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Software Implementation of the Partition of Unity Method∗

Roberto Cavoretto a,c · Alessandra De Rossi a,c · Sandro Lancellotti a,c · Emma Perracchione b,c

Abstract
We present a software for efficiently interpolating via kernel bases large datasets in a multivariate
setting. It is based on the partition of unity method, and hence on splitting the given
(potentially huge) interpolation problem into many small ones. To reach the widest audience
among the potential users, we propose both a MATLAB and a Python implementation. We
discuss the algorithm details, and hence the paper results in a step-by-step user-friendly
tutorial.

1 Introduction
Kernel-based schemes are popular methods used in many applied fields, such as scattered data interpolation, regression
and machine learning. Their success both in approximation theory [27] and artificial intelligence [24] is due to the fact
that they are meshfree and easy to implement in any dimension. For a complete review on the topic, we refer the reader
to e.g. [2].

One of the main disadvantages of kernel-based interpolation schemes is that the collocation matrices, generated by
imposing the interpolation conditions, are typically full and hence, their complexity cost is not affordable when a large
number of data is available. In this setting the so-called Partition of Unity (PU) scheme is nowadays a well-established
and efficient kernel-based interpolation method. First introduced in the mid 1990s in [1], the PU scheme produces a
global approximant by gluing together, via the use of compactly supported weights, many local fits [28]. Such a scheme
is also rather popular for researchers working on local collocation schemes for PDEs; refer e.g. to [3, 16, 20, 23].

The PU method organizes the initial set of scattered data, that lay on a multivariate domain, into several subdomains,
also known as patches. Then, for each of those patches it solves a small interpolation problem. A key step in its
implementation is thus the one of efficiently distributing the scattered data into the different patches. The reader can
find a MATLAB implementation of the PU scheme, based on the so-called kd-tree partitioning data structures, in [9].
Unfortunately, such an algorithm makes use of files with dll extension (also known as mex-files) that cannot be executed
in recent MATLAB releases. With this motivation, we propose an effective implementation of the PU scheme based
on what we call the integer-based routines. Although the theory behind such partitioning data procedures is not new
and can be thought as a multivariate extension of the algorithms proposed in [4], we here discuss for the first time
its detailed implementation. Moreover, motivated by the growing interest of the kernel community towards Python
packages for machine learning, we also develop a Python implementation of the PU scheme. Both the MATLAB and
Python codes are available at https://github.com/sandro-lancellotti/PU

The paper is organized as follows. In Section 2, we briefly review the basics of kernel-based schemes. Sections 3 and
4 provide the details on the PU scheme and its MATLAB and Python implementation, respectively. In Section 5 some
experiments with the two implemented algorithms are proposed, and our conclusions are offered in Section 6.

2 Preliminaries
Given X = {xi, i = 1, . . . , n} ⊆ Ω a set of distinct data, arbitrarily distributed on a domain Ω ⊆ Rd, with an associated
set F = {fi = f(xi), i = 1, . . . , n} of data values, which are obtained by sampling some (unknown) function f : Ω −→ R
at the nodes xi, the scattered data interpolation problem consists in finding a function Pf : Ω −→ R such that it matches
the measurements at the corresponding locations, i.e.:

Pf (xi) = fi, i = 1, . . . , n.

We now suppose to have a univariate function ϕ : [0, ∞) → R (known as Radial Basis Function (RBF), which might
depend on the so-called shape parameter ε) that provides, for x, z ∈ Ω, the real symmetric strictly positive definite
kernel (see e.g. [27])

κ(x, z) = ϕ(||x − z||2) := ϕ(r).
∗The preface of this special issue to which the article belongs is given in [5].
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The selection of the shape parameter strongly affects the accuracy of the fit. It is then a critical issue that will not
be discussed in this paper; we refer the reader to e.g. [11, 17, 15, 22] for discussions on the topic. The kernel-based
interpolant Pf can be written as

Pf (x) =
n∑

k=1

ckκ (x, xk) , x ∈ Ω,

whose coefficients are the solution of [10, 14]
Kc = f ,

where c = (c1, . . . , cn)⊺, f = (f1, . . . , fn)⊺, and

Kik = κ (xi, xk) , i, k = 1, . . . , n.

