shape after second shifting of
pixels. (e) Shape obtained after performing aDCTN on all the
lines, with the DC coefficient marked with a black circle.

reconstruction. Even though DCT is a compact frequency
transform, zeroing out some coefficients in the frequency
domain will inevitably results in a loss of information.
However, as most of the energy of a natural image is
concentrated in the low-frequency coefficients, the loss is
minimized.

C. Shape-Adaptive DCT

The shape-adaptive DCT (SADCT) is based on prede-
fined orthogonal sets of DCT basis functions. The basic
concept of the method proposed by Sikora [63], [64] is as
follows. The original shape is segmented into blocks
with being eight in most cases. On the blocks where all
the pixels belong to the original shape, the classical block
DCT is applied. For those blocks where some pixels do
not belong to the original shape, the algorithm illustrated
in Fig. 12 is performed. The first step consists of shifting
all the pixels of the region to the upper bound of the block.
As an example, the shifting of all the pixels of the original
shape shown in Fig. 12(a) is presented in Fig. 12(b). Then,
depending on the number of pixels of each particular
column, a DCT transform matrix containing a set of

basis vectors is selected. The transform
matrix is defined as

(37)

where if otherwise, denoting
the th DCT basis vector. The vertical DCT coefficients

for each column can be computed as

(38)

The result of the transforms for each column is illustrated in
Fig. 12(c). The next step consists of shifting all the pixels
to the left bound of the block as shown in Fig. 12(d). Then,
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Fig. 13. General flow diagram of the SAWT.

on all the lines, the transform is applied to obtain
the final transform coefficients, illustrated in Fig. 12(e).

This algorithm presents the advantage that the final
number of transform coefficients is the same as the number
of total pixels of the original shape. This transform also
enjoys the property of being reversible if the original
segmentation is known. Due to its computational simplicity
and its effectiveness, it is the shape-adaptive transform
having the biggest popularity. The main drawback of this
approach lies in the decorrelation of nonneighboring pixels.
Also, since this approach is block-based, blocking artifacts
will occur at high compression factors.

D. Subband Transform for Arbitrarily Shaped Regions

1) General Requirements:In this section, an algorithm
to perform arbitrarily shaped transforms is examined. As
mentioned before, it is crucial to have a decomposition
satisfying the following two conditions.

1) The transformed shape must be represented by the
same number of coefficients as present in the original
shape.

2) The filtering must be performed on pixels which are
neighbors of each other in the original shape.

The first condition is a requirement necessary in order to
have a good coding performance. Decompositions which do
not fulfill this condition show a poorer coding performance.
It has to be noticed that if the goal of the decomposition
is not coding but a multiresolution analysis, then this
condition is not required anymore.

The second point is important in order to have a full
decorrelation in the transform domain. As seen for the SA-
DCT in Section V-C, pixel neighborhood is not preserved
and artificial contours are created. This leads to an increased
difficulty in decorrelating the information and thus increases
the variance in the highpass subbands.

2) Shape-Adaptive Wavelet Transform:The proposed
shape-adaptive wavelet transform (SAWT) is performed in
a separable way as in conventional decomposition schemes.
The transformation is done in three steps, as illustrated in
Fig. 13. The first step consists in processing each line
such that no hole is present anymore. The second step
decomposes the processed line intosubbands while the
last step places the filtered wavelet coefficients in their
right locations.

The line processing step writes for each line all pixels
belonging to the region in a vector sequentially. This
procedure eliminates all holes present in the original shape
and is shown in Fig. 14. This operation satisfies condition
1) of the previous section. Indeed, neighboring pixels
remain neighboring pixels after the processing; however,

Fig. 14. Processing of each line before filtering.

it is to be noted that holes present in the original shape will
produce artificial contours as well. Note that this drawback
is also to be found in the SADCT. There is one major
reason why this artifact may not degrade the performance
of the technique. The objects are usually segmented in such
a way that they are spatially compact. This leads to objects
where holes are not very frequent.

The processed vector is then decomposed intobands
by means of a filter bank in a second step. A filter
bank requires the input to have a size being a multiple
of the number of samples. Since the transform must be
operational on arbitrarily shaped regions, one cannot ensure
that this condition will be fulfilled. In order to overcome
this problem, these extra pixels are not processed in the
filter bank but are put in the lowpass subband after having
been multiplied by the gain of the lowpass filter. This is a
reasonable choice since the statistics of the lowpass filter
are very similar to the statistics of the original signal. It is
important not to create a change of statistics for these extra
pixels. Since the gain of the lowpass filter is in general not
equal to one (usually ), one has to multiply all these
extra pixels by this gain. The usual number of bands for
wavelet decompositions is In that case, there is
a maximum of one extra pixel per line. This procedure
is illustrated in Fig. 15 for a two-band filter bank. The
upper left picture shows the original shape. The upper right
figure shows each line after all the holes have been filled.
These lines are then filtered with the two-band filter bank
shown in the lower right part of the figure. Finally, the
extra pixels represented by the grey circles are put in the
lowpass subband as illustrated in the lower left part of the
figure. It is important to mention that linear phase filters
are appropriate for this decomposition because they allow
a symmetric extension of each line. This reduces greatly the
border effects which could be introduced otherwise. Note
that asymmetrical filter banks satisfy this requirement.

In a third step, the filtered samples have to be placed
into subbands such that each subband preserves the original
shape of the region. This is important for the purpose of
obtaining a maximum decorrelation of the filter bank. For
every group of pixels of the original region the samples
are distributed into the subbands such that the number
of pixels in each subband does not differ by more than

As illustrated in Fig. 16, this procedure ensures
that the subbands are very near in shape to the original
region scaled by a factor of An example of a wavelet
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Fig. 15. Decomposition of a region into two subbands. Black
circles are pixels belonging to the region. Grey circles represent
extra pixels which are not processed by the filter.

(a) (b)

Fig. 16. Placing of the decomposed samples in the two subbands.
(a) Subbands obtained after the filtering. (b) Each pixel is placed
at the correct location in the subbands.

decomposition of a shape is shown in Fig. 17. One can
clearly observe that the subbands are very near in shape to
the original region.

This algorithm is not reversible in the sense that in
general it is not possible to find the original contour of
the region from the contours of the subband shapes. This
is due to the fact that one imposes an equal number of
pixels in each subband of the same level (if we except the
mentioned extra pixels). Hence, all pixels belonging to a
group of pixels with some of those pixels not belonging
to the region are evenly distributed among the subbands.
This is illustrated for in Fig. 18. In the figure, the
dashed group of two pixels are those having only one pixel
belonging to the region of interest. At the appearance of
such a group, one pixel is attributed to the lowpass subband.
At the next appearance it is given to the highpass subband.
In Fig. 18, bins number 2, 4, and 6 have this structure
of only one pixel belonging to the region. Hence, pixels
number 2 and 6 will be present in the lowpass subband
while pixel 4 will be in the highpass subband.

(a)

(b)

Fig. 17. Example of an SAWT on the picture “Weather.” (a)
Shape to be coded: foreground person. (b) Resulting subbands
after performing the SAWT.

(a) (b)

Fig. 18. Illustration of the placement of the decomposed samples
in the two subbands. (Top) Line to be decomposed. The dashed
group of two pixels are those having only one pixel belonging to
the region of interest. (Bottom) Resulting placement of the pixels
in (a) the lowpass subband and (b) the highpass subband such that
they are evenly distributed.

If at a specific location in the subbands there is a pixel
in the lowpass subband but not in the highpass subband,
it is impossible to know if in the reconstructed shape it
is the first or the second pixel that belongs to the region.
This is illustrated in Fig. 19. Fig. 19(a) shows the lowpass
subband and the highpass subband. For pixels 2, 4, and
6, it is impossible to retrieve the correct constellation of
the original shape. There are always two possibilities, and
these are shown in Fig. 19(b).

Although one cannot reconstruct the original shape from
the subband shapes, we do not have to send additional
information since the shape is coded in a different channel
anyway. The procedure to decompress a region coded
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(a)

(b)

Fig. 19. From the samples in the two subbands, it is impossible to
retrieve to original shape. (a) For pixels 2, 4, and 6, it is impossible
to retrieve the correct constellation of the original shape. (b) There
are always two possibilities.

with the SAWT algorithm must be done in the following
chronology:

1) decoding of the contour information;
2) decomposition of the shape into the subband shapes

by using the SAWT without the filtering;
3) reconstruction of the original shape and its content by

applying the inverse filter bank of the SAWT.

E. The Shape-Adaptive Transform for
the Nonlinear Transforms

In the previous section, an algorithm has been proposed
to perform a subband decomposition on arbitrarily shaped
regions. This algorithm is based on filtering each line
independently. Therefore, it works properly only for sep-
arable filter banks with monodimensional subband filters.
However, some nonlinear subband transforms, such as the
MSD, use filters with a 2-D region of support.

In the case of the proposed nonlinear filter banks, having
to deal with a degenerated filter bank simplifies the task
of defining a shape-adaptive version of the transform. The
lowpass analysis filter is not present in the filter bank
since the lowpass subband is defined as a downscaled
version of the original subband. Hence, one can define the
lowpass subband of the shape-adaptive transform as the
downscaled version of the original shape. The procedure
to obtain this subband is as follows. Fig. 20 illustrates the
case i.e., two subbands. Each line of the original
shape is downsampled by a factor of two. Hence, every
odd pixel of the original shape is contained in the lowpass
subband. If an odd pixel belongs to the original shape, it
will belong to the subband shape as well. On the other
hand, if this odd pixel did not belong to the original shape,
it will not belong to the subband shape either. Fig. 20(a)
shows the original shape; black circles belong to the shape,
white circles do not belong to the shape, and the dashed
rectangles highlight the pixels belonging to odd columns.
The downsampled version of the shape is represented in
Fig. 20(b).

