46,511 research outputs found

    Energy-efficient adaptive machine learning on IoT end-nodes with class-dependent confidence

    Get PDF
    Energy-efficient machine learning models that can run directly on edge devices are of great interest in IoT applications, as they can reduce network pressure and response latency, and improve privacy. An effective way to obtain energy-efficiency with small accuracy drops is to sequentially execute a set of increasingly complex models, early-stopping the procedure for 'easy' inputs that can be confidently classified by the smallest models. As a stopping criterion, current methods employ a single threshold on the output probabilities produced by each model. In this work, we show that such a criterion is sub-optimal for datasets that include classes of different complexity, and we demonstrate a more general approach based on per-classes thresholds. With experiments on a low-power end-node, we show that our method can significantly reduce the energy consumption compared to the single-threshold approach

    Best-Arm Identification in Linear Bandits

    Get PDF
    We study the best-arm identification problem in linear bandit, where the rewards of the arms depend linearly on an unknown parameter θ∗\theta^* and the objective is to return the arm with the largest reward. We characterize the complexity of the problem and introduce sample allocation strategies that pull arms to identify the best arm with a fixed confidence, while minimizing the sample budget. In particular, we show the importance of exploiting the global linear structure to improve the estimate of the reward of near-optimal arms. We analyze the proposed strategies and compare their empirical performance. Finally, as a by-product of our analysis, we point out the connection to the GG-optimality criterion used in optimal experimental design.Comment: In Advances in Neural Information Processing Systems 27 (NIPS), 201

    The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices

    Full text link
    This paper proposes scalable and fast algorithms for solving the Robust PCA problem, namely recovering a low-rank matrix with an unknown fraction of its entries being arbitrarily corrupted. This problem arises in many applications, such as image processing, web data ranking, and bioinformatic data analysis. It was recently shown that under surprisingly broad conditions, the Robust PCA problem can be exactly solved via convex optimization that minimizes a combination of the nuclear norm and the â„“1\ell^1-norm . In this paper, we apply the method of augmented Lagrange multipliers (ALM) to solve this convex program. As the objective function is non-smooth, we show how to extend the classical analysis of ALM to such new objective functions and prove the optimality of the proposed algorithms and characterize their convergence rate. Empirically, the proposed new algorithms can be more than five times faster than the previous state-of-the-art algorithms for Robust PCA, such as the accelerated proximal gradient (APG) algorithm. Moreover, the new algorithms achieve higher precision, yet being less storage/memory demanding. We also show that the ALM technique can be used to solve the (related but somewhat simpler) matrix completion problem and obtain rather promising results too. We further prove the necessary and sufficient condition for the inexact ALM to converge globally. Matlab code of all algorithms discussed are available at http://perception.csl.illinois.edu/matrix-rank/home.htmlComment: Please cite "Zhouchen Lin, Risheng Liu, and Zhixun Su, Linearized Alternating Direction Method with Adaptive Penalty for Low Rank Representation, NIPS 2011." (available at arXiv:1109.0367) instead for a more general method called Linearized Alternating Direction Method This manuscript first appeared as University of Illinois at Urbana-Champaign technical report #UILU-ENG-09-2215 in October 2009 Zhouchen Lin, Risheng Liu, and Zhixun Su, Linearized Alternating Direction Method with Adaptive Penalty for Low Rank Representation, NIPS 2011. (available at http://arxiv.org/abs/1109.0367
    • …
    corecore