2,330 research outputs found

    Optimal batch service of a polling system under partial information

    Full text link
    We consider the optimal scheduling of an infinite-capacity batch server in a N -node ring queueing network, where the controller observes only the length of the queue at which the server is located. For a cost criterion that includes linear holding costs, fixed dispatching costs, and linear service rewards, we prove optimality and monotonicity of threshold scheduling policies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45841/1/186_2005_Article_BF01193939.pd

    Delay analysis of a two-class batch-service queue with class-dependent variable server capacity

    Get PDF
    In this paper, we analyse the delay of a random customer in a two-class batch-service queueing model with variable server capacity, where all customers are accommodated in a common single-server first-come-first-served queue. The server can only process customers that belong to the same class, so that the size of a batch is determined by the length of a sequence of same-class customers. This type of batch server can be found in telecommunications systems and production environments. We first determine the steady state partial probability generating function of the queue occupancy at customer arrival epochs. Using a spectral decomposition technique, we obtain the steady state probability generating function of the delay of a random customer. We also show that the distribution of the delay of a random customer corresponds to a phase-type distribution. Finally, some numerical examples are given that provide further insight in the impact of asymmetry and variance in the arrival process on the number of customers in the system and the delay of a random customer

    Analysis of a batch-service queue with variable service capacity, correlated customer types and generally distributed class-dependent service times

    Get PDF
    Queueing models with batch service have been studied frequently, for instance in the domain of telecommunications or manufacturing. Although the batch server's capacity may be variable in practice, only a few authors have included variable capacity in their models. We analyse a batch server with multiple customer classes and a variable service capacity that depends on both the number of waiting customers and their classes. The service times are generally distributed and class-dependent. These features complicate the analysis in a non-trivial way. We tackle it by examining the system state at embedded points, and studying the resulting Markov Chain. We first establish the joint probability generating function (pgf) of the service capacity and the number of customers left behind in the queue immediately after service initiation epochs. From this joint pgf, we extract the pgf for the number of customers in the queue and in the system respectively at service initiation epochs and departure epochs, and the pgf of the actual server capacity. Combined with additional techniques, we also obtain the pgf of the queue and system content at customer arrival epochs and random slot boundaries, and the pgf of the delay of a random customer. In the numerical experiments, we focus on the impact of correlation between the classes of consecutive customers, and on the influence of different service time distributions on the system performance. (C) 2019 Elsevier B.V. All rights reserved

    A Lightweight, Non-intrusive Approach for Orchestrating Autonomously-managed Network Elements

    Full text link
    Software-Defined Networking enables the centralized orchestration of data traffic within a network. However, proposed solutions require a high degree of architectural penetration. The present study targets the orchestration of network elements that do not wish to yield much of their internal operations to an external controller. Backpressure routing principles are used for deriving flow routing rules that optimally stabilize a network, while maximizing its throughput. The elements can then accept in full, partially or reject the proposed routing rule-set. The proposed scheme requires minimal, relatively infrequent interaction with a controller, limiting its imposed workload, promoting scalability. The proposed scheme exhibits attracting network performance gains, as demonstrated by extensive simulations and proven via mathematical analysis.Comment: 6 pages 7, figures, IEEE ISCC'1

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    A survey on performance analysis of warehouse carousel systems

    Get PDF
    This paper gives an overview of recent research on the performance evaluation and design of carousel systems. We discuss picking strategies for problems involving one carousel, consider the throughput of the system for problems involving two carousels, give an overview of related problems in this area, and present an extensive literature review. Emphasis has been given on future research directions in this area
    • …
    corecore