The highpass subband is composed of the difference
between the original image and the image filtered with the
generalized half-band filter. One can define a similar proce-
dure for arbitrarily shaped regions. Suppose the generalized

(a) (b)

Fig. 20. Downsampling of the original shape to obtain the low-
pass subband. (a) Original shape. Black circles belong to the orig-
inal shape. White circles do not belong to the original shape. The
dashed rectangles highlight the pixels belonging to odd columns.
(b) Downsampled version of the shape, corresponding to the odd
columns.

(a) (b) (c)

Fig. 21. Example of the iterative procedure to fill all the region
of support of the generalized half-band filter. (a) Region of support
of six pixels with only two pixels belonging to the shape. (b) After
the first iteration, the three grey pixels can be computed. (c) After
the second iteration, the last (grey) pixel can be computed.

half-band filter has a region of support of samples. In the
case of rectangular images, it is guaranteed that for all the

samples there is a pixel to be filtered. The only exception
is on the border of the picture. This can be overcome easily
by applying a symmetric extension of the image. In the case
of arbitrarily shaped regions there are three cases of interest.

1) All pixels of the region of support of the filter
belong to the region. In this case, the same filtering
procedure is applied as for rectangular images.

2) There are only pixels of the region of support
of the filter belonging to the original shape, where

In this case, a successive symmetrical
extension of the region of support is applied until
all samples have been extended. This procedure
is illustrated in Fig. 21. Fig. 21(a) shows a region of
support of six pixels for the nonlinear filter. Only two
pixels (black circles) belong to the shape. On the first
iteration, three more pixels can be computed by taking
the average values of the neighbor pixels illustrated
by the arrows in the figure. The second iteration is
able to compute the missing pixel again by taking the
average of its two neighbors.

3) No pixels of the region of support of the filter belong
to the original shape. In this case, the output pixel is
not filtered but added to the lowpass subband. This
procedure is illustrated in Fig. 22. The black circle on
the left part of the figure has no neighbors belonging
to the shape. All pixels on the region of support of
the filter (dashed circles) do not belong to the original
shape. Thus, it is put in the lowpass subband.
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(a) (b)

Fig. 22. (a) The shape is represented by the dark grey circles and
the black circle. The rectangles highlight the odd columns. The
pixel represented by the black circle cannot be filtered because
no pixel of the region of support (dashed circles) belongs to the
original shape. (b) Thus, this pixel is put into the lowpass subband
at the corresponding place.

(a)

(b)

Fig. 23. Example of an SAND on a ultrasound picture. (a) Shape
to be coded. (b) Resulting subbands after performing the SAND.

This definition for the shape-adaptive nonlinear decom-
positions (SAND) allows for perfect reconstruction of the
original shape. The comments on the subband shape of the
SAWT also apply to this decomposition. An example of
a decomposition of a shape is shown in Fig. 23. One can
clearly observe that the subbands are very close in shape
to the original region.

F. Shape Coding

In this section, we briefly present major shape-coding
techniques used in literature. The user is referred to [66] for
a more detailed overview. The emphasis will be given to bi-
nary shape coding as opposed to alpha shape coding, which
has been recently introduced in a number of applications
using concepts from computer graphics in order to represent

partially transparent object layers. However, it is possible
to apply similar principles to code alpha plane shapes.

Region shape representation has been investigated in the
past for arbitrary and constrained shaped regions [67], [68].
They can be classified in three categories: bitmap; intrinsic;
and contour-based techniques.

Designed only for compression, bitmap-based techniques
apply binary image coding methods, such as those de-
veloped for facsimile transmission, to shape images. Two
typical bitmap coding schemes are the modified-modified
read (MMR) [69], [70] and the context-based arithmetic en-
coding (CAE) [71]. The former has been used successfully
in the facsimile group four transmission norm, whereas
the latter has been included in the Motion Picture Experts
Group (MPEG)-4 video compression norm. These methods
are of particular interest when shape coding is integrated
in a block-based scheme as in current still image coding
standards, as they are easily modified to accommodate for
the fixed segmentation [72].

Intrinsic shape representation considers the solid shape
rather than its boundaries. In its most trivial form, an
intrinsic shape coding technique is a bilevel coding of
inside/outside binary information of an object. This is
performed in decomposing the shape into smaller simple
elements, by means of quadtree-based techniques [68] or
representing it by its skeleton [73], [74]. The inverse
decomposition is then applied to the transmitted simple
element to recover the shape. Some methods may present
characteristics like progressive or lossy shape coding. Cur-
rent object-based standards like MPEG-4 use this approach
due to their good compression efficiency and their simplic-
ity. However, such an approach lacks a semantic description
of objects, which is of interest in applications where high-
level information is needed (content-based search, image
understanding, pattern matching, etc.)

Contour-based techniques use a transform to convert the
object into contours representing its outline. An inverse
transform recovers the shape from this contour represen-
tation. This transformation should preserve information to
allow lossless shape coding using contours. When simpli-
fication hypotheses are available, the transformation can
often be expressed in a very compact form.

The key part in contour-based techniques is the actual
coding of the contour information. Several connectivity
methods can be used to define what relative positions two
neighboring contour pixels can take. The most common
neighboring descriptions are, as shown in Fig. 24, four
connectivity, eight connectivity, and six connectivity. Let

and be two neighboring contour pixels. In a four-
connected contour, pixelis either to the north, east, south,
or west of pixel and in a eight-connected contour it can
also be to the northeast, southeast, southwest, or northwest,
in addition to the previous directions. A third connectivity
scheme represents six-connected contour pixels. As op-
posed to four- and eight-connected contours that lie on
pixels, six-connected contours lie in between pixels. The
line between two pixels is also called crack edge [66]. This
last possibility is a more natural representation; however,
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(a) (b) (c)

Fig. 24. The most common connectivities, along with an example
of the shape representation in: (a) four connectivity; (b) eight
connectivity; and (c) six connectivity. Note that six connectivity
is defined on the border of the pixels (crack edges), whereas the
other two are defined in the middle of the pixel.

the corresponding grid implementation is more complex
when compared to the other representations.

A contour tracking algorithm then extracts lists of con-
nected contour pixels. In most cases, the corresponding
shape boundaries are described by a closed contour. How-
ever, depending on the selected connectivity and the exis-
tence of thin details, or borders, some parts of the contour
may remain open. Two solutions exist to handle that case.

The first possibility is to let the contour tracker move
backward. The nonclosed contours are then tracked twice,
back and forth. The second possibility is to process open
contours separately. In this case an additional code for the
end of contour, or alternatively, information regarding the
contour size, is needed. For a correct shape reconstruction
from the contour information, the inside and outside of an
object also need to be defined. A closed contour can be
tracked and encoded either clockwise or counterclockwise.
Depending of the convention used, one could then consider
the left or right side of the oriented contour as the interior
of an object.

Quite an extensive literature has already treated the
problem of contour coding [75]–[80]. The most popular
technique is chain coding, which consists in coding the
position of the pixels in the contour relative to their
neighbors. In the most classical chain coding, the first pixel
in a contour is coded in its absolute coordinates. All the
remaining pixels are then coded by just indicating their
relative position compared to the last encoded neighboring
pixel. Variants of this technique are used to improve the
compression efficiency [68], [78]–[80].

Geometrical approximation methods constitute another
family of contour-based representations that have been first
investigated in the field of computer vision and pattern
recognition. Geometrical representations include polygon
approximation [81], [82] and cubic curves. Literature re-
ports several schemes for the selection of the vertices
representing the contour approximation for polygons [83],
cubic curves [84], [85] or hybrid system [86], including
both types for better shape representation.

Fig. 25 reports an example of different types of distor-
tions that can be observed by using various lossy shape
coding techniques.

(a)

(b) (c)

(d) (e)

Fig. 25. Example of distortions observed using various lossy
shape coding schemes: (a) original shape; (b) polygonal approx-
imation; (c) lossy chain coding; (d) joint block/Hermite curve
approximation; and (e) MPEG-4 VM block-based shape coding.

In a complete object-based compression scheme with
lossy shape coding, the shape–texture coding interaction
is of prime importance. The bit-rate reduction, resulting
in a loss of shape coding quality, may actually increase
the texture bit rate for a given texture quality. Preliminary
studies [87], [88] have shown that the relation between the
overall system R-D behavior and those of shape and texture
are very complex. They depend on the image and also on
coding parameters such as the desired quality, the bit rate,
and the rate control scheme.

VI. QUANTIZATION

A. Introduction

To compress the data of the image, the subband signals
are quantized. To perform an optimal quantization, the type
of quantization (uniform, nonuniform) and the number of
the quantization levels in the different subbands are defined.

B. Basic Equations of Quantization

Let be a real random variable with probability density
function (pdf) The cumulative distribution function
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(cdf) is then

(39)

Let us give the following definition of a quantizer.
Definition 3: A device with input and output

is called a quantizer if implies
The ’s are called the quantization thresholds

(decision levels) and the ’s are called the reconstruction
levels [89].