We suppose that κ is a symmetric and strictly positive definite kernel, and hence the system has exactly one solution.
Since the scope of the manuscript is computationally-oriented, we already refer the reader to the MATLAB script

1, where in the lines 2–7, an example of an interpolation problem in two dimensions is given. Precisely, we consider
n = 4225 Halton scattered data [13] (defined via the function haltonset.m [19]) as samples of the Franke’s function [12].
The kernel that we will use in the experiments and which is defined at line 4 of the MATLAB script 1 is the Matérn C2

function
ϕ(r) = (1 + εr)e−εr,

whose shape parameter ε is set to 1.

3 The partition of unity method
When a huge number of data is involved, inverting the kernel collocation matrix might be computationally prohibitive.
To avoid this drawback, the PU method turns out to be particularly effective [28]. Indeed, it splits the problem via a
partition of the open and bounded domain Ω into m subdomains or patches Ωj , such that Ω ⊆ ∪m

j=1Ωj , with some mild
overlap among them. To simplify the notation, in what follows, we fix Ω = [0, 1]d.

3.1 MATLAB implementation of the PU method
To practically explain how the PU method works, we now also refer to the example shown in the MATLAB script 1 and
to the function PU.m reported in the MATLAB function 2. The PU covering will be made of overlapping balls of a fixed
radius whose centres are grid data P = {x̃k, k = 1, . . . , m}; see line 16 of the MATLAB function 2, where the input m_d
denotes the number of patches in one direction∗. Precisely, we remark that, assuming to have a nearly uniform node
distribution, m is a suitable number of PU subdomains on Ω if [9]

N

m
≈ 2d.

Then, the covering property is satisfied by taking the radius δ so that

δ ≥ 1
m1/d

.

Referring to the MATLAB script 1 (line 8), we fix the number of patches in one direction as ⌊n1/d/2⌋, while the radius
is set as δ =

√
2/m1/d; see line 17 of the MATLAB function 2.

Then, the PU method solves on each subdomain a local interpolation problem and constructs the global approximant
by gluing together the local contributions thanks to the use of some weights. Precisely, such weights form a partition of
unity, i.e. a family of compactly supported, non-negative, continuous functions wj , with supp (wj) ⊆ Ωj and such that

m∑
j=1

wj (x) = 1, x ∈ Ω.

In the software, we take the Shepard’s weights [25], i.e.

wj (x) := w̄j (x)
m∑

k=1

w̄k (x)
, j = 1, . . . , m,

where w̄j are compactly supported functions, with support on Ωj ; see line 19 of MATLAB function 2, where w, defined
at line 9 of the MATLAB script 1, denotes here the Wendland C2 function [27].
∗The function MakeSDGrid.m is provided by [9].
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Once we choose the partition of unity {wj}m
j=1, the global interpolant is formed by the weighted sum of m local

approximants P j
f , i.e.

Pf (x) =
m∑

j=1

P j
f (x) wj (x) =

m∑
j=1

(
nj∑

k=1

cj
kκ(x, xj

k)

)
wj (x) , x ∈ Ω,

where nj indicates the number of points on Ωj and xj
k ∈ Xj = X ∩ Ωj , with k = 1, . . . , nj . The MATLAB functions

IntegerBasedContainingQuery.m, IntegerBasedStructure.m, IntegerBasedNeighbourhood.m and
IntegerBasedRangeSearch.m, respectively reported in the MATLAB functions 3, 4, 5 and 6, organize the points among
the sudomains and will be discussed later. Supposing that the data are already properly distributed among the patches,
we are now able to determine the coefficients {cj

k}nj

k=1 by enforcing the nj local interpolation conditions, i.e.

P j
f (xj

i ) = f j
i , i = 1, . . . , nj ,

that leads to solving m linear systems of the form Kjcj = f j (see lines 32–33 of MATLAB function 2)

Kjcj = f j ,

where cj = (cj
1, . . . , cj

nj
)T , f j = (f j

1 , . . . , f j
nj

)T and Kj ∈ Rnj ×nj is†

Kj =

 κ(xj
1, xj

1) · · · κ(xj
1, xj

nj
)

...
. . .

...
κ(xj

nj
, xj

1) · · · κ(xj
nj

, xj
nj

)

 =

 ϕ
(
||xj

1 − xj
1||2
)

· · · ϕ
(
||xj

1 − xj
nj

||2
)

...
. . .

...
ϕ
(
||xj

nj
− xj

1||2
)

· · · ϕ
(
||xj

nj
− xj

nj
||2
)
 .

