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AN ADAPTIVE ALGORITHM BASED ON RBF-PU
COLLOCATION FOR SOLVING 2D POISSON PROBLEMS

Abstract.
In this paper we present a new adaptive algorithm to solve 2D Poisson problems via a

radial basis function partition of unity collocation method. The refinement process depends
on an error indicator, which consists in comparing two approximate solutions computed on a
coarser set and a finer one of collocation points. This technique is able to detect the domain
areas that need to be refined, so that the accuracy of the method can be improved. Numerical
results illustrate the performance of the adaptive algorithm.

1. Introduction

In this work we investigate the problem of constructing adaptive methods via radial
basis functions (RBFs) for solving 2D Poisson problems. In particular, the use of
adaptive meshless algorithms has recently been considered by applying different RBF-
based approaches, which include finite difference (RBF-FD) [4, 10], partition of unity
(RBF-PU) [2] or, more in general, RBF collocation [5, 9] methods. More precisely,
in [2] we proposed within a RBF-PU framework a new error estimator based on the
comparison of two collocation solutions evaluated on a coarser set and a finer one.
Since this indicator was not extensively analyzed in our previous paper, here we present
in detail the new adaptive algorithm along with its error indicator. This study is further
supported by numerical experiments carried out on some test problems.

The paper is organized as follows. In Section 2 we review some basic informa-
tion of the RBF-PU collocation method for solving elliptic PDE problems. In Section 3
we describe the adaptive algorithm along with its refinement startegy. In Section 4 we
show some numerical results carried out to illustrate the performance of our adaptive
scheme. Section 5 contains conclusions and future work.

2. RBF-PU collocation method

Let Ω be an open and bounded domain on Rs and u : Ω R. Given a set XN
x1, . . . ,xN Ω of collocation points, we partition the domain Ω into a number of

d subdomains or patches Ω j such that d
j 1 Ω j Ω with some mild overlaps among

them [8]. As subdomains we take hyperspherical patches on Rs of fixed radius such
that Ω j

d
j 1 is a covering of Ω. Along with the subdomains we define a partition

of unity by considering a family of compactly supported, nonnegative and continuous
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RBF φε r

Inverse MultiQuadric C (IMQ) 1 ε2r2 1 2

MultiQuadric C (MQ) 1 ε2r2 1 2

Mat é rn C6 (M6) e εr ε3r3 6ε2r2 15εr 15
Mat é rn C4 (M4) e εr ε2r2 3εr 3

Table 1: Some examples of popular RBFs table 1, 2 and 3 (also in the text).

functions w j, with supp w j Ω j, and such that

d

j 1
w j x 1, x Ω.

A possible choice is given by Shepard’s weight

w j x
w̃ j x

d

k 1

w̃k x

, j 1, . . . ,d,

where w̃ j are compactly supported functions on Ω j (see [3, 11]).
After choosing the weights w j

d
j 1, the global RBF-PU approximant is formed

by a weighted sum of local RBF approximants ũ j

ũ x
d

j 1
w j x ũ j x , x Ω.(2.1)

with

ũ j x
Nj

i 1
c j

i φε x x j
i 2 ,(2.2)

where Nj identifies the number of nodes in Ω j, i.e. the points x j
i XNj XN Ω j, c j

i
is an unknown real coefficient, 2 denotes the Euclidean norm, and φ : R 0 R is
a RBF depending on a positive shape parameter ε such that

φε x z 2 φ ε x z 2 , x,z Ω.

In Table 1 we list some examples of RBFs with their smoothness degrees (see e.g.
[1, 12] for details). These radial functions are commonly used for solving PDEs.

Now, given a linear elliptic differential operator L , our aim is to find the approxi-
mate solution of the elliptic PDE problem equipped with Dirichlet boundary conditions

Lu x f x , x Ω,

u x g x , x Ω.
(2.3)
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The problem (2.3) is then discretized on the global set XN of collocation points,
which is split into a set XNI of interior points and a set XNB of boundary points such
that XN XNI XNB , where NI and NB denote the number of interior and boundary
discretization points, respectively.

Assuming that the problem (2.3) has an approximate solution of the form (2.1)
(see [7]), we get

L ũ xi

d

j 1
L w j xi ũ j xi f xi , xi Ω

ũ xi

d

j 1
w j xi ũ j xi g xi , xi Ω.

