45 research outputs found

    A RBF partition of unity collocation method based on finite difference for initial-boundary value problems

    Full text link
    Meshfree radial basis function (RBF) methods are popular tools used to numerically solve partial differential equations (PDEs). They take advantage of being flexible with respect to geometry, easy to implement in higher dimensions, and can also provide high order convergence. Since one of the main disadvantages of global RBF-based methods is generally the computational cost associated with the solution of large linear systems, in this paper we focus on a localizing RBF partition of unity method (RBF-PUM) based on a finite difference (FD) scheme. Specifically, we propose a new RBF-PUM-FD collocation method, which can successfully be applied to solve time-dependent PDEs. This approach allows to significantly decrease ill-conditioning of traditional RBF-based methods. Moreover, the RBF-PUM-FD scheme results in a sparse matrix system, reducing the computational effort but maintaining at the same time a high level of accuracy. Numerical experiments show performances of our collocation scheme on two benchmark problems, involving unsteady convection-diffusion and pseudo-parabolic equations

    Rational RBF-based partition of unity method for efficiently and accurately approximating 3D objects

    Full text link
    We consider the problem of reconstructing 3D objects via meshfree interpolation methods. In this framework, we usually deal with large data sets and thus we develop an efficient local scheme via the well-known Partition of Unity (PU) method. The main contribution in this paper consists in constructing the local interpolants for the implicit interpolation by means of Rational Radial Basis Functions (RRBFs). Numerical evidence confirms that the proposed method is particularly performing when 3D objects, or more in general implicit functions defined by scattered data, need to be approximated

    RBF-Based Partition of Unity Methods for Elliptic PDEs: Adaptivity and Stability Issues Via Variably Scaled Kernels

    Get PDF
    We investigate adaptivity issues for the approximation of Poisson equations via radial basis function-based partition of unity collocation. The adaptive residual subsampling approach is performed with quasi-uniform node sequences leading to a flexible tool which however might suffer from numerical instability due to ill-conditioning of the collocation matrices. We thus develop a hybrid method which makes use of the so-called variably scaled kernels. The proposed algorithm numerically ensures the convergence of the adaptive procedure

    A new numerical method for processing longitudinal data: clinical applications

    Get PDF
    Background: Processing longitudinal data is a computational issue that arises in many applications, such as in aircraft design, medicine, optimal control and weather forecasting. Given some longitudinal data, i.e. scattered measurements, the aim consists in approximating the parameters involved in the dynamics of the considered process. For this problem, a large variety of well-known methods have already been developed. Results: Here, we propose an alternative approach to be used as effective and accurate tool for the parameters fitting and prediction of individual trajectories from sparse longitudinal data. In particular, our mixed model, that uses Radial Basis Functions (RBFs) combined with Stochastic Optimization Algorithms (SOMs), is here presented and tested on clinical data. Further, we also carry out comparisons with other methods that are widely used in this framework. Conclusions: The main advantages of the proposed method are the flexibility with respect to the datasets, meaning that it is effective also for truly irregularly distributed data, and its ability to extract reliable information on the evolution of the dynamics
    corecore