︸ ︷︷ ︸
K_j=phi(ep,DM_data)

The global PU interpolant is then evaluated at a grid of test or evaluation data, E = {x̄ℓ, ℓ = 1, . . . , s}. Precisely,
once we determine cj by solving the collocation system on Ωj , we can evaluate the local interpolant at the set Ej = E ∩Ωj

of cardinality sj as (see lines 34–35 of MATLAB function 2) P j
f

(
x̄j

1
)

...
P j

f

(
x̄j

sj

)
 =

 ϕ
(
||x̄j

1 − xj
1||2
)

· · · ϕ
(
||x̄j

1 − xj
nj

||2
)

...
. . .

...
ϕ
(
||x̄j

sj
− xj

1||2
)

· · · ϕ
(
||x̄j

sj
− xj

nj
||2
)

 cj

1
...

cj
nj

 .

The final evaluation on the whole grid E is carried out by summing up all the local contributes weighted by the
matrix W ∈ Rs×m of compactly supported weights as in line 36 of the MATLAB function 2. To give an example, we
report the surface interpolating the Franke’s function (see Figure 1) at the 4225 data, as the MATLAB script 1 does.
As error indicator, we take the Maximum Absolute Error (MAE) defined as:

MAE := max
i=1,...,s

|Pf (x̄i) − f(x̄i)|.

In the considered example, we obtain MAE = 6.67E − 04.

1 % Example 1
2 d = 2; n = [65].^d; % Define the space dimension and the number of data
3 p = haltonset(d); x = net(p,n); % Define the interpolation data (Halton points)
4 phi = @(epsilon,r) (1+epsilon*r).*exp(−epsilon*r); epsilon = 1; % Define the kernel
5 franke = @(x1,x2) 0.75 * exp(−(9*x1−2).^2/4 − (9*x2−2).^2/4)+ 0.75 * exp(−(9*x1+1).^2/49 − ...
6 (9*x2+1)./10)+0.5 * exp(−(9*x1−7).^2/4 − (9*x2−3).^2/4)−0.2 * exp(−(9*x1−4).^2 − (9*x2−7).^2);
7 f = franke(x(:,1),x(:,2)); % Define the test function and the function values
8 m_d = floor(n^(1/d)/2); s_d = 60; % Define the number of patches and evaluation data in one direction
9 w = @(supp,r) (max(1−(supp*r),0).^4).*(4*(supp*r)+1); % Define the PU weights (Wendland C^2)

10 bar_x = MakeSDGrid(d,s_d); % Create s_d^d equally spaced test data
11 Pf = PU(d,x,bar_x,m_d,phi,w,f,epsilon); % Compute the PU interpolant

MATLAB script 1: Template script for computing the PU interpolant.

1 function [Pf] = PU(d,x,bar_x,m_d,phi,w,f,epsilon)
2 %
3 % Goal: script that performs partition of unity
4 %
5 % Inputs: d: space dimension
6 % x: nXd matrix representing a set of n interpolation data
7 % bar_x: sXd matrix representing a set of s evaluation data

†The function DistanceMatrix.m is provided by [9].
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Figure 1: Graphical representation of the PU interpolant returned by the MATLAB script 1.

