99 research outputs found

    An Optimal Decision Procedure for MPNL over the Integers

    Get PDF
    Interval temporal logics provide a natural framework for qualitative and quantitative temporal reason- ing over interval structures, where the truth of formulae is defined over intervals rather than points. In this paper, we study the complexity of the satisfiability problem for Metric Propositional Neigh- borhood Logic (MPNL). MPNL features two modalities to access intervals "to the left" and "to the right" of the current one, respectively, plus an infinite set of length constraints. MPNL, interpreted over the naturals, has been recently shown to be decidable by a doubly exponential procedure. We improve such a result by proving that MPNL is actually EXPSPACE-complete (even when length constraints are encoded in binary), when interpreted over finite structures, the naturals, and the in- tegers, by developing an EXPSPACE decision procedure for MPNL over the integers, which can be easily tailored to finite linear orders and the naturals (EXPSPACE-hardness was already known).Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Decidability of the interval temporal logic ABBar over the natural numbers

    Get PDF
    In this paper, we focus our attention on the interval temporal logic of the Allen's relations "meets", "begins", and "begun by" (ABBar for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties,such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for ABBar over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the proble

    Crossing the Undecidability Border with Extensions of Propositional Neighborhood Logic over Natural Numbers

    Get PDF
    Propositional Neighborhood Logic (PNL) is an interval temporal logic featuring two modalities corresponding to the relations of right and left neighborhood between two intervals on a linear order (in terms of Allen's relations, meets and met by). Recently, it has been shown that PNL interpreted over several classes of linear orders, including natural numbers, is decidable (NEXPTIME-complete) and that some of its natural extensions preserve decidability. Most notably, this is the case with PNL over natural numbers extended with a limited form of metric constraints and with the future fragment of PNL extended with modal operators corresponding to Allen's relations begins, begun by, and before. This paper aims at demonstrating that PNL and its metric version MPNL, interpreted over natural numbers, are indeed very close to the border with undecidability, and even relatively weak extensions of them become undecidable. In particular, we show that (i) the addition of binders on integer variables ranging over interval lengths makes the resulting hybrid extension of MPNL undecidable, and (ii) a very weak first-order extension of the future fragment of PNL, obtained by replacing proposition letters by a restricted subclass of first-order formulae where only one variable is allowed, is undecidable (in contrast with the decidability of similar first-order extensions of point-based temporal logics)

    Maximal decidable fragments of Halpern and Shoham's modal logic of intervals

    Get PDF
    In this paper, we focus our attention on the fragment of Halpern and Shoham's modal logic of intervals (HS) that features four modal operators corresponding to the relations ``meets'', ``met by'', ``begun by'', and ``begins'' of Allen's interval algebra (AAbarBBbar logic). AAbarBBbar properly extends interesting interval temporal logics recently investigated in the literature, such as the logic BBbar of Allen's ``begun by/begins'' relations and propositional neighborhood logic AAbar, in its many variants (including metric ones). We prove that the satisfiability problem for AAbarBBbar, interpreted over finite linear orders, is decidable, but not primitive recursive (as a matter of fact, AAbarBBbar turns out to be maximal with respect to decidability). Then, we show that it becomes undecidable when AAbarBBbar is interpreted over classes of linear orders that contains at least one linear order with an infinitely ascending sequence, thus including the natural time flows N, Z, Q, and R

    Maximal decidable fragments of Halpern and Shoham's modal logic of intervals

    Get PDF
    In this paper, we focus our attention on the fragment of Halpern and Shoham's modal logic of intervals (HS) that features four modal operators corresponding to the relations ``meets'', ``met by'', ``begun by'', and ``begins'' of Allen's interval algebra (AAbarBBbar logic). AAbarBBbar properly extends interesting interval temporal logics recently investigated in the literature, such as the logic BBbar of Allen's ``begun by/begins'' relations and propositional neighborhood logic AAbar, in its many variants (including metric ones). We prove that the satisfiability problem for AAbarBBbar, interpreted over finite linear orders, is decidable, but not primitive recursive (as a matter of fact, AAbarBBbar turns out to be maximal with respect to decidability). Then, we show that it becomes undecidable when AAbarBBbar is interpreted over classes of linear orders that contains at least one linear order with an infinitely ascending sequence, thus including the natural time flows N, Z, Q, and R

    Decidability and complexity of the fragments of the modal logic of Allen's relations over the rationals

    Get PDF
    Interval temporal logics provide a natural framework for temporal reasoning about interval structures over linearly ordered domains, where intervals are taken as first-class citizens. Their expressive power and computational behaviour mainly depend on two parameters: the set of modalities they feature and the linear orders over which they are interpreted. In this paper, we consider all fragments of Halpern and Shoham's interval temporal logic hs with a decidable satisfiability problem over the rationals, and we provide a complete classification of them in terms of their expressiveness and computational complexity by solving the last few open problems

    Bounded variability of metric temporal logic

    Get PDF

    Undecidability of the Logic of Overlap Relation over Discrete Linear Orderings

    Get PDF
    5The validity/satisfiability problem for most propositional interval temporal logics is (highly) undecidable, under very weak assumptions on the class of interval structures in which they are interpreted. That, in particular, holds for most fragments of Halpern and Shoham’s interval modal logic HS. Still, decidability is the rule for the fragments of HS with only one modal operator, based on an Allen’s relation. In this paper, we show that the logic O of the Overlap relation, when interpreted over discrete linear orderings, is an exception. The proof is based on a reduction from the undecidable octant tiling problem. This is one of the sharpest undecidability result for fragments of HS.openopenBRESOLIN Davide; DELLA MONICA Dario; GORANKO Valentin; MONTANARI Angelo; SCIAVICCO GuidoBresolin, Davide; DELLA MONICA, Dario; Goranko, Valentin; Montanari, Angelo; Sciavicco, Guid

    Bounded variability of metric temporal logic

    Get PDF
    Deciding validity of Metric Temporal Logic (MTL) formulas is generally very complex and even undecidable over dense time domains; bounded variability is one of the several restrictions that have been proposed to bring decidability back. A temporal model has bounded variability if no more than v events occur over any time interval of length V, for constant parameters v and V. Previous work has shown that MTL validity over models with bounded variability is less complex—and often decidable—than MTL validity over unconstrained models. This paper studies the related problem of deciding whether an MTL formula has intrinsic bounded variability, that is whether it is satisfied only by models with bounded variability. The results of the paper are mainly negative: over dense time domains, the problem is mostly undecidable (even if with an undecidability degree that is typically lower than deciding validity); over discrete time domains, it is decidable with the same complexity as deciding validity. As a partial complement to these negative results, the paper also identifies MTL fragments where deciding bounded variability is simpler than validity, which may provide for a reduction in complexity in some practical cases
    • …
    corecore