The probability that the output is depends on the
cumulative distribution of by

(40)

Hence, the knowledge of gives us the possibility to
compute the zeroth-order entropy rateof the output

(41)

and the averageth order distortion

(42)

where is a positive integer. After quantization, a source
coding algorithm is applied. The lower the entropy of the
data, the more efficient the source coding algorithm (see
Section VII). It can be concluded that in our context an
optimal quantizer is one that minimizes for a fixed
entropy rate

C. Optimum Quantizers

It can be observed from (41) that the entropy ratedoes
not depend on the reconstruction levels Therefore, the

can be chosen to minimize the distortion It can be
shown [89] that the optimal ’s are uniquely specified by

and by the equation

(43)

For (43) reduces to

(44)

or equivalently

(45)

Equation (45) defines the median point of the interval. We
can also compute (43) for

(46)

which is the same as

(47)

Equation (47) defines the expected value of the interval
which is in general not the same as the median point.

The design of a quantizer in the minimum mean square
error (MMSE) sense reduces to choosing the thresholds
to minimize by respecting (47). This yields a set of
nonlinear equations which are difficult to solve in general.

D. Uniform Quantizer

The simplest quantizer is the uniform quantizer which is
defined as follows.

Definition 4: A quantizer is uniform when the quan-
tization thresholds are uniformly separated by the same
distance, hence

(48)

A very surprising fact is that this simple quantizer is optimal
or quasi-optimum in most of the cases. Actually, it is
optimal if the input has a Laplacian or exponential pdf.
Otherwise, the optimal quantizers perform only negligibly
[89] better than the uniform quantizer. This is the reason
for the popularity of uniform quantizers.

E. Successive-Approximation Quantization (SAQ)

1) Introduction: As shown in Section VI-D, the uniform
quantizer is well suited in an image-compression frame-
work; however, it does not permit the definition of a
progressive transmission and an exact rate control. To
improve the image-compression scheme featuring these
new functionalities, different quantization strategies have
to be adopted. An approach achieving this goal is SAQ of
the coefficients. It is detailed below.

2) Classical SAQ:To exploit the existing zero-
correlation across subbands, the EZW algorithm—proposed
by Shapiro [43]—is based on three main blocks: 1) the
hierarchical subband decomposition; 2) the prediction of
the absence of significant information across scales using
zerotrees; and 3) the entropy-coded SAQ.

The first block is a subband decomposition of any type.
All decompositions described in Section IV-B can be used
for that purpose.

The second block is the heart of the EZW algorithm and
goes as follows. For each subband, a parent–children rela-
tionship is defined. The low-frequency subband is defined to
be the parent of all other subbands. Then, a parent–children
relationship is defined for all subbands. An example of a
parent–children relationship for the wavelet decomposition
is shown in Fig. 26.

The next block is the scan of all coefficients to detect
the highest valued coefficient (in magnitude) of all
the subbands. This coefficient is used to compute an initial
threshold by the following equation:

(49)

where is a parameter of the system. Convergence of the
quantization is ensured if Then different scans are
performed, producing a stream of symbols.
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Fig. 26. Parent–children relationship for the wavelet decomposi-
tion of the EZW algorithm.

Fig. 27. Illustration of the primary scan of the zerotree wavelet
algorithm. The unquantized coefficients range frommin to max
and are quantized to NEG, POS, or zero.

The last block is the arithmetic coder, which turns the
symbols into the final bit stream.

The successive approximation consists in an iteration
over two scans, called the primary scan and the secondary
scan. The primary scan locates the significant wavelet
coefficients, and the secondary scan refines the values of
all considered coefficients so far.

The symbol stream of the primary scan is generated
for the coefficients in the subbands using the following
symbols: POS (positive) if the coefficient is significant with
respect to the threshold and positive; NEG (negative) if
the coefficient is significant with respect to the threshold
and negative; ZTR (zerotree) if the wavelet coefficient is
insignificant with respect to the threshold and all its children
are insignificant, too; IZ (isolated zero) for all other wavelet
coefficients.

This quantization procedure is illustrated in Fig. 27. One
can see that the uncertainty intervalmay be not uniform.
Indeed, with the uncertainty interval of the zero-
quantized coefficients is always larger than for the values
quantized to POS or NEG. In the special case of
this dead zone is twice as large as the uncertainty interval
of the significant coefficients.

In the secondary scan, all the coefficients which have not
been quantized to zero so far are refined. This is done by
transmitting, for each of these coefficients, a binary value
telling if the unquantized coefficient is in the lower or upper
half of the interval. This refinement is illustrated in Fig. 28
for the case where the coefficient was primarily scanned
as POS.

After a secondary scan, a new threshold is computed as

(50)

Fig. 28. Illustration of the secondary scan of the zerotree wavelet
algorithm. Each coefficient which has been quantized to a signif-
icant value in the previous primary scan is refined by a factor of
 = 2:

Fig. 29. Example of a classical SAQ on wavelet coefficients.
Illustrated are the first two primary streams(P1 andP2) and the
first secondary stream(S1): The parent–children relationship is
that of Fig. 26, and = 2:

where is the iteration number. The algorithm is iterated by
applying successive primary and secondary symbol streams.
These are then encoded using the entropy coder. The result
is a completely embedded bit stream. An example of such
a quantization is shown in Fig. 29. The EZW algorithm
has shown excellent performances in compressing natural
images.

One approach for generalizing the EZW algorithm is as
follows. At each iteration, instead of dividing the threshold
by two, let us define the new threshold by the general
formula

(51)

where is a floating point value. Moreover, instead of
splitting the uncertainty interval of the nonzero coefficients
into two bins, a refinement into distinct values is
produced in the secondary stream. If and
one approaches a uniform quantization very closely. This
is illustrated in Fig. 30.

One can observe that after the first primary stream, a
uniform quantization is achieved if is chosen to be 3.0.
Closer examination shows that this is indeed the case after
each primary stream. The EZW algorithm proposed in [43]
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Fig. 30. Illustration of the primary scan of the zerotree wavelet
algorithm withQ = 3:0: The unquantized coefficients range from
min to max and are quantized to NEG, POS, or zero. The three
uncertainty intervals are equally large.

has the following system parameters:
and

3) SAWT and SAND SAQ:To use the described shape-
adaptive transforms in an efficient coding environment, it is
proposed to generalize the EZW to match these transforms.
Special care has been dedicated to retain all the advantages
of the EZW algorithm for arbitrarily shaped regions. As
for the original EZW algorithm, the proposed technique is
based on three basic blocks, namely the transform (SAWT
or SAND), the zerotree prediction, and the SAQ.

After performing the subband transform, the zerotree
prediction in turn allows for a further improvement of the
energy compaction by taking into account the remaining
interband correlations. The zerotree prediction has to be
generalized to match the properties of arbitrarily shaped
subbands. Indeed, in the case of rectangular images the sub-
bands are rectangular as well. This allows a straightforward
definition of the parent–children relationship as described
in Section VI-E.

In the case of arbitrarily shaped regions, it may happen
that a group of children has no parent or that a parent has no
children. This leads to a redefinition of the parent–children
relationship for arbitrary shapes. The idea behind the ze-
rotree is to be able to code a complete tree of zero-valued
coefficients with only one symbol. Hence, it is important
that a missing pixel in a whole tree does not affect the
efficiency of the zerotree symbol. The proposed approach
is defined as follows:

1) create a zerotree in the same way as for rectangular
images;

2) consider all the pixels of the tree not belonging to the
arbitrarily shaped regions as quantized to zero;

3) code the tree as before, but considering only pixels
in the shape.

This approach ensures that the maximum number of ze-
rotrees can be found. The method is illustrated in Fig. 31.
Fig. 31(a) shows the complete zerotree where the black
pixels belong to the region and the gray pixels do not.
Fig. 31(b) is the purged tree. Note that the appropriate
placing of the pixel in the subbands, as described in
Section V-D, allows for an efficient representation with
zerotrees. An example of the SAQ encoding for arbitrarily
shaped regions is shown in Fig. 32.

Finally, the SAQ provides an embedded bit stream and
allows for an exact rate control. The embedded bit stream
together with the multiresolution structure allows for addi-

(a) (b)

Fig. 31. Illustration of the generalized zerotree prediction. (a)
The complete zerotree. Black pixels belong to the region. Gray
pixels do not belong to the region. (b) The purged tree.

Fig. 32. Example of an SAQ on wavelet coefficients of an
arbitrarily shaped region. Illustrated are the first two primary
streams(P1 and P2) and the first secondary stream(S1): The
parent–children relationship is that of Fig. 26.

tional features such as progressive transmission, retrieval,
and data browsing for each region independently.

4) Lossless SAQ:The two conditions for lossless com-
pression in a multiresolution environment have been stated
in Section IV-D. It is clear that even though these con-
ditions on the filter bank might be satisfied, they are not
sufficient to render the entire scheme lossless. To render
this compression algorithm lossless, the following four
conditions on the quantization are considered.

1) The initial threshold should be set to with
being an integer value.

2) The threshold is divided by at each iteration,

3) The iterative quantization procedure is iterated
times for the primary stream and times for
the secondary stream.
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Fig. 33. Example of a lossless SAQ on wavelet coefficients.
Illustrated are the first two primary streams(P1 andP2) and the
first secondary stream(S1): The parent–children relationship is
that of Fig. 26.

