
Bounded variability of metric temporal logic

Downloaded from: https://research.chalmers.se, 2022-11-19 14:33 UTC

Citation for the original published paper (version of record):
Furia, C., Spoletini, P. (2017). Bounded variability of metric temporal logic. Annals of Mathematics
and Artificial Intelligence, 80(3-4): 283-316. http://dx.doi.org/10.1007/s10472-016-9532-8

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Ann Math Artif Intell (2017) 80:283–316
DOI 10.1007/s10472-016-9532-8

Bounded variability of metric temporal logic

Carlo A. Furia1 ·Paola Spoletini2

Published online: 13 December 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Deciding validity of Metric Temporal Logic (MTL) formulas is generally very
complex and even undecidable over dense time domains; bounded variability is one of the
several restrictions that have been proposed to bring decidability back. A temporal model
has bounded variability if no more than v events occur over any time interval of length V ,
for constant parameters v and V . Previous work has shown that MTL validity over models
with bounded variability is less complex—and often decidable—than MTL validity over
unconstrained models. This paper studies the related problem of deciding whether an MTL
formula has intrinsic bounded variability, that is whether it is satisfied only by models with
bounded variability. The results of the paper are mainly negative: over dense time domains,
the problem is mostly undecidable (even if with an undecidability degree that is typically
lower than deciding validity); over discrete time domains, it is decidable with the same
complexity as deciding validity. As a partial complement to these negative results, the paper
also identifies MTL fragments where deciding bounded variability is simpler than validity,
which may provide for a reduction in complexity in some practical cases.

Keywords Metric temporal logic · Bounded variability · Decidability and complexity

The first author’s work was partially done at the Chair of Software Engineering of ETH Zurich,
Switzerland. A preliminary version of this work appeared in the 21st International Symposium on
Temporal Representation and Reasoning (TIME) in 2014 [23].

� Carlo A. Furia
furia@chalmers.se

Paola Spoletini
pspoleti@kennesaw.edu

1 Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

2 Department of Software Engineering and Game Development, Kennesaw State University,
Kennesaw, GA, 30144, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-016-9532-8&domain=pdf
http://orcid.org/0000-0003-1040-3201
mailto:furia@chalmers.se
mailto:pspoleti@kennesaw.edu

284 C. A. Furia, P. Spoletini

Mathematics Subject Classification (2010) 03B70 · 03B44

1 Reaping the benefits of bounding variability

In mathematical logic, the fundamental decision problem is validity: establishing whether
an arbitrary formula of the logic is satisfied by all possible models. Expressive logics whose
validity problem is decidable, with tractable complexity, are powerful tools for the rigorous
analysis of systems: verifying that system behavior satisfies a property amounts to check-
ing the validity of the implication S ⇒ P , where S and P are formulas of the logic that
formalize system and property.

For the analysis of real-time systems, whose behavior depends on the precise times in
which events occur, real-time logics are the notation of choice. A popular real-time logic is
the Metric Temporal Logic [3, 31], which is both expressive and intuitive. Unfortunately,
validity is generally undecidable for MTL over dense time domains—precisely the most
valuable semantics from the point of view of real-time modeling since a dense time domain
can naturally accommodate truly asynchronous events over time. The only way out of this
predicament is restricting the expressive power of MTL in exchange for a decidable validity
problem.

One approach to restricting MTL expressiveness consists in introducing semantic con-
straints. We pursued this approach in previous work [18, 21, 22], where we showed that
validity of MTL over dense time becomes decidable under the restriction of bounded vari-
ability. A nonnegative integer v and a time duration V identify all models with variability
bounded by v/V : models where there are no more than v events (such as change of state)
over any interval of length V . Models with bounded variability can still capture asyn-
chronous behavior (events that are arbitrarily close in time) if the time domain remains
dense. As we recall in Section 4, validity for MTL over dense time is fully decidable for
models with variability bounded by v/V . Even over discrete time, where MTL is decidable
without restrictions, deciding validity over models with bounded variability is often simpler
in practice than the general case.

For an approach based on bounded variability to work satisfactorily in verification,
it remains to be established whether models with bounded variability provide a suffi-
ciently faithful formalization of system behavior. In some domains bounded variability
naturally emerges as a physical property of the system being modeled. For example,
the behavior of a digital event counter (such as the counter of ionization events in a
Geiger-Müller tube) whose minimum time resolution is 0.01 seconds is captured without
loss of precision whatsoever by models with variability bounded by 100 events over 1
second.

Guaranteeing that bounded variability is intrinsic may not be always feasible. A more
analytical approach turns the issue of determining whether all models of an MTL formula
have bounded variability into a decision problem distinct from validity. Given v and V ,
and an MTL formula φ, the bounded variability problem asks whether every model of φ

has variability bounded by v/V . If the bounded variability problem is decidable, we can
approach the study of validity as follows.

1. Build an MTL formula φ that formalizes the intended behavior under analysis.
2. Check whether φ has intrinsic bounded variability—that is, whether every model of φ

has variability bounded by v/V .

Bounded variability of metric temporal logic 285

3. If the check in (2) is successful, analyze the validity of φ using the decidable algorithms
for models with bounded variability. This is simpler than deciding validity for general
models, and it does not miss any possible behavior.

4. If the check in (2) is unsuccessful, then be aware that the bounded variability con-
straint misses some possible behaviors, and hence a different, possibly more powerful,
approach to analyzing φ is needed.

For this approach to work, the bounded variability problem has to be decidable and has to
have a lower complexity than the validity problem for MTL under the same interpretation.

The main contribution of this paper is an analysis of the decidability and complexity
of the bounded variability problem for MTL under various interpretations, including both
discrete and dense time domains. The analysis leverages a connection between the bounded
variability problem and various decision problems involving overflows of counters in a
variant of Minsky’s counter machines [38]. The results, summarized in Table 1, are mainly
negative: the bounded variability problem is generally undecidable over dense time, whereas
it is decidable over discrete time but as complex as validity. These results denote major
hurdles to pursuing the idea of finding formulas with bounded variability in order to use
simpler algorithms for validity: the complexity of solving the bounded variability problem
(step 2 above) dominates and nullifies the benefits of using simplified algorithms.

As a partial converse of these negative results, Section 7 identifies two MTL fragments,
one over discrete time and one over dense time, for which the above approach is feasible.
The bounded variability problem is fully decidable for formulas in such “bounded friendly”
fragments, which may provide enough expressiveness to formalize system behavior in
interesting special cases.

Outline Section 1.1 summarizes related work in real-time formalisms, focusing on the
restrictions—syntactic and semantic—that have been proposed to obtain a decidable valid-
ity problem. Section 2 formally introduces fundamental notions used throughout the paper,
including those of timed word and bounded variability. Section 3 presents MTL in detail:
its syntax (Section 3.1), its semantics under different interpretations (Section 3.2), and the
decidability and complexity of validity under each interpretation (Section 3.3). Section 4
summarizes and combines our previous work on the decidability and complexity of MTL
validity over models with bounded variability—for discrete as well as dense time domain.
Section 5 recalls the definition of nondeterministic n-counter machines, introduces three
decision problems involving counter overflows (Section 5.1) and studies their complexity,

Table 1 Overview of the main results of this paper; all complexity bounds in the table are tight, that is the
problems are complete for the given complexity classes

TIME DOMAIN VALIDITY PROBLEM BOUNDED VARIABILITY PROBLEM

decidability complexity decidability complexity

discrete decidable EXPSPACE decidable EXPSPACE

dense (continuous) undecidable �1
1 undecidable coRE

The bounded variability problem for MTL is undecidable over dense time (with continuous semantics),
but its complexity (coRE-complete) is lower than the complexity of the validity problem under the same
semantics (�1

1 -complete); the bounded variability problem for MTL is decidable over discrete time, and its
complexity (EXPSPACE-complete) is the same as the complexity of the validity problem under the same
semantics. See Tables 2 and 4 for details

286 C. A. Furia, P. Spoletini

and illustrates the connection between MTL and such counter machines (Section 5.2).
Section 6 presents the main results of the paper. After formally defining two variants of the
bounded variability problem (Section 6.1), it proves the complexity of the two problems
for various MTL semantics over both dense (Section 6.2) and discrete (Section 6.3) time.
Section 7 provides two examples of MTL fragments, again over both discrete (Section 7.1)
and dense (Section 7.2) time, for which the bounded variability problem is tractable—
fragments that we dub “bounded friendly”. Section 8 concludes with a brief overview of the
results and a summary of open problems that belong to future work.

1.1 Related work

The amount of work on temporal logic and its decidability problems is staggering, and
stretching back over four decades [15, 17]. This section focuses on the research that is most
directly related to the paper’s techniques and results, and in particular on the logic MTL and
its variants.

1.1.1 Linear temporal logic

Linear-temporal logic (LTL)—introduced in computer science by Pnueli [50]—is arguably
the most widely known kind of temporal logic. The expressiveness, decidability, and com-
plexity properties of LTL are remarkably robust with respect to variants in the underlying
semantics—in particular whether time is a discrete or dense set. The bulk of the research
has focused on the infinite discrete-time semantics of LTL, where the expressiveness [25]
and PSPACE-completeness [59] of LTL are well known, and where the correspondence
with Büchi automata [60, 61] supported numerous theoretical and practical developments.
However, most of the results over discrete time generalize to other semantics; for example,
Kamp’s seminal work on the expressive completeness of LTL [30] applies to all Dedekind-
complete sets (including the real numbers) as time domain, and Reynolds extended the
PSPACE-completeness result to the reals [54]. The complexity of LTL fragments and vari-
ants has also been extensively surveyed [5, 12, 33]. Some of these latter results are recalled
and used in Section 7.

1.1.2 Metric temporal logic

The picture is considerably more fragmented if we consider temporal logics for real time,
that is equipped with a metric on time. Syntactically, the most natural extension of LTL to
real time is the Metric Temporal Logic (MTL), which is the focus on the present paper.
MTL was introduced by Koymans [31] as a metric first-order temporal logic supporting
unrestricted quantification over time variables. It was Alur and Henzinger’s subsequent
work [3], however, that popularized the propositional subset of Koyman’s MTL; since their
seminal work, “MTL” refers to this propositional subset, where the temporal operators
of LTL are decorated with quantitative bounds on time in the form of intervals. As we
recall in Section 3.3, Alur and Henzinger showed that MTL is fully decidable over discrete
time domains, where it boils down to an exponentially succinct version of LTL. They also
showed that MTL becomes highly undecidable over dense time domains—in particular, the
nonnegative reals.

Decidable MTL fragments The undecidability proof of MTL over dense time opened
a new line of research consisting in devising restrictions that get back decidability while

Bounded variability of metric temporal logic 287

preserving as much expressive power as possible. A number of works targeted syntactic
restrictions, that is they considered fragments of all MTL formulas. A notable result in this
line of work is the logic MITL [2], which prohibits punctual (or singular) intervals in tem-
poral operators. With this restriction, MITL is fully decidable and EXPSPACE-complete,
matching the complexity of MTL over discrete time; the original automata-based decision
procedure [2] was simplified in a later series of works [34–36, 42]. Bouyer et al. showed
different syntactic restrictions to MTL that achieve decidability (typically with EXPSPACE
complexity) while allowing punctual intervals [6]; for example, the MTL fragment where
all time intervals are bounded, that is have integer endpoints, is fully decidable.

Hirshfeld and Rabinovich approached the problem of devising decidable dense-time tem-
poral logics from a different angle. Instead of extending the automata-theoretic methods that
are mostly used over discrete time, they revisited the connection between temporal logic
and monadic logic [24] and came up with a fully-decidable dense-time logic [26] which is
as expressive as MITL. Their approach also paved the way for pushing the expressiveness
of the logic while preserving decidability [27, 51].

Ouaknine and Worrell also pushed the limits of MTL decidability over dense time, by
proving that full MTL is decidable under a specific dense-time semantics known as the
finite-word pointwise semantics [45] (see Section 3.2 for a definition). Their result has
little practical impact, since MTL is just “barely” decidable over this semantics (that is, it
is decidable but has daunting non-primitive recursive complexity), but was quite surprising
and convincingly showed that the properties of MTL over dense time are considerably more
complicated than over discrete time [29].

Decidable semantic restrictions to MTL Ouaknine andWorrell also considered seman-
tic restrictions to MTL over dense time, most notably the restriction to bounded time, where
there is a finite known upper bound T on the maximum time of occurrence of events in any
behavior. Time-boundedMTL validity is decidable [43, 47], with the—usual, for dense-time
verification—complexity of EXPSPACE.

