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Meshless partition of unity method for attraction basins of
periodic orbits: Fast detection of separatrix points

Alessandra De Rossi a · Emma Perracchione b · Ezio Venturino a

Abstract

Given a dynamical system, the problem of reconstructing the attraction basins can effectively be solved
by means of meshfree interpolation tools. We propose a novel approach to calculate separatrix manifolds
by detecting points via an efficient bisection-like scheme. Such data are then interpolated by means of
the implicit Partition of Unity (PU) method. The detection algorithm works for dynamical systems of two
equations, speeds up the computational time of the previously studied routines and allows the treatment
of periodic orbits.

1 Introduction
Over the last years numerical approximation of multivariate data has gained popularity in various disciplines, such as numerical
solution of Partial Differential Equations (PDEs), image registration, neural networks, optimization, statistics, finance and
modeling of 3D objects (see e.g. [4, 11, 24, 25, 26]). In this paper, we analyze an application in the field of population dynamics
[9, 15].

The importance of an investigation in this context follows from the fact that mathematical modeling is still a fruitful research
area despite its ancient origins. Specifically, in 1798 T.R. Malthus proposed the first model for the dynamics of a population [22].
Anyway, in this discipline the true breakthrough is due to V. Volterra and A.J. Lotka who in the 1920s, independently of each
other, studied the dynamics of interacting populations [21, 27].

Nowadays, mathematical modeling is commonly applied to major disciplines, such as biology, medicine and social sciences.
More precisely, the prediction of the temporal evolution of the considered quantities is determined via systems of ODEs. For
comprehensive treatments about the theory of mathematical modeling see e.g. [3, 23].

In an initial value problem involving a set of ODEs, a particular solution of the system is completely determined by the Initial
Condition (IC). Depending on the initial state of the system and on conditions involving the model parameters, the trajectories
may tend toward different asymptotically stable equilibria or periodic orbits. In this case, the phase state of the dynamical system
is divided by separatrix manifolds. Such manifolds, defining the domains of attraction, are determined locally (by linearization)
in well-known cases (see e.g. [23]). Furthermore, numerical tools based on characterizing a Lyapunov function as a solution of a
suitable linear first order PDE have already been developed. The PDE is then approximated using meshless collocation methods
[17].

The detection of the points lying on the separatrix manifolds can be performed by means of an efficient backward integration
in time (see [14]) or by using a bisection routine [6]. Focusing on the latter, in [9] a scheme to detect the separatrix points via a
bisection routine is built to give graphical representations of the separatrix manifolds for asymptotically stable equilibria. Then
the points are interpolated with the implicit PU method [13, 28], since attraction basins can be described by implicit equations.
However, the detection approach constructed in this way is computationally expensive and is not robust enough to work with
periodic orbits. Here, for 2-dimensional dynamical systems, we construct an ad hoc bisection-like algorithm that is able to speed
up the procedure. Further, we extend the scheme so that it can accommodate also the case of periodic orbits.

The outline of the paper is as follows. Section 2 is devoted to the presentation of the designed algorithms for the detection of
the points lying on the separatrix curves. In Section 3 we present the meshless interpolation scheme. The complexity analysis of
the method is presented in Section 4. Finally, Section 5 contains several numerical results.

2 Fast detection of separatrix points for periodic orbits
In this section, given two different steady states, we are interested in finding the manifold separating the ICs evolving toward
the two different stationary states. The case of an asymptotically stable equilibrium has already been studied in [9], while we
now focus on systems that for a given IC may also stabilize toward periodic orbits. Moreover, this novel procedure is able to
considerably reduce the computational cost of the algorithm adopted in [9].
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2.1 The criteria for periodic orbits and asymptotically stable equilibria

Let
dY (t)

d t
= g (Y (t), t), (1)

be a 2-dimensional dynamical system. If (1) admits more than one steady state, the final configuration of the system depends on
the IC Y (0) = Y 0. Thus, we now need a criterion to check where trajectories ultimately stabilize.