4) The reconstruction levels have to be set to the mini-
mum absolute value of the uncertainty interval of the
reconstruction.

There are two ways to achieve lossless reconstruction.
The first way is if, at the last primary scan, the uncertainty
interval for the reconstruction is and if the
values to be reconstructed are integers. This can be reached
if conditions 1)–3) are met. This ensures that after the

th iteration of the primary stream, the threshold will be
exactly one. At the th primary stream, for each quantized
coefficient the following inequality will be satisfied:

(52)

where and are the bounds of After iterations
of the primary stream Since is a signed
integer value, the correct value ofmust be

(53)

The second way lossless reconstruction is achieved is
when conditions 1) and 2) are not satisfied, but enough
iterations (normally more than are considered. The stop
criterion is again allowing for a perfect mapping of
the quantized coefficients to their integer values.

An example of lossless quantization with is
shown in Fig. 33.

F. Vector Quantization (VQ)

In contrast to scalar quantization discussed in previous
sections, VQ is the process of mapping sets of values in

form of vectors into a predefined set of patterns. Although
VQ can be seen as a generalization of scalar quantization,
it can be shown that from an R-D point of view that it
results in an optimum performance even when the data to
be quantized are made of independent samples [90]. Let us
give the following definition of a vector quantizer.

Definition 5: A device with input
and output is called a vector
quantizer of dimension and size if any vector
is mapped into one of the possible output points
contained in the finite set defined as

with
(54)

The set is called the codebook and the output or repro-
duction points are called code vectors. The resolution or
rate of the vector quantizer is defined as A
partition of into regions , called cells, is associated
with the codebook and is defined as

(55)

with

and

for

Taking into account the above definitions, VQ can be
interpreted as an association of every code vectorto a
cell in which the actual quantization process would be
the assignment of to when

In principle, the design of a VQ requires a common
definition of codebook used in both encoder and decoder.
Encoder and decoder then only exchange the indexes
of the instead of the values of

The choice of the codebook depends on the statistical
properties of the source data to be quantized and as a
consequence plays an essential role in the performance of
VQ. Several strategies have been developed in order to
design appropriate codebooks in an efficient way requiring
minimal computational load during quantization. The most
well-known approach for the design of a codebook is that of
generalized Lloyd algorithm, also known as LBG algorithm
[91]–[93]. In the LBG approach, the codebook is designed
using a training set containing data of the same kind as
that to be quantized. The codebook is then stored and used
in both encoder and decoder. Variants of VQ may update
the initial codebook as the process of quantization is in
progress. Such quantizers are known as adaptive vector
quantizers.

Another class of vector quantizers makes use of no
explicit codebook in order to avoid storage requirements.
Lattice VQ is one such approach. As for scalars, the optimal
high-resolution entropy-constrained scalar quantization is
the uniform quantization (see Section VI-D); similarly,
for large vector sizes, the optimal vector quantizer for a
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constrained entropy is obtained in using a codebook with
uniform cells [95].

Formation of input vectors is another important issue in
the design of vector quantizers applied to image coding. In
earlier realizations, vectors were formed by pixel values in
a square block of an image [92]. In more recent techniques,
vectors are created from the coefficients of a transformed
image. Either coefficients of a given subband around the
same spatial position or coefficients from different subbands
in the same spatial position can be used. Some variants use
both kinds of coefficients to form vectors [95].

Although from a theoretical point of view it is possible to
show that VQ remains superior to scalar quantization, the
added complexity does not pay off for most applications.

G. Trellis Coded Quantization (TCQ)

TCQ is a source coding method offering similar R-
D performance to that of VQ at only slightly higher
complexity than scalar quantization. The principle behind
TCQ is motivated by alphabet-constrained R-D theory,
which determines the best achievable performance when
compressing data using a finite set of quantized symbols.
Notions used in TCQ are similar to that of trellis coded
modulation (TCM) widely used today for the design of
voice line modems [96]. In its simple form, TCQ exploits a
codebook of codewords when coding a given source
at a bit rate of bits/symbol [97]. This is twice the
number of codewords needed in a conventional quantization
mechanism. It is possible to show that this doubling of
number of codewords allows one to obtain nearly all the
theoretical gain possible over a B bits/symol Lloyd–Max
quantizers. The codebook is partitioned into subsets
with using the set partitioning mechanism proposed
by Ungerboecks in TCM. Typically, the expanded codebook
is divided into four subsets , each containing
codewords such that the minimum distance between the
codewords in a subset is achieved. The process of quan-
tization then proceeds as follows. To encode a sequence
of symbols at bits/symbol,
stages of a trellis are cascaded together. Fig. 34 gives an
example of one stage of such a trellis with eight states with
codebook partitioning into four subsets, and

In this example, four scalar quantizations are performed
at each stage (one for each partition) to determine the
best quantization level (in general based on the minimum
mean-squared criteria). The quantization error introduced
by this process is chosen as the cost function when selecting
the path in the trellis from one stage to the next. The
Viterbi algorithm can be used to find the trellis path with
the minimum cumulative distortion between the source
and its quantized version [98]. The sequence of resulting
quantization codewords can be identified usingbits at
each stage of the trellis, namely, one bit to specify the path
in the trellis, and bits to select the desired quantization
level in the partition associated to that path. Variants of
TCQ have been reported in the literature for both scalar and
VQ [99]–[101]. More recently, a technique using wavelet
decomposition and TCQ was reported in [102] with superior

Fig. 34. Transitions in a stage of a trellis coder.

Table 1
Sample Set of Symbols to be Represented in Binary Code

results for progressive compression of still images. Results
are shown in Section X.

VII. CODEWORD ASSIGNMENT

A. Variable Length Coding

The message extraction phase described in the previous
sections results in a list of symbols. Codeword assignment
is the procedure of mapping the symbols to bit patterns,
suitable for transmission or storage. To illustrate the differ-
ent schemes presented in this section, we will refer to the
following example.

Suppose we get a collection of 100 quantized DCT
coefficients as our list of symbols. Let us assume only the
values shown in Table 1 occur in this collection, with the
indicated number of occurrences. The bit patterns assigned
to each symbol of the set are called the bit codes. A
straightforward conversion is to assign a fixed-length code
to each symbol. The length of the code depends on the
number of different values which appear in the set, also
referred to as the alphabet. For an alphabet of size, the
length of the code is In the example of Table
1 we have six values leading to a code length of three.
All symbols have to be defined as unique. An example
fixed length bit code is given in Table 1. Encoding our 100
symbols with this code results in 300 bits.

At this point of the compression of the image, it is
very likely that the number of symbols that represents
the input picture is the same as the original number of
values describing the pixels values. In case of segmentation-
based schemes, it might even be higher because of the
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description of the shape itself. The message extraction is
a map for input signal (pixels) onto a set of symbols
presenting statistics which the code assignment can exploit.

With the symbols statistics, e.g., the probability of oc-
currence of each symbol we could find a bit code
which is more efficient than the fixed-length code from
above [103]. The variable-length code shown in Table 1
represents the same set of 100 symbols on only 225 bits,
which is a gain of 25% over the previous scheme.

The measure of the goodness of a set of bit-codes is the
zeroth-order entropy, defined as

(56)

where represents the actual number of bits
necessary to encode the symboland its probability
of occurrence. The above definition gives the theoretical
lower bound where we get the optimal length for each of
the codes. When evaluating a bit code, one replaces this
length with the actual bit length of the code for all the
It can be shown that this function is minimum when the
code is optimum [104], and therefore enables the objective
comparison of two bit codes.

1) Adaptive Schemes:To retrieve the symbols from the
bit sequence, the decoder has to know the exact bit code
which has been used. For an efficient representation, the
bit code has been built on the statistics of the symbols.
Therefore, the decoder could also rebuild the same bit code
providing it gets the statistics. Some image-compression
standards simply use a predefined bit code based on sta-
tistics from a set of typical input images. As those might
change from image to image, or might change for different
parts of an image, the overhead of encoding the statistics
along with the symbols might well be compensated with
the better compactness of the bits representing the symbols.
One way to embed the statistical information is to start with
a predefined statistic, update it at each encoded symbol, and
use the new statistical information for the next symbol.
The decoder can then do the same procedure, updating
the statistical information at each decoded symbol. Such a
scheme is called adaptive. The overhead of transmitting the
statistical distribution of the symbols is spread over each
of them, as only the last one is coded with the bit code
most suited to the true statistics of the symbols. How to
update the probabilities of occurrence of each symbol can
be found in [105] and [106].

B. Runlength Coding

A first approach to reduce the amount of data is to
describe the sequence of symbols in term of bursts of the
same symbol (run) and the number of times this symbol is
found in a row (length), hence the name. A simple example
is given in rowA of Table 2. Note that the runs consist of
symbols from the original alphabet, whereas the lengths
are new symbols. Compression can be gained in assigning
a fixed-length code to each of the runs and lengths to be
encoded. Different codes have to be used for runs and

Table 2
Runlength Representation of a Sequence of Symbols

lengths, as the size of the original alphabet is independent
from the maximum burst length.