This paper considers a different kind of semantic restriction, called bounded variability,
which limits the maximum number of events that can occur within a time unit. Wilke first
studied bounded variability for timed automata and monadic logic [62]; his results imply
the decidability of MTL over dense time with bounded variability. Previous work of ours
studied the complexity of MTL with bounded variability [18, 20], and extended some of
the techniques to the case of discrete time [21, 22], where we showed how the LTL validity
problem can be simplified under the assumption that only v < V change events happen
every V discrete time steps. Section 4 recalls in detail these works of ours, and connects
them to the present paper’s results.

1.1.3 Other real-time logics

Bounded variability for other notations Bounded variability can be considered a nat-
ural semantic restriction over dense time, in that it accommodates asynchrony (events can
occur arbitrarily close in time) while constraining the maximum “speed” or “density” of
state-change events. In fact, it has been considered for formalisms other than MTL, includ-
ing timed automata [62], duration calculus [16], and different kinds of real-time temporal
logics [55, 56]

Interval temporal logic The study of real-time is somewhat less developed in tempo-
ral logics not based on LTL, and especially in temporal logics based on intervals rather

288 C. A. Furia, P. Spoletini

than points. In fact, interval temporal logics are highly expressive, often undecidable for-
malisms whose detailed classification has occupied researchers up until recent years [7].
Only recently have real-time interval temporal logics been studied in some detail [9, 39].
Some interval logics, such as propositional neighborhood logic, remain decidable over the
reals [41]. Other variants, such as a fragment of Halpern-Shoham logic that includes the
two Allen’s relations “meets” and “begins” is decidable over the rationals but undecidable
over the reals [40]. The classic duration calculus includes fragments that are decidable over
dense time [10, 11, 16, 53].

1.1.4 Background

The undecidability results of Section 6.2 use reductions from undecidable problems of non-
deterministic n-counter machines, which we introduce in Section 5. These are a kind of
Minsky’s counter machines [38]; their connection with MTL was first exploited by Alur
and Henzinger [3].

We assume readers are familiar with fundamental notions of computability and complex-
ity theory. In particular, the arithmetical hierarchy [57], the complexity classes NP, EXP,
PSPACE, and EXPSPACE, and the notion of (polynomial-time) reduction between decision
problems [48].

2 Timed words and bounded variability

Time domains: discrete and dense Complexity and other properties of temporal logics
change significantly according to whether the time domain is a discrete or a dense set. The
results of this paper will target both kinds of time domain: the discrete set of the nonnegative
integers N and the dense (and continuous) set of the nonnegative reals R≥0. Definitions
applicable to both domains will use the symbolT to denote an unspecified time domain that
stands for either N or R≥0. Generalizing the results to so-called bi-infinite [49, Chap. 9]
time domains (such as Z and R) is possible in some cases but is outside the scope of the
present paper.

Timed words Timed words model real-time behavior as sequences of instantaneous events
that occur over time at precise instants. Since they are natural generalizations of (untimed)
words—the canonical models of behavior in qualitative temporal logic [17, 60]—timed
words are widely-used models that account for a variety of real-time formalisms. In particu-
lar, they are standard for MTL since Alur and Henzinger’s work [2–4]; for this reason, they
are the used throughout the present paper.

A timed word over propositions P and time domainT is a sequence

w = (P0, t0) (P1, t1) · · · (1)

of pairs (Pk, tk) ∈ (2P × T) such that:

1. Nonnegative integers k ≥ 0 denote position in the timed word w.

(a) Finite word: If w ∈ (2P ×T)∗, then there exists a nonnegative integer, denoted by
|w| and called the length of w, such that only positions 0 ≤ k < |w| are valid.

(b) Infinite word: If w ∈ (2P × T)ω, then every position 0 ≤ k is valid, and we let
|w| = ∞ and t|w|−1 = ∞.

Bounded variability of metric temporal logic 289

Fig. 1 The timed word u, introduced in Example 1, has finite but unbounded variability

2. For each valid position k: Pk is a nonempty1 subset of P denoting the propositions
holding (or events occurring) at position k; and tk ∈ T is a timestamp denoting the
absolute time of occurrence of the events at position k.

3. Monotonicity: the timestamp sequence is strictly monotonic, that is, if h and k are two
valid positions in w such that h < k, then th < tk .

4. Finite variability: the timestamp sequence is finite or divergent, that is, either w is finite
or, for all t ∈ T, there exists a valid position k such that tk > t .

Finite variability (also called non-Zenoness [1, 26]) is a customary requirement for
infinite words over dense time domains, where it rules out pathological behaviors with
infinitely many events occurring over a finite amount of time. It holds trivially over
finite words, and it follows from monotonicity over discrete-time infinite words.

5. Base time: the first timestamp t0, if it exists, is 0. This is merely a technical convenience
to more reconcile the two MTL semantics (pointwise and continuous) introduced in
Section 3.2.

Bounded variability of timed words Finite variability prevents timestamps in a timed
word from accumulating at a finite time, but it does not introduce a word-wide maximum
density of timestamps.

Example 1 Consider a timed word u ∈ ({p} × R≥0)
ω such that, for all integers y > 0 and

0 ≤ x < y, y + x/y is a timestamp tk in u for some k > 0; that is, u’s timestamp sequence
is the one shown in Fig. 1:

0, 1, 2, 2 + 1

2
, 3, 3 + 1

3
, 3 + 2

3
, 4, 4 + 1

4
, 4 + 2

4
, 4 + 3

4
, 5,

Note that u has n + 1 occurrences of p between time n and time n + 1 (included). In fact,
Lemma 2 shows that any interval between time t and time t + 1 in u contains up to �t	 + 1
valid positions (or timestamps), each with an occurrence of p. Thus, even if u has finite
variability (the timestamps grow indefinitely large), there is no bound on the number of
events that occur over a unit time interval.

Lemma 2 For all 0 < ˜t ∈ R≥0, timed word u—defined in Example 1—includes up to
�˜t	 + 1 valid positions with timestamps between˜t and˜t + 1 (included).

Proof Without loss of generality, let˜t be a timestamp in u greater than 1. Such˜t can be
written as y + x/y for integers 0 ≤ x < y and y = �˜t	; the interval from˜t to˜t + 1 includes
all instants up to some (y + 1) + x′/(y + 1), for integers 0 ≤ x′ ≤ y. There are exactly

1Without loss of generality, since one can always introduce a special letter ε denoting absence of events.

290 C. A. Furia, P. Spoletini

(y + 1 − x) + x′ instants over such interval: (y + 1) − x instants between ˜t (included)
and y + 1 (included), and x′ instants between y + 1 (excluded) and (y + 1) + x′/(y + 1)
(included). The constraint that˜t + 1 ≥ (y + 1) + x′/(y + 1)—so that the unit interval is
indeed the one including (y + 1) + x′/(y + 1)—is equivalent to 0 ≤ x′ ≤ x < y. Thus,
picking x = x′ maximizes the number (y + 1 − x) + x′ of instants in the interval, which
becomes just y + 1.

A timed word w has variability bounded by v/V—read “v over V ”—for 0 < V ∈ T
and v ∈ N, iff it has at most v valid positions within any time interval of length V . That is,
for all positions k such that k + v < |w|,

tk+v − tk > V .

The symbols B∗
T[v/V] and Bω

T[v/V] respectively denote the sets of all finite and of
all infinite timed words over T with variability bounded by v/V . In contrast, the symbols
B∗
T[∞] and Bω

T[∞] respectively denote the sets of all finite and of all infinite timed words
overT without restriction of bounded variability—as emphasized by the ∞ symbol.

Remark 3 Any given finite timed word w ∈ B∗
T[∞] has variability bounded by some v/V ;

precisely by |w| /max(1, (t|w|−1 − t0)). However, the notion of bounded variability can still
be nontrivial when applied to infinite sets of finite timed words.

For example, consider the denumerable set U = {un | 1 < n ∈ N}, where each un is
obtained by truncating u in Example 1 up to and including the integer timestamp with value
n. It follows from Example 2 that each un ∈ U is bounded by n/1. However, there is no
finite n such that all words in U are bounded by n, because there is always a longer word in
U with more (albeit finitely many) than n valid positions over a time interval of unit length.

3 Metric temporal logic

Metric Temporal Logic (MTL) naturally extends classic Linear Temporal Logic (LTL) by
providing means to express quantitative constraints on the time of occurrence of events.
This section presents the syntax and semantics of propositional MTL.

Time intervals MTL decorates LTL temporal operators with intervals of the time domain
T. An interval is a convex subset of T written as I = 〈a, b〉, where a and b are elements
of T ∪ {∞}, 〈 is one of (and [, and 〉 is one of) and]. Such an interval I consists of all
elements of T between a and b, where a is included iff 〈 is [, and b is included iff 〉 is
]. We normally consider intervals with integer endpoints a and b even if the time domain
T is R≥0 (but the interval itself includes all real numbers between a and b if and only if
T = R≥0). For s ∈ T, the pseudo-arithmetic expressions > s, ≥ s, < s, ≤ s, and = s are
abbreviations for the intervals (s,∞), [s, ∞), [0, s), [0, s) and [s, s].

3.1 Syntax of MTL

MTL formulas are built out of one binary temporal operator, the until UJ , and the usual
propositional logic connectives, according to the recursive definition:

φ ::= � | p | ¬φ1 | φ1 ∧ φ2 | UJ (φ1, φ2) ,

where p ranges over the alphabet of propositions P , J is an interval of the time domain T
with integer endpoints, and � represents the Boolean constant for “true”.

Bounded variability of metric temporal logic 291

Derived operators The definitions of ⊥ (the Boolean constant for “false”), ∨, ⇒, and
⇔ are as in standard propositional logic. The symbol α abbreviates the formula

∨

p∈P p,
which holds iff at least one proposition in P holds. The derived temporal operators we use
in this paper and their definitions are:

SYMBOL DEFINITION NAME

♦J (φ) UJ (�, φ) eventually
�J (φ) ¬♦J (¬φ) globally or always
̂UJ (φ1, φ2) UJ (α ⇒ φ1, φ2) action until
©J (φ) ̂UJ (⊥, φ) next

All operators are standard except the action until, which is a variant of the usual until
operator where the first argument has to hold only if α hold—that is only if any propo-
sition holds. The action until is useful to accommodate timed word semantics, where no
proposition holds between consecutive elements in any word.

Operator precedence is as follows: ¬ has the highest precedence, then ∧, then ∨, then ⇒,
then all temporal operators, and finally ⇔. We may omit parentheses around arguments of
temporal operators when unambiguous, and drop intervals of the form [0, ∞) to stress the
correspondence with LTL (where all temporal operators have an implicit interval [0, ∞)).

Size of formulas The size |φ| of an MTL formula φ is the size of its encoding as a string,
using a succinct (say, binary) encoding of the constants used as endpoints of time interval.
Since we are going to be concerned only with asymptotic complexity, the details of the
encoding are irrelevant.

3.2 Semantics of MTL

Pointwise vs. continuous semantics There are two main semantics of MTL [6, 13]: the
pointwise semantics and the continuous semantics. If the time domain is the discrete set
N, the differences between the two semantics are practically inconsequential. In contrast,
whether a pointwise or a continuous semantics is chosen affects fundamental properties of
decidability of MTL over dense time R≥0, and correspondingly some of the results of the
present paper.

Pointwise semantics Given an MTL formula φ, a timed word w as in (1), and a position
k ∈ N, we write w, k |=p φ to denote that w is a model of φ at position k under the
pointwise semantics. In this context, k is sometimes referred to as the “current” position or
step. The pointwise satisfaction relation |=p is inductively defined as follows:

w, k |=p � iff k < |w| ;
w, k |=p p iff p ∈ Pk ;
w, k |=p ¬φ1 iff w, k �|=p φ1 ;
w, k |=p φ1 ∧ φ2 iff w, k |=p φ1 and w, k |=p φ2;
w, k |=p UJ (φ1, φ2) iff there exists a position k < h < |w| such that:

th − tk ∈ J , w, h |=p φ2, and, for all positions k < x < h,
w, x |=p φ1;

w |=p φ iff w, 0 |=p φ.

292 C. A. Furia, P. Spoletini

It is useful to spell out the semantics of the derived next operator:

w, k |=p ©J (φ1) iff k + 1 < |w| , tk+1 − tk ∈ J, and w, k + 1 |=p φ1 .

That is, w, k |=p ©J (φ1) holds iff φ1 holds at the next position in w at a time whose
difference with the current evaluation time tk is in J .

Remark 4 The semantics of U and̂U coincide under the pointwise semantics, since formulas
are only evaluated at valid positions, where α invariably holds (as Pk �= ∅ at all valid
positions k).