8 % m_d: number of PU subdomains in one direction
9 % phi: radial basis function

10 % w: weight function
11 % f: the function values
12 % epsilon: the shape parameter
13 %
14 % Outputs: Pf: sXd matrix representing the PU fit
15 %
16 tilde_x = MakeSDGrid(d,m_d); % Create m_d^d equally spaced PU centres
17 delta = sqrt(2)/m_d; supp = 1/delta; % Define the PU radius and the parameter for the weight functions
18 m = size(tilde_x,1); s = size(bar_x,1); Pf = zeros(s,1); % Initialize and compute the Shepard matrix
19 DM_eval = DistanceMatrix(bar_x,tilde_x); W = w(supp,DM_eval); W = spdiags(1./(W*ones(m,1)),0,s,s)*W;
20 q = ceil(1./delta); % Parameter for the integer−based partitioning structure
21 % Build the partitioning structure for interpolation and evaluation data
22 X_block = IntegerBasedStructure(x,q,delta,d); bar_X_block = IntegerBasedStructure(bar_x,q,delta,d);
23 for j = 1:m % Loop over subdomains
24 k = IntegerBasedContainingQuery(tilde_x(j,:),q,delta,d); % Find the box with the j−th PU centre
25 % Find the interpolation data located in the j−th subdomain
26 [X_NeigBlock, idx_X_NeigBlock] = IntegerBasedNeighbourhood(x,X_block,k,q,d);
27 n_j = IntegerBasedRangeSearch(tilde_x(j,:),delta,X_NeigBlock,idx_X_NeigBlock);
28 % Find the evaluation data located in the j−th subdomain
29 [bar_X_NeigBlock, idx_bar_X_NeigBlock] = IntegerBasedNeighbourhood(bar_x,bar_X_block,k,q,d);
30 s_j = IntegerBasedRangeSearch(tilde_x(j,:),delta,bar_X_NeigBlock,idx_bar_X_NeigBlock);
31 if (~isempty(s_j)) && (~isempty(n_j))
32 DM_data = DistanceMatrix(x(n_j,:),x(n_j,:)); K_j = phi(epsilon,DM_data); % Interpolation matrix
33 c_j = K_j\f(n_j); % Compute the interpolation coefficients
34 DM_eval = DistanceMatrix(bar_x(s_j,:),x(n_j,:)); % Compute the evaluation matrix
35 K_eval = phi (epsilon, DM_eval); P_fj = K_eval*c_j; % Compute the local fit
36 Pf(s_j) = Pf(s_j) + P_fj.*W(s_j,j); % Accumulate the global fit
37 end
38 end

MATLAB function 2: Implementation of the PU method.

3.2 Partitioning data structures
In this subsection, we comment about the procedure used to organize the points among the different subdomains. The
so-called integer based routines have been introduced in [7] and can be thought as a multidimensional improvement of
the fast procedures, known as cross-strip algorithms, studied in [4] and further developed in [6].

To organize the data into the different subdomains, we make use of an additional structure, which is obtained from
the subdivision of Ω into several boxes. The number q of boxes (also called blocks) along one side of [0, 1]d is linked to
the PU radius δ and is given by (see line 20 the MATLAB function 2)

q =
⌈

1
δ

⌉
. (1)

Dolomites Research Notes on Approximation ISSN 2035-6803



Cavoretto · De Rossi · Lancellotti · Perracchione 39

We thus number blocks from 1 to qd, starting from the subspace of dimension d − 1, obtained projecting along the
first coordinate and thus parallel to the remaining ones. Then to organize the points we use the so-called integer-based
routines discussed in what follows.

The first query we have to answer is: given a PU centre find the index of the block it belongs to. We observe that,
given a PU centre x̄j , the index of the k-th block containing the subdomain centre is given by (see line 13 of the Matlab
function 3)

k =
d−1∑
ℓ=1

(kℓ − 1) qd−ℓ + kd. (2)

To find the indices kℓ, ℓ = 1, . . . , d, in (2), we use an integer-based procedure consisting in rounding off to an integer
value. Specifically, for each PU centre x̄j = (x̄j1, . . . , x̄jd), we have that

kℓ =
⌈

x̄jℓ

δ

⌉
.

1 function [k] = IntegerBasedContainingQuery(tilde_x,q,delta,d)
2 %
3 % Goal: script that given a subdomain centre returns the index of the square block containing the
4 % subdomain centre
5 %
6 % Inputs: tilde_x: subdomain centre
7 % q: number of blocks in one direction
8 % delta: radius of the PU subdomains
9 % d: space dimension

10 %
11 % Outputs: k: the index of the block containing the subdomain centre
12 %
13 k_l = ceil(tilde_x/delta); l = 1:d−1; k_l(k_l == 0) = 1; k = sum((k_l(l)−1)*q.^(d−l)) + k_l(end);

MATLAB function 3: Implementation of the integer-based containing query procedure.

The same rounding off strategy is adopted in order to store both the scattered data and the evaluation points into
the different blocks. We create a partitioning data structure in which we save all the indices of the points lying on the
different subdomains. This is carried out with the routine reported in the MATLAB function 4.