In real image compression algorithms [107]–[109], how-
ever, the runs and lengths are encoded into bits with
a variable-length scheme like a Huffman or arithmetic
coding. Two codes are used for runs and lengths, taking into
account their different statistical distributions. Furthermore,
the representation might slightly change if more precise
information is available about the original symbol statistics.
The quantization and ordering of the DCT coefficients in
[107] and [108] generally lead to long sequences of zeros,
interleaved with a few nonzero coefficients. Therefore,
the two-symbol representation is of type (nonzero coeffi-
cient; zero-sequence length). The corresponding symbols
are shown in rowB of Table 2.

Runlength is not a proper coding scheme as it only
produces another set of symbols, thus making it simply
a representation change. The type of statistical feature one
can exploit is that the input data consist of long bursts
of the same symbol value. In the worst case where any
two successive symbol values are different, the number of
symbols after the runlength is doubled.

C. Huffman Coding

The goal here is to give longer codes to less probable
symbols. Given an alphabet of sizewith symbols and
their probability of occurrence Huffman’s scheme
[110] of building the bit codes tries to minimize their
average length

length length (57)

For the encoded sequence of symbols to be uniquely
decodable, the bit codes have to form a prefix code,
i.e., no is a prefix of another one. In this case, at any
bit-code boundary in the encoded sequence of symbols only
one symbol will match, and the corresponding bits can be
removed from the bit stream to go to the next bit-code
boundary.

The bit-code construction discovered by Huffman [110]
satisfies the prefix-code constraint while leading to an
optimal code. The expected bit-length length comes
quite close to the lower bound given by the entropy of
the symbol sequence given in (56).

Fig. 35 illustrates how a Huffman code can be built. The
symbols and their probabilities have been taken from Table
1. The codes with the highest occurrence frequency are
expected to get shorter bit codes. As we are building a
prefix code, the length of the two longest codes must be

996 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999



Fig. 35. Huffman bit-code construction example.

equal. Otherwise, in removing the last bit of the longest
we would get another valid prefix code but with a shorter
length, rendering the first one nonoptimal. In general, one
can build a bit code in which the two longest codes differ
only in the last bit.

To get the bit codes for all the symbols, one can build
a tree in combining the two symbols with the lowest
into a single group symbol with frequency of occurrence
equal to the sum of the two Doing this recursively
on the obtained and leads to a binary tree, on which
we can put bit labels to each branch, as shown in the lower
part of Fig. 35. The bit code for a symbol of the alphabet is
then given by the bit label sequence of the branches when
going from the root to the leaf of the binary tree. The bit
codes for this example are shown in the last row of Table 1.
As mentioned before, this optimal Huffman code leads to a
25% reduction of the bits necessary to encode the symbol
sequence.

From this construction, it is clear that Huffman bit codes
have a minimum bit length of 1 bit per symbol. This
also gives a lower bound on the length of the produced
bit stream. In applications where symbol frequency of
occurrence may be far from uniformly distributed, this is
considered a drawback. Having an integer number of bits
per symbol helps synchronizing encoder and decoder and
results in a less error-prone system. However, having some
synchronization point on bit boundaries can be used to
detect the end of the list of encoded symbols, as “no bits
left” means “no symbols left.”

Bit boundary is also helpful in case of bit errors. For
this purpose, reversible Huffman codes are used, which
enable one to decode from the end of the bit stream.
Therefore, reversible Huffman codes are prefix and postfix
codes, which is not guaranteed in the above mentioned
construction of the bit codes (e.g., in Fig. 35 the code for
symbol 40 is a postfix of the code for symbol 60). The
group of symbols before the first bit error and the group
after the last bit error can therefore be decoded. For single
bit errors, one can come up with a scheme decoding all but
the corrupted symbols from the bit stream. This method is
used in the decoding in [111].

Fig. 36. Example of coding three symbols with an arithmetic
coder.

D. Arithmetic Coding

The main idea behind arithmetic coding is the encoding
of a number of arbitrary precision describing the sequence
of symbols of length Any other sequence of length

would lead to a different number. The precision of the
number will be the minimum to achieve this distinction
between sequences of the same lengths, and its binary rep-
resentation is the actual encoding of the string of symbols.

The construction and encoding of this number can be
done incrementally. Fig. 36 shows three steps of construc-
tion of the number comprised between zero and one. This
range is divided into slots whose size is proportional to

Therefore, numbers whose values lie in the slot for
symbol 0 represents sequences starting with this symbol.
For a sequence of a single symbol 0, any number in this
range will describe the sequence.

For further symbols, the range corresponding to the en-
coded symbol is again subdivided into slots corresponding
to the (possibly updated) The same process restarts,
until all symbols have been encoded and the range of values
for the number representing this sequences is known. In
the example of Fig. 36, the sequence {10} leads to the
number range [0.45, 0.71], the sequence {10, 0} to the
range [0.6346, 0.71], and the sequence {10, 0, 20} to the
range [0.651 188, 0.668 53].

Arithmetic coding has the interesting feature of being
able to get below the 1-bit-per-symbol limit. It there-
fore achieves better compression, especially for longer
sequences of symbols as their true frequency of occurrence
is far better represented in the model. A drawback of
this scheme, however, is that the number of symbols
cannot be embedded in the bit stream and therefore has
to be coded separately. Furthermore, the same number
represents sequences of any length sharing thefirst
symbols. Arithmetic coding is also much more sensible to
bit errors, as modifying a single bit might alter a great
number of symbols. Furthermore, backward decoding is
impossible.
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The implementation of an arithmetic coder leads one to
consider numbers of arbitrary precision. Those practical
issues, as well as an efficient solution, are given in [112]
and discussed further in [113].

VIII. R ATE ALLOCATION

A. Introduction

Image transformations or decompositions for coding pur-
poses have the goal to compact most of the energy of the
image in as few pixels as possible. For example, the purpose
of performing the DCT of image blocks is that most of the
information will be around DC, and hence many transform
coefficients corresponding to higher frequencies will have
values near zero. In SBC of images, the image is split into
frequency bands, and again one band will contain most of
the information, whereas other bands will have very little
energy. It is clear that the better the energy compaction the
better the coding performance will be. This criterion can
be defined in a precise way and is called unified coding
gain, which is the subject of Section VIII-B. Having split
the image into several subbands, another problem consists
of optimally assigning quantizers to these subbands, which
are to be coded at a given bit rate. This problem is called
bit allocation.

B. Unified Coding Gain

Coding gain is a performance measure coming from R-D
theory and is described in detail in [114]. This criterion de-
noted measures the performance of a block transform.
It is defined in [42]; formally

(58)

where are transform coefficient variances and is
the number of coefficients. This measure assumes that all
coefficients, as well as the original signal, have the same
type pdf [114]. This assumption is strictly correct only
for Gaussian sources. In the context where the sources are
natural images, it is not exactly satisfied. Nevertheless, it
is known from literature that this measure is consistent
with the observed experimental coding performance for
block transforms. The higher the gain the better the
performance of the transform.

1) Coding Gain of Orthonormal Filter Banks:In the spe-
cial case of orthonormal filter banks such as QMF’s or
CQF’s, the coding gain has been introduced by Akansuet
al. [115] and is given by

(59)

where is the variance of the signal in theth subband,
and is the number of subbands. This formula holds
for a uniform decomposition implying equal bandwidths.
It should be emphasized that this measure is only valid for
orthonormal filter banks. This criterion can be included in
the design of filter banks and has been done [29], [116]
with some success.

It is known that the restriction of the filter bank being
orthonormal is too strong. Good subband filters [44], [117]
are not included in this class. The generalization of the
criterion to arbitrary subband-like decompositions has been
published in [118] and is described in the following section.

2) Unified Coding Gain—General Case:Let us define
the parameters and by the following equations:

(60)

and

(61)

where is the variance of theth subband, is the
variance of the input signal, is the variance of the
reconstructed image, is the variance of the quantization
error of the th subband, and is the number of subbands.
Also, define the inverses of the downsampling factors by

where

(62)

Under the assumption of uncorrelated quantization errors,
is given by

(63)

with the number of coefficients of theth synthesis filter.
The unified coding gain [118] is then given by

(64)

which can be expressed as

(65)

Note that (65) simplifies to

(66)

for orthogonal filter banks and equal downsampling factors.
Equation (66) is similar to (59).
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Fı̆g. 37. R-D plot of all possible bit allocations in the case ofN
subbands andM admissible quantizers per subband.

C. Optimal Bit Allocation

The solution to optimal bit allocation was first proposed
by Westerinket al. [119]. Simplifications of that algorithm
have then been proposed in [120] and [121]. In bit alloca-
tion, as used in SBC, the objective is to optimally assign to
each subband its own quantizers, such that the total number
of bits equals a given quota and the overall distortion is
minimal.

In subband-like coding schemes, the bit allocation prob-
lem can be formulated as the problem to minimize the
overall quantization error

(67)

under the constraint of a given total bit rate

(68)

by assigning to each subband the appropriate quantizer
having a distortion and a rate It has to be emphasized
here that the only assumption made about the overall
distortion is that it can be written as a sum of the individual
distortions. However, no assumption about the nature of the
distortion measure is made. Moreover, the quantizers do
not necessarily have to be of the same nature either; each
subband can have its own distortion measure and its own
admissible quantizers.

The MSE will be used as a measure of the distortion,
although it is clear that it is not a good measure at all
for the quality of natural images when the human visual
system is to be evaluated.

1) R-D: In order to explain the problem, consider
subbands, each of them having admissible quantizers.
Let us imagine that for all different realizations, the
rate and the distortion are computed. The output of such a
simulation is illustrated in Fig. 37 in the case of subband
decomposition of the test image “Pepper.”