Continuous semantics Given an MTL formula φ, a timed word w as in (1), and a time
instant t ∈ T, we write w, t |=c φ to denote that w is a model of φ at time t under the
continuous semantics. In this context, t is sometimes referred to as the “current” time. The
continuous satisfaction relation |=c is inductively defined as follows:

w, t |=c � iff t ≤ t|w|−1 ;
w, t |=c p iff there exists a position k ∈ N such that:

k < |w|, tk = t , and p ∈ Pk;
w, t |=c ¬φ1 iff w, t �|=c φ1;
w, t |=c φ1 ∧ φ2 iff w, t |=c φ1 and w, t |=c φ2;
w, t |=c UJ (φ1, φ2) iff there exists u > t such that: u − t ∈ J ,

w, u |=c φ2, and, for all t < v < u, w, v |=c φ1;
w |=c φ iff w, 0 |=c φ .

Remark 5 The continuous semantics of the derived next operator w, t |=c ©J (π), when
π is a purely propositional formula, requires that there exists a valid position h ∈ N such
that t < th, there are no valid positions with timestamp between t and th, th − t ∈ J ,
and w, th |=c π . This corresponds closely to the semantics of next under the pointwise
semantics, since the semantics of the action until (on which next’s definition relies) forces
the evaluation of π in the next valid position from the current t . We will make use of this
correspondence to match results in the pointwise and in the continuous semantics.

Example 6 The MTL formulas φ1+1 = ♦=1♦=1 p and φ2 = ♦=2 p are equivalent under
the continuous semantics but not under the pointwise semantics. To illustrate the difference,
consider the finite word w2 = ({p}, 0) ({p}, 2). Clearly, w2 |=c φ2 and w2 |=c φ1+1—w2
is a model of both φ2 and φ1+1 under the continuous semantics, where both formulas only
require p to occur at time 2. In contrast, w2 |=p φ2 but w2 �|=p φ1+1—w2 is a model of φ2
but not of φ1+1 under the pointwise semantics, where φ1+1 requires an intermediate position
with timestamp 1 to satisfy its nested eventually operators.

3.3 Decidability and complexity of MTL

Interpretations An interpretation I is defined by a quadruple

I = 〈T, ◦,V, s〉 , (2)

consisting of a time domain T, a choice ◦ of finite (∗) or infinite (ω) words, a choice V of
bounded (v/V) or finite but possibly unbounded (∞) variability, and a choice s of pointwise
(p) or continuous (c) semantics. We use symbols of the form B◦

T[V](φ)s to denote sets
of timed words that satisfy φ under a certain interpretation. For example, B∗

T[∞](φ)p is

Bounded variability of metric temporal logic 293

the set of all finite timed words over T that satisfy φ under the pointwise semantics; and
B∗
T[v/V](φ)c is the set of all timed words over T with variability bounded by v/V that

satisfy φ under the continuous semantics.

Validity and satisfiability An MTL formula φ is satisfiable under an interpretation
I = 〈T, ◦,V, s〉 if B◦

T[V](φ)s �= ∅; otherwise φ is unsatisfiable. It is valid if B◦
T[V](φ)s =

B◦
T[V]; otherwise φ is invalid. Since MTL formulas are closed under complement, sat-

isfiability and validity are dual under complement: φ is valid if and only if ¬φ is
unsatisfiable.

MTL decidability MTL is decidable under an interpretation I if deciding whether an
arbitrary formula φ is satisfiable under I is a decidable problem. The “complexity of MTL
under interpretation I” refers to the complexity of satisfiability or validity under I .2 The
central columns of Table 2 recall the known complexity results for MTL validity under
different interpretations, without the assumption of bounded variability.

MTL is decidable over discrete time over both finite and infinite words [3], and under
both the pointwise and the continuous semantics (even if most authors use infinite words
and pointwise semantics [4], extending their results to the other interpretations is straightfor-
ward). In all cases, satisfiability is complete for EXPSPACE, which in practice determines
algorithms that run in doubly-exponential time in the worst case. This is an exponential more
than LTL, which is PSPACE-complete; the succinct binary encoding of interval endpoints in
MTL entirely accounts for this exponential blow-up—a manifestation of the “succinctness
phenomenon” [48, Chap. 20].

MTL is invariably more complex over dense time, but the exact complexity depends
on the specific interpretation chosen. Under the continuous semantics, MTL is highly
undecidable—precisely, validity is �1

1-complete [3]. Under the pointwise semantics, it is
still undecidable over infinite words [44]—albeit with a lower undecidability degree than
over infinite words—whereas it becomes decidable over finite words [45]. However, its
astronomical complexity (non-primitive recursive) makes this decidability result of little
practical significance. A related result is that, over dense time, the continuous semantics is
strictly more expressive than the pointwise semantics [14].

4 Metric temporal logic with bounded variability

The decidability and complexity ofMTL under different interpretations change significantly
if one considers models with bounded variability, as can be seen by comparing the central
to the rightmost columns in Table 2.

4.1 Expressing bounded variability in temporal logic

Some of the constructions in this paper—and, in particular, the proofs of the upper bounds
of deciding MTL over models with bounded variability—rely on being able to express
that a model has bounded variability syntactically by means of MTL formulas. Precisely,

2If satisfiability (resp. validity) belongs to a complexity class that is closed under complement, validity (resp.
satisfiability) belongs to the same complexity class, and hence we can speak generically of “complexity of
MTL” without specifying whether we refer to satisfiability or validity. In the general case, satisfiability is in
some complexity class C iff validity is in the complement class C.

294 C. A. Furia, P. Spoletini

Table 2 Known complexity results for MTL validity under different interpretations

T ◦ s W/ FINITE VARIABILITY W/ v/V BOUNDED VARIABILITY

N/R≥0 ∗/ω p/c DEC? COMPLEXITY DEC? COMPLEXITY

N Y EXPSPACE-complete [3] Y EXPSPACE-complete Section 4.2

R≥0 ∗ p Y non-primitive recursive [45] Y EXPSPACE-complete Section 4.3

R≥0 ω p N coRE-complete [44] Y EXPSPACE-complete Section 4.3

R≥0 c N �1
1 -complete [3] Y EXPSPACE-complete Section 4.3

For each choice of time domain T, finite (∗) or infinite (ω) timed words, and pointwise or continuous
semantics, the table shows whether MTL is DECidable (yes or no) under that interpretation and the complexity
of deciding validity, both for models with FINITE variability and for models with variability BOUNDED by
v/V . Blank cells correspond to parameters whose choice does not affect the result of the row. Next to each
complexity result there is a reference—to another paper or to a section of the present paper—where it is
proved

expressing bounded variability succinctly requires two variants of MTL that we call MTL+
and MITL+.

MTL+ augments MTL with the temporal operators Bn
T , for n ∈ N and a positive V ∈ T.

Bn
T holds iff there are at most n valid positions within the next T time units; that is:3

w, k |=p Bn
T iff k + n ≥ |w| or tk+n − tk > T ;

w, t |=c Bn
T iff k + n ≥ |w| or tk+n − tk > T ,

where k is the smallest position such that t ≤ tk .
MITL+ is MTL+ where all intervals appearing in temporal operators are non-singular (that
is, include more than one element); equivalently, MITL+ is MITL [2] augmented with the
temporal operators Bn

T .
Based on previous results, it is possible to establish tight bounds on the complexity of

MTL+ and MITL+.

Proposition 7 Satisfiability of MTL+ over discrete-time models is EXPSPACE-complete.

Proof (idea) For the upper bound, it is possible to minimally modify the decision proce-
dure for TPTL [4] so that operators with the semantics of Bn

T are handled natively without
complexity penalty. This is enough since TPTL is as complex, and as expressive, as MTL
over discrete time [3].

For the lower bound, note that every MTL formula is also an MTL+ formula, and MTL
satisfiability is EXPSPACE-hard over discrete time [3].

Proposition 8 Satisfiability of MITL+ over dense-time models is EXPSPACE-complete.

Proof (idea) For the upper bound, it is possible to encode Bn
T in Hirshfeld and Rabi-

novich’s TLCI [27, 51, 52] as �(¬C
[0,T]
n+1 �), where C

[a,b]
k φ is TLCI’s counting operator—

which expresses that φ holds at least k times over interval [a, b]. (While Hirshfeld and

3Note that “the smallest position k such that t ≤ tk” is well defined over words with finite variability [17,
Sec. 9.4.1].

Bounded variability of metric temporal logic 295

Rabinovich [27, 51, 52] define the counting operators only for open intervals, closed inter-
vals can be indirectly encoded along the lines of our previous work [18]). Satisfiability for
TLCI is PSPACE-complete under unary encoding [52]; hence MITL+ is in EXPSPACE
assuming a succinct encoding of constants.

For the lower bound, note that everyMITL formula is also anMITL+ formula, andMITL
satisfiability is EXPSPACE-hard over dense time [2].

Expressing bounded variability syntactically is straightforward using MITL+.

Lemma 9 Given an interpretation 〈T, ◦, v/V, s〉, one can build, in polynomial time,
an MITL+ formula Vv,V such that: (1) B◦

T[v/V](Vv,V)s = B◦
T[∞](Vv,V)s (that is,

Vv,V is satisfied precisely by all words with variability bounded by v/V under the given
interpretation); and (2) Vv,V has size polynomial in log v and logV .

Proof It is clear that MITL+ formula Vv,V = �
(

Bv
V

)

satisfies the lemma’s statement.

Remark 10 Adding the operators Bn
T does not affect expressiveness or complexity, but pro-

vides additional succinctness. In fact, it is possible to build an MTL formula whose models
are the same as the models of Vv,V (defined in Section 9) modulo projection of extra
propositions; however, since MTL does not have compact operators such as Bv

V , this would
introduce an exponential blow-up in log v. To demonstrate, assume a discrete time model,
and consider v > 0 propositions pi , for i = 1, . . . , v. Proposition p1 has to hold initially,
followed by p2, . . . , pv in sequence; the sequence repeats indefinitely:

Bv = p1 ∧
∧

1≤k≤v

⎛

⎝�(p1 ⇔ ©pk⊕1) ∧ �

⎛

⎝pk ⇒
∧

1≤h�=k≤v

¬ph

⎞

⎠

⎞

⎠ ,

where a ⊕ b is a shorthand for 1 + ((a + b) mod v). Since every pk holds in a different
position, we can express bounded variability by requiring that the timestamp of the next
(v + 1)-th position in the future be greater than V with respect to the current position’s (and
note that k ⊕ v = k):

Bv,V =
∧

1≤k≤v

�
(

pk ⇒ U>V (¬pk, pk)
)

.

Thus, Bv ∧ Bv,V is satisfied only by models with variability bounded by v/V . However,
Bv,V has size exponential in the size of the instance of BVv/V 〈N, ω, p〉(φ), precisely
because BVv/V 〈N, ω, p〉(φ) encodes v succinctly whereasBv,V enumerates v propositions.
Encoding the modulo-v counter in binary (using n = �log2 v	 + 1 propositions) does not
seem to help: while updates to the counter itself can be done with formulas of size polyno-
mial in n, expressing in MTL the fact that the timestamp of the “next” occurrence is greater
than V (with respect to the current position’s) seems to require enumerating all 2n = v val-
ues for the counter. Similar considerations would demonstrate that MITL+ is more succinct
than MITL.

4.2 Bounded variability over discrete time

The asymptotic complexity of deciding MTL is the same over models with bounded
variability as it is over finitely variable ones, that is satisfiability is EXPSPACE-complete.

296 C. A. Furia, P. Spoletini

The lower bound is easy to prove because every word over discrete time has variability
trivially bounded by 2/1—which is tantamount to monotonicity of timestamps. Therefore,
satisfiability over discrete-time models trivially reduces to satisfiability over discrete-time
models with bounded variability, which establishes that the latter problem is EXPSPACE-
hard.

The upper bound follows from Lemma 9.

Lemma 11 The satisfiability problem for MTL over discrete-time words with variability
bounded by v/V is in EXPSPACE.

Proof Given any MTL formula φ, build MTL+ formula φ′ = φ ∧ Vv,V , where Vv,V is
defined in Lemma 9. Then, φ′ is satisfiable (over generic models) iff φ is satisfiable over
models with variability bounded by v/V . Since

∣

∣φ′∣
∣ is polynomial in |φ|, log v, and logV ,

and MTL+ is decidable in EXPSPACE (Proposition 7), we have proved that the satisfia-
bility problem for MTL over discrete-time words with variability bounded by v/V is in
EXPSPACE.

By combining the previous lemma with the trivial matching lower bound over discrete
time we have a tight bound.

Corollary 12 The satisfiability problem for MTL over discrete-time words with variability
bounded by v/V is EXPSPACE-complete.

Complexity in special cases Even if the asymptotic worst-case complexity of MTL over
discrete time does not change with bounded variability, our previous work [21, 22] indicates
that the complexity decreases in practice for MTL formulas that can be expressed with
certain syntactic restrictions, where the exponential blow-up due to succinct encoding of
constants is essentially avoided. Therefore, we can still assert that bounded variability may
help simplify MTL decidability in some specific cases.