(2.4)

Focusing on a Laplace problem, i.e. taking L ∆, the elliptic operator L can
expanded as

∆ w j xi ũ j xi ∆w j xi ũ j xi 2∇w j xi ∇ũ j xi w j xi ∆ũ j xi , xi Ω.
(2.5)

Defined then the vector ũ j ũ j x j
1 , . . . , ũ j x j

Nj
T of local nodal values, we

know that the local coefficient vector c j c j
1, . . . ,c

j
Nj

T is such that c j A 1
j ũ j. So

we obtain

∆ũ j A∆
j A 1

j ũ j, ∇ũ j A∇
j A 1

j ũ j,(2.6)

where A∆
j and A∇

j , j 1, . . . ,Nj, are the matrices with entries

A∆
j ki ∆φ x j

k x j
i 2 ,

and

A∇
j ki ∇φ x j

k x j
i 2 .

Associated with each subdomain Ω j, we consider the following diagonal matrices

W ∆
j diag ∆w j x j

1 , . . . ,∆w j x j
Nj

,

W ∇
j diag ∇w j x j

1 , . . . ,∇w j x j
Nj

,

Wj diag w j x j
1 , . . . ,w j x j

Nj
.

In order to get the discrete operator Pj, we differentiate (2.4) by using a product deriva-
tive rule and then apply the relations given in (2.6). Making use of (2.5) and including
the boundary conditions, the discrete local Laplacian can thus be expressed as follows

Pj ki
P̄j ki, x j

i Ω,

δki, x j
i Ω,
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where δki is the Kronecker delta and

P̄j W ∆
j A j 2W ∇

j A∇
j WjA∆

j A 1
j .

By assembling the local matrices Pj into the global matrix P, i.e.

Pj ki

d

j 1
Pj ηk j ,ηi j , k, i 1, . . . ,N,

we can derive the global discrete operator, and finally solve the (global) sparse linear
system of the form

Py u,(2.7)

where u u1, . . . ,uN
T is defined by

ui
f xi , xi Ω,

g xi , xi Ω.

and the numerical solution y ũ x1 , . . . , ũ xN
T is obtained by inverting the collo-

cation matrix P in (2.7).

3. Adaptive algorithm

In this section we present the iterative algorithm proposed to adaptively solve the PDE
problem via the RBF-PU collocation method. It can be summarized as follows.

Step 1. We define two sets XN of grid collocation points of size N 0
1 and N 0

2 , such
that N 0

1 N 0
2 (the symbol 0 identifies the initial phase, or more in general the

iteration). To make clearer the description, we denote these sets as X
N 0

1
and X

N 0
2

,
respectively.

Step 2. For k 0,1, . . ., we iteratively determine the two collocation solutions of
the form (2.1), i.e. ũ

N k
1

and ũ
N k

2
, computed on N k

1 and N k
2 collocation points,

respectively.

Step 3. We compare the two approximate solutions by evaluating the error on the
(coarser) set containing N k

1 points, i.e.

ũ
N k

2
xi ũ

N k
1

xi , xi X
N k

1
.

Note that here we suppose that the solution given with N k
2 collocation points is more

accurate than that containing N k
1 points only.
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Figure 1: Examples of refinement strategy regarding the sets X
N k

1
(left) and X

N k
2

(right) in the adaptive algorithm.

Step 4. Fixed a tolerance tol, we find all points xi X k
N1

such that

ũN2
k xi ũN1

k xi tol.(3.8)

Step 5. To refine the data point distribution, we compute the separation distance

q
X k

N1

1
2

min
i j

xi x j 2, xi X
N k

1
.(3.9)

Step 6. For k 0,1, . . . we update the two sets X
N k 1

1
and X

N k 1
2

of discretization
points as follows. For each point xi X

N k
1

, such that the condition (3.8) is satisfied,
we add to xi at most:

• four points (the blue circles depicted in the top-left frame of Figure 1), thus
generating the set X

N k 1
1

;

• eight points (the red squares shown in the top-right frame of Figure 1), thus
creating the set X

N k 1
2

.
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However, when the point xi is on or close to the boundary, the number of involved
points is obviously reduced, as shown in Figure 1 (bottom). In both cases the new
points are given by properly either adding or subtracting the value of (3.9) to the com-
ponents of xi. Moreover, we remark that in the illustrative example of Figure 1 the
point xi is marked by a black cross, while the new sets are such that X

N k
1

X
N k

2
, for

k 1,2, . . ..

Step 7. The iterative procedure stops when there are no points anymore that satisfy
the condition (3.8), returning the set X

N k
2

(where k denotes the last iteration).