1 function [X_block] = IntegerBasedStructure(x,q,delta,d)
2 %
3 % Goal: find the data sites located in each of the q^d blocks
4 %
5 % Inputs: x: nXd matrix representing a set of data
6 % q: number of blocks in one direction
7 % delta: radius of PU subdomains
8 % d: space dimension
9 %

10 % Outputs: X_block: multiarray containing the indices of the data points located in k−th block
11 %
12 n = size(x,1); X_block = cell(q^d,1); k = 1:d−1; % Initialize
13 for i = 1:n % Find the indices of the data points located in k−th block
14 idx = ceil(x(i,:)/delta); idx(idx == 0) = 1; index = sum((idx(k)−1)*q.^(d−k)) + idx(end);
15 X_block{index} = [X_block{index}; i];
16 end

MATLAB function 4: Implementation of the integer-based data structure.

After the implementation of the containing query procedure and after distributing the data among the boxes, we
now have to address the following computational issues:

• given a set of interpolation data X and a subdomain Ωj , find all the interpolation points located in that patch, i.e.
xi ∈ Xj , i = 1, . . . , nj .

• given a set of evaluation data E and a subdomain Ωj , find all evaluation points located in that patch, i.e. x̄i ∈ Ej ,
i = 1, . . . , sj .

By setting q as in (1), we know that, given a centre x̃j that belongs to the k-th block, we have to search for the
neighboring points in the k-th block and in its 3d − 1 neighboring blocks (defined via the MATLAB function 5).
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1 function [X_NeigBlock, idx_X_NeigBlock] = IntegerBasedNeighbourhood(x,X_block,k,q,d)
2 %
3 % Goal: script that finds the neighbouring blocks
4 %
5 % Inputs: x: nXd matrix representing a set of n data sites
6 % X_block: the integer−based data structure
7 % k: the k−th block cointaining the subdomain centre
8 % q: number of blocks in one direction
9 % d: space dimension

10 %
11 % Outputs: X_NeigBlock, dx_X_NeigBlock: points (and indices) lying in the k−th neighbourhood
12 %
13 neigh = []; l = d−1; index = k; % Initialize
14 while l > 0 % Find neighbouring blocks
15 neigh = [k+q.^l,k−q.^l];
16 if l − 1 > 0
17 neigh = [neigh,neigh+q.^(l−1),neigh−q.^(l−1)];
18 end
19 l = l − 1;
20 end
21 k2 = 1; neighplus = []; neighminus = []; % Initialize
22 for i = 1:length(neigh)
23 neighplus(k2) = neigh(i) + 1; neighminus(k2) = neigh(i) − 1; k2 = k2 + 1;
24 end
25 neigh = [neigh,k+1,k−1,neighplus,neighminus]; % Reduce the number of blocks for border blocks
26 j = find(neigh > 0 & neigh <= q^d); index = [index; neigh(j)’]; X_NeigBlock = []; idx_X_NeigBlock = [];
27 for p = 1:length(index)
28 X_NeigBlock = [X_NeigBlock;x(X_block{index(p)},:)];
29 idx_X_NeigBlock = [idx_X_NeigBlock;X_block{index(p)}];
30 end

MATLAB function 5: Implementation of the integer-based neighbourhood routine.

In particular, the partitioning structure based on blocks enables us to examine in the searching process at most
3d − 1 blocks. In fact, when a block lies on the boundary of the bounding box, we reduce the number of neighboring
blocks to be considered. Finally, the points lying on the j-th patch are found via the so-called range search procedure,
where a sorting routine is used to speed up the process, see line 18 of the MATLAB function 6.

1 function [n_j] = IntegerBasedRangeSearch(tilde_x,delta,X_NeigBlock,idx_X_NeigBlock)
2 %
3 % Goal: find the data sites located in a given subdomain and the distances between the
4 % subdomain centre and data sites
5 %
6 % Inputs: tilde_x: subdomain centre; delta: radius of PU subdomains
7 % X_NeigBlock: nXd matrix representing a set of n points
8 % idx_X_NeigBlock: vector containing the indices of the data points located in the k−th block
9 % and in the neighbouring blocks

10 %
11 % Outputs: n_j: vector containing the indices of the data points located in a given PU subdomain
12 %
13 N = size(X_NeigBlock,1); n_j = []; % Initialize
14 for i = 1:N % Compute distances between the data sites and the centre
15 dist1(i) = norm(tilde_x − X_NeigBlock(i,:));
16 end
17 if N > 0 % Use a sort procedure to order distances
18 [sort_dist,IX] = sort(dist1); N1 = size(sort_dist,2); j1 = 1; j2 = 1; %Initialize
19 while (j2 <= N1) && (sort_dist(j2) <= delta) % Find the data sites located in the given subdomain
20 n_j(j1) = idx_X_NeigBlock(IX(j2)); j1 = j1 + 1; j2 = j2 + 1;
21 end
22 end

MATLAB function 6: Implementation of the range search routine.