4.3 Bounded variability over dense time

The asymptotic complexity of deciding MTL is significantly lower over models with
bounded variability; whereas MTL is normally undecidable over dense time, it is fully
decidable and as complex as its discrete-time counterpart if variability is bounded.

We studied the complexity of MTL over models with bounded variability in previous
work [18];4 in this section we outline how some of those results apply to the present paper’s
setting.

The lower bound follows the hardness proofs of Theorem 19 in [19].

Lemma 13 The satisfiability problem for MTL over dense-time words with variability
bounded by v/V is EXPSPACE-hard.

4Also see the extended version of that work [19], which deals with the interpretations that are applicable to
the present paper.

Bounded variability of metric temporal logic 297

Proof (idea) The proof reduces MTL satisfiability of discrete-time words, which is
EXPSPACE-complete, to MTL satisfiability over dense-time words with bounded variabil-
ity, by associating discrete instants of time to positions in the word. Bounded variability
ensures that there is a maximum number of instants over each time unit, which matches the
discrete-time semantics.

The upper bound can be derived along the lines of Corollary 12 in [19].

Lemma 14 The satisfiability problem for MTL over dense-time words with variability
bounded by v/V is in EXPSPACE.

Proof (idea) Given any MTL formula φ, consider MTL+ formula φ′ = φ ∧ Vv,V , where
Vv,V is defined in Lemma 9. Then, φ′ is satisfiable (over generic models) iff φ is satisfiable
over models with variability bounded by v/V .

φ′ is in general undecidable over dense time since MTL+ is a superset of the undecid-
able MTL. However, it is possible to build a formula ψ in a decidable logic such that, over
words with variability bounded by v/V , ψ is satisfiable iff φ is. Constructing ψ uses sim-
ilar techniques as the proof of Corollary 12 in [19]. The basic idea is to use a QITL-like
decidable logic [18] to succinctly describe sequences of events over consecutive time inter-
vals of length V . Bounded variability ensures that this can be done by enumeration since
there are at most v events over any such interval.

The key point is expressing subformulas such as ♦=d(p)without using singular intervals,
since these are not expressible directly in QITL-like logics or in MITL. For example, if
d < V and there are exactly v events within time V , the formula is equivalent to 	 =
p ∨ ©(p ∨ ©(p ∨ · · ·)), with v − 1 nested occurrences of ©.

Then, 	—and similar formulas for other cases—can be expressed in a QITL-like logic
succinctly, that is avoiding the explicit unrolling of v unary operators. This is because QITL-
like logics includes operators that can express “counting” properties—such as “p occurs in
one of the next v positions”—with a formula of size logarithmic in v. The same operators
can also express Vv,V succinctly as V ′

v,V , as the negation of “there are v + 1 valid positions
over the next V time units”. We omit the details, which are somewhat fastidious—because
they require dealing with numerous special cases—but straightforward after [18].

In all, we build a formulaψ ′ = ψ∧V ′
v,V that has size polynomial in |φ|, log v, and logV ;

is satisfiable (over finitely-variable dense-time models) iff φ is satisfiable over dense-time
models with variability bounded by v/V ; and uses a QITL-like logic that is decidable in
EXPSPACE [18].

Corollary 15 The satisfiability problem for MTL over dense-time words with variability
bounded by v/V is EXPSPACE-complete.

The following result will also be useful in the rest of the paper.

Corollary 16 Given integers v and v′, 0 < V ∈ R≥0, and an MTL formula φ, it is decid-
able whether there exists a timed word w over R≥0 such that w satisfies φ, and w has
variability bounded by v′/V but not by v/V .

Proof Consider the formulas Vv,V and Vv′,V , built according to Lemma 9. The proof of
Lemma 14 outlines how to build formulas ψ ′, V ′

v,V , and V ′
v′,V such that V ′

v,V ∧¬V ′
v′,V ∧ψ ′

is satisfiable if and only if an w such as in the corollary’s statement exists, which can be
decided in EXPSPACE by Lemma 14.

298 C. A. Furia, P. Spoletini

5 Counter machines

Counter machines [38, 58] are powerful computational devices, widely used in formal lan-
guage theory. Following an approach pioneered by Alur and Henzinger [3, 4] which relates
them to MTL, we use counter machines to establish the complexity of deciding bounded
variability over dense time. This section introduces a nondeterministic version of counter
machines,5 and derives some complexity results about them that will be extensively used in
Section 6.

Definition 17 An n-counter machine executes programs consisting of a finite list of
instructions with locations labeled
0,
1, . . . and operating on n integer counter variables
v0, . . . , vn−1. An instruction is one of the following:

halt terminate computation

if vk > 0 goto
i,
j conditional branch

inc vk increment counter

dec vk decrement counter

where the conditional branch consists in jumping to
i or
j nondeterministically if
counter vk is non-zero (when
i =
j we only write goto
i— for brevity); and
decrementing a counter with value equal to 0 is undefined. Computations start at loca-
tion
0 with all counters equal to 0 and proceed according to the obvious semantics of
instructions. Without loss of generality, assume that, in every program, instruction halt
occurs exactly once and the last instruction in the program’s list is either halt or a
branch.

For n-counter machines, with n ≥ 2, consider the classic problems of halting, non-
halting, and recurring computation, which are described in Table 3. The complexity of
halting and non-halting is an immediate consequence of the well-known complexity of the
same problems for Turing machine computations [57] and the fact that n-counter machines
and Turing machines can simulate each other [38, 58]; the complexity of recurring com-
putation is known for 2-counter machines [4], which immediately generalizes to n-counter
machines as well. Throughout the paper, we only consider counter machines with at least
two counters (the computational power of 1-counter machines is strictly lower, as their
halting problem is decidable).

5.1 Bounded and unbounded counters

We introduce three new decision problems for counter machines that involve the value of
the counters.

bounded counter: given an integer β, decide whether counter v0 overflows β in some
computation;

5Our version of counter machines Definition 17 uses nondeterministic jump instructions conditional on
testing a counter for being non-zero (greater than zero); while Alur and Henzinger’s work [4] uses the
more common version that tests a counter for being zero, the two versions are known to be equiva-
lent [58, Appendix A].

Bounded variability of metric temporal logic 299

Table 3 The complexity of halting, non-halting, and recurring computation for n-counter machines, n ≥ 2

PROBLEM DESCRIPTION COMPLEXITY

halting Is the location with halt visited in
some computation?

�0
1 = RE-complete

non-halting Is the location with halt never vis-
ited in some computation?

�0
2 -complete

recurring computation Is location
0 is visited infinitely
often in some computation?

�1
1 -complete

finite counter: decide whether there exists β such that counter v0 ≤ β in all computa-
tions;

unbounded counter: decide whether counter v0 is incremented infinitely often in some
computation.

We can prove that the complexity of these decision problems matches that of halting,
non-halting, and recurring computation.

Theorem 18 For n-counter machines with n ≥ 3 counters: the bounded counter problem is
�0

1 -complete; the finite counter problem is �0
2 -complete; the unbounded counter problem

is �1
1 -hard.

Proof We prove hardness by reduction from, respectively, the halting, non-halting, and
recurring computation problems of n-counter machines, with n ≥ 2. Then, we prove com-
pleteness by providing matching upper bounds. Since the reductions that prove hardness
introduce a fresh counter v0 with constrained behavior, the theorem holds for machines with
at least three counters.

Hardness of the bounded counter problem Given a generic n-counter machine M , we
reduce halting to bounded counter for β = 0 by modifying M into M ′ as follows. Add one
counter and injectively rename all counters in the instruction list so that the new counter is
called v0; thus, v0 is not mentioned in the renamed instructions. Then, replace the unique
halting instruction appearing at some
h in M by two instructions:
h: inc v0 followed by

+
h : halt.
Since we only added deterministic instructions, there is a one-to-one correspondence

between computations of M and computations of M ′. A generic nondeterministic compu-
tation χ of M reaches location
h iff the unique corresponding computation χ ′ of M ′ also
reaches
h. In such computations χ ′, v0 overflows β before halting at
+

h . In all, some com-
putation of M halts iff v0 overflows in some computation of M ′. Thus, the bounded counter
problem is �0

1-hard.

Hardness of the finite counter problem Given a generic n-counter machine M , we
reduce from the non-halting problem.

Consider another counter machine Md that consists of a deterministic simulation of M .
Md keeps track of the path taken in the computation tree that M’s computations deter-
mine, so that it can enumerate M’s computations sequentially. Whenever Md is simulating

300 C. A. Furia, P. Spoletini

a computation of M that halts, it backtracks the simulation to the most recent unexplored
branch and makes a different nondeterministic choice; that is Md enumerates M’s compu-
tations depth-first. Let
d the location in Md where the simulation starts over with a new
computation—or halts if all computations of M have been exhaustively simulated. The full
details of Md are quite complicated, as they involve keeping track of intermediate compu-
tation states (needed) using only the simple memory offered by counter machine; however,
it can be done because counter-machines have the same computational power as Turing
machines. Furthermore, we can assume that Md uses the same number of n ≥ 2 counters as
M .

Let us now modify Md into M ′ by adding a fresh counter v0. Then, add the instruction
inc v0 just before
d ; and replace the unique halting instruction appearing at some
h

in Md by two instructions in M ′:
h: inc v0 followed by
+
h : if v0 > 0 goto
h.

Let us show that M ′ has only one non-halting computation. Either (a) M has only finitely
many computations, all halting; or (b) M has infinitely many computations, or at least one
computation that does not halt. If (a) is the case, after Md is done simulating all halting
computations it halts, whereby M ′ enters the infinite loop at
h that makes v0 diverge. If (b)
is the case, Md ’s simulation never halts, and neither does M ′, whereby v0 is incremented
once for every halting computation of M .

Consider now the finite counter problem. If the answer to the finite counter problem
for M ′ is YES, it means that (b) is the case (otherwise, M ′ would enter the infinite loop
that makes v0 diverge), and, furthermore, that v0 is incremented a finite number of times;
therefore, M had at least one non-halting computation (if M had infinitely many halting
computations v0 would diverge). Thus, the answer to the non-halting problem for M is also
YES. If the answer to the finite counter problem for M ′ is NO, it means that v0 diverges; this
can only happen if all computations in M are halting. Thus, the answer to the non-halting
problem for M is also NO. In all, the non-halting problem for M has answer YES iff the
finite counter problem for M ′ has answer YES. Thus, the finite counter problem is �0

2-hard.

Hardness of the unbounded counter problem Given a generic n-counter machine M ,
we reduce recurring computation to unbounded counter by modifyingM intoM ′ as follows.
M ′ has a fresh counter called v0. The first instruction of M ′ is
0: inc v0, followed by M’s
program without modifications.

Since we only added one deterministic instruction, there is a one-two-one correspon-
dence between computations of M and computations of M ′. A generic nondeterministic
computation χ of M visits location
0 infinitely often iff the unique corresponding compu-
tation χ ′ of M ′ also reaches the new
0 infinitely often; such computations χ ′ increment
v0 infinitely often when executing
0. In all, some computation of M visits
0 infinitely
often iff v0 is incremented infinitely often in some computation of M ′. Thus, the unbounded
counter problem is �1

1-hard.

Completeness of the bounded counter problem We reduce the bounded counter prob-
lem (for any β) to halting, thus showing that the former is in �0

1 (and hence, by combining
it with the hardness result, �0

1-complete). Given a counter machine M , we modify it into
another machine M ′ as follows. Let
′

h be the new halting location in M ′; instead, M’s
halting location
h becomes an unconditional branch
h : goto
h that produces an infinite
loop in M ′; therefore, computations that halt in M become non-halting computations in M ′.

Bounded variability of metric temporal logic 301

Furthermore, every increment to v0 is guarded in M ′ by a conditional:6 if v0 ≥ β goto

′
h else inc v0. Since v0 is initially zero, a computation of M ′ halts iff the correspond-
ing computation in M overflowed; hence, a semi-decision procedure for halting produces a
semi-decision procedure for bounded counter.

Completeness of the finite counter problem We show that the finite counter problem is
in �0

2 (and hence, by combining it with the hardness result, �0
2-complete) according to the

definition of �0
2 in the arithmetical hierarchy [57]. LetOβ be the set of all counter machines

where v0 overflows β in some computation. We have shown thatOβ is �0
1 for each β; hence

its complement set Oβ—all counter machines where v0 ≤ β in all computations—is 0
1.

The set F of all counter machines for which the finite counter problem has answer YES is
defined by M ∈ F ⇐⇒ ∃β : Oβ , and hence it is �0

2 .