Let E0 = Ek
0 , k = 1, 2, be an asymptotically stable equilibrium point or a centre of a periodic orbit. A criterion that allows to

check where a trajectory finally stabilizes needs to be discussed. Let us first suppose that E0 is an asymptotically stable equilibrium
point. In that case, we only need to check if

lim
t→∞

Yk(t) = Ek
0 , k = 1,2.

Of course in finite arithmetic, the system is integrated for a time interval [0, tM ] and therefore we obtain a set of discrete values
yk(t i), k = 1, 2, i = 1, . . . , M , as approximated solution. Then, if E0 is a stable equilibrium point, we only need to check if

|yk(tM )− Ek
0 | ≤ τk, k = 1, 2,

where τk are prescribed tolerances. To apply this criterion, we assume that tM is large enough so that the trajectory stabilizes for
an integration time t∗, with t∗ ≤ tM . We are not able to provide suitable values of tM for any dynamical system. However, for the
given system and integration time, the proposed algorithm checks if tM is effective for applying the criterion (see [9] for further
details).

However, since in case of periodic orbits a trajectory does not stabilize toward any equilibrium point, this simple criterion
cannot be used to test if a given IC generates a periodic trajectory. In that case, we should define a different check test. Let us
suppose that an IC Y 0 generates a trajectory in the phase state that follows a periodic orbit. In general, neither the period nor the
shape of the orbit are a priori known. However, thinking of the phase state, we can overcome this problem and state that the
path originating at Y 0 follows a periodic orbit around E0 if

min
ti ,i=M ,...,M̃

||y(t i)||2 < ||E0||2 < max
ti ,i=M ,...,M̃

||y(t i)||2,

with tM̃ = ntM , where the integer n is such that n≥ 2. Indeed, in order to apply this criterion, after integrating the system in
[0, tM ] with IC Y 0, we need to use a time interval [tM , ntM ] and IC Y (tM ) = y(tM ). This is due to the fact that we require that
the trajectory at time tM already reached the stationary state and that the time interval is large enough to test if the trajectory
made a periodic cycle. In the sequel, for brevity, we use the notation Y 0→ E0, meaning that the path originating at Y 0 follows a
periodic orbit around E0 or asymptotically tends to E0.

Once these criteria are fixed, we can focus on the algorithm that finds the manifold identifying the attraction basins, given
two different steady states E0 and E1 (which can be centres of cyclic solutions or asymptotically stable equilibria). Thus, our aim
consists in finding the points lying on the separatrix curve and in interpolating/approximating them with a numerical tool. As in
[9], a separatrix point is found by performing a detection routine, which essentially consists of a bisection-like algorithm. To
construct the separatrix points in [9], a set of equispaced ICs on the boundary of the square [0,γ]2, with γ ∈ R+, is considered.
Then, a detection routine is performed between each pair of opposite points, which are seen as ICs of the system. Since we
consider opposite points, the bisection algorithm usually takes a large number of steps for converging to a fixed tolerance.

2.2 Fast procedure to determine separatrix points

Here, we propose an algorithm that enables us to take ICs close to the separatrix. To start the process we apply the detection
routine presented in [9] to those vertices of the square [0,γ]2,γ ∈ R+, that evolve toward two different steady states E0 and E1.
The bisection routine is iterated until the distance between two consecutive approximations is less than ε, where ε is a fixed
tolerance. To be more precise, the bisection algorithm is applied to

Y 1
0 = (0,0), Y 2

0 = (0,γ), if Y 1
0→ E0 and Y 2

0→ E1 or viceversa,

Y 1
0 = (0,0), Y 3

0 = (γ, 0), if Y 1
0→ E0 and Y 3

0→ E1 or viceversa,

Y 2
0 = (0,γ), Y 4

0 = (γ,γ), if Y 2
0→ E0 and Y 4

0→ E1 or viceversa,

Y 3
0 = (γ, 0), Y 4

0 = (γ,γ), if Y 3
0→ E0 and Y 4

0→ E1 or viceversa.