We conclude this section with a few remarks on the complexity costs of the PU method. The integer-based
partitioning structure, after organizing the scattered data into the different blocks, given a subdomain Ωj searches for
all the points lying on Ωj in a reduced number of blocks. Specifically, in order to store the scattered data among the
different blocks, it assigns to each node xi, i = 1, . . . , n, the corresponding block. This step requires O(N) time. Then,
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we apply the optimized searching routine that, supposing to have quasi-uniform nodes, is performed in a constant time.
The final step consists in solving m linear systems of size nj × nj , with nj ≪ n, thus requiring a running time O(n3

j ),
j = 1, . . . , m, for each patch.

4 Python implementation of the PU method
The Python implementation follows broadly that one of Matlab except for the use of some inherent structures of the
language. We tried to remain as faithful as possible to the names of variables and functions of the Matlab implementation
to facilitate the comparison of the codes. Furthermore we use some other libraries as NumPy [8] and SciPy [26]. For
details about the method see Section 3.

The Python function 7 works as the Matlab function 2, except for the fact that we use a list comprehension to
generate the grid of equally spaced centers.

1 def PU(x, f, bar_x, m_d, w, phi, epsilon):
2 """
3 Goal: build the partition of unity interpolant and approximate
4 the values on a given set of points
5

6 Inputs: x: nxd numpy array representing a set of n data sites
7 f: the function values
8 bar_x: sxd numpy array representing a set of s evaluation data
9 m_d: number of PU subdomains in one direction

10 w: weight function
11 phi: radial basis function
12 epsilon: the shape parameter
13

14 Outputs: Pf: sXd numpy array representing the PU fit
15 """
16

17 m, d = x.shape
18 s, _ = bar_x.shape
19 Pf = np.zeros(s)
20

21 # Create m_d^d equally spaced PU centres
22 tilde_x = np.array([i for i in itertools.product(np.linspace(0, 1, int(m_d)), repeat=d)])
23 # Define the PU radius and the parameter for the weight functions
24 radius_par = 2 ** (1 / 2)
25 delta = radius_par / m_d
26 supp = 1 / delta
27

28 # Parameter for the integer−based partitioning structure
29 q = np.ceil(1 / delta)
30

31 # Build the partitioning structure for interpolation and evaluation data
32 X_block = integer_based_structure(x, q, delta, d)
33 bar_X_block = integer_based_structure(bar_x, q, delta, d)
34

35 # Initialize and compute the Shepard matrix
36 sem = w(supp, distance_matrix(bar_x, tilde_x))
37 sem = spdiags(1/(sem@np.ones(int(m_d)**d)), 0, s, s)@sem
38

39 # Loop over subdomains
40 for j, center in enumerate(tilde_x):
41

42 # Find the box with the j−th PU centre
43 k = integer_based_containing_query(center, q, delta, d)
44 # Find the interpolation data located in the j−th subdomain
45 X_neig_block = integer_based_neighbourhood(k, q, d)
46 n_j = integer_based_range_search(center, delta, x, X_block, X_neig_block)
47

48 if n_j.size != 0:
49 # Interpolation matrix
50 c_j = np.linalg.solve(phi(epsilon, distance_matrix(x[n_j, :], x[n_j, :])), f[n_j])
51 bar_X_neig_block = integer_based_neighbourhood(k, q, d)
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52 s_j = integer_based_range_search(center, delta, bar_x, bar_X_block, bar_X_neig_block)
53

54 if s_j.size != 0:
55 # Compute the local fit
56 p_fj = np.dot(phi(epsilon, distance_matrix(bar_x[s_j, :], x[n_j, :])), c_j)
57 # Accumulate the global fit
58 Pf[s_j] += p_fj * np.array(sem[s_j, j])
59 return Pf

Python function 7: Implementation of the PU method.

The Python function 8 represents the Python arrangement of the Matlab function 5. By applying an integer-based
procedure it finds the block to which a given subdomain center belongs.