Fig. 38. The convex hull of a R-D plot.

The optimal points are those lying on the lower convex
hull on the plot of all possible bit allocations [122]. The
convex hull of the previous example is shown in Fig. 38.
Finding a convex hull of a set of points has been inves-
tigated in literature, and many fast algorithms have been
designed to solve the problem [123]. However, exhaustive
computation of all the combinations is not practical. The
desired algorithm should find the convex hull in a limited
number of computations. Such an algorithm has been
derived by Westerinket al. in [119].

Each bit allocation in the R-D plot is the result of
assigning a certain quantizer to each subband. Let us denote
the assignment of quantizer to subband by Using
this notation, each possible bit allocation is described by
the vector

(69)

Equations (67) and (68) can then be rewritten in the
following way:

(70)

(71)

A useful property satisfied by all the points on the convex
hull is that if we draw a line through neighboring points
on the convex hull, then all other points of the set must lie
on or at one side of this line. This is illustrated in Fig. 39.
Denote two points of the convex hull by the vectorsand
Moreover, define the line through these points by
This allows to define a convex hull by using the equation
of the line [119]. Thus, the convex hull is defined
as the set of points satisfying the following equation:

(72)

where is the slope of the line which can
be computed by

(73)
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Fig. 39. A line through two neighboring points on the convex
hull.

Now, by substituting (70) and (71) in (72) we obtain

(74)

The term does not depend on the running variable
and can be put into the sum. After having moved everything
to the left-hand side, the inequality becomes

(75)

This inequality is the basis of the optimal bit allocation
algorithm. It gives the relationship of two neighboring
points of the convex hull. Let us assume we know one
point of the convex hull, then the neighboring point can be
found by (75). Actually, there will be two solutions since
a point always has two neighbors. However, assume we
begin at maximal distortion and minimal rate, this point
will always lie on the convex hull. Then, we can iteratively
find the next point on the convex hull. Therefore, finding
the optimal bit allocations is equal to repeatedly finding
a vector that satisfies (75) for every vector where an
initial vector is given. When the desired bit rate or the
desired distortion is reached, the iteration can be stopped.

The sum of (75) will be larger or equal to zero if all
the terms are zero. The objective is to find a vectorsuch
that

(76)

Two different situations are obtained depending on the sign
of each resulting in one of the two
neighbors of

(77)

(78)

Let us consider the first case. The solution to (77) is [119]

(79)

where is defined by

(80)

Now, by substituting (70) and (71) into the definition of
and applying the definition of we obtain

(81)

Now, by using (79) we can modify (81) to

(82)

The key of the algorithm is in the solution of this equation.
The trivial solution is not considered, and the solution
is

for that for which is maximum

for all other (83)

Valid solutions of (83) are those satisfying the first condition
of (77), since we considered this case. This means con-
cretely that we are searching in the direction of decreasing
distortion This is the sought-after solution since very
low bit-rate coding of images is the objective. Therefore, it
is reasonable to begin the search with the lowest possible
bit rate. If the objective is very low distortion, then it is of
interest to begin the search with the lowest distortion, the
second condition of (77) has to be developed in a similar
way.
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Now, all the tools of the algorithm have been developed.
The algorithm can be summarized as follows.

1 Determine the initial bit allocation by assigning to
each sub-band an admissible quantizer that has
the lowest bit rate.

2
3
4
5 Calculate for each sub-bandall possible values of

with and find for each
sub-band the quantizer for which is
maximal.

6
7
8 Calculate the values for the subband to

which the new quantizer was assigned and find the
quantized for which is maximal.

9 Determine the sub-band for which the maximum
is the largest and assign to this

sub-band the quantizer for which this maximum
is obtained.

10 Calculate the new rate and the new distortion
11 The bit rate is sufficiently close to the

desired bit rate.

IX. I MAGE COMPRESSIONSTANDARDS

A. JPEG

JPEG [12], [124] has been created out of the collabora-
tion between the Consultative Committee on International
Telephone and Telegraph (CCITT) and the International
Standards Organization (ISO) to establish an international
standard for image compression. It is based on transform
coding using the DCT.

The original image is divided into 8 8 blocks which are
separately transformed. Note that the correlation between
different blocks is not exploited. After transformation, the
64 transform coefficients are quantized by different quan-
tization steps. These are specified by a quantization matrix
to take into account the different importance of each co-
efficient. Quantization steps for low-frequency coefficients
are smaller than those for high-frequency coefficients. The
coefficients are then source coded using either Huffman
coding or arithmetic coding.

The partitioning of the image into 8 8 blocks is not
a source of distortion by itself; however, the independent
quantizing of image blocks introduces a block effect. It is
especially visible on image regions with low local variance.

B. JPEG Lossless

In some applications, lossless compression of a still
image is of prime importance. For these applications, the
JPEG group has also proposed a lossless variant. It is based
on a completely different approach than the lossy algorithm
described previously [12]. It does not make use of any
transform. The redundancy between neighboring pixels is

removed by means of a simple prediction. The value of a
pixel is first predicted from one or several of its neighbors
(seven patterns can be used to predict the value of a pixel.)
The prediction error is coded by means of a Huffman code.
This compression technique achieves a modest compression
ratio of about 2 : 1 for natural images. It also suffers from
the lack of progressive decoding.

In fact, a bit stream generated by lossless mode of JPEG
cannot be decoded partially to allow user to have a glance
of the picture. The major advantage of lossless JPEG is its
extreme simplicity.

C. FlashPix

Some of the drawbacks of the current JPEG standard
have been resolved in the new format called FlashPix [125].
FlashPix is more of a new format than a new compression
scheme. In most imaging applications, the user does not
need to have an immediate access to a high resolution
of the whole image. Therefore, FlashPix stores several
resolutions of the same image. The user can choose one
of them for intermediate or final processing stages. With
this multiresolution format, the appropriate resolution can
be selected. On a low-resolution monitor, a low-resolution
image will be used, and when printing the final result,
a higher resolution version of the image is selected. In
FlashPix, each resolution level is compressed using the
JPEG algorithm.

D. MPEG-4

MPEG is working on a technology for the compression
of audio-visual data in multimedia environment. Video is
object based in MPEG-4 and normally deals with sequences
of images; however, its intracoding mode is a still image
compression scheme. The algorithm is very similar to that
of JPEG. The bounding box of the object to be coded
is divided into 16 16 macroblocks, containing four
blocks of 8 8 pixels. A DCT is performed separately on
each of the luminance and chrominance blocks in a given
macroblock, totaling six 8 8 blocks as the chrominance
is usually subsampled. Three types of macroblocks may be
encountered in a bounding box: those that lie completely
inside the object; those completely outside of the object; and
those that partially cover the object. Macroblocks that are
completely outside of the video object plane (VOP) are not
coded at all. Those macroblocks that lie completely inside
the object are coded using a conventional DCT scheme.
The 8 8 blocks of a macroblocks lying partially on the
VOP are first padded using repetitive padding prior to their
coding. Padding gives a value to pixels which are outside
of the boundary of the object in order to perform block
matching (e.g., for motion estimation and compensation).

The DCT coefficients are quantized, zig-zag scanned, and
entropy coded by run-length and Huffman methods. DCT
coefficients are split into two groups: zero frequency coef-
ficient (DC) and nonzero frequency coefficients (AC). Two
quantization techniques are available. The first technique,
similar to that of recommendation H.263 [109], uses a
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quantization parameter for the AC coefficients in the DCT.
This value may change based on a desired quality or a
targeted bit rate, on a macroblock by macroblock basis.
The second technique for quantization is similar to that
used in MPEG-2 [108], where the quantization step size
may vary depending on the position of the AC coefficient
in the frequency domain according to a quantization matrix.
Intra- and interquantization matrices can be defined and
can also be encoded in the bit stream. In all cases, the DC
coefficients are quantized with a step size equal to eight. For
a higher compression efficiency, the DC as well as the first
row or first column of the AC coefficients in the intracoded
macroblocks can be differentially coded using an adaptive
predictive method. The prediction value is selected as the
corresponding value of a neighboring block. The DC gradi-
ent between blocks is used to select the prediction neighbor-
hood. For objects of arbitrary shape, the shape information
is also coded by means of a bitmap coding approach.

X. COMPARATIVE RESULTS

A. Introduction

The complete coding schemes described in Section IX
can find several applications. In this section, two main
applications are discussed and results of the described
coding schemes are presented. Also, the functionalities of
the described coding schemes are discussed and illustrated.

The first category of applications is the lossy compression
of natural images at low to medium bit rates. This type of
compression is typically required for multimedia applica-
tions or for the distant access of images, such as displaying
images over Internet. In this type of compression, a visual
distortion of the image is accepted in order to obtain a
high compression ratio. This high compression ratio allows
either a small storage space for the image or a considerable
reduction of the transfer time to display the image from a
distant server. The critical issue in this type of compression
is the characteristic of the introduced distortion.

The second category of applications is the compression
of images requiring a lossless representation of the
reconstructed image. A lossless compression is often
required for medical applications, as a diagnostic must be
drawn on the original image. This type of compression
does not allow a high compression ratio; however, the
browsing capability is a very efficient way of saving
time when the pictures are located on a distant server.
Indeed, a lossless representation of the image is certainly
not necessary on all the images which are displayed, as
a lossy representation might suffice for browsing purpose.
This functionality can be very useful if the user likes
to visualize rapidly several pictures and deciding only
afterwards if he wants the full resolution of it. Therefore,
the possibility of progressively decoding a picture adds
a useful functionality to these compression schemes.