Since the separatrix intersects the perimeter of the square at two points on two different edges, either consecutive or opposite,
and since the above ICs span all the sizes of the square, we are able to find two separatrix points, namely s1 = (s1

1, s2
1) and

s2 = (s1
2, s2

2). One of these, let us say s1 = (s1
1, s2

1), chosen in an arbitrary way, is used as starting seed of an iterative process that
enables us to efficiently find the other points lying on the separating curve.

Because of the choice of the ICs, one component of s1 is necessarily equal to 0 or to γ. In particular, if s2
1 = 0, we define an

increment ∆= γ/q, q ∈ N+ and apply the bisection routine with either one of the following ICs

Y 1
0 = (min(s1

1 +∆,γ), s2
1), Y 2

0 = (s
1
1,min(s2

1 +∆,γ)), if Y 1
0→ E0 and Y 2

0→ E1 or viceversa,

or
Y 2

0 = (s
1
1, min(s2

1 +∆,γ)), Y 3
0 = (max(s1

1 −∆, 0), s2
1), if Y 2

0→ E0 and Y 3
0→ E1 or viceversa.
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Note that the separatrix can intersect only one of the two segments Y 1
0Y 2

0 and Y 2
0Y 3

0, so that only one of the above conditions is
satisfied. In other words, with these ICs we find exactly one separatrix point s2 (refer to Figure 1 for an illustrative example).

The procedure can now be iterated as follows. Assume that s2
1 = 0. In fact this is not restrictive because we can proceed

similarly for s1
1 = 0 or s1

1 = γ or s2
1 = γ. In particular, we exclude the orthogonal directions that from s2 generate ICs which are

not contained in [0,γ]2.
In general, to find the k-th separatrix point we consider pairs of points that are close to s k−1. Precisely, assuming that

s1
k−1 − s1

k−2 ≥ 0 and s2
k−1 − s2

k−2 ≥ 0, a bisection routine between the ICs that evolve toward different steady states, chosen among
the following pairs:

Y 1
0 = (min(s1

k−1 +∆,γ), s2
k−1), Y 2

0 = (s
1
k−1, min(s2

k−1 +∆,γ)), if Y 1
0→ E0 and Y 2

0→ E1 or viceversa,

or
Y 1

0 = (min(s1
k−1 +∆,γ), s2

k−1), Y 3
0 = (s

1
k−1,max(s2

k−1 −∆, 0)), if Y 1
0→ E0 and Y 3

0→ E1 or viceversa,

or
Y 2

0 = (s
1
k−1, min(s2

k−1 +∆,γ)), Y 4
0 = (max(s1

k−1 −∆, 0), s2
k−1), if Y 2

0→ E0 and Y 4
0→ E1 or viceversa.

This step produces the k-th separatrix point. Obviously, depending on s k−1 and s k−2, we can have different scenarios. For
instance, if s1

k−1 − s1
k−2 ≥ 0 and s2

k−1 − s2
k−2 < 0, we consider

Y 1
0 = (max(s1

k−1 −∆, 0), s2
k−1), Y 2

0 = (s
1
k−1,min(s2

k−1 +∆,γ)), if Y 1
0→ E0 and Y 2

0→ E1 or viceversa,

or
Y 1

0 = (max(s1
k−1 −∆, 0), s2

k−1), Y 3
0 = (s

1
k−1, max(s2

k−1 −∆, 0)), if Y 1
0→ E0 and Y 3

0→ E1 or viceversa,

or
Y 3

0 = (s
1
k−1, max(s2

k−1 −∆, 0)), Y 4
0 = (min(s1

k−1 +∆,γ), s2
k−1), if Y 3

0→ E0 and Y 4
0→ E1 or viceversa.