1 def integer_based_containing_query(tilde_x, q, delta, d):
2 """
3 Goal: given a subdomain centre returns the index of the
4 square block containing the subdomain centre
5

6 Inputs: tilde_x: subdomain centre
7 q: number of blocks in one dimension
8 delta: radius of PU subdomains
9 d: space dimension

10

11 Outputs: k: the block containing the subdomain centre
12 """
13 k = np.ceil(tilde_x/delta)
14 k[k == 0] = 1
15 k = np.sum((k[:−1] − 1) * q ** np.arange(d − 1, 0, −1)) + k[−1]
16 return k

Python function 8: Implementation of the integer-based containing query procedure.

The same computations made to find to which block a given subdomain belongs are used in the Python function 9 to
distribute the data among the blocks. This procedures turns out in a structure in which for each block we have an array
that contains all the indices of the points it contains. The difference to underline with respect to the Matlab function 4
is the use of the dictionary structure, i.e. in place of multi-arrays, keys are utilized for blocks and values for arrays of
points.

1 def integer_based_structure(x, q, delta, d):
2 """
3 Goal: find the data sites located in each of the q^d blocks
4

5 Inputs: x: nxd numpy array representing a set of n data sites
6 q: number of blocks in one dimension
7 delta: radius of PU subdomains
8 d: space dimension
9

10 Outputs: X_block: dictionary {key: values} key represent the index
11 of the block and values is a ndarray that contain indexes
12 of points located in k−th block
13 """
14

15 X_block = {}
16 n, _ = x.shape
17 for ind in range(n):
18 index = np.ceil(x[ind]/delta)
19 index[index == 0] = 1
20 index = int(np.sum((index[:−1] − 1)*q**np.arange(d−1, 0, −1)) + index[−1])
21 if index in X_block.keys():
22 X_block[index] = np.append(X_block[index], [ind], axis=0)
23 else:
24 X_block[index] = np.array([ind])
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25 return X_block

Python function 9: Implementation of the integer-based data structure.

As the Matlab function 5, its corresponding Python version, i.e. function 10, given a block, finds the indexes of its
neighbouring blocks. The construction of such a neighborhood is useful to avoid applying the searching procedure on
the whole dataset reducing the searching process to such neighbourhood.

1 def integer_based_neighbourhood(k, q, d):
2 """
3 Goal: given a block finds neighbouring blocks
4

5 Inputs: k: index of the block
6 q: number of blocks in one direction
7 d: space dimension
8

9 Outputs: X_NeigBlock: indices of the neighbouring blocks
10 """
11

12 neigh = np.array([])
13 ld = d − 1
14 while ld > 0:
15 neigh = np.append(neigh, [k + q ** ld, k − q ** ld])
16 if ld − 1 > 0:
17 neigh = np.append(neigh, np.array([neigh + q ** (ld − 1), neigh − q ** (ld − 1)]))
18 ld −= 1
19

20 neigh = np.append(neigh, k)
21 neigh = np.append(neigh, [neigh + 1, neigh − 1])
22 X_neig_block = neigh[np.logical_and(neigh > 0, neigh <= q ** d)]
23 return X_neig_block

Python function 10: Implementation of the integer-based neighbourhood routine.

The searching process is implemented in the function 11 in which, given a subdomain center and the structures built via
the functions 9 and 10, all the points belonging to the subdomain are provided as an array.

1 def integer_based_range_search(tilde_x, delta, x, X_block, idx_X_neigh_block):
2 """
3 Goal: find the data sites located in a given subdomain
4

5 Inputs: tilde_x: subdomain centre
6 delta: radius of PU subdomain
7 x: nxd numpy array representing a set of n data sites
8 idx_X_neigh_block: dictionary {key: value} key represent
9 the index of the block and value

10 is a list that contain indexes of
11 points located in k−th block and in
12 the neighbouring blocks
13

14 Outputs: n_j: list of the indexes of the points belonging to a
15 given subdomain
16 """
17

18 if idx_X_neigh_block.size != 0:
19 n_j = []
20 for key in idx_X_neigh_block:
21 try:
22 for ind in X_block[key]:
23 if np.linalg.norm(tilde_x − x[ind]) <= delta:
24 n_j.append(ind)
25 except KeyError:
26 pass
27 n_j = np.array(n_j)
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Figure 2: Log-Log representation of the maximum absolute error and execution time as the number of interpolation points increases.

28 else:
29 n_j = np.arange(x.shape[0])
30 return n_j

Python function 11: Implementation of the range search routine.