Completeness of the unbounded counter problem We reduce the unbounded counter
problem to the recurring computation problem, thus showing that the former is in �1

1 (and
hence, by combining it with the hardness result, �1

1-complete). Given a counter machine
M , we modify it into another machine M ′ as follows. Add a fresh counter vj to M ′; as
first instruction in M ′, add
0: goto
vj +1, that is a jump7 to the location that corresponds
to the (vj + 2)-th instruction, where vj is the value of counter vj ; replace every increment
instruction
k: inc v0 in M by
k: vj := k followed by
k+1: goto
0 and then by
k+2: inc
v0—relabeling all other instructions by shifting. The overall behavior of M ′ is the same as
M , except that every time M ′ increments v0 it first jumps to location
0 and back. Since

0 is visited only upon incrementing v0, some computation of M increments v0 infinitely
often (unbounded counter) iff some computation of M ′ visits
0 infinitely often (recurring
computation).

5.2 MTL and counter machines

Real-time logics such as MTL overR≥0 have enough expressive power to encode arbitrary
computations of counter machines, as first shown by Alur and Henzinger [3]. We recall their
techniques and cast them in our framework, using the continuous semantics of MTL over
infinite words.

The idea is that, given an arbitrary n-counter machine M , we can build an MTL formula
�M such that there is a one-to-one correspondence between the words that satisfy �M and
the computations of M: each word represents the sequence of values taken by counters in
the corresponding computation of M .

Consider an n-counter machine M with m + 1 instructions
0, . . . ,
m, such that
h is
the location of the unique halt instruction. A computation of M is entirely described by a
sequence c0, c1, . . . of configurations, each ci a tuple 〈
k, x0, . . . , xn−1〉 denoting that M is
at location
k , about to execute the corresponding instruction, with the counters storing the
values x0, . . . , xn−1. A computation c0, c1, . . . is encoded over a timed word as a sequence
of adjacent intervals of unit length: each time interval [i, i+1) with integer endpoints i ∈ N
encodes configuration ci . That is, the propositions holding over [i, i + 1) encode the value
of counters and the current location in ci .

6The details of how to encode an if-then-else using counter machine instructions are standard.
7Again, the details of how to encode this jump and the other derived instructions using basic counter machine
instructions are standard.

302 C. A. Furia, P. Spoletini

In order to encode such information, let us introduce the following propositions: pk ,
for 0 ≤ k ≤ m, which holds at the left endpoint of unit intervals [i, i + 1) that encode
configurations ci where M is at location
k; and zk , for 0 ≤ k < n, which represents the
value of counter vk as follows: there are as many distinct occurrences of proposition zk

inside a unit interval (i, i + 1) as the value of counter vk in the corresponding configuration
ci .

To define such an encoding in MTL, let us first constrain what happens at integer times.
Exactly one of the propositions pk’s holds (the current location), with p0 holding initially
at time 0 (the initial location is
0). Since we want the propositions zd ’s to only occur inside
the unit intervals (i.e., not at the endpoints), they are all false at integer times; conversely,
the pk’s are all false at non-integer times. These constraints become:

p0 ∧
⎛

⎝

∧

0≤k≤m�
(

pk ⇒ ∧

0≤j �=k≤m ¬pj ∧ ∧

0≤d<n ¬zd

)

∧
∧

0≤k≤m �
(

pk ⇒ ∨

0≤j≤m U=1

(∧

0≤i≤m ¬pi, pj

)

)

⎞

⎠.

With similar formulas, we constrain the zk’s to occur at distinct instants: whenever zk then
¬zh also holds simultaneously, for all h �= k.

The initial configuration 〈
0, 0, . . . , 0〉 is encoded by

∧

0≤j<n

�[0,1]
(¬zj

)

.

The encoding of any instruction refers to a current time t ∈ N and defines the state over
[t+1, t+2) as a modification of the state over [t, t+1). The most significant operation is the
increment:
k: inc vc: the next interval [t + 1, t + 2) includes exactly one more occurrence
of zc than there are in the current interval [t, t + 1):

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pk ⇒

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

♦=1 pk+1

∧ ∧

0≤d �=c<n �(0,1)

(

zd ⇔ ♦=1 zd

)

∧ �(0,1)

(

zc ⇒ ♦=1 zc

)

∧U(0,1)

⎛

⎝

♦=1 zc ⇒ zc,

¬zc ∧ ♦=1zc ∧
U>0

(¬zc ∧ ♦=1(¬zc) , pk+1
)

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3)

In (3)’s consequent, the first conjunct states that
k+1 is the next location visited, since the
instruction at
k is not a branching instruction. The second conjunct states that the values
of all counters other than vc are unchanged: for every occurrence of some zd in the current
interval, there is an occurrence exactly one time unit later in the next interval and vice versa;
hence occurrences of zd are “copied” from the current to the next interval. Similarly, the
third conjunct declares that vc does not decrease (all occurrences of zc in the current interval
are copied into the next one). The fourth conjunct asserts that there exists an instant x in
the current interval, after the last occurrence of zc in the current interval and before the next
occurrence of pk+1 at the beginning of the next interval, such that zc occurs exactly once at

Bounded variability of metric temporal logic 303

x +1 in the next interval; that is zc holds at x +1 but not at zc. This new distinct occurrence
of zc is always possible thanks to the density of the temporal domain; thus any value of
counters can be stored in a unit time interval. The encoding of other instructions is similar,
with the halting instruction determining an indefinite repetition of the final configuration in
the future.

Remark 19 The construction shown above that encodes counter-machine computations by
means of MTL formulas requires dense time and the continuous semantics to work. Specif-
ically, encoding counter increment (3) requires the continuous semantics to be able to
match an instant x in the current interval where no events occur (hence, x does not cor-
respond to a valid position in the timed word) but where an event occur one time unit
later.

Under the pointwise semantics, expressing (3) requires using past operators. The key
observation in this case [45] is that the copy of a counter vd can be expressed as

�(0,1)

(

zd ⇒ ♦=1 zd

)

and �(1,2)(zd ⇒ ←−♦ =1 zd), where
←−♦ =1(φ) holds iff its arguments

held one time unit in the past.

6 The complexity of bounded variability

We are ready to prove the main result of the paper: the complexity of deciding whether an
MTL formula is satisfied only by models with bounded variability. Section 6.1 rigorously
defines two variants of this decision problem; Section 6.2 proves the undecidability of the
problems for MTL over dense timed words under the continuous semantics; Section 6.3
proves the complexity of the problems for MTL over discrete timed words under the point-
wise semantics; Section 6.4 discusses the complexity of the problems in variants of the two
main interpretations.

6.1 Bounded variability problems

The main results of this paper concern the complexity of deciding whether an arbitrary MTL
formula is satisfied only by words with bounded variability; we now formally define two
variants of this decision problem.

Given an interpretation I = 〈T, ◦, v/V, s〉 and an MTL formula φ, the deci-
sion problems bounded variability BVv/V 〈T, ◦, s〉(φ) and existential bounded variability
BV∃〈T, ◦, s〉(φ) are defined as:

Bounded variability BVv/V 〈T, ◦, s〉(φ): Does every model of φ under interpreta-
tion 〈T, ◦, ∞, s〉 have variability bounded by v/V ? That is, does B◦

T[∞](φ)s ⊆
B◦
T[v/V](φ)s?

Existential bounded variability BV∃〈T, ◦, s〉(φ): Do there exist v ∈ N and 0 <

V ∈ T such that the answer to BVv/V 〈T, ◦, s〉(φ) is YES? That is, does ∃ v, V :
B◦
T[∞](φ)s ⊆ B◦

T[v/V](φ)s?

A bar denotes the corresponding complement problems:

BVv/V 〈T, ◦, s〉(φ): Does some model of φ under interpretation 〈T, ◦, ∞, s〉 have vari-
ability not bounded by v/V (that is, bounded by v′/V for some v′ > v, or unbounded)?

BV∃〈T, ◦, s〉(φ): Does there exist, for every v ∈ N and 0 < V ∈ T, a model of φ under
interpretation 〈T, ◦, ∞, s〉 that has variability not bounded by v/V ?

304 C. A. Furia, P. Spoletini

Remark 20 Problem BVv/V 〈T, ◦, s〉(φ) has answer YES if some model of φ under interpre-
tation 〈T, ◦, ∞, s〉 has: (a) variability bounded by v′/V for some v′ > v; or (b) unbounded
variability.

Problem BV∃〈T, ◦, s〉(φ) has answer YES if: (a) some model of φ under interpretation
〈T, ◦, ∞, s〉 has unbounded variability; or (b) every model w of φ under interpretation
〈T, ◦, ∞, s〉 has variability bounded by some vw/V , but the set {vw | w ∈ B◦

T[∞](φ)s}
does not have a finite upper bound (that is, each model has bounded variability, but no
variability bounds all models).

As for MTL formulas, the size of a problem instance is the size of its encoding as a
string, which includes a succinct encoding of v and V in the case of the bounded variability
problems.

Now that we have defined the two bounded variability problems, we prove their com-
plexity and decidability for different interpretations in the following Table 4 summarizes
the results.

6.2 Complexity of bounded variability over dense time

The decision problems BVv/V 〈R≥0, ω, c〉(φ) and BV∃〈R≥0, ω, c〉(φ) correspond to those
of Section 6.1 for MTL interpretations over infinite words ω, dense time domain R≥0, and
the continuous semantics c. Both problems are undecidable; their undecidability degrees
in the arithmetical hierarchy are different and both lower than MTL satisfiability (which is
�1

1-hard [3], see Section 3.3).

Theorem 21 BVv/V 〈R≥0, ω, c〉(φ) is 0
1 = coRE-complete; BV∃〈R≥0, ω, c〉(φ) is �0

2 -
complete.

We split the proof of Theorem 21 in four lemmas, which separately establish lower and
upper bounds for each problem.

Lemma 22 BVv/V 〈R≥0, ω, c〉(φ) is in 0
1 = coRE.

Proof We give a procedure to semi-decide BVv/V 〈R≥0, ω, c〉(φ); this establishes that
BVv/V 〈R≥0, ω, c〉(φ) ∈ RE and thus BVv/V 〈R≥0, ω, c〉(φ) ∈ coRE by complement.

Table 4 Summary of the main results of this paper: complexity of deciding bounded variability and exis-
tential bounded variability of MTL formulas under different interpretations. For each choice of time domain
T, finite (∗) or infinite (ω) timed words, and pointwise or continuous semantics, the table shows whether
BOUNDED VARiability BVv/V 〈T, ◦, s〉(φ) and EXISTENTIAL BOUNDED VARiability BV∃〈T, ◦, s〉(φ) is
DECidable (yes or no) under that interpretation and the complexity of the problem

T ◦ s BOUNDED VAR. EXISTENTIAL BOUNDED VAR.

N/R≥0 ∗/ω p/c DEC? COMPLEXITY DEC? COMPLEXITY

N Y EXPSPACE-complete Y trivial

R≥0 ∗ p Y non-primitive recursive RE

R≥0 ω p N 0
1 = coRE-complete �0

2

R≥0 c N 0
1 = coRE-complete N �0

2 -complete

Bounded variability of metric temporal logic 305

As pointed out in Theorem 20, some model of φ has variability not bounded by v/V

iff: (a) it has variability bounded by v′/V but not by v/V , for some v′ > v; or (b) it has
unbounded variability. Since timestamps are diverging (according to the definition of timed
words in Section 2), (b) can only occur if, for any finite time t , the variability is bounded by
some vt , but such vt diverges as t goes to infinity.8

For any finite time T , let φ[T] denote an MTL formula that restricts the evaluation of φ

to the finite time interval [0, T]. This can be constructed as follows: add a fresh proposition
e constrained by φe = U=T

(

e, e ∧ �>0¬e
)

. Rewrite φ in negation normal form, and replace
every atom q by e ⇒ q. Postulate that, if e is false, all other propositions in P are false as
well: φP = �(¬e ⇒ ∧

p∈P ¬p). Finally, φ[T] is φe ∧ φ ∧ φP . Since no event occurs after
finite time T , all models of φ[T] have variability bounded by x/T , for some finite (possibly
very large) x. Therefore, the only way in which φ[T] can have some model with variability
not bounded by some x′/T is if x′ < x.

We can now describe a procedure P1 that semi-decides BVv/V 〈R≥0, ω, c〉(φ); it consists
of the following steps:

1. Initially, δ := v + 1 and 	 := V + 1;
2. Using Corollary 16, decide whether φ[] has some model with variability bounded by

δ/V but not by v/V ;
3. If it does, stop and return YES;
4. Otherwise δ := δ + 1, 	 := 	 + 1, and go to (2).

If the answer to BVv/V 〈R≥0, ω, c〉(φ) is YES, then either (a) or (b) above holds; let us show
that, in both cases, P1 terminates with the correct answer.