Similarly, one can fix the other searching directions that depend on the previous two separatrix points.
Note that if the separatrix curve passes through more than one quadrant generated by the above ICs, we only need to reduce the

stepsize ∆ until such drawback is overcome. In the end, the method returns a set of separatrix points Sq+2 = {s i , i = 1, . . . , q+ 2}.
Then, such points will be interpolated via the method described in the next section.
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Figure 1: Illustrative example of the iterative process that enables us to find separatrix points. The ICs are plotted with dots and the diamonds
identify the points on the separatrix. As first step, we apply the bisection with the vertices of the square. In this specific example the ICs
Y1

0 = (0,0) and Y2
0 = (γ, 0) provide us the point s1. Then, at the second step, we consider as new ICs Y1

0 = (s
1
1 +∆, s2

1) and Y2
0 = (s

1
1 , s2

1 +∆).
This because after integrating, we know that in this case the separatrix intersects the segment joining these points. Consequently, we discard the
IC Y3

0 = (max(s1
1 −∆, 0), s2

1).

3 The reconstruction via implicit PU
In general, the basins of attraction might be described by implicit equations. Therefore the use of an implicit reconstruction scheme
is essential. Moreover, if a large number of interpolation nodes is involved, the RBF system may suffer from ill-conditioning. To
avoid this problem, local approximation schemes, such as the PU method can be used. In the sequel, we focus on reconstruction
of implicit curves, but the proposed method can easily be extended to higher dimensions.
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3.1 The implicit PU approach

The set of separatrix points Sq+2 = {s i , i = 1, . . . , q + 2} ⊆ [0,γ]2 is seen as a set belonging to an unknown one dimensional
manifoldM , namely a curve in R2. Of course, in this caseM identifies all points x ∈ R2 satisfying the implicit equation f (x ) = 0,
for some function f . Then, in order to reduce the problem to a standard explicit form, we add further interpolation conditions
[13].

Let us suppose that, for each point s i , the oriented normal n i ∈ R2 is given. We construct extra points along the normals
[20]. Precisely, we obtain for each data point s i two additional points, namely sq+2+i = s i +ωn i , and s2(q+2)+i = s i −ωn i , where
ω ∈ R is the stepsize. Then, to each data we assign the function values F3(q+2) = { f (s i) ∈ R, i = 1, . . . , 3(q+ 2)} as follows

f (s i) = 0, i = 1, . . . , q+ 2,

f (s i) = 1, i = q+ 3, . . . , 2q+ 4,

f (s i) = −1, i = 2q+ 5, . . . , 3q+ 6.

For the augmented data set, namely S3(q+2) = {s i ∈ R2, i = 1, . . . , 3(q+ 2)} ⊆ Ω we compute an interpolant I such that I = 0
interpolates the given data. The approximant is constructed via the PU method, i.e. at first we build a covering of the domain Ω
with d circular patches, also called subdomains, Ω j , such that Ω ⊆ ∪d

j=1Ω j , with some mild overlap among the Ω j ’s. Then, the
interpolant assumes the form [13]

I (x ) =
d
∑

j=1

R j (x )Wj (x ) , x ∈ Ω, (2)

where {Wj}dj=1 is a partition of unity, i.e. a family of compactly supported, non-negative, continuous functions Wj , with

supp
�

Wj

�

⊆ Ω j and R j are local approximants. Here, we take RBF local interpolants and thus

R j (x ) =
q j
∑

k=1

α
( j)
k φ(||x − s ( j)k ||2), (3)

where q j indicates the number of points on Ω j and s ( j)k ∈ Sq j
= S3(q+2) ∩Ω j , with k = 1, . . . , q j . The coefficients {α( j)k }

q j

k=1 in (3)
are determined by enforcing the q j local interpolation conditions

R j(s
( j)
i ) = f ( j)i , i = 1, . . . , q j .

Thus, in case of strictly positive definite functions, the problem of finding the PU interpolant (2) reduces to solving d linear
systems of the form

A jα j = f j ,

where α j = (α
( j)
1 , . . . ,α( j)q j

)T , f j = ( f
( j)

1 , . . . , f ( j)q j
)T and A j ∈ Rq j×q j is

A j =









φ(||s ( j)1 − s ( j)1 ||2) · · · φ(||s ( j)1 − s ( j)q j
||2)

...
. . .