5 Numerical examples
Tests are carried out on a MacBook Air (2020), 1.2 GHz Quad-Core Intel Core i7 processor, 16 GB 3733 MHz LPDDR4X
RAM, via Python 3.9.12. To run the Python code the user needs to have at least the Python 3.8 release and install the
partitionunity package from the Python Package Index. The command line to install the package differs from the OS.
Unix/macOS:

1 python3 −m pip install partitionunity

Windows:

1 py −m pip install partitionunity

After the installation the user needs to import the package, as shown in the Python script 12, with the instruction

1 import partitionunity

the alias pu is used to not repeat the full package name in the code.
To point out the efficacy of the PU implementation, we take n = ⌊7p/2⌋2, p = 2, 3, 4, 5, 6, equispaced interpolation

data and we sample the Franke function. For each of the five datasets, we report in Figure 2 the MAE and the CPU
times needed for computing the PU interpolant. The experiments are carried out by taking the Matérn C2 kernel.
For completeness and for the reproducibility of the results, we report the Python script 12 that returns the outcomes
depicted in Figure 2.

1 import partitionunity as pu
2 import numpy as np
3 import time
4 import matplotlib.pyplot as plt
5

6 # Define the test function
7 def franke(X):
8 return 0.75 * np.exp(−(9*X[:, 0]−2)**2/4 − (9*X[:, 1]−2)**2/4) + \
9 0.75 * np.exp(−(9*X[:, 0]+1)**2/49 − (9*X[:, 1]+1) / 10) + 0.5 * \

10 np.exp(−(9*X[:, 0]−7)**2/4 − (9*X[:, 1]−3)**2/4)−0.2 * \
11 np.exp(−(9*X[:, 0]−4)**2 − (9*X[:, 1]−7)**2)
12

13

14 # Define the space dimension and the number of interpolation data
15 d = 2
16 p = np.append(2, np.arange(2, 7))
17 n = np.floor(np.sqrt(7**p)).astype(int)
18
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19

20 # Define the kernel and parameter
21 def Phi(eps, r):
22 return (1 + eps * r) * np.exp(−eps * r)
23

24

25 epsilon = 1
26

27 # Define the weights for PU
28 def weight(e, r):
29 return np.multiply(np.power(np.fmax(1−(e*r), 0*(e*r)), 4), (4*(e*r)+1))
30

31

32 # Define s_d^d equally spaced test data
33 s_d = 60
34 bar_x = np.array(np.meshgrid(np.linspace(0, 1, s_d), np.linspace(0, 1, s_d))).T.reshape(−1, d)
35 t = []
36 MAE = []
37 for i in range(len(p)):
38

39 # Define the interpolation data
40 x = np.array(np.meshgrid(np.linspace(0, 1, n[i]), np.linspace(0, 1, n[i]))).T.reshape(−1, d)
41

42 # Define the function values
43 y = franke(x)
44

45 m_d = np.floor((n[i] ** 2) ** (1 / d) / 2)
46 tm = time.time()
47

48 # Compute the PU interpolant
49 Pf = pu.PU(x, y, bar_x, m_d, weight, Phi, epsilon)
50

51 t.append(time.time() − tm)
52 MAE.append(np.max(abs(franke(bar_x) − Pf)))
53

54 # Display the results
55 plt.loglog(n[1:]**2, MAE[1:], ’o−’, )
56 plt.title("MAE vs number of points")
57 plt.xlabel("n")
58 plt.ylabel("MAE")
59 plt.grid(True, which="both", linestyle=’−−’)
60 plt.show()
61

62 plt.loglog(n[1:]**2, t[1:], ’o−’)
63 plt.title("CPU time vs number of points")
64 plt.xlabel("n")
65 plt.ylabel("CPU(s)")
66 plt.grid(True, which="both", linestyle=’−−’)
67 plt.show()

Python script 12: Usage example of the Python package.

6 Conclusions and work in progress
We discussed the MATLAB and Python routines needed for interpolating large datasets via the PU method. Its efficacy
is numerically shown in Section 5. Indeed, we are able to interpolate more than 100000 data in a reasonable time. Work
in progress consists in investigating its extension to other settings, e.g. to regression and support vector machines [18],
and hence use the PU structure together with local fits provided by regression routines that belong to the Python Scikit
Learn package [21] or the MATLAB Statistics and Machine Learning Toolbox.
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