If (a) is the case, let wa be a model with variability bounded by v′/V but not by v/V for
some v′ > v; that is, wa has v events, for v < v ≤ v′, over some time interval [y, y + V].
In this case, P1 terminates with YES as soon as δ ≥ v and 	 ≥ y + V .

If (b) is the case, let wb be a model with unbounded variability; since variability is
unbounded, there exists a time T such that: wb has v′ > v events over some time window
[y, y + V], for 0 ≤ y < y + V ≤ T . In this case, P1 terminates with YES as soon as δ ≥ v′
and 	 ≥ T .

Lemma 23 BVv/V 〈R≥0, ω, c〉(φ) is coRE-hard.

Proof We reduce the bounded counter problem of n-counter machines, n ≥ 3, (Section
5.1) to BVv/V 〈R≥0, ω, c〉(φ); the lemma follows by Theorem 18 through complement
problems.

Consider a generic n-counter machine M with counters v0, . . . , vn−1. We construct an
MTL formula �M that encodes the computations of M along the lines of Section 5.2, but
with some modifications. For t ∈ N, the t-th configuration 〈
k, x0, . . . , xn−1〉 is encoded
over the time interval [2nt, 2nt + 2n) as follows: pk holds at 2nt ; for k = 0, . . . , n − 1,
zk holds xk times over (2nt + 2k + 1, 2nt + 2k + 2); and no propositions hold elsewhere
over the whole [2nt, 2nt + 2n). With this spacing of counter events, the models of �M are
such that any interval of length 1 includes at most as many events as the largest value held
by a counter during some computation of M . Thus, �M has some model with variability

8In related work, we called similar behaviors “Berkeley” [17, 20].

306 C. A. Furia, P. Spoletini

not bounded by β/1—problem BVβ/1〈R≥0, ω, c〉(�M)—iff a counter overflows β in some
computation of M .

Now we have only established whether some counter overflows in M , whereas the
bounded counter problem specifically targets overflows of v0. To close the gap, we encode
the overflowing of v0 in M as an MTL formula:

�
v0
β = ♦

⎛

⎜

⎜

⎝

⎛

⎝

∨

0≤k≤m

pk

⎞

⎠ ∧
β+1 nested diamonds

︷ ︸︸ ︷

♦(0,1)

(

z0 ∧ ♦(0,1)(z0 ∧ · · ·)
)

⎞

⎟

⎟

⎠

.

Thanks to the padding, the nested diamonds in �
v0
β evaluate to true iff there are at least β+1

distinct occurrences of z0 in the slot corresponding to one configuration. Thus, v0 overflows
β in M iff �M ∧ �

v0
β has some model with variability not bounded by β/1.

Lemma 24 BV∃〈R≥0, ω, c〉(φ) is in �0
2 .

Proof Given the definition of�0
2 in the arithmetical hierarchy [57], it is sufficient to provide

an enumeration of all MTL formulas φ for which the answer to BV∃〈R≥0, ω, c〉(φ) is YES,
relative to an oracle for BVv/V 〈R≥0, ω, c〉(φ), which is in 0

1 by Lemma 22. To this end,
we dovetail [48, Chap. 3] through all pairs (v, φ) of nonnegative integers v ∈ N and MTL
formulas φ. For each pair, if the answer to BVv/1〈R≥0, ω, c〉(φ) is YES, then the answer to
BV∃〈R≥0, ω, c〉(φ) also is YES. This enumeration eventually finds all formulas φ for which
the answer to BV∃〈R≥0, ω, c〉(φ) is YES.

Lemma 25 BV∃〈R≥0, ω, c〉(φ) is �0
2 -hard.

Proof We reduce the finite counter problem of counter machines (Section 5.1) to
BV∃〈R≥0, ω, c〉(φ); the lemma follows by Theorem 18.

LetM be a generic n-counter machineM , with n ≥ 3. Consider another counter machine
Mb that performs a deterministic simulation of M . Mb keeps track of the path taken in the
computation tree that M’s computations determine, so that it can enumerate M’s computa-
tions sequentially. Unlike Md in the hardness proof of the finite counter problem (Theorem
18), Mb uses dovetailing [48, Chap. 3] to enumerate M’s computation breadth-first: when-
ever Mb reaches an unexplored branch in the simulation of a computation of M , it performs
one step into one unexplored branch, and then backtracks and performs one step into the
alternative choice. We further require that Mb does not directly use counter v0 for the sim-
ulation (and adds fresh counters as needed); instead, it enforces the invariant that v0 always
stores the current value of v0 in the computation that is being simulated.

Next, modify Mb into M ′ as follows. The unique halting location
h in Mb becomes an
infinite idle loop in M ′:
h: goto
h. Add a fresh counter vx ; before beginning the main
computation, M ′ initializes vx with a nondeterministically chosen positive integer value x

by performing the instructions:

0 : inc vx

1 : if vx > 0 goto
0,
2 (4)

Bounded variability of metric temporal logic 307

where
2 corresponds to Mb’s initial location after shifting all location labels by two posi-
tions. Furthermore, every increment inc v0 of v0 in Mb becomes a guarded increment if
v0 = vx − 1 goto
s else inc v0 in M ′, where
s : halt is a fresh halting location only used
by these guarded increments. Except for the nondeterministic initialization of vx , M ′ only
adds deterministic instructions to the deterministic Mb; hence, for every positive value x

that may initialize vx , there exists a computation of M ′ where vx = x; let cx denote such a
computation of M ′ that initializes vx to x and then proceeds with the deterministic simula-
tion (where vx remains constant to x). Computation cx halts iff there exists a computation
of M where v0 overflows x − 1.

Let � = �M ′ ∧ ♦ps , where �M ′ is an MTL formula that encodes the computations of
M ′ as described in Section 5.2, and
s is the unique halting location of M ′. The models of
� describe all valid computations of M ′ that halt; that is, in particular, all computations that
do not get stuck forever in the initial loop (4) that increments vx .9

Finally consider the decision problem BV∃〈R≥0, ω, c〉(�). If its answer is YES, we claim
that there are finitely many models that satisfy �.10 To the contrary, assume that � has
infinitely many models; then, a counting argument indicates that, for every positive y, there
exists x > y such that wx |= �, where wx is a model of the halting computation cx . But v0
overflows x − 1, and hence y ≤ x − 1 too, in cx ; this contradicts the hypothesis that the
answer to BV∃〈R≥0, ω, c〉(�) is YES (i.e., there is a finite bound on v0’s values shared by
all computations of M).

Conversely, if the answer to BV∃〈R≥0, ω, c〉(�) is NO, then there are infinitely many
models that satisfy �, which implies, using a dual argument as the YES case, that the finite
counter problem for M has answer NO.

Remark 26 As a comment on the proof of Lemma 25, its reduction’s trickiest part lied in the
fact that, while the finite counter problem refers a specific counter v0, BV∃〈R≥0, ω, c〉(φ)

considers variability of all propositions. The proof of Lemma 23 involves a similar mis-
match, but things are simpler there thanks to the existence of a known bound β, which
can be monitored explicitly (formula �

v0
β); in the finite variability problem, instead, the

bound is existentially quantified. An obvious solution would have been to avoid the prob-
lem altogether by changing the definition of BV∃〈R≥0, ω, c〉(φ) so that it referred to a
specific proposition whose variability should be bounded; doing this, however, would pro-
vide a weaker result about a definition that is possibly less natural. Instead, we leveraged
nondeterminism to “guess” the existentially quantified bound x.

6.3 Complexity of bounded variability over discrete time

The decision problems BVv/V 〈N, ω, p〉(φ) and BV∃〈N, ω, p〉(φ) correspond to those of
Section 6.1 for MTL interpretations over infinite words ω, discrete time domainN, and the
pointwise semantics p. Both problems are decidable; the complexity of the former is the
same as MTL satisfiability under the same interpretation, whereas the latter is trivial given
that the time domain is discrete.

9We can specify and reason about progress because we are reducing between undecidable problems.
10In the special case in which M has finitely many halting computations, � has no models.

308 C. A. Furia, P. Spoletini

Theorem 27 BVv/V 〈N, ω, p〉(φ) is EXPSPACE-complete; BV∃〈N, ω, p〉(φ) is trivially
decidable (constant answer YES).

Proof For any integer x > 0, every word w ∈ Bω
N[∞] has variability trivially bounded

by (x + 1)/x because the time domain is discrete and the timestamps are monotonically
increasing, and hence the difference between a timestamp tk and its next tk+1 is at least one
unit. This shows that BV∃〈N, ω, p〉(φ) has answer YES for every φ.

The first part of the theorem is proved in Lemma 28 and 29.

Lemma 28 BVv/V 〈N, ω, p〉(φ) is EXPSPACE-hard.

Proof It suffices to note that BV2/1〈N, ω, p〉(φ) has answer YES iff φ is satisfiable over
infinite words with monotonic integer timestamps. This provides a constant-time reduction
from an EXPSPACE-complete problem to BVv/V 〈N, ω, p〉(φ).

Lemma 29 BVv/V 〈N, ω, p〉(φ) is in EXPSPACE.

Proof To prove the lemma, we follow Lemma 9 and express bounded variability in the
MTL+ extension of MTL. Given an MTL formula φ, the MTL+ formula φ′ = φ ⇒ Vv,V is
valid iff BVv/V 〈N, ω, p〉(φ) has answer YES. This proves the lemma since MTL+ validity
is in EXPSPACE .

6.4 Complexity of bounded variability under other interpretations

In the previous sections, we studied the complexity of bounded variability and existen-
tial bounded variability for certain standard choices of interpretation: infinite words, the
pointwise semantics in discrete time, and the continuous semantics in dense time. We now
discuss to what extent those results generalize to other interpretations; Table 4 summarizes
the results.

6.4.1 Discrete time

In Section 3.3, we remarked how the decidability of MTL is very robust over discrete
time, in that complexity is not affected by choices of interpretation such as pointwise vs.
continuous semantics and finite vs. infinite words.

We observe a similar robustness regarding the complexity of the bounded variability
and existential bounded variability problems over discrete time N. It should be clear that
the proofs of Section 6.3 can be adapted to work for the other discrete-time interpreta-
tions with minimal modifications. Accommodating finite-word interpretations requires a bit
of attention to the “border effects” that occur when reaching the last positions in a word;
accommodating the continuous semantics requires handling the case where there is a valid
position k for every nonnegative integer timestamp tk = k, similarly to what is done when
bridging the gap between MTL and LTL (see Section 7.1 for some details of how this simple
idea works).

Theorem 30 BVv/V 〈N, ω, c〉(φ), BVv/V 〈N, ∗, p〉(φ), and BVv/V 〈N, ∗, c〉(φ) are
EXPSPACE-complete; BV∃〈N, ω, c〉(φ), BV∃〈N, ∗, p〉(φ), and BV∃〈N, ∗, c〉(φ) are triv-
ially decidable (constant answer YES).

Bounded variability of metric temporal logic 309

6.4.2 Dense time

As recalled in Table 2, the complexity of MTL changes significantly under different dense-
time interpretations. This affects the complexity of bounded variability and existential
bounded variability over dense time.

Continuous semantics The results of Section 6.2 still hold over finite words under the
continuous semantics: the proofs of Lemmas 22, 23, 24, and 25 go through also for finite-
word interpretations. The intuitive reason is that the counter machine problems we reduce
from (the bounded counter and finite counter problems) only involve finite behaviors: over-
flow of a counter is an event that occurs at some finite time, that is bounded counter and
finite counter are safety properties [32, 37]. This is a sufficient condition for the lower
bounds to hold for finite words as well (Lemmas 23 and 25); the upper bounds follow a
fortiori since finite words can be seen as a restriction of infinite words.

Theorem 31 BVv/V 〈R≥0, ∗, c〉(φ) is 0
1 = coRE-complete; BV∃〈R≥0, ∗, c〉(φ) is �0

2 -
complete.

Pointwise semantics: bounded variability. Let us now consider interpretations over
dense time with the pointwise semantics. Notice that Lemma 9 provides a way of show-
ing that, for every dense-time interpretation I = 〈R≥0, ◦, v/V, s〉, the complexity of
the bounded variability problem BVv/V 〈R≥0, ◦, s〉(φ) is not higher than the complexity
of validity for MTL under the same interpretation I . In fact, given an MTL formula φ,
BVv/V 〈R≥0, ◦, s〉(φ) has answer YES iff the MTL formula φ ⇒ Vv,V is valid under inter-
pretation I , where Vv,V is described in Lemma 9. In particular, the bounded variability
problem is non-primitive recursive for finite words (BVv/V 〈R≥0, ∗, p〉(φ)) and in coRE for
infinite words (BVv/V 〈R≥0, ω, p〉(φ) ∈ coRE).