...
φ(||s ( j)q j

− s ( j)1 ||2) · · · φ(||s ( j)q j
− s ( j)q j

||2)









.

3.2 Normals estimation

To implement the implicit PU method, for each point s i , we need to find the oriented normal n i . The normals can easily be
estimated following [13]. Then, to orient them consistently, we adopt the technique presented in [20]. To this aim, we model
this problem via graph optimization [20]. At first, we build the Riemann graph G = {V,E}, with each node in V corresponding to
one of the data points. We remark that the Riemann graph is defined as the undirected graph among which there exists an edge
eik in E if vk is one of the K-nearest neighbors of vi and viceversa. In our case, the graph G has a vertex for every normal n i and
an edge eik between the vertices of n i and nk if and only if i ∈K (s k) or k ∈K (s i), where K (s k) denotes the set of K-nearest
neighbour points of s k. We assign to each edge eik the cost w(eik) = 1− |n in

T
k |, as suggested in [20]. A favourable propagation

order can therefore be achieved by traversing the minimal spanning tree of the Riemann graph. The advantage of this order
consists in propagating the orientation along directions of low curvature in the data.

To such scope, we need some preliminary definitions (see e.g. [1]) for further details.

Definition 3.1. In any connected graph G, a spanning tree is a subgraph of G having the following two properties:

i. the subgraph is a tree,

ii. the subgraph contains every vertex of G.

Definition 3.2. The weight of a tree is defined to be the sum of the weights of all edges in the tree.

Definition 3.3. Given a connected weighted graph G the minimal spanning tree is the one having minimum weight among all
spanning trees in the graph.

We now want to determine how to construct a minimum weight spanning tree. As suggested by [20], we use the Kruskal’s
algorithm (e.g. refer to [18] for further details). Precisely, we begin by choosing an edge of minimum weight in the graph and
we then continue by selecting an edge of minimum weight from the remaining edges until a spanning tree is formed.
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4 Computational complexity
In a standard setting, the efficiency of the bisection method trivially depends on the length of the initial searching interval, in our
case ||Y 1

0 − Y 2
0||2. Denoting by s , the j-th approximation of a separatrix point s∗, we have that

||s − s∗||2 ≤
||Y 1

0 − Y 2
0||2

2 j+1
.

In particular, since the method previously explained is built ad hoc in order to start close to the separatrix, we expect a saving
in terms of computational complexity with respect to the scheme outlined in [9]. This is confirmed by the fact that, in [9],
||Y 1

0 − Y 2
0||2 = γ, while currently, since ∆= γ/q, we obtain

||s − s∗||2 ≤
||Y 1

0 − Y 2
0||2

2 j+1
=
p

2γ
q2 j+1

�
γ

2 j+1
.

Concerning the interpolation method, given q+ 2 data and the space dimension 2 [13, 28], we need to:

i. Compute and consistently orient the normals to the curve. This consists in calculating the minimum spanning tree of a
weighted graph using the Kruskal’s algorithm which requires O(e log v) time, where e is the number of edges and v the
number of vertices [20]. In our case, we have v = q+ 2 and e = K(q+ 2), where K is the number of nearest neighbour
points.

ii. Organize the points among the different patches. This can be done with the use of the so-called kd-trees data structures
[13]. Taking into account that the augmented data set for the implicit approach consists of 3(q+2) points, the construction
of a tree requires O(6(q+2) log 3(q+2)) time. Once the tree is built, we can search for all the points lying in a given patch
in O(log(3q+ 6)) time [5]. We can eventually use the so-called integer-based data structure [7, 8] that needs O(3(q+ 2))
time to organize the points among the different patches and O(1) time complexity for the searching routine.

iii. Construct the PU interpolant. This consists in solving d linear systems of size q j × q j , with q j � 3(q+ 2), thus requiring an
O(q3

j ) running time for each patch.