B. Lossy Compression

1) Introduction: The schemes described in Section IX
are used to assess their performance for lossy image com-

pression of natural images at medium bit rates. They
are compared to state-of-the-art techniques from literature.
They are: the EZW algorithm proposed by Shapiro [43];
the EPIC compression scheme proposed by Simoncelliet
al. [126], [127]; the AFB scheme proposed by Egger [44];
and the ASD compression [58], the TCQ method, and a
fractal-based encoding technique.

2) Image Quality Measure:The best instrument to mea-
sure image quality is the human eye. Unfortunately, visual
tests are expensive to perform, and other techniques to
measure an image quality are required.

The simplest way of measuring the coding distortion is
termed the peak signal-to-noise ratio (PSNR). This form of
measurement is also the most used in practice because of
its simplicity. It is defined as follows:

(84)

where is the variance of the error given by

(85)

where is a sample of the original image, is the same
sample of the reconstructed image, andis the number of
considered pixels. This measure does not model the human
visual system (HVS) [128] well. For example, it does not
reflect visual artifacts such as blockiness or ringing artifacts
in their real values. An image suffering from blocking
artifact enjoys a poor visual quality by definition since these
artifacts will render the coded image irksome to the end
user.

Intensive researches have been devoted to the definition
of an image distortion measure correlated with the HVS
[129], [128]. In order to measure the coding performance
of the different coding schemes, we will measure its PSNR
as well as its visual decibels, or vdB’s.

The unit vdB is a visual quality measure that takes into
account mechanisms of the HVS such as contrast sensitivity
(strong contrast may modify the perception of shapes),
masking (closely coupled stimuli in the spectral domain
can render each other imperceptible), and multichannel
structure (the same pattern is not perceived the same way if
moving or oriented differently). The measure is based on a
Gabor decomposition with both spatial and temporal filters,
leading to a perceptual decomposition of the input images
consisting of channels. These channels are then processed
by a masking evaluator, and the visual quality metric is then
a weighted sum of the distortion measures in each channel.
This last number is measured in vdB [129].

3) Coding Results:To assess the compression perfor-
mance of the different schemes, three different test images
have been compressed at rates where the distortion becomes
visible. Fig. 40 shows the picture “Lena” compressed at
0.10 bits/pixel with the different coding schemes. One can
observe the different distortions introduced by the coding
schemes. For the picture compressed with the international
standard JPEG, a strong blocking effect is introduced. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 40. “Lena” 512� 512 pixels, 0.10 bits/pixel: (a) original;
(b) JPEG; (c) EPIC; (d) EZW; (e) AFB; (f) ASD; (g) TCQ; and
(h) fractal.

Table 3
“Lena” 512� 512 Pixels, 0.10 bits/pixel; PSNR
and vdB of the Different Coding Schemes

two SBC schemes EPIC and EZW have a much better visual
quality than the picture compressed with JPEG; however,
they suffer from another artifact, the ringing effect. One can
clearly see this artifact around the contours of the image.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 41. “Pepper” 512� 512 pixels, 0.10 bits/pixel: (a) original;
(b) JPEG; (c) EPIC; (d) EZW; (e) AFB; (f) ASD; (g) TCQ; and
(h) fractal.

Although less annoying than the blocking effect, it disturbs
the overall quality of the coded image. The coding scheme
based on the linear subband decomposition using the AFB
filter bank clearly has less ringing effect in comparison to
the two other SBC schemes. The picture compressed with
the ASD enjoys a complete absence of ringing effect, but
with a less accurate texture rendition than the pictures coded
with the linear subband decompositions. Fractal-encoded
images preserve most sharp edges and do not present any
ringing of blocking effect, but they suffer from blurriness.
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Table 4
“Pepper” 512� 512 Pixels, 0.10 bits/pixel; PSNR
and vdB of the Different Coding Schemes

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 42. “Camera Man” 256� 256 pixels, 0.35 bits/pixel: (a)
original; (b) JPEG; (c) EPIC; (d) EZW coding scheme; (e) gen-
eralized EZW with AFB filters and noise reduction; (f) ASD; (g)
TCQ; and (h) fractals.

Compression with TCQ has a quite good preservation of
edges, but ringing effect is present and shaded areas have
stepwise color quantization. For comparison purposes, the
PSNR and the vdB are shown in Table 3. The pictures

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 43. Zoom of the “Camera man” 256� 256 pixels, 0.35
bits/pixel: (a) original; (b) JPEG; (c) EPIC; (d) EZW; (e) AFB; (f)
ASD; (g) TCQ; and (h) fractal.

having the highest PSNR are the coding scheme EZW and
the coding scheme based on the AFB’s. From a visual point
of view, however, the two best coding schemes are the
linear SBC scheme AFB and the adaptive coding scheme
based on the ASD. Among the two, it is difficult to clearly
state which one is better.

Fig. 41 shows the comparison on the picture “Pepper” at
0.10 bits/pixel. This picture has very few textured regions
but many sharp contours. The same artifacts as for the the

1004 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999



(a) (b) (c)

Fig. 44. The three medical test images: (a) “Sagittal,” of type MRI; (b) “Coronal,” of type MRI;
and (c) “Pelvis,” of type X ray.

(a) (b) (c)

Fig. 45. The three natural test images: (a) “Lena”; (b) “Pepper”; and (c) “Weather.”

picture “Lena” appear in all coding schemes. The JPEG
compression standard suffers from a strong blocking effect
while the linear SBC schemes suffer from a ringing effect.
One can clearly observe that there is a strong attenuation
of the ringing effect with the AFB coding scheme in
comparison with the other two classical SBC scheme. The
ASD enjoys a complete absence of ringing effect. Fractals
have the same blurring effect but keep edges clear, and
TCQ presents ringing effect while preserving edges quite
well. Table 4 compares the PSNR and the vdB of the coded
images. The scheme having the highest PSNR is the AFB
scheme while JPEG has the smallest PSNR. From a visual
point of view, however, the ASD has the best performance
and the AFB scheme comes out as second.

Fig. 42 shows the comparison on the picture “Camera
Man” at 0.35 bits/pixel. This image is characterized by
sharp contours around the man, by a large homogeneous re-
gion defining the sky, and by a textured region representing
the ground. One can clearly observe strong artifacts on the
contours of the man. There is a ringing effect with the linear
SBC scheme and TCQ, and a mosquito noise with the JPEG
scheme. No ringing effect occurs with the ASD scheme, nor
with fractals. A zoom of a region containing a sharp contour
is shown in Fig. 43, which emphasizes the good behavior of
the ASD on sharp contours. Fractals preserve the contours
quite well, but the gray values are not very accurate, as
show in the zoomed pictures. The sky is well represented
with all the coding schemes, except for JPEG, where a
strong blocking effect arises, and TCQ, which quantizes the
color scale in a visible way. On the other hand, in the region
depicting the ground, a good representation is obtained

with JPEG and the linear coding schemes, while the ASD
scheme exhibits a poor reconstruction in this region, and
fractals blurred out most of the details of the background.

C. Lossless Compression

In this section, two different methods for lossless com-
pressions are compared. The first one is based on a multires-
olution approach based on either the MSD decomposition
[130] or the rank-order polynomial decomposition (ROPD)
[131].

The second one is the lossless mode of the international
standard JPEG. The lossless mode of JPEG allows seven
different predictors. For each test image, the best predictor
is selected for the purpose of a fair comparison.

The possibility of data browsing gives another functional-
ity to the proposed coding schemes. This is achieved thanks
to the progressive bit stream of the lossless compression.
Results illustrating the browsing quality are shown and
comparisons are drawn between the two proposed decom-
positions.

Finally, the application of lossless compression of arbi-
trarily shaped regions is shown for ultrasound images. In
this type of image, only a part of the image is of medical
interest. Hence, only this part needs to be coded in a lossless
way. Results of this hybrid lossy/lossless compression are
reported.

Test images of different types have been used for compar-
ison purposes. Three medical images have been used. Two
of them come from medical resonance imaging (MRI) and
one is of type X ray. The three medical images are shown
in Fig. 44. Three images of a general type are compared as
well. They are shown in Fig. 45.
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Table 5
Compression Comparison of MSD, ROPD, JPEG, SPITH, and WTCQ

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 46. “Pelvis” 448� 448 pixels, lossless rate 2.32 bits/pixel. Each picture has been decoded
with only part of the bit stream: (a) with 1.3% of the bit stream, 24.29 dB; (b) 2.6%, 28.49 dB;
(c) 5.6%, 33.61 dB; (d) 11.2%, 38.58 dB; (e) 22.4%, 43.21 dB; (f) 44.8%, 46.33 dB; (g) 81.0%,
55.97 dB; and (h) original picture: 100%,1 dB. The full bar represents the amount of information
used to reproduce the image, the line represents the lossless rate, and the empty bar represents the
amount of information of the uncompressed original picture.

All test images have been compressed in a lossless way
with the two decompositions (MSD and ROPD) and with
the standard JPEG. The results are summarized in Table 5.
It is shown that for all the test images, the multiresolution
algorithms perform better than the standard JPEG. An
improvement of up to 53% is achieved for MRI type of
images. From the table one can also clearly see the marked
superiority of the ROPD in comparison with the MSD. For
natural images, an improvement of around 9% is achieved
with the ROPD in comparison with the standard JPEG.