To establish matching lower bounds, we rely on a property Sδ of MTL over the pointwise
interpretation: a formula φ is satisfiable if and only if it is satisfied by a word w such that,
for every valid position k in w, tk+1 − tk ≤ δ, where δ is a constant that depends only on φ.
This property depends on the abstraction of clock valuations into clock regions [45]: roughly
speaking, the number of regions that can be reached in a computation corresponding to a
word satisfying φ is finite, which implies that, if φ is satisfiable, one can construct a word
w that satisfies φ with time differences bounded by some finite δ. Therefore, we can reduce
satisfiability to BV1/δ〈R≥0, ◦, p〉(φ), for both ◦ = ∗ and ◦ = ω. If BV1/δ〈R≥0, ◦, p〉(φ)

has answer NO, then every word w that satisfies φ is such that, for all valid positions k in w,
tk+1 − tk > δ; therefore, the above property Sδ does not hold, and hence φ is not satisfiable.
If BV1/δ〈R≥0, ◦, p〉(φ) has answer YES, then there exists a word w that satisfies φ and such
that, for some valid position k in w, tk+1 − tk ≤ δ; therefore φ is satisfiable a fortiori.

Theorem 32 BVv/V 〈R≥0, ∗, p〉(φ) is complete for non-primitive recursive problems;
BVv/V 〈R≥0, ω, p〉(φ) is coRE-complete.11

Pointwise semantics: existential bounded variability. It is easy to show that the exis-
tential bounded variability problems BV∃〈R≥0, ∗, p〉(φ) and BV∃〈R≥0, ω, p〉(φ) are one

11The preliminary version of this paper [23, Sec. VII] is incorrect when it suggests thatBVv/V 〈R≥0, ω, p〉(φ)

is complete for RE.

310 C. A. Furia, P. Spoletini

level up in the arithmetical hierarchy with respect to the corresponding bounded variability
problems.

For the finite word interpretation, let us describe an enumeration of formulas φ for which
the answer to problem BV∃〈R≥0, ∗, p〉(φ) is YES. This proves that the problem is in RE.
Here is the enumeration: (1) initially, δ := 1; (2) check whether φ ⇒ Vδ,1 (where Vδ,1
encodes the bounded variability requirement as per Lemma 9) is valid; (3) if it is, stop
and return YES; (4) otherwise, δ := δ + 1 and go to (2). Setting V = 1 is without loss
of generality, because any dense-time word that has variability bounded by v/V also has
variability bounded by (v (1 + �1/V)/1.

Theorem 33 BV∃〈R≥0, ∗, p〉(φ) is in RE.

For the infinite word interpretation, we apply the definition of �0
2 in the arithmetical

hierarchy [57]. We have just shown that the set Ov,V of all MTL formulas φ such that
problem BVv/V 〈R≥0, ω, p〉(φ) has answer YES is coRE (or 0

1). Therefore the set {φ |
∃v, V : φ ∈ Ov,V } is �0

2 by definition.

Theorem 34 BV∃〈R≥0, ω, p〉(φ) is in �0
2 .
12

Finding matching lower bounds forBV∃〈R≥0, ∗, p〉(φ) andBV∃〈R≥0, ω, p〉(φ) requires
novel techniques, which belongs to future work. We remark that one cannot use reduc-
tions from n-counter machine problems, because the correspondence between counter-
machine computations and MTL formulas breaks down under the pointwise semantics (see
Remark 19). Instead, one could try to exploit the connection between MTL under the
pointwise semantics and channel machines with insertion errors [44, 45].

Past operators. Remark 19 outlined how dense-time MTL with past operators can
encode counter-machine computations even under the pointwise semantics. This implies
that the constructions for continuous-semantics MTL used in the proofs of Lemmas 22–25
work, mutatis mutandis, for pointwise-semantics MTL with past operators. More pre-
cisely, the proofs of Lemmas 22 and 24—which establish upper bounds—do not involve
counter-machines, and hence carry over to the pointwise semantics without modifica-
tions. The proofs of Lemmas 23 and 25—which establish lower bounds—depend on being
able to construct an MTL formula �M that encodes the computations of an arbitrary
counter machine M; if we replace the encoding of �M described in Section 5.2—
using continuous-semantics MTL—with the encoding outlined in Remark 19—using
pointwise-semantics MTL with past operators—the proofs carry over to the pointwise
semantics as well. In all, the complexities of the bounded variability problem and of the
existential bounded variability problem for dense-time MTL with past operators under
the pointwise semantics are the same as for dense-time MTL under the continuous
semantics.

12The preliminary version of this paper [23, Sec. VII] is incorrect when it suggests that BV∃〈R≥0, ω, p〉(φ)

is in RE.

Bounded variability of metric temporal logic 311

7 Bounded variability in simple cases

The complexity results of Section 6 pose some major limitations to deciding bounded
variability for MTL formulas. However, there is still the possibility of identifying syntac-
tic fragments of MTL that are still reasonably expressive but for which reasoning about
bounded variability is simpler than in the general case. We refer to such MTL fragments as
“bounded friendly”.

The idea is that a bounded friendly MTL fragment F is one for which the prob-
lem BVv/V 〈T, ◦, s〉(ψ), for ψ ∈ F , is simpler than the more general problem
BVv/V 〈T, ◦, s〉(φ), for φ ∈ MTL. If we are studying the satisfiability of an MTL formula
φ that can be written as φ′ ∧ ψ , for ψ ∈ F , we can proceed as follows. First, we determine
if BVv/V 〈T, ◦, s〉(ψ) has answer YES. If it does, then φ has variability bounded by v/V a
fortiori; hence, we can use the simpler algorithms of Section 4 to study the satisfiability of
φ. This approach is best effort, in that φ may not be expressible as φ′ ∧ψ or ψ may not have
variability bounded by v/V , but it has a chance of leading to an overall simpler decision
procedure in practical cases.

We give two examples of non-trivial bounded-friendly fragments, one for discrete and
one for dense time.

7.1 Simpler bounded variability over discrete time

As recalled in Section 4.2, MTL over discrete time boils down to an exponentially succinct
version of LTL. Therefore, we can lift some complexity results about simpler fragments
of LTL [5, 12, 59] to MTL over N, and use them to identify bounded-friendly fragments.
As customary over discrete time, we consider interpretations with infinite words and the
pointwise semantics, although extending the results to the case of finite words is possible
(and not particularly interesting).

To this end, we have to recall a few fundamental definitions of LTL and explicitly connect
them to MTL. In keeping with the standard LTL models, we assume that words have one
valid position per integer time: tk = k for all k ∈ N; this is merely a representational
convention that does not affect the properties of MTL over discrete time, since one can
always convert a generic word into one with one valid position per integer time by adding
a silent padding event ε at all positions corresponding to timestamps that did not appear in
the generic word.

Linear temporal logic (LTL). Linear Temporal Logic (LTL) formulas ψ are recursively
defined by:

ψ ::= � | p | ¬ψ1 | ψ1 ∧ ψ2 | ψ1 U ψ2 | X ψ1 ,

where the qualitative until and next operator’s semantics is given in MTL by:

SYMBOL DEFINITION NAME

ψ1 U ψ2 ψ2 ∨
(

ψ1 ∧ U[0,∞)(ψ1, ψ2)
)

qualitative until

X ψ1 ©=1(ψ1) LTL next

312 C. A. Furia, P. Spoletini

Two dual MTL fragments. Consider the two dual MTL fragments M+
♦,© and M+

�,©:

M+
♦,© (respectively, M+

�,©) denotes the MTL fragment using only the ♦J (respectively,
�J) and ©J temporal operators (which we now regard as primitive), the propositional
connectives ∧ and ∨, and where negations only appear on atomic propositions. We can
prove that satisfiability for these fragments is decidable in exponential time.

Lemma 35 Satisfiability ofM+
♦,© and ofM+

�,© overN is EXP-complete.

Proof Consider the LTL fragment L+
F ,X

which only uses the LTL operators eventually F

and next X , the propositional connectives ∧ and ∨, and where negations only appear on
atomic propositions. The LTL operator F is defined as F ψ1 = � U ψ1. A classic result is
that satisfiability for L+

F ,X
is NP-complete [59, Th. 3.7].

We now outline how to transform a generic μ ∈ M+
♦,© into a λ ∈ L+

F ,X
such that μ

and λ are equisatisfiable; the converse transformation (from L+
F ,X

to M+
♦,© formulas) is

trivial given that MTL is a superset of LTL the way we have defined it. In general, the size
of λ will be exponential in the size of μ due to the fact that metric constraints are encoded
in binary in μ. The lemma follows as a manifestation of the “succinctness phenomenon”
[48, Chap. 20]—from NP to EXP.

Recall that we assume, without loss of generality over discrete time, words where each
valid position k has a timestamp tk equal to k itself; this way, a step always corresponds
to one discrete time instant. A special proposition ε holds when no significant event takes
place. A translation τ from M+

♦,© to L+
F ,X

works inductively as follows, for a, b ∈ N,

c ∈ N ∪ {∞}, and p ∈ P :

τ
(

♦[a,b](p)
)

= Xa(p ∨
b−a nested X
︷ ︸︸ ︷

X (p ∨ · · ·)) ,

τ
(

♦[a,∞)(p)
)

= XaF (p) ,

τ
(©[a,c](p)

) =
a−1 nested X

︷ ︸︸ ︷

X (ε ∧ X (ε ∧ · · ·)) ∧ τ
(

♦[a,c](p)
)

,

where Xk is a shorthand for k nested applications of X . Translation τ does not otherwise
change the propositional structure of formulas.

With this translation, it should be clear that μ is satisfiable over timed words over N iff
τ(μ) is satisfiable. The size of τ(μ) is O(2|μ|), since τ unrolls the constants, succinctly rep-
resented in μ, which results in worst-case exponential blow-up. This establishes the lemma
forM+

♦,©.

The same complexity result forM+
�,© follows by duality of � and ♦.

We can leverage Lemma 35 to show that M+
♦,© is bounded friendly.13 Let v, V be

variability bounds; without loss of generality, let v > 0. First, note that theM+
�,© formula

Bv,V = ��(0,ν](⊥),14 where ν = �V/v�, holds only for models with variability bounded

13By duality, one could show that M+
♦,© is bounded friendly too.

14Or, equivalently, �©>ν(�).

Bounded variability of metric temporal logic 313

by v/V (specifically, it is stricter than the requirement of bounded variability). Consider
now a generic MTL formula φ written as φ′ ∧ ψ , where ψ ∈ M+

♦,©. The implication

ψ ⇒ Bv,V ≡ ¬ψ ∨ Bv,V is an M+
�,© formula: push in the outermost negation ¬ψ ,

and use the duality between ♦ and �. Thus, validity of ψ ⇒ Bv,V can be decided in
singly exponential time (Lemma 35), which is better than deciding BVv/V 〈N, ω, p〉(φ) or
the validity of φ for general models (both are EXPSPACE-complete problems, and hence
solving them takes time doubly exponential in |φ| in the worst case).

7.2 Simpler bounded variability over dense time

While full MTL is highly undecidable over dense time, a number of expressive yet decid-
able fragments thereof have been identified. MITL is the fragment of MTL where intervals
that decorate time operators are not singular; MITL is fully decidable with EXPSPACE-
complete complexity [2, 28]. More recently, other decidable expressive fragments have been
identified that allow singular intervals [46] in MTL; BMTL and SMTL, in particular, are
interesting because their expressive power is incomparable with MITL’s. As in the previous
section, we consider interpretations with infinite words and the continuous semantics.

From the point of view of identifying bounded friendly fragments of MTL, however,
MITL seems the most promising choice. SMTL validity is non-elementary; while this is still
better than the undecidable problem BVv/V 〈R≥0, ω, c〉(φ), it remains impractical. BMTL
validity, in contrast, is decidable in EXPSPACE; however, BMTL cannot express invariance
properties since only finite intervals are allowed, and it is clear that bounded variability is a
form of invariance since it has to hold over every position in a timed word.

We are left with MITL, which we can show to be bounded friendly. Let v, V be vari-
ability bounds; without loss of generality, let v > 0. First, note that the MITL formula
Bv,V = ��(0,ν](⊥), where ν = �V/v�, holds only for models with variability bounded
by v/V (specifically, it is stricter than then requirement of bounded variability). Consider
now a generic MTL formula φ written as φ′ ∧ ψ , where ψ ∈ MITL. The implication
ψ ⇒ Bv,V is obviously also an MITL formula. Thus, validity of ψ ⇒ Bv,V can be decided
in EXPSPACE, whereas deciding both BVv/V 〈R≥0, ω, c〉(φ) and the validity of φ is unde-
cidable in general. If ψ ⇒ Bv,V is valid, φ has bounded variability a fortiori, and hence its
validity can be decided in EXPSPACE too.