5 Numerical results
To test the method described in the previous sections, let us consider the following model describing a population affected by a
disease [19]:

dP
d t = r(1− P)(P − u)P −αI ,

dI
d t = [−α− d − ru+ (σ− 1)P −σI]I ,

where P is the dimensionless total population that is composed of infected individuals I and susceptible individuals P − I .
Referring to [19], we set r = 0.2, u = 0.1, d = 0.25 and α = 0.1; furthermore we fix σ = 4.08. With this choice there exists
exactly one endemic steady state E1 which is a centre of periodic orbits. Moreover the origin E0 is asymptotically stable (see
Figure 2). This situation suggests the existence of a curve separating the paths tending to E0 from the trajectories following
periodic cycles around E1.

Letting q = 46, the points describing such curve are plotted in Figure 3 (left). Moreover, to reconstruct the curve we consider
the following basis functions

φ1 (r) = e−(cr)2 , C∞ Gaussian (G)

φ2 (r) = e−cr(15+ 15cr + 6 (cr)2 + (cr)3), C6 Matérn (M6)

φ3(r) = (1− cr)4+ (4cr + 1) , C2 Wendland (W2)

where c ∈ R+ is the so-called shape parameter and r is the Euclidean distance. Note that φ3 is compactly supported and this
might be an advantage when the interpolation system is ill-conditioned.

To construct the curve, we consider 4 subdomains and we evaluate the interpolant on ξ = 40 equally spaced points, x̃ i
i = 1, . . . ,ξ. The tolerance for the bisection algorithm is taken equal to 10−4 and γ= 2. Moreover, to point out the accuracy we
estimate via cross-validation the Root Mean Square Error (RMSE)

RMSE=

√

√

√

√

1
ξ

ξ
∑

i=1

| f (x̃ i)− I(x̃ i)|2.

Finally, we also calculate the Maximum Condition Numbers (MCNs) of the local interpolation matrices, i.e.

MCN= max
j=1,...,d

||A j ||2||A j
−1||2.

In the right frame of Figure 3 we plot the curve reconstructed by taking for the W2 function the shape parameter c = 1. This
error is compared with the ones obtained with the G and M6 kernels (see Table 1). It is well-known that the G function can give
arbitrarily high convergence orders, but dealing with real data, the ill-conditioning usually leads to inaccurate and meaningless
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approximations for smooth RBFs. This is the case of the application at hand; in fact the G function is not able to fit the curve
(this is the reason why we do not report any error in Table 1). On the contrary, taking advantage of the local support, the W2
function results particularly effective in this case. Of course, the choice of the shape parameter influences the accuracy of the
approximation, but the only way to completely overcome the instability issue for the G kernel consists in using stable bases
[2, 10, 12, 16].

While the method presented here and the one shown in [9] are comparable in terms of accuracy, the difference in terms of
CPU times is evident from Table 2. Indeed, by using the fast detection procedure presented here, we register a sizeable saving in
terms of computational time.

0 0.05 0.1 0.15 0.2
0

0.01
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0.06

P

I

Figure 2: An illustrative example of two different trajectories evolving toward E0 and E1 (represented by squares).
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Figure 3: Set of points lying on the curve separating the domains of attraction of E0 and E1 (left) and the reconstruction of the separatrix curve
(right). The squares represent E0 and E1.

G M6 W2

RMSE −− 6.28E− 03 2.92E− 03
MCN 9.27E+ 19 6.616E+ 12 1.08E+ 06

Table 1: RMSEs and MCNs for different kernels with shape parameter c = 1. Note that the measure of the error for the G case is not available
because the approximation fails in view of the high condition number.
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q+ 2 12 24 48 96

t1 12.73 18.50 35.76 72.58

t2 4.08 7.30 14.13 27.13

Table 2: CPU times (in seconds). With t1 we denote the time obtained with the algorithm presented in [9], while t2 identifies the CPU time of
the new detection algorithm. Tests have been carried out with the MATLAB software on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz processor.
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