4. Numerical results

In this section we summarize the results derived from application of our adaptive re-
finement algorithm, which is implemented in MATLAB. All the results are carried out
on a laptop with an Intel(R) Core(TM) i7-6500U CPU 2.50 GHz processor and 8GB
RAM.

In the following we focus on two test problems of the form (2.3) defined on the
domain Ω 0,1 2. The exact solutions of such Poisson problems are

P1 : u1 x1,x2
1
20

exp 4x1 cos 2x1 x2 ,

P2 : u2 x1,x2 exp 8 x1 0.5 2 x2 0.05 2 .

A graphical representation of these analytic solutions is shown in Figure 2.

Figure 2: Graphs of exact solutions u1 (left) and u2 (right) of Poisson problems.

In the tests we illustrate the performance of the new adaptive scheme applied to
RBF-PU collocation method by using M6 as RBF (cf. Table 1) with ε 3. The two
starting sets defined in Section 3 consist of N1

0 289 and N2
0 1089 grid or quasi-

random Halton [6] collocation points, while the tolerances used in these experiments
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are given by tol 10 5 and tol 10 4. Note that the method is basically not mesh-
based, so we have no problem about possible “distortion” of the original structure of
nodes. In fact, although as expected the level of achievable accuracy with non gridded
points is slightly lower, the method effectively works also with scattered/random nodes.
To measure the quality of our results, we give the Root Mean Square Error (RMSE),
i.e.,

RMSE
1

Neval

Neval

i 1
u zi ũ zi 2,

which is evaluated on a grid of Neval 40 40 evaluation points. Then, in order to
analyze the stability of the method, we evaluate the Condition Number (CN) of the
sparse collocation matrix P in (2.7) by using the MATLAB command condest. As to
efficiency we report the CPU times computed in seconds.

In Tables 2–3 we present the results obtained, also indicating the final number
Nf in of discretization points required to achieve the tolerances fixed. Additionally, we
report the “refined grids” after applying iteratively our adaptive algorithm. Precisely,
in Figures 3–4 we plot the final collocation points obtained after applying the iterative
process for test problems P1 and P2.
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Figure 3: Final distribution of discretization points obtained by applying the adaptive
algorithm with gridded points via M6, ε 3 and tol 10 5, for problems P1 (left) and
P2 (right).

Test Problem Nf in RMSE CN time
P1 1541 5.15e 6 4.85e 07 8.4
P2 1445 3.88e 6 1.03e 07 4.7

Table 2: Results obtained by starting from (interior) gridded points for M6 with ε 3
and tol 10 5.
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Figure 4: Final distribution of discretization points obtained by applying the adaptive
algorithm with Halton points via M6, ε 3 and tol 10 4, for problems P1 (left) and
P2 (right).

Test Problem Nf in RMSE CN time
P1 1387 2.85e 5 3.53e 10 6.4
P2 1369 2.44e 5 4.18e 09 2.9

Table 3: Results obtained by starting from (interior) Halton points for M6 with ε 3
and tol 10 4.

Analyzing the numerical results, we note that the adaptive algorithm increases
the number of points in the regions where the solution behavior varies. As regards
efficiency, then, the numerical scheme converges in few seconds in each of the tests
carried out. Finally, the CN is quite similar in both cases and not so high as it often
happens for traditional collocation RBF methods (see [6]).

Finally, in order to assess the advantage of our adaptive scheme, as a compari-
son we report the results obtained by applying the RBF-PU method on uniform grids
without using adaptive refinement but with a comparable number of nodes. In partic-
ular, for problem P1 we take N 392 1521 obtaining a RMSE = 3.26e 4, whereas
for problem P2 we consider N 382 1444 collocation points reaching a RMSE =
2.77e 5. As evident from these experiments, comparing the results with the ones
shown in Table 2, the adaptive algorithm enables us to increase the precision of our
numerical method.

5. Conclusions and future work

In this paper we presented an adaptive algorithm to solve time-independent elliptic
PDEs such as Poisson problems. This refinement strategy is applied to the RBF-PU
collocation method. In particular, we proposed an adaptive approach based on a refine-
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ment technique, which consisted in comparing two approximate solutions computed
on a coarser set and a finer one of collocation points. This process allowed us to detect
the domain areas that needed to be refined so as to improve the accuracy of the method.
Numerical results showed the performance of our algorithm on some test problems.

As future work we propose to extend our adaptive algorithm for solving other
types of differential problems, including also the case of possible discontinuities.
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