8 Conclusion

The original motivation for this paper’s study was leveraging bounded variability to sim-
plify reasoning with metric temporal logic. From this perspective, the results we presented
are a mixed bag. Over discrete time models, deciding whether an MTL formula has intrinsic
bounded variability is not simpler than deciding validity. Over dense time models, deciding
whether an MTL formula has intrinsic bounded variability generally has complexity lower
than deciding validity, but unfortunately remains undecidable or intractable. This means that
checking for intrinsic bounded variability first, and then applying the simpler algorithms for
validity, is not feasible in practice. Nevertheless, we can still expect that some constraints
that determine bounded variability may occur naturally as a consequence of the physical
requirements of real systems being modeled. Specifically, bounded variability seems to
naturally embody a notion of bounded speed of transition between states, to which most
physical processes would comply.

314 C. A. Furia, P. Spoletini

From the different perspective of scientific interest, there remain a number of open prob-
lems consisting in transposing some of the techniques and results of the paper to other
semantics and logics. Finding matching lower bound in some uncommon semantic inter-
pretations of MTL over dense time (Section 6.4) would require using novel techniques
involving channel machines with insertion errors [44, 45]. Other, broader and hence poten-
tially more interesting, open questions involve studying bounded variability for different
kinds of metric temporal logics, including recent proposals for classic [17, 55, 56] or
interval-based [8, 39] real-time notations.

Acknowledgments We thank the editors for organizing this special issue; the attendees and reviewers of
TIME 2014 for their suggestions about a preliminary version of this work; and the anonymous referees of
AMAI for their scrupulous work and valuable comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real-time. ACM Trans. Program. Lang. Syst. 16(5),
1543–1571 (1994)

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)
3. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comp. 104(1), 35–77

(1993)
4. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
5. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized

satisfiability for linear temporal logic. Logical Methods in Computer Science 5(1) (2009)
6. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The Cost of Punctuality. In: ACM/IEEE Symposium

on Logic in Computer Science, pp. 109–120 (2007)
7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of inter-

val temporal logic: Sharpening the undecidability border. In: International Symposium on Temporal
Representation and Reasoning, pp. 131–138 (2011)

8. Bresolin, D., Della monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propositional
neighborhood logics on natural numbers. Softw. Syst. Model. 12(2), 245–264 (2013)

9. Bresolin, D., Monica, D.D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal logics over strongly
discrete linear orders: Expressiveness and complexity. Theor. Comput. Sci. 560, 269–291 (2014)

10. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal decision procedures for MPNL over finite
structures, the natural numbers, and the integers. Theor. Comput. Sci. 493, 98–115 (2013)

11. Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and Undecidability Results for Duration Calculus.
In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 93, 10th Annual Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science, vol. 665, pp. 58–68. Springer (1993)

12. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Inf.
Comput. 174(1), 84–103 (2002)

13. D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics.
STTT 9(1), 1–4 (2007)

14. D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics.
STTT 9(1), 1–4 (2007)

15. Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer Science, vol. B,
pp. 996–1072. Elsevier Science (1990)

16. Fränzle, M.: Model-checking dense-time duration calculus. Formal Asp. Comput. 16(2), 121–139 (2004)
17. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing. Monographs in

Theoretical Computer Science. An EATCS series Springer (2012)
18. Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. In: FORMATS,

LNCS, vol. 5215, pp. 109–123. Springer (2008). Extended version in [19]

http://creativecommons.org/licenses/by/4.0/

Bounded variability of metric temporal logic 315

19. Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. Tech. Rep. 2008.10,
Dipartimento di Elettronica e Informazione, Politecnico di Milano. Available at http://bugcounting.net/
publications.html#MTLwBoundedVar-TR08 (2008)

20. Furia, C.A., Rossi, M.: A theory of sampling for continuous-time metric temporal logic. ACM
Transactions on Computational Logic 12(1), 1–40 (2010). Article 8

21. Furia, C.A., Spoletini, P.: On Relaxing Metric Information in Linear Temporal Logic. In: International
Symposium on Temporal Representation and Reasoning, pp. 72–79. IEEE (2011)

22. Furia, C.A., Spoletini, P.: Automata-Based Verification of Linear Temporal Logic Models with Bounded
Variability. In: International Symposium on Temporal Representation and Reasoning, pp. 89–96. IEEE
(2012)

23. Furia, C.A., Spoletini, P.: Bounded Variability of Metric Temporal Logic. In: Cesta, A., Combi, C.,
Laroussinie, F. (eds.) Proceedings of the 21st International Symposium on Temporal Representation and
Reasoning (TIME’14), pp. 155–163. IEEE Computer Society (2014)

24. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic (vol. 1): mathematical foundations and
computational aspects, Oxford Logic Guides, vol. 28. Oxford University Press (1994)

25. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the Temporal Basis of Fairness. In: Conference Record
of the 7Th Annual ACM Symposium on Principles of Programming Languages (POPL’80), pp. 163–173
(1980)

26. Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity. Fundam. Inf. 62(1),
1–28 (2004)

27. Hirshfeld, Y., Rabinovich, A.: Continuous time temporal logic with counting. Inf. Comput. 214, 1–9
(2012)

28. Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity. Fundam. Inform.
62(1), 1–28 (2004)

29. Hunter, P., Ouaknine, J., Worrell, J.: Expressive Completeness for Metric Temporal Logic. In: LICS,
pp. 349–357. IEEE (2013)

30. Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. Ph.D. Thesis. University of California, Los
Angeles (1968)

31. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–
299 (1990)

32. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-3(2), 125–
143 (1977)

33. Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals: PSPACE and below. Inf.
Comput. 205(1), 99–123 (2007)

34. Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, present, future. In: Petterson, P., Yi,
W. (eds.) Proceedings of the 3rd International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’05), Lecture Notes in Computer Science, vol. 3829, pp. 2–16. Springer-Verlag
(2005)

35. Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin, E., Bouyer, P. (eds.)
Proceedings of the 4th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), Lecture Notes in Computer Science, vol. 4202, pp. 274–289. Springer-Verlag (2006)

36. Maler, O., Nickovic, D., Pnueli, A.: Checking Temporal Properties of Discrete, Timed and Continu-
ous Behaviors. In: Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the
Occasion of His 85Th Birthday, Lecture Notes in Computer Science, vol. 4800, pp. 475–505. Springer
(2008)

37. Manna, Z., Pnueli, A.: A Hierarchy of Temporal Properties. In: Proceedings of the 9Th Annual ACM
Symposium on Principles of Distributed Computing, pp. 377–410. ACM (1990)

38. Minsky, M.L.: Computation: Finite and infinite machines prentice hall (1967)
39. Montanari, A., Pazzaglia, M., Sala, P.: Metric Propositional Neighborhood Logic with an Equiva-

lence Relation. In: 21St International Symposium on Temporal Representation and Reasoning, (TIME),
pp. 49–58. IEEE Computer Society (2014)

40. Montanari, A., Puppis, G., Sala, P.: Decidability of the Interval Temporal Logic AĀBB̄ over the Rationals.
In: Mathematical Foundations of Computer Science 2014 - 39Th International Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, pp. 451–463 (2014)

41. Montanari, A., Sala, P.: An Optimal Tableau System for the Logic of Temporal Neighborhood over
the Reals. In: 19Th International Symposium on Temporal Representation and Reasoning, TIME 2012,
Leicester, United Kingdom, September 12-14, 2012, pp. 39–46 (2012)

42. Nickovic, D., Piterman, N.: FromMTL to Deterministic Timed Automata. In: Chatterjee, K., Henzinger,
T.A. (eds.) Formal Modeling and Analysis of Timed Systems – 8th International Conference, FORMATS
2010, Lecture Notes in Computer Science, vol. 6246, pp. 152–167. Springer (2010)

http://bugcounting.net/publications.html#MTLwBoundedVar-TR08
http://bugcounting.net/publications.html#MTLwBoundedVar-TR08

316 C. A. Furia, P. Spoletini

43. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-Bounded Verification. In: Bravetti, M., Zavattaro,
G. (eds.) CONCUR 2009 – Concurrency Theory, 20th International Conference, Lecture Notes in
Computer Science, vol. 5710, pp. 496–510. Springer (2009)

44. Ouaknine, J., Worrell, J.: On Metric Temporal Logic and Faulty Turing Machines. In: FoSSaCS, LNCS,
vol. 3921, pp. 217–230. Springer (2006)

45. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words.
Logical Methods in Computer Science 3(1) (2007)

46. Ouaknine, J., Worrell, J.: Some Recent Results in Metric Temporal Logic. In: FORMATS, LNCS,
vol. 5215, pp. 1–13. Springer (2008)

47. Ouaknine, J., Worrell, J.: Towards a Theory of Time-Bounded Verification. In: Abramsky, S., Gavoille,
C., Kirchner, C., auf der Heide, F.M., Spirakis, P.G. (eds.) Automata, Languages and Programming,
37th International Colloquium, ICALP 2010, Lecture Notes in Computer Science, vol. 6199, pp. 22–37.
Springer (2010)

48. Papadimitriou, C.: Computational complexity Addison-Wesley (1994)
49. Perrin, D., Pin, J.É..: Infinite Words, Pure and Applied Mathematics, vol. 141. Elsevier (2004)
50. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18Th Annual Symposium on

Foundations of Computer Science, SFCS ’77, pp. 46–57. IEEE Computer Society (1977)
51. Rabinovich, A.: Complexity of Metric Temporal Logics with Counting and the Pnueli Modalities. In:

FORMATS, Lecture Notes in Computer Science, vol. 5215, pp. 93–108. Springer (2008)
52. Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli modalities. Theor.

Comput. Sci. 411(22-24), 2331–2342 (2010)
53. Rabinovich, A.M.: Expressive completeness of Duration Calculus. Inf. Comput. 156(1-2), 320–344

(2000)
54. Reynolds, M.: The complexity of temporal logic over the reals. Ann. Pure Appl. Logic 161(8), 1063–

1096 (2010)
55. Reynolds, M.: Metric temporal reasoning with less than two clocks. Journal of Applied Non-Classical

Logics 20(4), 437–455 (2010)
56. Reynolds, M.: A New Metric Temporal Logic for Hybrid Systems. In: 20Th International Symposium

on Temporal Representation and Reasoning (TIME), pp. 73–80. IEEE Computer Society (2013)
57. Rogers, Jr., H.: Theory of recursive functions and effective computability MIT press (1987)
58. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. ACM 10(2) (1963)
59. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–

749 (1985)
60. Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Logics for Concurrency

– Structure versus Automata (8Th Banff Higher Order Workshop), Lecture Notes in Computer Science,
vol. 1043, pp. 238–266. Springer (1995)

61. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS,
pp. 332–344. IEEE (1986)

62. Wilke, T.: Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata. In:
FTRTFT, LNCS, vol. 863, pp. 694–715. Springer (1994)

	Bounded variability of metric temporal logic
	Abstract
	Reaping the benefits of bounding variability
	Outline
	Related work
	Linear temporal logic
	Metric temporal logic
	Decidable MTL fragments
	Decidable semantic restrictions to MTL

	Other real-time logics
	Bounded variability for other notations
	Interval temporal logic

	Background

	Timed words and bounded variability
	Time domains: discrete and dense
	Timed words
	Bounded variability of timed words

	Metric temporal logic
	Time intervals
	Syntax of MTL
	Derived operators
	Size of formulas

	Semantics of MTL
	Pointwise vs. continuous semantics
	Pointwise semantics
	Continuous semantics

	Decidability and complexity of MTL
	Interpretations
	Validity and satisfiability
	MTL decidability

	Metric temporal logic with bounded variability
	Expressing bounded variability in temporal logic
	Bounded variability over discrete time
	Complexity in special cases

	Bounded variability over dense time

	Counter machines
	Bounded and unbounded counters
	Hardness of the bounded counter problem
	Hardness of the finite counter problem
	Hardness of the unbounded counter problem
	Completeness of the bounded counter problem
	Completeness of the finite counter problem
	Completeness of the unbounded counter problem

	MTL and counter machines

	The complexity of bounded variability
	Bounded variability problems
	Complexity of bounded variability over dense time
	Complexity of bounded variability over discrete time
	Complexity of bounded variability under other interpretations
	Discrete time
	Dense time
	Continuous semantics
	Pointwise semantics: bounded variability.
	Pointwise semantics: existential bounded variability.
	Past operators.

	Bounded variability in simple cases
	Simpler bounded variability over discrete time
	Linear temporal logic (LTL).
	Two dual MTL fragments.

	Simpler bounded variability over dense time

	Conclusion
	Acknowledgments
	Open Access
	References