1) Illustration of the Progressive Bit Stream:The ROPD
scheme has the functionality of having a completely
embedded bit stream. That means that a picture compressed
in a lossless way can be decompressed at any bit rate. In
order to recognize the picture, only a small part of the bit
stream is necessary. This is illustrated in Fig. 46 for the
X-ray image “Pelvis” using the ROPD. It is demonstrated
that only a small part of the bit stream is necessary to get
a good quality picture. With only 5% of the bit stream, the
picture is of good browsing quality. Fig. 47 shows the R-D
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Fig. 47. R-D curve of the progressive lossless schemes for the
picture “Pelvis.” (Full lines) ROPD, the arrow represents the
lossless rate. (Dotted lines) MSD, the arrow represents the lossless
rate. (Dash dotted line) JPEG lossless rate.

Fig. 48. Zoom of the R-D curve of the progressive lossless
schemes for low bit rates for the picture “Pelvis.” (Full line) ROPD.
(Dotted line) MSD.

curve of the two multiresolution coding schemes. It can be
observed on the figure that the quality is increasing with
an increasing bit rate. Also, as expected, the PSNR has to
tend to at the lossless bit rate. The lossless rates are
represented in the graph by the two arrows. One can see
that the ROPD is superior to the MSD at any bit rate. At
low bit rates the improvement with the ROPD is around
3 dB. This is illustrated in Fig. 48, where a zoom of the
previous figure is shown. That means that the ROPD has
a better lossless rate than the MSD but also has a much
better browsing quality if decompressing only part of the
bit stream.

In Fig. 49, the browsing quality of the progressive loss-
less coding is compared to the AFB coding scheme. It
can be observed that the linear SBC scheme has a better

Fig. 49. R-D curve of the progressive lossless compression in
comparison to a classical lossy subband compression. The arrow
represents the lossless bit rate and is 1.69 bits/pixel.

Fig. 50. R-D curve of the progressive lossless compression in
comparison to a classical lossy subband compression at low bit
rates.

performance at low bit rates than the lossless coding
scheme. At high rates, however, one can see that the
lossless coding scheme takes advantage of the fact that it
will become lossless at a certain rate and shows a better
performance than the lossy linear coding scheme. Fig. 50
shows a zoom of the R-D curve at low bit rates. One can
observe that a loss of around 1 dB occurs in comparison
to the linear SBC scheme. This loss represents the cost of
the lossless functionality.

XI. CONCLUSIONS

The goal of Part I of this twofold paper has been to review
state of the art still image coding techniques. The major
building blocks of image coding schemes are overviewed.

All image-compression schemes rely on two major pro-
cessing steps: message extraction and codeword assign-
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ment. Message-extraction methods have been classified
into predictive, fractal, block transform, and multiresolution
approaches. Predictive methods are suited to lossless and
low-compression applications. Fractals take advantage of
self similarities in images. Transform-based coding schemes
achieve higher compression ratios for lossy compression but
suffer from blocking artifacts at high compression ratios.
Multiresolution approaches are suited for lossy as well as
for lossless compression. At lossy high-compression ratios,
the typical artifact in the reconstructed images is the ringing
effect.

New applications in a multimedia environment have
raised the need of new functionalities of the image cod-
ing schemes. For that purpose, second-generation coding
techniques segment the image into semantically meaningful
parts. Therefore, parts of these methods have been adapted
to work for arbitrarily shaped regions. In order to add
another functionality, which is the progressive transmission
of the information, specific quantization algorithms must be
defined. A final step in the compression scheme is achieved
by the codeword assignment.

Coding results have been presented which compare state-
of-the-art techniques for lossy and lossless compression.
The different artifacts for the lossy techniques are high-
lighted. Block-based transform coding suffers mainly from
the so-called blocking artifact. It is shown that the human
visual system is especially sensitive to this kind of image
distortion. While they do not suffer from any blocking
artifact, SBC schemes introduce another distortion called
ringing effect. It is shown that this artifact can be strongly
reduced by an appropriate design of the filter bank.

Results of lossless compression are also reported. It is
shown that multiresolution approaches can greatly out-
perform predictive methods such as used in the standard
JPEG. Furthermore, they allow the definition of additional
functionalities, such as progressive transmission. It is shown
that only 5% of the lossless bit stream is necessary to
reconstruct a good browsing quality of an image.
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[25] M. Loève, “FIR and IIR analysis/synthesis systems for sub-
band image coding, chapter 3,” inProcessus Stochastiques et
Mouvement Brownien, P. Evy, Ed. Paris, France: Hermann,
1948.

[26] A. K. Jain, “A Fast Karhunen Lo`eve transform for a class of
random processess,”IEEE Trans. Commun., vol. COM-24, pp.
1023–1029, Sept. 1976.

[27] M. J. Narasimha and A. M. Peterson, “On the computation
of the discrete cosine transform,”IEEE Trans. Commun., vol.
COM-26, pp. 934–936, June 1978.

[28] W. B. Pennebaker and J. L. Mitchell,JPEG Still Image Data
Compression Standard. New York: Van Nostrand Reinhold,
1993.

[29] H. Caglar, Y. Liu, and N. Akansu, “Optimal PR-QMF de-
sign for subband image coding,”J. Visual Commun. Image
Representation, vol. 4, no. 4, pp. 242–253, Sept. 1993.

[30] R. E. Crochiere, S. A. Webber, and F. L. Flanagan, “Digital

1008 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999



coding of speech in sub-bands,”Bell Syst. Tech. J., vol. 55, no.
8, pp. 1069–1085, 1976.

[31] M. J. T. Smith and T. P. Barnwell, “Exact reconstruction tech-
niques for tree structured subband coders,”IEEE Trans. Acous-
tics, Speech, Signal Processing, vol. ASSP-34, pp. 434–441,
June 1986.

[32] P. P. Vaidyanathan, “Quadrature mirror filter bank,-band ex-
tensions and perfect reconstruction technique,”IEEE Acoustics,
Speech, Signal Processing Mag., vol. 4, pp. 1035–1037, July
1987.

[33] , “Theory and design of channel maximally decimated
QMF with arbitrary , having perfect reconstruction property,”
IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-
35, pp. 476–496, Apr. 1987.

[34] M. Vetterli and D. Le Gall, “Perfect reconstruction FIR filter
banks: Some properties and factorization,”IEEE Trans. Acous-
tics, Speech, Signal Processing, vol. 37, pp. 1057–1071, July
1989.

[35] M. Vetterli, “Multi-dimensional subband coding: Some theory
and algorithms,”IEEE Trans. Acoustics, Speech, Signal Pro-
cessing, vol. ASSP-32, pp. 97–112, Apr. 1984.

[36] J. Woods and S. O’Neil, “Subband coding of images,”IEEE
Trans. Acoustics, Speech, Signal Processing, vol. ASSP-34, pp.
1278–1288, Oct. 1986.

[37] J. D. Johnston, “A filter family designed for use in quadrature
mirror filter banks,” inProc. Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP), Apr. 1980, pp. 291–294.

[38] K. Nayebi, T. P. Barnwell, and M. J. T. Smith, “Time do-
main conditions for exact reconstruction in analysis/synthesis
systems based on maximally decimated filter banks,” inProc.
Southeastern Symp. System Theory, Mar. 1987, pp. 498–503.

[39] , “Time domain filter bank analysis: A new design theory,”
IEEE Trans. Signal Processing, vol. 40, pp. 1412–1429, June
1992.

[40] P. P. Vaidyanathan, T. Q. Nguyen, Z. Doganata, and T. Sara-
maki, “Improved technique for design of perfect reconstruc-
tion FIR QMF banks with lossless polyphase matrices,”IEEE
Trans. Acoustics, Speech, Signal Processing, vol. ASSP-27, pp.
1042–1056, July 1979.

[41] D. Field, “Relation between the statistics of natural images and
the response properties of cortical cells,”J. Opt. Soc. Amer.,
vol. 4, no. 12, pp. 2379–2394, Dec. 1987.

[42] A. N. Akansu, R. A. Haddad, and H. Caglar, “The binomial
QMF-wavelet transform for multiresolution signal decomposi-
tion,” IEEE Trans. Signal Processing, vol. 41, pp. 13–19, Jan.
1993.

[43] J. M. Shapiro, “Embedded image coding using zerotrees of
wavelet coefficients,”IEEE Trans. Signal Processing, vol. 41,
pp. 3445–3462, Dec. 1993.

[44] O. Egger and W. Li, “Subband coding of images using asym-
metrical filter banks,”IEEE Trans. Image Processing, vol. 4,
pp. 478–485, Apr. 1995.

[45] W. Li and O. Egger, “Improved subband coding of images using
unequal length PR filters,” inProc. 14th Gretsi Symp. Signal
and Image Processing, Juan-les-Pins, France, Sept. 1993, pp.
451–454.

[46] R. M. Haralick, X. Zhuang, and J. Lee, “The digital morpholog-
ical sampling theorem,”IEEE Trans. Acoustic, Speech, Signal
Processing, vol. 37, pp. 2067–2089, Dec. 1989.

[47] M. Kunt, Traitement num´erique des signaux, Trait´e d’Electricité
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